JP2008255470A - Carburized component superior in low cycle fatigue characteristic - Google Patents

Carburized component superior in low cycle fatigue characteristic Download PDF

Info

Publication number
JP2008255470A
JP2008255470A JP2008037429A JP2008037429A JP2008255470A JP 2008255470 A JP2008255470 A JP 2008255470A JP 2008037429 A JP2008037429 A JP 2008037429A JP 2008037429 A JP2008037429 A JP 2008037429A JP 2008255470 A JP2008255470 A JP 2008255470A
Authority
JP
Japan
Prior art keywords
carburizing
surface layer
carburized
less
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008037429A
Other languages
Japanese (ja)
Other versions
JP5100433B2 (en
Inventor
Yoshinari Okada
善成 岡田
Masaki Amano
政樹 天野
Ibuki Ota
伊吹樹 太田
Koji Matsumura
康志 松村
Takahiro Miyazaki
貴大 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Daido Steel Co Ltd
Original Assignee
Honda Motor Co Ltd
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Daido Steel Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008037429A priority Critical patent/JP5100433B2/en
Publication of JP2008255470A publication Critical patent/JP2008255470A/en
Application granted granted Critical
Publication of JP5100433B2 publication Critical patent/JP5100433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve both of tooth flank strength and low cycle fatigue strength of the root of tooth, which are required for deferential gear (a carburized component). <P>SOLUTION: The carburized component comprises 0.10 to less than 0.30% C, 0.10% or less Si, 0.20-0.60% Mn, 0.015% or less P, 0.035% or less S, 0.50-1.00% Cr, 0.50-1.00% Mo, 0.0005-0.0030% B, 0.010-0.100% Ti, 0.010-0.100% Nb and balance Fe with inevitable impurities; has a surface layer C concentration after gas carburization treatment of 0.40-0.60%, an effective hardened layer depth of 0.6-1.2 mm defined by limit hardness of 513 HV, and a surface hardness after shot peening treatment of 700 HV or higher. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高い低サイクル曲げ疲労強度を要求される浸炭部品、特に自動車などの駆動系部品に関するものである。   The present invention relates to carburized parts that are required to have high low cycle bending fatigue strength, and more particularly to drive system parts such as automobiles.

浸炭部品は、自動車等の動力伝達部品、例えばディファレンシャルギヤに適用されている。この浸炭部品の浸炭方法の一つとして、ガス浸炭が広く知られている。ガス浸炭は、ガスのカーボンポテンシャルを自由に制御でき、また浸炭から焼入れまでの連続操業が容易である等の利点がある。このガス浸炭では、下記特許文献1および非特許文献1に記載されているように、浸炭部品の表層のC濃度が0.8%程度に設定されるのが一般的である。すなわち、浸炭部品の表層のC濃度を0.8%よりも低く設定すると、表層の硬さが低下し、浸炭部品の強度(例えば、ディファレンシャルギヤの歯面強度)を確保することが困難となる。また、浸炭時に浸炭部品の表面が酸化され(粒界酸化層の形成)、この表面酸化による不完全焼入れ層の存在によって疲労強度を確保することも困難となる。   Carburized parts are applied to power transmission parts such as automobiles, for example, differential gears. As one of the carburizing methods for carburized parts, gas carburizing is widely known. Gas carburizing has the advantages that the carbon potential of the gas can be freely controlled and that continuous operation from carburizing to quenching is easy. In this gas carburizing, as described in Patent Document 1 and Non-Patent Document 1 below, the C concentration of the surface layer of the carburized component is generally set to about 0.8%. That is, if the C concentration of the surface layer of the carburized component is set lower than 0.8%, the hardness of the surface layer is lowered, and it becomes difficult to ensure the strength of the carburized component (for example, the tooth surface strength of the differential gear). . Further, the surface of the carburized component is oxidized during carburization (formation of a grain boundary oxide layer), and it is difficult to ensure fatigue strength due to the presence of the incompletely quenched layer due to this surface oxidation.

また、下記特許文献2には、浸炭方法は特に規定していないが、浸炭部品の表層のC濃度を0.5〜1.0%(発明例は0.62〜0.83%)に設定する技術が開示されている。この特許文献2では、浸炭部品の表層の硬さを確保しながら、表層のオーステナイト粒界に粗大なセメンタイトが生成されることを防止することで靭性を確保するようにしている。   Moreover, in the following Patent Document 2, although the carburizing method is not particularly defined, the C concentration of the surface layer of the carburized component is set to 0.5 to 1.0% (invention example is 0.62 to 0.83%). Techniques to do this are disclosed. In Patent Document 2, toughness is ensured by preventing the formation of coarse cementite at the austenite grain boundaries of the surface layer while ensuring the hardness of the surface layer of the carburized component.

一方、下記特許文献3には、真空浸炭処理により浸炭部品の表層のC濃度を0.7〜0.9%に設定し、かつその表面に1段目のショット粒径よりも2段目のショット粒径が小さいダブルショットピーニング処理を施す技術が開示されている。この特許文献3では、真空浸炭処理により粒界酸化層が形成されることを防止しながら、ダブルショットピーニング処理により残留オーステナイト量を低減することで疲労強度を確保するようにしている。   On the other hand, in Patent Document 3 below, the C concentration of the surface layer of the carburized part is set to 0.7 to 0.9% by vacuum carburizing treatment, and the second stage is larger than the first stage shot particle size on the surface. A technique for performing a double shot peening process with a small shot particle size is disclosed. In Patent Document 3, fatigue strength is ensured by reducing the amount of retained austenite by double shot peening while preventing formation of a grain boundary oxide layer by vacuum carburization.

特開平10−8199号公報Japanese Patent Laid-Open No. 10-8199 特開平8−92690号公報JP-A-8-92690 特開2002−30344号公報JP 2002-30344 A 日刊工業新聞社,「浸炭焼入れの実際 第2版」,1999年2月26日 初2版1刷発行,p.101Nikkan Kogyo Shimbun, “Case carburizing and quenching second edition”, February 26, 1999, first two editions, one print, p. 101

ところで、浸炭部品としての例えばディファレンシャルギヤにおける歯元の低サイクル疲労(塑性変形を与えるような大きな繰り返し荷重を作用させた場合に、例えば10000サイクル以下の繰り返し数で起こる疲労破壊)に対する疲労強度を向上させるためには、ギヤ表層のC濃度を低く設定することが有効である。しかしながら、この場合には、上記したギヤの歯面強度等を確保することができない。このため、ギヤに要求される歯面強度等と、その歯元の低サイクル疲労強度との特性を両立させることができないという問題があった。この場合、ガス浸炭に代えて真空浸炭を採用すれば、上記した表面酸化による疲労強度低下の問題は解決できる。しかし、この真空浸炭では、浸炭部品のエッジ部に過剰浸炭が発生するため、上記ガス浸炭の場合と同様、低サイクル疲労強度を向上させることができない。   By the way, the fatigue strength against low cycle fatigue at the root of a carburized part, for example, a differential gear (fatigue failure occurring at a repetition rate of, for example, 10,000 cycles or less when a large repetitive load causing plastic deformation is applied) is improved. In order to achieve this, it is effective to set the C concentration of the gear surface layer low. However, in this case, it is not possible to ensure the above-described gear surface strength of the gear. For this reason, there has been a problem that the characteristics of the tooth surface strength required for the gear and the characteristics of the low cycle fatigue strength of the tooth root cannot be made compatible. In this case, if vacuum carburizing is employed instead of gas carburizing, the above-described problem of fatigue strength reduction due to surface oxidation can be solved. However, in this vacuum carburization, excessive carburization occurs at the edge portion of the carburized component, and thus the low cycle fatigue strength cannot be improved as in the case of the gas carburizing.

本発明は、上記問題に対処するためになされたものであり、その目的は、浸炭部品としての例えばディファレンシャルギヤに要求される歯面強度等と、その歯元の低サイクル疲労強度とを共に向上させることが可能な低サイクル疲労特性に優れた浸炭部品を提供することにある。   The present invention has been made in order to cope with the above-described problems, and its purpose is to improve both the tooth surface strength required for, for example, a differential gear as a carburized part and the low cycle fatigue strength of the tooth base. An object of the present invention is to provide a carburized part excellent in low cycle fatigue characteristics that can be made to occur.

本発明者らは、上記課題を解決すべく鋭意検討を行った結果、以下の知見を得た。(a)破壊起点となる表層粒界破壊を抑制するためには、浸炭鋼の表層粒界にあるCの偏析を抑制することが有効である。そのためには、浸炭処理で濃化される表層Cの管理値を0.40〜0.60%まで下げることが有効である。(b)表層Cの管理値を下げると、当然ながら表層硬さが低下する。表層硬さを確保するためには、浸炭後にショットピーニング処理を施すことが有効である。ショットピーニング処理によれば、加工硬化および圧縮残留応力の効果により、表層硬さ(700HV以上)を確保することができる。また、ショットピーニング処理によれば、疲労き裂の進展を抑制することもできる。(c)表層Cの管理値を下げたものに、単にショットピーニング処理を施すだけでは、例えばディファレンシャルギヤの歯面強度を向上させることはできても、耐塑性変形抵抗性の低下によりその歯元の低サイクル疲労強度を十分に向上させるには至らない。これに対しては、限界硬さを513HVとする有効硬化層深さを管理値として設定することが有効である。   As a result of intensive studies to solve the above problems, the present inventors have obtained the following knowledge. (A) It is effective to suppress segregation of C present at the surface grain boundary of the carburized steel in order to suppress the surface grain boundary fracture serving as a fracture starting point. For that purpose, it is effective to lower the control value of the surface layer C concentrated by carburizing treatment to 0.40 to 0.60%. (B) When the control value of the surface layer C is lowered, the surface hardness is naturally reduced. In order to ensure surface hardness, it is effective to perform shot peening after carburizing. According to the shot peening treatment, surface layer hardness (700 HV or more) can be ensured by the effects of work hardening and compressive residual stress. Further, according to the shot peening process, the progress of fatigue cracks can be suppressed. (C) Even if the control value of the surface layer C is lowered and only the shot peening process is performed, for example, the tooth surface strength of the differential gear can be improved. The low cycle fatigue strength is not improved sufficiently. For this, it is effective to set the effective hardened layer depth at which the limit hardness is 513 HV as the management value.

すなわち、本発明の低サイクル疲労特性に優れた浸炭部品は、質量%で、C:0.10〜0.30%未満,Si:0.10%以下,Mn:0.20〜0.60%,P:0.015%以下,S:0.035%以下,Cr:0.50〜1.00%,Mo:0.50〜1.00%,B:0.0005〜0.0030%,Ti:0.010〜0.100%,Nb:0.010〜0.100%を含有し、残部がFe及び不可避不純物からなり、ガス浸炭処理後の表層C濃度が0.40〜0.60%であり、限界硬さを513HVとする有効硬化層深さが0.6〜1.2mmであり、かつショットピーニング処理後の表層硬さが700HV以上であることを特徴とする。   That is, the carburized parts excellent in low cycle fatigue characteristics of the present invention are in mass%, C: 0.10 to less than 0.30%, Si: 0.10% or less, Mn: 0.20 to 0.60% , P: 0.015% or less, S: 0.035% or less, Cr: 0.50 to 1.00%, Mo: 0.50 to 1.00%, B: 0.0005 to 0.0030%, It contains Ti: 0.010-0.100%, Nb: 0.010-0.100%, the balance consists of Fe and inevitable impurities, and the surface layer C concentration after gas carburizing treatment is 0.40-0.60. %, The effective hardened layer depth with a limit hardness of 513 HV is 0.6 to 1.2 mm, and the surface hardness after the shot peening treatment is 700 HV or higher.

この場合、ショットピーニング処理後にて、圧縮残留応力の最大値が800MPa以上であり、その圧縮残留応力が最大となる深さ位置(ピーク深さ)が、表層から100μm以内であるとよい。好ましくは、圧縮残留応力の最大値が1000MPa以上であり、そのピーク深さが表層から50μm以内であることが望ましい。また、浸炭部品は、例えばディファレンシャルギヤであるとよい。   In this case, after the shot peening treatment, the maximum value of the compressive residual stress is 800 MPa or more, and the depth position (peak depth) at which the compressive residual stress is maximum is preferably within 100 μm from the surface layer. Preferably, the maximum value of compressive residual stress is 1000 MPa or more, and the peak depth is within 50 μm from the surface layer. The carburized component may be a differential gear, for example.

以下、各元素の組成限定理由および限定条件について説明する。   Hereinafter, the reasons for limiting the composition of each element and the limiting conditions will be described.

(1)C:0.10〜0.30%未満
Cは、浸炭部品の強度(心部の強度)を確保するための元素である。この効果を得るには、0.10%以上の含有が必要である。他方、過度に含有させると、靭性および低サイクル疲労強度が低下してしまうため、上限を0.30%未満とする。好ましくは、0.25%以下である。
(1) C: 0.10 to less than 0.30% C is an element for ensuring the strength of the carburized component (strength of the core). In order to obtain this effect, a content of 0.10% or more is necessary. On the other hand, if it is contained excessively, the toughness and the low cycle fatigue strength decrease, so the upper limit is made less than 0.30%. Preferably, it is 0.25% or less.

(2)Si:0.10%以下
Siは、溶製時の脱酸剤として添加される。このSiは、浸炭時における粒界酸化を助長する元素であり、低サイクル疲労強度の低下をもたらすため、その含有を極力制限する必要がある。具体的には、0.10%以下の含有とする。好ましくは0.05%以下である。なお、Siは、鋼の焼入れ性を高めるのに有効であるため、この効果を得るために0.01%以上を含有させることができる。
(2) Si: 0.10% or less Si is added as a deoxidizer during melting. This Si is an element that promotes grain boundary oxidation at the time of carburizing, and causes a decrease in low cycle fatigue strength. Therefore, it is necessary to limit its content as much as possible. Specifically, the content is 0.10% or less. Preferably it is 0.05% or less. In addition, since Si is effective in improving the hardenability of steel, in order to acquire this effect, 0.01% or more can be contained.

(3)Mn:0.20〜0.60%
Mnは、浸炭時における粒界酸化を助長する元素であり、低サイクル疲労強度の低下をもたらすため、その含有を極力制限する必要がある。具体的には、0.60%以下の含有とする。他方、Mnは、鋼の焼入れ性を高めるのに有効な元素であり、また、靭性向上のためには浸炭後の適度なオーステナイトの残留が必要である。これらの効果を得るには、0.20%以上の含有が必要である。好ましくは0.40%以上である。
(3) Mn: 0.20 to 0.60%
Mn is an element that promotes grain boundary oxidation during carburizing, and lowers the low cycle fatigue strength. Therefore, its content must be limited as much as possible. Specifically, the content is 0.60% or less. On the other hand, Mn is an element effective for enhancing the hardenability of steel, and moderate austenite remains after carburizing in order to improve toughness. In order to obtain these effects, a content of 0.20% or more is necessary. Preferably it is 0.40% or more.

(4)P:0.015%以下
Pは、浸炭層の靭性を劣化させる元素である。特に、その含有量が0.015%を超えると、低サイクル疲労強度の低下が著しくなる。また、Pは、不純物元素であるので、できるだけ含有量を0%に近づけることが好ましい。
(4) P: 0.015% or less P is an element that deteriorates the toughness of the carburized layer. In particular, when the content exceeds 0.015%, the low cycle fatigue strength is significantly reduced. Further, since P is an impurity element, the content is preferably as close to 0% as possible.

(5)S:0.035%以下
Sも、浸炭層の靭性を劣化させる元素であり、Pと同様にその含有量が0.035%を超えると、低サイクル疲労強度の低下が著しくなる。しかし、被削性を特に要求されている場合には、0.010〜0.020%含有してもよい。
(5) S: 0.035% or less S is an element that deteriorates the toughness of the carburized layer. If the content exceeds 0.035% as in the case of P, the low cycle fatigue strength is remarkably reduced. However, if machinability is particularly required, it may be contained at 0.010 to 0.020%.

(6)Cr:0.50〜1.00%
Crも、Mnと同様に浸炭時における粒界酸化を助長する元素であり、低サイクル疲労強度の低下をもたらすため、その含有を極力制限する必要がある。具体的には、その含有量を1.00%以下に制限する。好ましくは0.80%以下である。他方、Crは、鋼の焼入れ性を高めるのに有効な元素であるから、この効果を得るには、0.50%以上の含有が必要である。
(6) Cr: 0.50 to 1.00%
Cr, like Mn, is an element that promotes grain boundary oxidation during carburizing, and lowers the low cycle fatigue strength. Therefore, its content must be limited as much as possible. Specifically, the content is limited to 1.00% or less. Preferably it is 0.80% or less. On the other hand, Cr is an element effective for enhancing the hardenability of steel, so to obtain this effect, it is necessary to contain 0.50% or more.

(7)Mo:0.50〜1.00%
Moは、鋼の焼入れ性を高めるのに有効な元素であり、Cr含有量を制限したことにより不足する鋼の焼入れ性を補完するために添加する。また、浸炭された表層の靭性を向上させるのに有効な元素でもある。これらの効果を得るには、0.50%以上の含有が必要である。他方、過度の含有は、浸炭焼入れ後の硬さが高くなり過ぎ、製造性が悪化してしまうので、1.00%以下の含有とする。好ましくは0.80%以下である。
(7) Mo: 0.50 to 1.00%
Mo is an element effective for enhancing the hardenability of steel, and is added to supplement the hardenability of steel which is insufficient due to the limited Cr content. It is also an element effective for improving the toughness of the carburized surface layer. In order to obtain these effects, a content of 0.50% or more is necessary. On the other hand, excessive content causes the hardness after carburizing and quenching to be too high, and the manufacturability deteriorates, so the content is 1.00% or less. Preferably it is 0.80% or less.

(8)B(固溶B):0.0005〜0.0030%
Bは、浸炭鋼の心部の焼入れ性を向上させるのに有効な元素である。すなわち、Bの添加により、不完全焼入れによる強度低下が防止され、後述する有効硬化層深さが深くなる効果が得られる。また、Bは、浸炭層の結晶粒界に優先偏析して浸炭層の粒界を強化するのに有効な元素でもある。この効果を得るには、0.0005%以上の含有が好ましい。他方、過度の含有は、焼入れ性向上の効果が飽和するだけでなく、熱間および冷間での加工性が低下するので、0.0030%以下の含有とする。
(8) B (Solubility B): 0.0005 to 0.0030%
B is an element effective for improving the hardenability of the core of the carburized steel. That is, the addition of B prevents the strength from being lowered by incomplete quenching, and the effect of increasing the effective hardened layer depth described later can be obtained. B is also an element effective for preferential segregation at the grain boundaries of the carburized layer and strengthening the grain boundaries of the carburized layer. In order to obtain this effect, the content is preferably 0.0005% or more. On the other hand, an excessive content not only saturates the effect of improving the hardenability but also decreases the workability in hot and cold, so the content is 0.0030% or less.

(9)Ti:0.010〜0.100%
Tiは、浸炭鋼中のNと結合して窒化物を生成し、NがBと結合することを防止することで、固溶Bを確保してBの焼入れ性向上の効果を維持するのに有効な元素である。ただし、0.010%未満では浸炭鋼中のNを固定するのに十分でなく、0.100%を超えるとTiNの大型化により冷間での加工性が低下するので、0.100%以下の含有とする。
(9) Ti: 0.010 to 0.100%
Ti combines with N in carburized steel to form a nitride, and prevents N from combining with B, thereby securing solid solution B and maintaining the effect of improving the hardenability of B. It is an effective element. However, if it is less than 0.010%, it is not sufficient to fix N in the carburized steel, and if it exceeds 0.100%, the workability in the cold state decreases due to the enlargement of TiN, so 0.100% or less It is assumed to contain.

(10)Nb:0.010〜0.100%
Nbは、浸炭鋼中のCやNと反応して炭窒化物を形成し、浸炭時のオーステナイト結晶粒の粗大化を防止するのに有効な元素である。ただし、0.010%未満ではオーステナイト結晶粒の粗大化を防止する効果が得られにくく、0.100%を超えるとその効果が飽和する。
(10) Nb: 0.010 to 0.100%
Nb is an element effective to react with C and N in carburized steel to form carbonitrides and prevent coarsening of austenite crystal grains during carburizing. However, if it is less than 0.010%, it is difficult to obtain the effect of preventing the coarsening of the austenite crystal grains, and if it exceeds 0.100%, the effect is saturated.

(11)表層C濃度:0.40〜0.60%
本発明の浸炭部品にはガス浸炭処理が施される。ガス浸炭処理によれば、表層C濃度を所定の設定値に容易に設定することができる。この場合、上述したように、通常の浸炭処理では、浸炭部品の表層C濃度が0.8%程度に設定される。しかし、本発明では、浸炭部品における浸炭層の延性を向上させ、き裂発生強度(疲労試験による、き裂が発生するまでの寿命)を向上させる観点から、後述する試験結果を踏まえて、0.40〜0.60%以下の含有とする。
(11) Surface layer C concentration: 0.40 to 0.60%
The carburized component of the present invention is subjected to gas carburizing treatment. According to the gas carburizing process, the surface layer C concentration can be easily set to a predetermined set value. In this case, as described above, in the normal carburizing process, the surface layer C concentration of the carburized component is set to about 0.8%. However, in the present invention, from the viewpoint of improving the ductility of the carburized layer in the carburized component and improving the crack initiation strength (lifetime until cracks are generated by a fatigue test), 0 .40 to 0.60% or less.

(12)有効硬化層深さ(限界硬さを513HVとする表面からの深さ位置。表3および表5ではECDと表記する):0.6〜1.2mm
ECDは耐塑性変形性を確保する観点から0.6mm以上が必要である。好ましくは、0.7mm以上である。一方、1.2mm以上にするためには長時間の浸炭が必要であり、コストが高く、また粒界酸化や不完全焼入れ層の生成が顕著となり、強度低下が起きるので、1.2mm以下が好ましい。
(12) Effective hardened layer depth (depth position from the surface where the limit hardness is 513HV. In Tables 3 and 5, it is expressed as ECD): 0.6 to 1.2 mm
ECD needs to be 0.6 mm or more from the viewpoint of ensuring plastic deformation resistance. Preferably, it is 0.7 mm or more. On the other hand, carburizing for a long time is required to make the thickness 1.2 mm or more, and the cost is high. In addition, grain boundary oxidation and generation of an incompletely hardened layer become remarkable, and the strength is lowered. preferable.

(13)ガス浸炭処理
浸炭部品のガス浸炭処理は、表層を高C濃度とする浸炭期と、表層のC濃度を拡散させる拡散期との浸炭焼入れ工程を含んでなるのが一般的である。このガス浸炭処理において、浸炭期および拡散期のカーボンポテンシャル(以下、CPともいう)を何れも高く設定した場合には、浸炭期および拡散期を短くしながら、有効硬化層深さを深くすることができる。しかし、拡散期のCPを高くすると、最終的な表層C濃度が高くなって、き裂発生強度が低下するおそれがある。一方、浸炭期および拡散期のCPを何れも低く設定した場合には、浸炭期および拡散期を長くすることにより、有効硬化層深さを深くすることができる。しかし、浸炭期および拡散期を長くすると、浸炭処理のコストが高くなるおそれがある。そこで、浸炭期のCPを高めに設定し拡散期のCPを低めに設定、すなわち浸炭期におけるカーボンポテンシャルを拡散期におけるカーボンポテンシャルよりも0.30%以上高く設定するとよい。これによれば、浸炭期および拡散期のCPを何れも低く設定した場合に比べ、短い処理時間で有効硬化層深さを深くすることができ、浸炭処理にかかるコストを抑えながら、き裂発生強度を向上させることが可能である。
(13) Gas carburizing treatment The gas carburizing treatment of carburized parts generally includes a carburizing and quenching process of a carburizing period in which the surface layer has a high C concentration and a diffusion period in which the C concentration in the surface layer is diffused. In this gas carburizing process, when the carbon potential of the carburizing period and the diffusion period (hereinafter also referred to as CP) is set high, the effective hardened layer depth should be increased while shortening the carburizing period and the diffusion period. Can do. However, if the CP in the diffusion period is increased, the final surface C concentration is increased, and the crack initiation strength may be reduced. On the other hand, when both the carburizing period and the diffusion period CP are set low, the effective hardened layer depth can be increased by lengthening the carburizing period and the diffusion period. However, if the carburizing period and the diffusion period are lengthened, the cost of the carburizing process may increase. Therefore, the CP of the carburizing period is set higher and the CP of the diffusion period is set lower, that is, the carbon potential in the carburizing period is preferably set higher by 0.30% or more than the carbon potential in the diffusion period. According to this, the effective hardened layer depth can be increased in a short processing time compared to the case where both the carburizing period and the diffusion period CP are set low, and cracks are generated while suppressing the cost of the carburizing process. It is possible to improve the strength.

(14)ショットピーニング
表層C濃度を低くすると、表層硬さが低下し浸炭部品(例えばギヤ)の面強度を確保することが困難となる。ガス浸炭処理後に浸炭部品にショットピーニング処理を施すことにより、き裂の起点となる表層の粒界酸化層を除去することができ、また圧縮残留応力の付与により表層の硬さを良好に確保することができる。
(14) Shot peening If the surface C concentration is lowered, the surface hardness decreases and it becomes difficult to secure the surface strength of the carburized component (for example, gear). By performing shot peening treatment on carburized parts after gas carburizing treatment, it is possible to remove the surface grain boundary oxide layer, which is the starting point of cracks, and to ensure good surface hardness by applying compressive residual stress be able to.

(15)表層硬さ:700HV以上
浸炭部品の表面強度を確保する観点から、表層にて少なくとも700HVの硬さが必要である。ここで、表層硬さとは、表面から0.05mmの深さ位置における硬さを意味する。
(15) Surface layer hardness: 700 HV or more From the viewpoint of securing the surface strength of the carburized component, the surface layer needs to have a hardness of at least 700 HV. Here, the surface hardness means the hardness at a depth position of 0.05 mm from the surface.

(16)圧縮残留応力の最大値:800MPa以上
曲げ疲労による、き裂の発生を抑制する観点から、少なくとも800MPa以上の圧縮残留応力が必要である。好ましくは、後述する試験結果を踏まえて、1000MPa以上とする。絶対値が高い方が好ましいが、ショットピーニングのコストが高くなり、また被投射部材の降伏強度を超えると表層にき裂が発生し、曲げ疲労強度を低下させることになる。
(16) Maximum value of compressive residual stress: 800 MPa or more From the viewpoint of suppressing the occurrence of cracks due to bending fatigue, a compressive residual stress of at least 800 MPa is required. Preferably, the pressure is set to 1000 MPa or more based on the test results described later. A higher absolute value is preferable, but the cost of shot peening increases, and if the yield strength of the projection target member is exceeded, cracks occur in the surface layer and the bending fatigue strength is reduced.

(17)ピーク深さ:100μm以内
浸炭部品の表層の応力値を確保するためである。好ましくは50μm以内とする。本発明のピーク深さを規定する目的は、表層の浅い部分に高い残留応力となっている部分を形成することであり、本発明のように表層から100μmの部分を高い残留応力とした上で、100μm以上のところにピークをもってきたものも対象である(複合的にショットピーニングをすればできる)。
(17) Peak depth: within 100 μm This is to ensure the stress value of the surface layer of the carburized component. Preferably, it is within 50 μm. The purpose of defining the peak depth of the present invention is to form a portion having high residual stress in the shallow portion of the surface layer, and after making the portion of 100 μm from the surface layer high residual stress as in the present invention. Also, those having a peak at 100 μm or more are also targets (combined by shot peening).

本発明は、低サイクル疲労強度(き裂発生強度)が特に必要とされる自動車のディファレンシャルギヤの用途に好適である。以下、本発明による浸炭部品をディファレンシャルギヤに適用した一実施形態を図面に基づいて説明する。   The present invention is suitable for use in a differential gear of an automobile in which low cycle fatigue strength (cracking strength) is particularly required. Hereinafter, an embodiment in which a carburized component according to the present invention is applied to a differential gear will be described with reference to the drawings.

図1は、前記ディファレンシャルギヤを備えたディファレンシャルユニット10を示していて、このディファレンシャルユニット10においては、リングギヤ(図示省略)が固定されたディファレンシャルケース11内に、ディファレンシャルギヤとしての左右一対のサイドギヤ12,12と、両サイドギヤ12に係合する差動ピニオン13,13とが収容されている。各サイドギヤ12は、アクスルシャフト(図示省略)に連結され、各差動ピニオン13は、ディファレンシャルケース11に設けたピニオンシャフト14に対して回転自在に装着されている。   FIG. 1 shows a differential unit 10 having the differential gear. In the differential unit 10, a pair of left and right side gears 12 as differential gears are provided in a differential case 11 to which a ring gear (not shown) is fixed. 12 and differential pinions 13 and 13 engaged with both side gears 12 are accommodated. Each side gear 12 is connected to an axle shaft (not shown), and each differential pinion 13 is rotatably attached to a pinion shaft 14 provided in the differential case 11.

車両の走行時、ディファレンシャルユニット10は、エンジンからの回転トルクをドライブピニオン(図示省略)およびリングギヤを介して、ディファレンシャルケース11、ピニオンシャフト14、両差動ピニオン13、両サイドギヤ12の順に伝達し、アクスルシャフトを回転させる。   When the vehicle travels, the differential unit 10 transmits the rotational torque from the engine to the differential case 11, the pinion shaft 14, the differential pinion 13, and the side gears 12 in this order via a drive pinion (not shown) and a ring gear. Rotate the axle shaft.

以上、本発明による浸炭部品をディファレンシャルギヤに適用した一実施形態について説明したが、浸炭部品の適用範囲はこれに限らず、低サイクル疲労強度が要求される機械構造部品に広く適用することができる。   As mentioned above, although one Embodiment which applied the carburized component by this invention to the differential gear was described, the application range of a carburized component is not restricted to this, It can apply widely to the mechanical structure components by which low cycle fatigue strength is requested | required. .

a.第1実施例
まず、表1に示す化学成分の鋼Aを電気炉を用いて溶製した。この鋼Aを直径22mmの丸棒に熱間圧延し、920℃で1時間保持して空冷した後、図2に示す形状の試験片をそれぞれ作製した。この試験片は1.5Rの円弧溝状の切欠きを持ち、歯車の歯元(強度)を模擬している。そして、各試験片を図3、図4(A),4(B)に示す何れかの浸炭条件(浸炭焼入れ焼戻し工程)に従って表層C濃度を変化させたものを実施例1〜7、比較例1〜9とした。
a. First Example First, steel A having chemical components shown in Table 1 was melted using an electric furnace. This steel A was hot-rolled into a round bar having a diameter of 22 mm, held at 920 ° C. for 1 hour and air-cooled, and then each test piece having the shape shown in FIG. 2 was produced. This test piece has a 1.5R circular groove-shaped notch, and simulates the tooth root (strength) of the gear. And what changed the surface layer C density | concentration according to any carburizing condition (carburizing quenching tempering process) which shows each test piece to FIG. 3, FIG. 4 (A), 4 (B), Examples 1-7, Comparative example 1-9.

図3の浸炭条件aは、浸炭焼入れ工程における浸炭期のCPを高C濃度(0.9%)とし、拡散期のCPを低C濃度(0.55%)とし、浸炭期を90分、拡散期を90分に設定したものである。浸炭条件bは、通常の浸炭焼入れ工程で採用されることの多い条件であり、浸炭期および拡散期のCPを何れも高C濃度(浸炭期:0.8%、拡散期:0.7%)とし、浸炭期を240分、拡散期を180分に設定したものである。浸炭条件cは、浸炭期および拡散期のCPを何れも低C濃度(浸炭期:0.65%、拡散期:0.55%)とし、浸炭期を90分、拡散期を90分に設定したものである。   The carburizing condition a in FIG. 3 is that the carburizing period CP in the carburizing and quenching process is set to a high C concentration (0.9%), the diffusion period CP is set to a low C concentration (0.55%), The diffusion period is set to 90 minutes. The carburizing condition b is a condition that is often employed in a normal carburizing and quenching process. Both the carburizing period and the diffusion period CP have a high C concentration (the carburizing period: 0.8%, the diffusion period: 0.7%). ), The carburizing period is set to 240 minutes, and the diffusion period is set to 180 minutes. Carburizing condition c is set to low C concentration (carburizing period: 0.65%, diffusion period: 0.55%) in both carburizing period and diffusion period, and carburizing period is set to 90 minutes and diffusion period is set to 90 minutes. It is a thing.

図4(A),4(B)の浸炭条件a1〜a5は、図3の浸炭条件aをベースとして更に個々の設定を適宜変更したものである。具体的には、浸炭条件a1,a2は、浸炭条件aにおける浸炭期および拡散期を共に長くしたものである。浸炭条件a3は、表層C濃度の下限値が0.40%以上となる範囲内で浸炭条件aにおける拡散期のCPを低くし、かつ拡散期を長くしたものである。浸炭条件a4は、表層C濃度の下限値が0.40%を下回るように浸炭条件aにおける拡散期のCPを低くし、かつ拡散期を長くしたものである。浸炭条件a5は、表層C濃度の下限値が0.60%を上回るように浸炭条件aにおける拡散期のCPを高くし、かつ拡散期を長くしたものである。なお、浸炭条件a〜c,a1〜a5の何れについても浸炭焼入れ工程での保持温度を930℃とし、拡散期後、850℃に30分間保持した後、油冷した。また、その後の浸炭焼戻し工程では180℃に120分間保持した後、空冷した。このときの表層C量、有効硬化層深さ(ECD)を後述する表3に示す。   The carburizing conditions a1 to a5 of FIGS. 4A and 4B are obtained by appropriately changing individual settings based on the carburizing condition a of FIG. Specifically, the carburizing conditions a1 and a2 are obtained by extending both the carburizing period and the diffusion period in the carburizing condition a. In the carburizing condition a3, the CP of the diffusion period in the carburizing condition a is lowered and the diffusion period is extended within a range where the lower limit value of the surface layer C concentration is 0.40% or more. In the carburizing condition a4, the CP of the diffusion period in the carburizing condition a is lowered and the diffusion period is extended so that the lower limit value of the surface layer C concentration is less than 0.40%. In the carburizing condition a5, the CP of the diffusion period in the carburizing condition a is increased and the diffusion period is extended so that the lower limit value of the surface layer C concentration exceeds 0.60%. In addition, about any of carburizing conditions ac, a1-a5, the holding temperature in a carburizing and quenching process was 930 degreeC, and after oil diffusion, it hold | maintained at 850 degreeC for 30 minutes. Further, in the subsequent carburizing and tempering process, the steel was kept at 180 ° C. for 120 minutes and then cooled by air. The amount of surface layer C and the effective hardened layer depth (ECD) at this time are shown in Table 3 described later.

Figure 2008255470
Figure 2008255470

さらに、実施例1〜7については、ショットピーニング(以下、SPともいう)を施した。なお、比較例1〜9については、比較例7〜9についてのみSPを施した。SP条件を表2に示す。表2中、A,Bは、SP条件を変えてSPを2回行うものであり、C,Dは、SPを1回行うものである。なお、ショット粒径「大」はショット粒の直径が0.8mm程度のものを示し、「中」は0.15mm〜0.3mm程度のものを示し、「小」は0.05mm〜0.15mm程度のものを示す。また、アークハイト「大」は1.0mm(A)程度の反り量を示し、「小」は0.2mm(A)程度の反り量を示す。測定方法の詳細はJIS B 2711(2005)参照。   Further, in Examples 1 to 7, shot peening (hereinafter also referred to as SP) was performed. In addition, about Comparative Examples 1-9, SP was given only about Comparative Examples 7-9. Table 2 shows the SP conditions. In Table 2, A and B perform SP twice while changing the SP condition, and C and D perform SP once. The shot particle size “large” indicates that the shot particle diameter is about 0.8 mm, “medium” indicates that the diameter is about 0.15 mm to 0.3 mm, and “small” indicates 0.05 mm to 0.00 mm. The thing of about 15 mm is shown. Further, the arc height “large” indicates a warpage amount of about 1.0 mm (A), and the “small” indicates a warpage amount of about 0.2 mm (A). Refer to JIS B 2711 (2005) for details of the measurement method.

Figure 2008255470
Figure 2008255470

次に、本発明の効果を確認するために行った評価方法および試験について説明する。   Next, evaluation methods and tests performed to confirm the effects of the present invention will be described.

(1)表層C濃度
各試験片の表層C濃度を、JIS G 1253に基づき、発光分光分析により測定した。ここでは、C量1%まで測定できるように検量線を作成した(誤差は±0.01%)。また、各試験片の表層C濃度分布を、X線マイクロアナライザー(EPMA)を用いて線分析により測定した。ここでは、表層C濃度が0.40〜0.60%のものを良とする。
(1) Surface layer C density | concentration The surface layer C density | concentration of each test piece was measured by the emission spectroscopic analysis based on JISG1253. Here, a calibration curve was prepared so that the C content could be measured up to 1% (error is ± 0.01%). Further, the surface layer C concentration distribution of each test piece was measured by line analysis using an X-ray microanalyzer (EPMA). Here, the surface layer C concentration is 0.40 to 0.60%.

(2)有効硬化層深さ、表層硬さ
各試験片の有効硬化層深さおよび表層硬さを、ISO2639(1982)に準拠し荷重300gのビッカース硬度計を用いて測定した。ただし、有効硬化層深さの限界硬さを513HVとし、表面から0.05mmの深さ位置における硬さを表層硬さとして測定した。ここでは、有効硬化層深さが0.6〜1.2mmのものを良とし、また表層硬さが700HV以上のものを良とする。
(2) Effective hardened layer depth and surface hardness The effective hardened layer depth and the surface hardness of each test piece were measured using a Vickers hardness meter with a load of 300 g in accordance with ISO2639 (1982). However, the critical hardness of the effective hardened layer depth was 513 HV, and the hardness at a depth position of 0.05 mm from the surface was measured as the surface layer hardness. Here, the effective hardened layer depth is 0.6 to 1.2 mm, and the surface layer hardness is 700 HV or higher.

(3)圧縮残留応力
実施例1〜7、比較例1〜9について、電解研磨により表面を研磨し、周知のディフラクトメータ法によるX線回折プロファイルに基づいて、ピークの半値幅とピーク中心位置との関係から圧縮残留応力(最大残留応力)を測定した。また、表層からの応力分布を求め、ピーク深さを測定した。ここでは、圧縮残留応力が800MPa以上のものを良とする。
(3) Compressive residual stress For Examples 1 to 7 and Comparative Examples 1 to 9, the surface was polished by electrolytic polishing, and based on the X-ray diffraction profile by the well-known diffractometer method, the half width of the peak and the peak center position Compressive residual stress (maximum residual stress) was measured from the relationship. Further, the stress distribution from the surface layer was obtained, and the peak depth was measured. Here, a material having a compressive residual stress of 800 MPa or more is considered good.

(4)曲げ疲労試験
各試験片について、図2(b)に示す試験方法に従って曲げ疲労試験(4点曲げ試験)を行った。そして、例えば図2(a)に示した試験片の切欠きに貼付した歪ゲージが破損するまでの負荷繰り返し数(き裂発生寿命)を測定した。ここでは、負荷繰り返し数が1100回以上のものを良とする。以上のSP条件、圧縮残留応力、表層硬さ、負荷繰り返し数を表3に示す。
(4) Bending fatigue test Each specimen was subjected to a bending fatigue test (4-point bending test) according to the test method shown in FIG. Then, for example, the number of repeated loads (cracking life) until the strain gauge attached to the notch of the test piece shown in FIG. Here, a load having a number of repetitions of 1100 times or more is considered good. Table 3 shows the above SP conditions, compressive residual stress, surface hardness, and load repetition number.

Figure 2008255470
Figure 2008255470

表3によると、表層C濃度が0.40〜0.60%である場合に、SPの有無にかかわらず、き裂発生寿命が長くなっていることがわかる。また、SPを施したものは、SPを施していないものに比して、き裂発生寿命が長くなっている。   According to Table 3, it can be seen that when the surface layer C concentration is 0.40 to 0.60%, the crack generation life is prolonged regardless of the presence or absence of SP. In addition, those with SP have a longer crack generation life than those without SP.

実施例1〜6では、優れた表層硬さ(700HV以上)と、き裂発生寿命(1100回以上)とが得られている。このことから、圧縮残留応力の最大値が1000MPa以上である場合に、き裂発生寿命が長くなることがわかる。なお、実施例7では、圧縮残留応力の最大値が806MPaであり、1000MPaには達していないが、SP(D条件)を施すことにより、低サイクル疲労特性としては良好な表層硬さ(762HV)と、き裂発生寿命(1104回)とが得られている。   In Examples 1 to 6, excellent surface layer hardness (700 HV or more) and crack generation life (1100 times or more) are obtained. From this, it can be seen that when the maximum value of the compressive residual stress is 1000 MPa or more, the crack generation life becomes long. In Example 7, the maximum value of the compressive residual stress is 806 MPa and does not reach 1000 MPa, but by applying SP (D condition), the surface hardness (762 HV) is good as low cycle fatigue characteristics. And a crack generation life (1104 times).

比較例1,7から、表層C濃度が低い場合には(0.35%)、SPを施しても十分な表層硬さが得られないことがわかる(559HV,639HV)。比較例5から、表層C濃度が高い場合には(0.65%)、十分なき裂発生寿命が得られないことがわかる(585回)。比較例2〜4から、表層C濃度が0.40〜0.60%の範囲内にあっても、SPを施さなければ十分な表層硬さが得られないことがわかる(614HV,662HV,698HV)。比較例8,9から、表層C濃度が0.40〜0.60%の範囲内にあり、SPを施した場合であっても、ECDが0.6〜1.2mmの範囲内になければ、十分なき裂発生寿命が得られないことがわかる(838回,805回)。   From Comparative Examples 1 and 7, it can be seen that when the surface layer C concentration is low (0.35%), sufficient surface layer hardness cannot be obtained even when SP is applied (559 HV, 639 HV). From Comparative Example 5, it can be seen that when the surface layer C concentration is high (0.65%), a sufficient crack initiation life cannot be obtained (585 times). From Comparative Examples 2 to 4, it can be seen that even if the surface layer C concentration is in the range of 0.40 to 0.60%, sufficient surface layer hardness cannot be obtained unless SP is applied (614HV, 662HV, 698HV). ). From Comparative Examples 8 and 9, the surface layer C concentration is in the range of 0.40 to 0.60%, and even when SP is applied, the ECD is not in the range of 0.6 to 1.2 mm. It can be seen that a sufficient crack initiation life cannot be obtained (838 times, 805 times).

b.第2実施例
次に、合金組成の影響を判断するために、表4に示すように合金組成を変え、表層C濃度が0.40〜0.60%となるように、何れも図3の浸炭条件aを採用し、SP条件(A条件)下でSPを施して実施例8〜13、比較例10〜15を作製した。そして、これらの鋼についても、上記第1実施例と同じ評価方法および試験を行った。以上の結果を表5に示す。
b. Second Example Next, in order to judge the influence of the alloy composition, the alloy composition was changed as shown in Table 4 so that the concentration of the surface layer C was 0.40 to 0.60%. Carburizing conditions a were employed, and SP was applied under SP conditions (A conditions) to produce Examples 8 to 13 and Comparative Examples 10 to 15. And also about these steel, the same evaluation method and test as the said 1st Example were done. The results are shown in Table 5.

Figure 2008255470
Figure 2008255470

Figure 2008255470
Figure 2008255470

表5によると、実施例8,9のように、Cの組成を0.10〜0.30%の範囲内で変えた場合、実施例10,12,13のように、Cr,Moの組成をそれぞれ0.50〜1.00%の範囲内で変えた場合にも、優れた表層硬さ(700HV以上)と、き裂発生寿命(1100回以上)とが得られている。   According to Table 5, when the composition of C was changed within the range of 0.10 to 0.30% as in Examples 8 and 9, the compositions of Cr and Mo were as in Examples 10, 12, and 13. Even when each is changed within the range of 0.50 to 1.00%, excellent surface hardness (700 HV or more) and crack generation life (1100 times or more) are obtained.

比較例10からCの含有量が低い場合には、SPを施しても十分なECDが得られないことがわかる(0.55mm)。また、心部硬さも十分に得られないことから、十分なき裂発生寿命が得られないことがわかる(963回)。比較例12,14から、それぞれCr,Moの含有量が低い場合には、SPを施しても十分な表層硬さが得られないことがわかる(506HV,583HV)。比較例11,13から、それぞれC,Crの含有量が高い場合には、十分なき裂発生寿命が得られないことがわかる(973回,1007回)。   It can be seen from Comparative Example 10 that when the content of C is low, sufficient ECD cannot be obtained even when SP is applied (0.55 mm). Moreover, since the core hardness cannot be obtained sufficiently, it can be seen that a sufficient crack initiation life cannot be obtained (963 times). From Comparative Examples 12 and 14, it can be seen that when the Cr and Mo contents are low, sufficient surface hardness cannot be obtained even when SP is applied (506HV, 583HV). From Comparative Examples 11 and 13, it can be seen that when the contents of C and Cr are high, sufficient crack initiation life cannot be obtained (973 times and 1007 times).

以上の結果、本発明では、表層硬さ・き裂発生寿命が共に優れていることが確認された。したがって、本発明をディファレンシャルギヤに適用することによって、その歯面強度と、歯元の低サイクル疲労強度とを共に向上させることが可能である。   As a result, in the present invention, it was confirmed that both the surface layer hardness and the crack generation life were excellent. Therefore, by applying the present invention to a differential gear, it is possible to improve both the tooth surface strength and the low cycle fatigue strength of the tooth root.

本発明による浸炭部品の一実施形態に係るディファレンシャルギヤを備えたディファレンシャルユニットを示す断面模式図。The cross-sectional schematic diagram which shows the differential unit provided with the differential gear which concerns on one Embodiment of the carburized component by this invention. (a)は試験片を示す正面図。(b)は曲げ疲労試験(4点曲げ試験)の概要を示す説明図。(A) is a front view which shows a test piece. (B) is explanatory drawing which shows the outline | summary of a bending fatigue test (4-point bending test). 浸炭条件を示す説明図。Explanatory drawing which shows carburizing conditions. (A),(B)は図3の浸炭条件aをベースとして個々の設定を適宜変更した浸炭条件を示す説明図。(A), (B) is explanatory drawing which shows the carburizing condition which changed each setting suitably based on the carburizing condition a of FIG.

符号の説明Explanation of symbols

12 サイドギヤ(ディファレンシャルギヤ)   12 Side gear (Differential gear)

Claims (4)

質量%で、C:0.10〜0.30%未満,Si:0.10%以下,Mn:0.20〜0.60%,P:0.015%以下,S:0.035%以下,Cr:0.50〜1.00%,Mo:0.50〜1.00%,B:0.0005〜0.0030%,Ti:0.010〜0.100%,Nb:0.010〜0.100%を含有し、残部がFe及び不可避不純物からなり、
ガス浸炭処理後の表層C濃度が0.40〜0.60%であり、限界硬さを513HVとする有効硬化層深さが0.6〜1.2mmであり、かつショットピーニング処理後の表層硬さが700HV以上であることを特徴とする低サイクル疲労特性に優れた浸炭部品。
In mass%, C: 0.10 to less than 0.30%, Si: 0.10% or less, Mn: 0.20 to 0.60%, P: 0.015% or less, S: 0.035% or less , Cr: 0.50 to 1.00%, Mo: 0.50 to 1.00%, B: 0.0005 to 0.0030%, Ti: 0.010 to 0.100%, Nb: 0.010 Containing ~ 0.100%, the balance consisting of Fe and inevitable impurities,
Surface layer C concentration after gas carburizing treatment is 0.40 to 0.60%, effective hardened layer depth with limit hardness being 513HV is 0.6 to 1.2 mm, and surface layer after shot peening treatment A carburized part excellent in low cycle fatigue characteristics characterized by having a hardness of 700 HV or more.
前記ショットピーニング処理後にて、圧縮残留応力の最大値が800MPa以上であり、その圧縮残留応力が最大となる深さ位置が、表層から100μm以内であることを特徴とする請求項1に記載の低サイクル疲労特性に優れた浸炭部品。   The low value according to claim 1, wherein after the shot peening treatment, the maximum value of the compressive residual stress is 800 MPa or more, and the depth position where the compressive residual stress is maximum is within 100 μm from the surface layer. Carburized parts with excellent cycle fatigue characteristics. 前記浸炭部品は、ディファレンシャルギヤであることを特徴とする請求項1または2に記載の低サイクル疲労特性に優れた浸炭部品。   The carburized part having excellent low cycle fatigue characteristics according to claim 1 or 2, wherein the carburized part is a differential gear. 請求項1ないし3の何れか1項に記載の浸炭部品における浸炭焼入れ工程を、表層を高C濃度とする浸炭期と、表層のC濃度を拡散させる拡散期とを含んで構成し、前記浸炭期におけるカーボンポテンシャルを前記拡散期におけるカーボンポテンシャルよりも0.30%以上高く設定したことを特徴とする低サイクル疲労特性に優れた浸炭部品の製造方法。   The carburizing and quenching step in the carburized component according to any one of claims 1 to 3, including a carburizing period in which a surface layer has a high C concentration and a diffusion period in which the C concentration in the surface layer is diffused, A method for producing a carburized part excellent in low cycle fatigue characteristics, characterized in that a carbon potential in a period is set to be 0.30% or more higher than a carbon potential in the diffusion period.
JP2008037429A 2007-03-12 2008-02-19 Carburized parts with excellent low cycle fatigue characteristics Active JP5100433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008037429A JP5100433B2 (en) 2007-03-12 2008-02-19 Carburized parts with excellent low cycle fatigue characteristics

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007062632 2007-03-12
JP2007062632 2007-03-12
JP2008037429A JP5100433B2 (en) 2007-03-12 2008-02-19 Carburized parts with excellent low cycle fatigue characteristics

Publications (2)

Publication Number Publication Date
JP2008255470A true JP2008255470A (en) 2008-10-23
JP5100433B2 JP5100433B2 (en) 2012-12-19

Family

ID=39979344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008037429A Active JP5100433B2 (en) 2007-03-12 2008-02-19 Carburized parts with excellent low cycle fatigue characteristics

Country Status (1)

Country Link
JP (1) JP5100433B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010071014A1 (en) * 2008-12-19 2010-06-24 Yamaha Hatsudoki Kabushiki Kaisha Connecting rod, internal combustion engine, transportation apparatus, and method of producing connecting rod
JP2010150576A (en) * 2008-12-24 2010-07-08 Yamaha Motor Co Ltd Connecting rod, internal combustion engine, transportation apparatus, and method for manufacturing the connecting rod
JP2010285682A (en) * 2009-06-15 2010-12-24 Honda Motor Co Ltd Carburizing material
JP2014214377A (en) * 2013-04-30 2014-11-17 大同特殊鋼株式会社 High strength gear excellent in tooth flank strength and dedendum strength
US8961710B2 (en) 2009-05-27 2015-02-24 Nippon Steel & Sumitomo Metal Corporation Carburized component and manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152330A (en) * 2004-11-26 2006-06-15 Nissan Motor Co Ltd Machine structural member and shaft obtained by using the same
JP2007231305A (en) * 2006-02-27 2007-09-13 Daido Steel Co Ltd Carburized component and carburized gear

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152330A (en) * 2004-11-26 2006-06-15 Nissan Motor Co Ltd Machine structural member and shaft obtained by using the same
JP2007231305A (en) * 2006-02-27 2007-09-13 Daido Steel Co Ltd Carburized component and carburized gear

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010071014A1 (en) * 2008-12-19 2010-06-24 Yamaha Hatsudoki Kabushiki Kaisha Connecting rod, internal combustion engine, transportation apparatus, and method of producing connecting rod
JP2012512992A (en) * 2008-12-19 2012-06-07 ヤマハ発動機株式会社 Connecting rod, internal combustion engine, transport device, and method of manufacturing connecting rod
JP2010150576A (en) * 2008-12-24 2010-07-08 Yamaha Motor Co Ltd Connecting rod, internal combustion engine, transportation apparatus, and method for manufacturing the connecting rod
US8961710B2 (en) 2009-05-27 2015-02-24 Nippon Steel & Sumitomo Metal Corporation Carburized component and manufacturing method
EP2436795A4 (en) * 2009-05-27 2016-08-10 Nippon Steel & Sumitomo Metal Corp Carburized component and manufacturing method therefor
JP2010285682A (en) * 2009-06-15 2010-12-24 Honda Motor Co Ltd Carburizing material
JP2014214377A (en) * 2013-04-30 2014-11-17 大同特殊鋼株式会社 High strength gear excellent in tooth flank strength and dedendum strength

Also Published As

Publication number Publication date
JP5100433B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP5018586B2 (en) High strength carburizing induction hardening parts
JP5530763B2 (en) Carburized steel parts with excellent low cycle bending fatigue strength
JP6088322B2 (en) Gears with excellent seizure resistance
WO2015098106A1 (en) Carburized-steel-component production method, and carburized steel component
JP5669339B2 (en) Manufacturing method of high strength carburized parts
JP4688727B2 (en) Carburized parts and manufacturing method thereof
JP2007231305A (en) Carburized component and carburized gear
JP2012224928A (en) Steel material for machine structural use having excellent contact pressure fatigue strength
CN104884660A (en) Steel for carburizing
JP2006213951A (en) Steel for carburized component excellent in cold workability, preventing coarsening of crystal grains in carburizing impact resistance and impact fatigue resistance
JP5100433B2 (en) Carburized parts with excellent low cycle fatigue characteristics
JP4688691B2 (en) Case-hardened steel with excellent low cycle fatigue strength
JP5207805B2 (en) Steel parts with excellent bending fatigue strength and manufacturing method thereof
WO2015147067A1 (en) Steel component for high-temperature carburizing with excellent spalling strength and low-cycle fatigue strength
JP5286966B2 (en) Gear parts
JP5272330B2 (en) Steel for gas carburization, gas carburized parts, and method for manufacturing gas carburized parts
JP2009068065A (en) Case hardening steel excellent in bearing fatigue-strength, impact strength and bending fatigue-strength
JP2004238702A (en) Carburized component excellent in low-cycle impact fatigue resistance
JP2009263767A (en) Method for manufacturing high-strength case hardened steel part
JP5177517B2 (en) Hardened steel for shafts with excellent low cycle torsional fatigue strength
EP3040437B1 (en) Mechanical structural component and method for manufacturing same
JP6111121B2 (en) Gears with excellent seizure resistance
JP6109730B2 (en) Steel material excellent in bending fatigue characteristics after carburizing, manufacturing method thereof and carburized parts
JP5335523B2 (en) Gear shaft steel and gear shaft excellent in bending fatigue resistance and peeling resistance
JP2016188422A (en) Carburized component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5100433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250