JP5272330B2 - Steel for gas carburization, gas carburized parts, and method for manufacturing gas carburized parts - Google Patents

Steel for gas carburization, gas carburized parts, and method for manufacturing gas carburized parts Download PDF

Info

Publication number
JP5272330B2
JP5272330B2 JP2007136821A JP2007136821A JP5272330B2 JP 5272330 B2 JP5272330 B2 JP 5272330B2 JP 2007136821 A JP2007136821 A JP 2007136821A JP 2007136821 A JP2007136821 A JP 2007136821A JP 5272330 B2 JP5272330 B2 JP 5272330B2
Authority
JP
Japan
Prior art keywords
gas
steel
carburizing
concentration
carburized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007136821A
Other languages
Japanese (ja)
Other versions
JP2008291298A (en
Inventor
敏之 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2007136821A priority Critical patent/JP5272330B2/en
Publication of JP2008291298A publication Critical patent/JP2008291298A/en
Application granted granted Critical
Publication of JP5272330B2 publication Critical patent/JP5272330B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide steel for carburizing, provided with alloy composition with which in the case of performing gas-carburizing, internal oxidation is reduced and also, excessive carburization is avoided and C concentration on the steel surface can be controlled to desired C concentration, and to provide a carburized component. <P>SOLUTION: The steel for carburizing and the carburized component in this invention, is composed of 0.10-0.30% C, 0.50-3.00% Si, 0.30-3.00% Mn, &le;0.030% P, &le;0.030% S, 0.01-1.00% Cu, 0.01-3.00% Ni, 0.30-1.50% Cr and the balance Fe with inevitable impurities and satisfies Si[%]+Ni[%]+Cu[%]-Cr[%]&gt;0.3. The carburized component in this invention is obtained by performing the gas-carburization under atmosphere of &ge;0.90% in carbon potential to the pure iron to the steel for carburizing in this invention. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、ガス浸炭用鋼、ガス浸炭部品及びガス浸炭部品の製造方法に関し、更に詳しくは、ガス浸炭を行うに際して、粒界酸化を低減するとともに、過剰浸炭を回避し、鋼表面のC濃度を所望のC濃度に制御することができる合金組成を備えたガス浸炭用鋼及びガス浸炭部品、並びに、該鋼表面のC濃度を所望のC濃度に制御することができるガス浸炭部品の製造方法に関する。 The present invention relates to a gas carburizing steel, a gas carburized component, and a method of manufacturing a gas carburized component. More specifically, when gas carburizing is performed, grain boundary oxidation is reduced, excessive carburization is avoided, and C concentration on the steel surface is reduced. the desired gas carburized steel and the gas carburized component having an alloy composition can be controlled to C concentration, and a method of manufacturing a gas carburized component capable of controlling the C concentration of the steel surface to a desired C concentration About.

ガス浸炭は、鋼表面にCを侵入させて鋼表面を硬くする手法の一つであり、鋼を入れた加熱炉にガス(主成分のCOと、C濃度調整のためのCO,H等とにより構成される)を導入し、900℃以上の高温で長時間浸炭することにより行われる。ガス浸炭により得られる浸炭部品の特性は、合金組成や浸炭時のガス雰囲気によって左右される。従って、種々の問題も指摘されている。例えば、肌焼鋼として周知のJIS SCr420にガス浸炭を行うと、雰囲気中のCOガスでMn、Cr等が酸化され(粒界酸化)、焼入れ性が低下し、粒界に沿ってパーライト組織を生じ強度低下するという問題が指摘されている(非特許文献1)。
そこで、特許文献1〜3には、所定の合金組成をとることにより、この粒界酸化を低減させるとともに、Siを1.5%を上限として含有させることで、焼戻し軟化抵抗性を向上させる技術が開示されている。
特許文献1〜3においてSiの上限が1.5%とされているのは、Siがそれよりも多いと浸炭時にCの侵入を阻害し、表層のC濃度の確保が困難になる等の理由である。従って、表層のC濃度が確保されるならば、例えば、浸炭部品の強度を更に上げるには、Siを更に多く含有させることが望ましい。
Gas carburization is one of the methods for hardening the steel surface by intruding C into the steel surface. Gas (the main component CO and CO 2 , H 2 for adjusting the C concentration) are supplied to the heating furnace containing the steel. For example, and carburizing at a high temperature of 900 ° C. or higher for a long time. The characteristics of carburized parts obtained by gas carburizing depend on the alloy composition and the gas atmosphere during carburizing. Accordingly, various problems have been pointed out. For example, when carburizing JIS SCr420, which is well-known as case hardening steel, Mn, Cr, etc. are oxidized by CO 2 gas in the atmosphere (grain boundary oxidation), the hardenability is lowered, and the pearlite structure along the grain boundary. It has been pointed out that the strength is lowered and non-patent document 1
Therefore, Patent Documents 1 to 3 disclose a technique for improving the temper softening resistance by reducing the grain boundary oxidation by taking a predetermined alloy composition and adding Si up to 1.5%. Is disclosed.
In Patent Documents 1 to 3, the upper limit of Si is set to 1.5% because, if Si is more than that, the penetration of C is inhibited during carburizing, and it becomes difficult to ensure the C concentration of the surface layer. It is. Therefore, if the C concentration of the surface layer is ensured, for example, in order to further increase the strength of the carburized component, it is desirable to contain more Si.

電気製鋼、第65巻、P13〜P15(1994年1月)Electric Steelmaking, Volume 65, P13-P15 (January 1994) 特開2003−027142JP2003-027142A 特開2003−231943JP2003-231943 特開2004−300550JP 2004-300550 A

しかしながら、構成元素のSiを1.5%より多くして一般的な浸炭条件(純鉄に対するカーボンポテンシャル(以下、単に「CP」ともいう。)にして0.8程度)で浸炭すると、雰囲気中のCOガスによってSiが酸化され、粒界酸化が起こるという問題があった。そこで、この問題を解消すべく、雰囲気中のCO濃度を低減させ、雰囲気中のCO濃度を上昇させ雰囲気を還元性として(純鉄に対するカーボンポテンシャルにして1.0程度)、ガス浸炭することが考えられる。しかしながら、これによれば、粒界酸化を低減することはできるが、同時に雰囲気のカーボンポテンシャルが高くなり、過剰なCの導入に伴う炭化物の析出・残留γの生成を生じるため、実際には利用できないという問題があった。従って、Siを1.5%より多くするとともにガス浸炭における雰囲気のカーボンポテンシャルを高めても、過剰のCが導入されず、鋼表面を所望のC濃度に制御しうる合金組成が求められている。 However, when carburizing under the general carburizing conditions (carbon potential with respect to pure iron (hereinafter also referred to simply as “CP”) of about 0.8) by increasing the constituent element Si to more than 1.5%, There was a problem that Si was oxidized by the CO 2 gas and grain boundary oxidation occurred. Therefore, in order to solve this problem, reducing the CO 2 concentration in the atmosphere, increasing the CO concentration in the atmosphere and making the atmosphere reducible (with a carbon potential of about 1.0 with respect to pure iron), gas carburizing. Can be considered. However, this can reduce grain boundary oxidation, but at the same time, the carbon potential of the atmosphere is increased, resulting in precipitation of carbides and generation of residual γ accompanying the introduction of excess C. There was a problem that I could not. Therefore, there is a demand for an alloy composition that can control the steel surface to a desired C concentration without introducing excessive C even if Si is increased to more than 1.5% and the carbon potential of the atmosphere in gas carburizing is increased. .

本発明は、上記事情に鑑みてなされたものであり、その第一の目的は、ガス浸炭を行うに際して、粒界酸化の低減を図るとともに、過剰浸炭を回避し、鋼表面のC濃度を所望のC濃度に制御することができる合金組成を備えたガス浸炭用鋼及びガス浸炭部品を提供することにある。
本発明の第二の目的は、鋼表面のC濃度を所望のC濃度に制御することができるガス浸炭部品の製造方法を提供することにある。
The present invention has been made in view of the above circumstances, and a first object thereof is to reduce grain boundary oxidation when performing gas carburizing, avoid excessive carburization, and desired C concentration on the steel surface. An object of the present invention is to provide a gas carburizing steel and a gas carburized component having an alloy composition which can be controlled to a C concentration of 2.
The second object of the present invention is to provide a method for producing a gas carburized component capable of controlling the C concentration on the steel surface to a desired C concentration.

本発明者は、上記課題を解決するため、種々の合金組成を探求したところ、Si、Ni、Cuが鋼の炭素活量(浸炭用鋼としての作用を示す炭素量をいう。以下同じ。)を上昇させる一方、Crが炭素活量を下降させるという知見を得た。そこで、本発明者は、Si、Ni、Cuを多めに添加する一方、Crを少なめに添加したところ、カーボンポテンシャルを従来より高めにしてガス浸炭を行っても、Cが過剰に侵入せず、鋼表面のC濃度を所望のC濃度に制御しうるという知見を得た。本発明者は、更に、高いカーボンポテンシャルでは粒界酸化の問題も併せて解消されるという知見を得た。
従来のガス浸炭条件では、Siを多め(特許文献1〜3との関係では、1.5%より多め)にした場合、粒界酸化、あるいは、過剰浸炭という問題が生じていたため、Siを多めにした合金組成の処理材に対してガス浸炭を行うことは困難あるいは問題外とされていたが、本発明者は、上記知見から、Siを多めにした合金組成であってもガス浸炭が適用しうるという知見を得た。
In order to solve the above-mentioned problems, the present inventors have searched for various alloy compositions. As a result, Si, Ni, and Cu indicate the carbon activity of the steel (the carbon content indicating the action as a carburizing steel; the same applies hereinafter). While Cr was increased, the knowledge that Cr decreased the carbon activity was obtained. Therefore, the present inventor added a large amount of Si, Ni, Cu, while adding a small amount of Cr, even if gas carburizing with a higher carbon potential than before, C does not penetrate excessively, It was found that the C concentration on the steel surface can be controlled to a desired C concentration. The present inventor has further obtained the knowledge that the problem of grain boundary oxidation is also solved at a high carbon potential.
Under the conventional gas carburizing conditions, when Si is increased (more than 1.5% in relation to Patent Documents 1 to 3), there is a problem of grain boundary oxidation or excessive carburization. Although it was difficult or out of the question to perform gas carburizing on the treated material of the alloy composition, the present inventor, from the above knowledge, gas carburizing is applied even if the alloy composition is more Si The knowledge that it is possible was obtained.

本発明はこれらの知見に基づいてなされたものであり、本発明に係るガス浸炭用鋼及びガス浸炭部品は、質量%で、C:0.10〜0.30%、Si:0.50〜3.00%、Mn:0.30〜3.00%、P:0.030%以下、S:0.030%以下、Cu:0.01〜1.00%、Ni:0.01〜0.59%、Cr:0.30〜1.50%、及び、Al:0.01〜0.2%を含み、残部がFe及び不可避的不純物からなるガス浸炭用鋼又はガス浸炭部品であって、下記(1)式を満たすことを要旨とする。
Si[%]+Ni[%]+Cu[%]−Cr[%]>0.3…(1)
この場合に、更に、質量%で、Mo:0.00〜2.00%を含んでもよく、これに更に、質量%で、Nb:0.00〜0.20%、Ti:0.00〜0.20%、N:0.00〜0.05%、及び、B:0.00〜0.01%からなる群の少なくともいずれかを含んでもよい。
This invention is made | formed based on these knowledge, The steel for gas carburizing and gas- carburized components which concern on this invention are the mass%, C: 0.10-0.30%, Si: 0.50. 3.00%, Mn: 0.30 to 3.00%, P: 0.030% or less, S: 0.030% or less, Cu: 0.01 to 1.00 %, Ni: 0.01 to 0 .59% Cr: 0.30 to 1.50% and, Al: includes 0.01 to 0.2% the balance being a gas carburizing steel or gas carburizing component consisting of Fe and unavoidable impurities The gist is to satisfy the following formula (1).
Si [%] + Ni [%] + Cu [%] − Cr [%]> 0.3 (1)
In this case, it may further contain Mo: 0.00 to 2.00 % by mass%, and further, Nb: 0.00 to 0.20%, Ti: 0.00 to 0.5% by mass. It may include at least one of the group consisting of 0.20%, N: 0.00 to 0.05%, and B: 0.00 to 0.01%.

本発明に係るガス浸炭部品及びその製造方法は、本発明に係るガス浸炭用鋼に対して、純鉄に対するカーボンポテンシャルが0.90%以上である雰囲気でガス浸炭を行って得られるガス浸炭部品又はその製造方法である。この場合に、前記雰囲気の温度は、800℃〜1000℃であることが望ましい。 Gas carburizing component and the manufacturing method thereof according to the present invention, with respect to gas carburizing steel according to the present invention, the gas carburized component obtained by performing gas carburizing atmosphere of carbon potential for pure iron is 0.90% or more Or a manufacturing method thereof. In this case, the temperature of the atmosphere is desirably 800 ° C. to 1000 ° C.

本発明に係るガス浸炭用鋼は、上記組成を備えるとともに、上記(1)式を満たすものであるから、CP≧0.90の雰囲気でガス浸炭を行えば粒界酸化が低減されるとともに、その雰囲気でガス浸炭を行っても過剰な炭素が侵入せず、鋼表面のC濃度を所望のC濃度に制御することができる。そのため、浸炭時に炭化物や過剰な残留γが生成せず、高い疲労強度が得られる。 The gas carburizing steel according to the present invention has the above composition and satisfies the above formula (1). Therefore, if gas carburizing is performed in an atmosphere of CP ≧ 0.90, grain boundary oxidation is reduced, Even if gas carburizing is performed in that atmosphere, excess carbon does not enter, and the C concentration on the steel surface can be controlled to a desired C concentration. Therefore, carbide and excessive residual γ are not generated during carburizing, and high fatigue strength is obtained.

本発明に係るガス浸炭部品は、上記組成を備えるとともに、上記(1)式を満たすものであるから、CP≧0.90の雰囲気でガス浸炭がなされたものであれば、粒界酸化が低減されるとともに、過剰浸炭が回避され、鋼表面のC濃度が所望のC濃度に制御されている。従って、本発明に係るガス浸炭部品は、炭化物や過剰な残留γが生成しておらず、高い疲労強度を発揮する。 Since the gas carburized component according to the present invention has the above composition and satisfies the above formula (1), grain boundary oxidation is reduced if gas carburized in an atmosphere of CP ≧ 0.90. In addition, excessive carburization is avoided and the C concentration on the steel surface is controlled to a desired C concentration. Therefore, the gas carburized component according to the present invention does not generate carbide or excessive residual γ, and exhibits high fatigue strength.

本発明に係るガス浸炭部品の製造方法は、上記組成を備えるとともに、上記(1)式を満たす浸炭用鋼に対してCP≧0.90の雰囲気でガス浸炭を行うものであるから、得られるガス浸炭部品は、粒界酸化が低減されるとともに、過剰浸炭が回避され、鋼表面のC濃度が所望のC濃度に制御されたものとなる。従って、得られるガス浸炭部品は、炭化物や過剰な残留γが生成せず、高い疲労強度を発揮する。 The method for producing a gas carburized component according to the present invention is provided with the above composition and gas carburizing in an atmosphere of CP ≧ 0.90 with respect to the carburizing steel satisfying the above formula (1). In the gas carburized component, grain boundary oxidation is reduced, excessive carburization is avoided, and the C concentration on the steel surface is controlled to a desired C concentration. Therefore, the obtained gas carburized parts do not generate carbides or excessive residual γ, and exhibit high fatigue strength.

以下に、本発明の一実施の形態について詳細に説明する。尚、以下の説明において、「%」は、特に説明がない限り「質量%」を意味する。
(成分組成及びその関係並びにそれらの限定理由)
本発明の一実施形態に係る浸炭用鋼及び浸炭部品は、基本的構成元素として、以下の(1)から(8)、及び(10)の元素を含む。
(1)C:0.10〜0.30%。
Cは、機械部品として必要な強度を得る上で必要な元素である。Cの下限を0.10%としたのは、Cが少なすぎると心部にフェライトが生成し、強度が低下するためである。一方、Cの上限を0.30%としたのは、Cが多すぎると加工性、特に被削性が劣化するためである。
Hereinafter, an embodiment of the present invention will be described in detail. In the following description, “%” means “mass%” unless otherwise specified.
(Ingredient composition and relationship and reasons for limitation)
The carburizing steel and carburized component according to an embodiment of the present invention include the following elements (1) to (8 ) and (10) as basic constituent elements.
(1) C: 0.10 to 0.30%.
C is an element necessary for obtaining strength required as a machine part. The reason why the lower limit of C is set to 0.10% is that if C is too small, ferrite is generated in the core and the strength is lowered. On the other hand, the upper limit of C is set to 0.30% because workability, particularly machinability, is deteriorated when C is too much.

(2)Si:0.50〜3.00%。
Siは、後述するCu、Niと共に、炭素活量を上昇させる元素であり、強度を高めるとともに、焼戻し軟化抵抗を高めるために含有させる元素である。Siの下限を0.50%としたのは、Siが少なすぎると焼入性が低下し、強度が低下するためである。一方、Siの上限を3.00%としたのは、Siが多すぎると加工性、特に被削性が劣化するためである。
(2) S i: 0.50 to 3.00%.
Si, together with Cu and Ni described later, is an element that increases the carbon activity, and is an element that is added to increase strength and increase temper softening resistance. The reason why the lower limit of Si is set to 0.50% is that if there is too little Si, the hardenability is lowered and the strength is lowered. On the other hand, the upper limit of Si is set to 3.00% because workability, particularly machinability, is deteriorated when there is too much Si.

(3)Mn:0.30〜3.00%。
Mnは、脱酸剤として鋼の溶製時に添加される元素であるが、ガス浸炭には影響を与えない。Mnの下限を0.30%としたのは、Mnが少なすぎると心部にフェライトが生成し、強度が低下するためである。一方、Mnの上限を3.00%としたのは、Mnが多すぎると加工性、特に被削性が劣化するためである。
(3) Mn: 0.30 to 3.00%.
Mn is an element added as a deoxidizer during the melting of steel, but does not affect gas carburization. The reason why the lower limit of Mn is set to 0.30% is that if the amount of Mn is too small, ferrite is generated in the core and the strength is lowered. On the other hand, the upper limit of Mn is set to 3.00% because if Mn is too much, workability, particularly machinability, deteriorates.

(4)P:0.030%以下。
Pは、不純物であり不可避的に含まれる元素である。Pの上限を0.030%としたのは、Pが多すぎると脆化するためである。
(4) P : 0.030% or less.
P is an element which is an impurity and inevitably contained. The upper limit of P is set to 0.030% because it is brittle when P is too much.

(5)S:0.030%以下。
Sは、不純物であり不可避的に含まれる元素である。Sの上限を0.030%としたのは、Sが多すぎると脆化するためである。
(5) S : 0.030% or less.
S is an element which is an impurity and is inevitably included. The reason why the upper limit of S is set to 0.030% is that when S is too much, embrittlement occurs.

(6)Cu:0.01〜1.00%。
Cuは、前述したSi、後述するNiと共に、炭素活量を上昇させる元素であり、強度を高めるために含有させる元素である。Cuの下限を0.01%としたのは、Cuが少なすぎると焼入性が低下し、強度が低下するためである。一方、Cuの上限を1.00%としたのは、Cuが多すぎると加工性、特に熱間鍛造性が劣化するためである。
(6) Cu: 0.01-1.00%.
Cu is an element that increases the carbon activity together with the above-described Si and Ni described later, and is an element that is included to increase the strength. The reason why the lower limit of Cu is set to 0.01% is that if there is too little Cu, the hardenability is lowered and the strength is lowered. On the other hand, the reason why the upper limit of Cu is set to 1.00% is that if there is too much Cu, workability, particularly hot forgeability deteriorates.

(7)Ni:0.01〜3.00%。
Niは、Si、Cuと共に、炭素活量を上昇させる元素であり、強度を高めるために含有させる元素である。Niの下限を0.01%としたのは、Niが少なすぎると焼入性が低下し、強度が低下するためである。一方、Niの上限を3.00%としたのは、Niが多すぎると加工性、特に熱間鍛造性が劣化するためである。
(7) Ni: 0.01 to 3.00%.
Ni, together with Si and Cu, is an element that increases the carbon activity, and is an element that is included to increase the strength. The reason why the lower limit of Ni is set to 0.01% is that if Ni is too small, the hardenability is lowered and the strength is lowered. On the other hand, the upper limit of Ni is set to 3.00% because if Ni is too much, workability, particularly hot forgeability, deteriorates.

(8)Cr:0.30〜1.50%。
Crは、炭素活量を減少させる元素であるため、多量に含有させることができない。また、Crが多すぎると加工性、特に被削性を劣化させるため、上限を1.50%とした。一方、Crが少なすぎると焼入性が低下し、強度が低下するため、その下限を0.30%とした。
(8) Cr: 0.30 to 1.50%.
Since Cr is an element that decreases the carbon activity, it cannot be contained in a large amount. Further, if the amount of Cr is too much, workability, particularly machinability, is deteriorated, so the upper limit was made 1.50%. On the other hand, if the Cr content is too small, the hardenability decreases and the strength decreases, so the lower limit was made 0.30%.

本発明の一実施形態に係る浸炭用鋼及び浸炭部品は、任意的構成元素として、以下の(9)、及び(11)の元素を含んでもよい。
(9)Mo:0.00〜2.00%。
Moは、焼入性を向上させ、焼戻し軟化抵抗性を高めるために添加することができるが、多すぎると加工性、特に被削性を劣化させるため、上限を2.00%とした。
The carburizing steel and carburized component according to an embodiment of the present invention may include the following elements (9 ) and ( 11) as optional constituent elements.
(9) Mo: 0.00-2.00%.
Mo can be added in order to improve hardenability and increase resistance to temper softening, but if it is too much, workability, particularly machinability, is deteriorated, so the upper limit was made 2.00%.

(10)Al:0.01〜0.20%。
Alは、結晶粒を微細化し、強度を向上させるために添加することができるが、多すぎると鋼中でアルミナを生じ強度を低下させるため、上限を0.20%とした。
(10) Al: 0.01 to 0.20%.
Al can be added in order to refine crystal grains and improve the strength, but if it is too much, alumina is generated in the steel and the strength is lowered, so the upper limit was made 0.20%.

(11)Nb:0.00〜0.20%、Ti:0.00〜0.20%、N:0.00〜0.05%、及び、B:0.00〜0.01%からなる群の少なくともいずれか。
Nb及びTiは、ガス浸炭で生じる結晶粒の成長を抑制し、整粒組織を保つために添加することができる。一方、Nb又はTiが多すぎると、加工性に悪影響が出るため、いずれも上限を0.20%とした。
Nは、結晶粒の粗大化を防止するために添加することができるが、その効果は、0.05%程度で飽和するため、0.05%を上限とした。
Bは、焼入性を向上させるために添加することができるが、多すぎると加工性に悪影響を及ぼすため、0.01%を上限とした。
(11) From Nb: 0.00 to 0.20%, Ti: 0.00 to 0.20%, N: 0.00 to 0.05%, and B: 0.00 to 0.01% At least one of the group consisting of.
Nb and Ti can be added to suppress the growth of crystal grains caused by gas carburization and to maintain a sized structure. On the other hand, if Nb or Ti is too much, workability is adversely affected.
N can be added to prevent coarsening of crystal grains, but its effect is saturated at about 0.05%, so 0.05% was made the upper limit.
B can be added to improve hardenability, but if it is too much, workability is adversely affected, so 0.01% was made the upper limit.

(12)Si[%]+Ni[%]+Cu[%]−Cr[%]>0.3…(1)
前述のように、Si、Cu、及び、Niは、炭素活量を上昇させ、Crは、炭素活量を減少させるため、Si、Cu、及び、Niの量の合計からCrの量を差し引いた値を炭素活量を判断する目安とした。この値を0.3超としたのは、後述する実施例により経験的に求めた値である。上記(1)式の関係を満たせば、ガス浸炭においてカーボンポテンシャルを高くしても過剰な炭素が侵入せず、鋼表面のC濃度を所望のC濃度に制御することができ、かつ、カーボンポテンシャルを高くすれば粒界酸化を低減することができる。
(12) Si [%] + Ni [%] + Cu [%]-Cr [%]> 0.3 (1)
As described above, since Si, Cu, and Ni increase the carbon activity, and Cr decreases the carbon activity, the amount of Cr is subtracted from the total amount of Si, Cu, and Ni. The value was used as a standard for judging the carbon activity. The value exceeding 0.3 is an empirically obtained value in the examples described later. If the relationship of the above formula (1) is satisfied, even if the carbon potential is increased in gas carburizing, excess carbon does not enter, the C concentration on the steel surface can be controlled to a desired C concentration, and the carbon potential If the height is increased, grain boundary oxidation can be reduced.

(製造方法)
本発明の一実施形態に係る浸炭用鋼は、上記組成になるように原料を溶解し、造塊し、鍛造により所定の形状に加工し、更に、必要な熱処理(焼きならし)を行うことにより得られる。
本発明の一実施形態に係る浸炭部品は、次のようにして製造される。すなわち、まず、本発明の一実施形態に係る浸炭用鋼に対して、純鉄に対するカーボンポテンシャルが0.90%以上で、温度が800℃〜1000℃である雰囲気で数時間ガス浸炭を行い、続いて焼入れを行う(ガス浸炭焼入れ)。ここで、ガス浸炭は、930℃前後の温度での浸炭と、850℃前後での拡散により行うとよい。次に、150℃〜200℃で数時間、油焼戻しを行う。これにより、本発明の一実施形態に係る浸炭部品が得られる。
(Production method)
In the carburizing steel according to an embodiment of the present invention, the raw materials are dissolved so as to have the above composition, ingot-formed, processed into a predetermined shape by forging, and further subjected to necessary heat treatment (normalizing). Is obtained.
The carburized component according to one embodiment of the present invention is manufactured as follows. That is, first, for the carburizing steel according to one embodiment of the present invention, gas carburizing is performed for several hours in an atmosphere having a carbon potential of 0.90% or more with respect to pure iron and a temperature of 800 ° C to 1000 ° C. Next, quenching is performed (gas carburizing quenching). Here, the gas carburization may be performed by carburization at a temperature of about 930 ° C. and diffusion at about 850 ° C. Next, oil tempering is performed at 150 to 200 ° C. for several hours. Thereby, the carburized component which concerns on one Embodiment of this invention is obtained.

(作用)
本発明の一実施形態に係る浸炭用鋼は、上記組成を備えるとともに、上記(1)式を満たすものであるから、これに対して、本発明の一実施形態に係る浸炭部品の製造方法、すなわち、CP≧0.90の雰囲気でガス浸炭をする方法を実施すれば、そもそもCPが高いため粒界酸化が低減される。また、成分組成に由来する炭素活量が高いため、CP≧0.90の雰囲気でガス浸炭を行っても過剰な炭素が侵入せず、鋼表面のC濃度が0.70〜0.88%程度の所望のC濃度に制御される。また、ガス浸炭の際に炭化物や過剰な残留γは生成せず、得られる浸炭部品は高い疲労強度が備わる。
(Function)
Since the carburizing steel according to an embodiment of the present invention has the above composition and satisfies the above formula (1), on the other hand, a method for manufacturing a carburized component according to an embodiment of the present invention, That is, if the method of gas carburizing is performed in an atmosphere of CP ≧ 0.90, grain boundary oxidation is reduced because CP is high in the first place. Further, since the carbon activity derived from the component composition is high, excessive carbon does not enter even when gas carburizing is performed in an atmosphere of CP ≧ 0.90, and the C concentration on the steel surface is 0.70 to 0.88%. The desired C concentration is controlled. In addition, carbide and excessive residual γ are not generated during gas carburization, and the resulting carburized parts have high fatigue strength.

以下、本発明の実施例及び比較例について説明する。
(実施例1〜21及び比較例1〜6)
(浸炭用鋼の作製)
実施例1〜21及び比較例1〜6について、表1に示す成分組成となるように原料を電気炉に投入し、溶解・鋳造し、鋼塊を作製した。表1には、成分組成のほか、上記式(1)の値を併せて示す。
Examples of the present invention and comparative examples will be described below.
(Examples 1-21 and Comparative Examples 1-6)
(Production of carburizing steel)
About Examples 1-21 and Comparative Examples 1-6, the raw material was thrown into an electric furnace so that it might become the component composition shown in Table 1, and it melted and casted and produced the steel ingot. Table 1 also shows the value of the above formula (1) in addition to the component composition.

Figure 0005272330
Figure 0005272330

(浸炭部品の作製)
次に、各実施例及び比較例について、上記の鋼塊を圧延により棒材(φ100mm)に加工した後、熱間鍛造により、一組の歯車形状、すなわち、駆動側歯車の形状(モジュール2.5、歯数26、歯幅20mm、圧力角20°、ネジレ角25°)と、従動側歯車の形状(モジュール2.5、歯数30、歯幅20mm、圧力角20°、ネジレ角25°)とに加工した。
次に、加工した駆動側・従動側それぞれの歯車形状の各鋼塊を炉に入れて、930℃に加熱し、表2に示すカーボンポテンシャル(純鉄に対するカーボンポテンシャル)になるようにガス(CO、CO、H)を導入しながら、930℃で120分間浸炭処理(浸炭)を行い、その後、炉冷により炉の温度を850℃に下げ、850℃で30分間浸炭処理(拡散)を行った。次いで、油焼入れを行った。そして、180℃で1時間油焼戻しを行った(図1参照)。これにより、各実施例及び比較例について鋼表面のC濃度を高めた一組の歯車、すなわち、駆動側歯車及び従動側歯車(浸炭部品)を得た。
尚、表2に示すカーボンポテンシャルにするためのガス導入は、図2に示すCO%−CO%と純鉄に対するカーボンポテンシャルとの関係のうち、930℃におけるこれらの関係に基づいて行った。他の温度で行う場合には、他の温度におけるそれらの関係に基づいて行えばよい。同図には、他の温度の一例として、816℃、843℃、871℃、900℃の例を併せて示す。
(Production of carburized parts)
Next, for each of the examples and comparative examples, the steel ingot was processed into a bar (φ100 mm) by rolling, and then hot forged to form a set of gear shapes, that is, the shape of the driving gear (module 2. 5, number of teeth 26, tooth width 20mm, pressure angle 20 °, helix angle 25 °) and driven gear shape (module 2.5, number of teeth 30, tooth width 20mm, pressure angle 20 °, helix angle 25 °) ) And processed.
Next, the processed steel ingots on the drive side and the driven side are put in a furnace and heated to 930 ° C., and gas (CO 2) is obtained so as to have the carbon potential shown in Table 2 (carbon potential with respect to pure iron). , CO 2 , H 2 ), carburizing treatment (carburizing) at 930 ° C. for 120 minutes, then lowering the furnace temperature to 850 ° C. by furnace cooling, and carburizing treatment (diffusion) at 850 ° C. for 30 minutes. went. Next, oil quenching was performed. Then, oil tempering was performed at 180 ° C. for 1 hour (see FIG. 1). As a result, for each of the examples and comparative examples, a set of gears with increased C concentration on the steel surface, that is, a driving gear and a driven gear (carburized parts) were obtained.
The gas introduction for obtaining the carbon potential shown in Table 2 was performed based on these relationships at 930 ° C. among the relationship between CO 2 % -CO% and the carbon potential with respect to pure iron shown in FIG. When performing at other temperature, it may carry out based on those relationships at other temperatures. In the same figure, examples of other temperatures include 816 ° C, 843 ° C, 871 ° C, and 900 ° C.

(歯元疲労試験)
歯元疲労試験は、大きな荷重が連続的に負荷される場合における変形による疲労強度の劣化を歯元で調査する試験である。歯元疲労試験では、上記の一組の歯車、すなわち、駆動側歯車(モジュール2.5、歯数26、歯幅20mm、圧力角20°、ネジレ角25°)と、従動側歯車(モジュール2.5、歯数30、歯幅20mm、圧力角20°、ネジレ角25°)とを噛み合わせ、10回、回転させてもピッティング破壊を生じない負荷応力を歯元曲げ疲労強度として求めた。歯元疲労試験では、回転数を3500rpmとし、油温を80℃とした。その結果を表2に示す。
(Dental fatigue test)
The tooth root fatigue test is a test for investigating deterioration of fatigue strength due to deformation at the tooth root when a large load is continuously applied. In the tooth root fatigue test, the set of gears described above, that is, the driving side gear (module 2.5, number of teeth 26, tooth width 20 mm, pressure angle 20 °, helix angle 25 °) and driven side gear (module 2). .5 number of teeth 30, face width 20 mm, pressure angle 20 °, helix angle 25 °) and engaging a determined 10 7 times, the applied stress that does not cause pitting destruction be rotated as dedendum bending fatigue strength It was. In the tooth root fatigue test, the rotation speed was 3500 rpm, and the oil temperature was 80 ° C. The results are shown in Table 2.

(歯元表面炭素濃度)
歯元表面炭素濃度は、作製した歯車から試料を採取し、その板厚方向の断面をEPMAで面分析することにより求めた。その結果を表2に示す。
(Dental surface carbon concentration)
The tooth surface carbon concentration was determined by taking a sample from the produced gear and analyzing the cross section in the plate thickness direction with EPMA. The results are shown in Table 2.

(粒界酸化深さ及び炭化物の有無)
粒界酸化深さは、作製した歯車から試料を採取し、その表面にNiメッキ(顕微鏡写真を見やすくするため)を行い、板厚方向の断面をナイタールで腐食した後、黒くなった部分の板厚方向の長さを測定して求めた。その結果を表2に示す。
また、図3(a)(b)に、実施例9及び一般的な肌焼鋼であるSCr420(比較例には入っていない)の板厚方向の断面のナイタールで腐食した後の顕微鏡写真を比較して示す。実施例9は、粒界酸化が認められなかったが、SCr420では粒界酸化(ひげ状の黒い部分)が顕著に認められた。
更に、図4(a)(b)に、実施例9及び一般的な肌焼鋼であるSCM420(比較例1)の板厚方向の断面のナイタールで腐食した後の顕微鏡写真を比較して示す。実施例9は、炭化物の生成が認められなかったが、SCM420(比較例1)では炭化物の生成が認められた。
(Grain boundary oxidation depth and presence or absence of carbides)
The grain boundary oxidation depth is obtained by taking a sample from the prepared gear, performing Ni plating on the surface (to make the micrograph easier to see), corroding the cross section in the plate thickness direction with nital, and then the blackened portion of the plate It was determined by measuring the length in the thickness direction. The results are shown in Table 2.
3 (a) and 3 (b) are photomicrographs after corroding with nital in the cross-section in the plate thickness direction of Example 9 and a general case-hardened steel, SCr420 (not included in the comparative example). Shown in comparison. In Example 9, grain boundary oxidation was not observed, but in SCr420, grain boundary oxidation (beard-like black part) was remarkably recognized.
Further, FIGS. 4 (a) and 4 (b) show a comparison of micrographs of Example 9 and a general case-hardened steel SCM420 (Comparative Example 1) after being corroded with nital in the cross section in the plate thickness direction. . In Example 9, the formation of carbide was not recognized, but the formation of carbide was recognized in SCM420 (Comparative Example 1).

Figure 0005272330
Figure 0005272330

(評価)
比較例1及び2は、一般的な肌焼鋼であるSCM420を対象にしたもので、これらは、CPを異ならせたものである。比較例1は、CPを従来通りの0.8としたものであるが、この場合、歯元表面炭素濃度は所望の値になるが、粒界酸化深さが深く、歯元曲げ疲労強度も低くなった。そこで、比較例2のように、CPを本発明の実施例1〜21と同様に高めの1.09にしてみると、粒界酸化深さは低減できても、Cが表面に入りすぎて歯元表面炭素濃度が高くなりすぎ、歯元曲げ疲労強度が低くなった。これらのことから、一般的な肌焼鋼では、CPの調整だけでは所望の特性がでないこと、及び、所望の特性を出すには成分組成を工夫する必要があることが確認できた。
そこで、実施例1〜21のように、所定の成分組成とし、上記(1)式を満たすようにすると、CP≧0.90の雰囲気でガス浸炭を行っても過剰な炭素が侵入せず、歯元表面炭素濃度を0.70〜0.88%程度の所望のC濃度にすることができた。また、実施例1〜21は、CP≧0.90の雰囲気でガス浸炭を行ったものであるから、粒界酸化深さが低減される結果になった(図3(a)参照)。また、実施例1〜21は、上述のように過剰な炭素が侵入しないため、ガス浸炭の際に炭化物や過剰な残留γが生成せず(実施例1〜21の残留γは25vol%以下、比較例2〜6の残留γは40vol%超)、得られた歯車は、比較例1〜6に比べて顕著に高い980MPa以上の高い歯元曲げ疲労強度を示した。
(Evaluation)
Comparative Examples 1 and 2 are directed to SCM420, which is a general case-hardened steel, and are different in CP. In Comparative Example 1, CP is set to 0.8 as usual. In this case, the root surface carbon concentration is a desired value, but the grain boundary oxidation depth is deep, and the root bending fatigue strength is also high. It became low. Therefore, as in Comparative Example 2, when CP is set to 1.09, which is higher as in Examples 1 to 21 of the present invention, even if the grain boundary oxidation depth can be reduced, C enters the surface too much. The tooth root surface carbon concentration became too high, and the tooth root bending fatigue strength was lowered. From these facts, it was confirmed that the general case-hardened steel does not have the desired characteristics only by adjusting the CP, and it is necessary to devise the component composition to obtain the desired characteristics.
Therefore, as in Examples 1 to 21, when a predetermined component composition is satisfied and the above formula (1) is satisfied, excessive carbon does not enter even if gas carburizing is performed in an atmosphere of CP ≧ 0.90. The tooth surface carbon concentration could be a desired C concentration of about 0.70 to 0.88%. Moreover, since Examples 1-21 performed gas carburizing in the atmosphere of CP> = 0.90, it resulted in the grain boundary oxidation depth being reduced (refer Fig.3 (a)). Further, in Examples 1 to 21, since excessive carbon does not enter as described above, carbide and excessive residual γ are not generated during gas carburization (the residual γ in Examples 1 to 21 is 25 vol% or less, In Comparative Examples 2 to 6, the residual γ was more than 40 vol%), and the obtained gear exhibited a significantly higher root bending fatigue strength of 980 MPa or higher than that of Comparative Examples 1 to 6.

比較例2の他、比較例3〜5は、成分バランスが悪く、上記(1)式を満たさないため、実施例1〜21と同様のCPでガス浸炭を行うと、粒界酸化深さを低減できても、Cが過剰に入りすぎ、歯元表面炭素濃度が高くなりすぎた。そのため、歯元曲げ疲労強度も低かった。これは、歯元表面炭素濃度が高いため、残留γが残り、マルテンサイトに変態しなかったためと考えられる。
比較例6は、Siが少なかったため、上記(1)式を満たしていても、実施例1と同様のCPでガス浸炭を行うとCが過剰に入りすぎ、歯元表面炭素濃度が高くなりすぎた。そのため、歯元曲げ疲労強度も低かった。これは、歯元表面炭素濃度が高いため、残留γが残り、マルテンサイトに変態しなかったためと考えられる。
In addition to Comparative Example 2, Comparative Examples 3 to 5 have poor component balance and do not satisfy the above formula (1). Therefore, when gas carburizing is performed with the same CP as in Examples 1 to 21, the grain boundary oxidation depth is reduced. Even if it could be reduced, C entered too much and the tooth surface carbon concentration became too high. Therefore, the root bending fatigue strength was also low. This is thought to be because the residual γ remained because the tooth surface carbon concentration was high and did not transform into martensite.
In Comparative Example 6, since Si was small, even if the above formula (1) was satisfied, if gas carburization was performed with the same CP as in Example 1, C entered excessively and the tooth surface carbon concentration became too high. It was. Therefore, the root bending fatigue strength was also low. This is thought to be because the residual γ remained because the tooth surface carbon concentration was high and did not transform into martensite.

以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改変が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present invention.

本発明に係るガス浸炭用鋼は、シャフト、歯車等の機械構造用部品の鋼材として適し、本発明に係るガス浸炭部品は、各種機械の部品として適しているため、いずれも鋼材メーカーや機械構造部品メーカーにとって産業上の利用価値が極めて高い。
本発明に係るガス浸炭部品の製造方法は、成分バランスを工夫することにより、特定の元素に着目すれば、従来ではガス浸炭では困難とされてきた量の特定元素(例えば、Si)を含むような処理材に対しても適用できる点で、製造方法の選択余地が拡がり、鋼材メーカーや機械構造部品メーカーにとって産業上の利用価値が極めて高い。
The gas carburizing steel according to the present invention is suitable as a steel material for machine structural parts such as shafts and gears, and the gas carburizing component according to the present invention is suitable as a part for various machines. Industrial use value is extremely high for parts manufacturers.
The method for producing a gas carburized component according to the present invention includes a specific element (for example, Si) in an amount that has been conventionally considered difficult by gas carburizing if attention is paid to a specific element by devising a component balance. Since it can be applied to various processing materials, there is a wide range of options for manufacturing methods, and the industrial utility value is extremely high for steel material manufacturers and machine structural component manufacturers.

実施例1〜21及び比較例1〜6のガス浸炭焼入れ処理を模式的に示した図である。It is the figure which showed typically the gas carburizing quenching process of Examples 1-21 and Comparative Examples 1-6. 800℃〜930℃におけるCO%−CO%と純鉄に対するカーボンポテンシャルとの関係を示すグラフである。It is a graph showing the relationship between the carbon potential for CO 2% -CO% of pure iron in 800 ℃ ~930 ℃. 実施例9とSCr420のガス浸炭焼入れ、焼戻し後の板厚方向断面をナイタールで腐食した後の顕微鏡写真である。It is a microscope picture after corroding the plate | board thickness direction cross section of Example 9 and the gas carburizing quenching and tempering of SCr420 with nital. 実施例9とSCM420(比較例1)のガス浸炭焼入れ、焼戻し後の板厚方向断面をナイタールで腐食した後の顕微鏡写真である。It is a microscope picture after corroding the plate | board thickness direction cross section of Example 9 and SCM420 (comparative example 1) after gas carburizing quenching and tempering with nital.

Claims (10)

質量%で、C:0.10〜0.30%、Si:0.50〜3.00%、Mn:0.30〜3.00%、P:0.030%以下、S:0.030%以下、Cu:0.01〜1.00%、Ni:0.01〜0.59%、Cr:0.30〜1.50%、及び、Al:0.01〜0.2%を含み、残部がFe及び不可避的不純物からなるガス浸炭用鋼であって、下記(1)式を満たすことを特徴とするガス浸炭用鋼。
Si[%]+Ni[%]+Cu[%]−Cr[%]>0.3…(1)
In mass%, C: 0.10 to 0.30%, Si: 0.50 to 3.00%, Mn: 0.30 to 3.00%, P: 0.030% or less, S: 0.030 %: Cu: 0.01 to 1.00% , Ni: 0.01 to 0.59% , Cr: 0.30 to 1.50% , and Al: 0.01 to 0.2% the balance a gas carburized steel consisting of Fe and unavoidable impurities, the following (1) steel for gas carburizing to satisfy the equation.
Si [%] + Ni [%] + Cu [%] − Cr [%]> 0.3 (1)
更に、質量%で、Mo:0.00〜2.00%を含むことを特徴とする請求項1に記載のガス浸炭用鋼。 The gas carburizing steel according to claim 1, further comprising Mo: 0.00 to 2.00 % by mass. 更に、質量%で、Nb:0.00〜0.20%、Ti:0.00〜0.20%、N:0.00〜0.05%、及び、B:0.00〜0.01%からなる群の少なくともいずれかを含むことを特徴とする請求項2に記載のガス浸炭用鋼。 Furthermore, by mass%, Nb: 0.00 to 0.20%, Ti: 0.00 to 0.20%, N: 0.00 to 0.05%, and B: 0.00 to 0.01. The steel for gas carburization according to claim 2, comprising at least one of the group consisting of%. 質量%で、C:0.10〜0.30%、Si:0.50〜3.00%、Mn:0.30〜3.00%、P:0.030%以下、S:0.030%以下、Cu:0.01〜1.00%、Ni:0.01〜0.59%、Cr:0.30〜1.50%、及び、Al:0.01〜0.2%を含み、残部がFe及び不可避的不純物からなるガス浸炭部品であって、下記(1)式を満たすことを特徴とするガス浸炭部品。
Si[%]+Ni[%]+Cu[%]−Cr[%]>0.3…(1)
In mass%, C: 0.10 to 0.30%, Si: 0.50 to 3.00%, Mn: 0.30 to 3.00%, P: 0.030% or less, S: 0.030 %: Cu: 0.01 to 1.00% , Ni: 0.01 to 0.59% , Cr: 0.30 to 1.50% , and Al: 0.01 to 0.2% the balance a gas carburizing component consisting of Fe and unavoidable impurities, gas carburizing component and satisfies the following formula (1).
Si [%] + Ni [%] + Cu [%] − Cr [%]> 0.3 (1)
更に、質量%で、Mo:0.00〜2.00%を含むことを特徴とする請求項4に記載のガス浸炭部品。 The gas carburized component according to claim 4, further comprising, by mass%, Mo: 0.00 to 2.00 % . 更に、質量%で、Nb:0.00〜0.20%、Ti:0.00〜0.20%、N:0.00〜0.05%、及び、B:0.00〜0.01%からなる群の少なくともいずれかを含むことを特徴とする請求項5に記載のガス浸炭部品。 Furthermore, by mass%, Nb: 0.00 to 0.20%, Ti: 0.00 to 0.20%, N: 0.00 to 0.05%, and B: 0.00 to 0.01. The gas carburized component according to claim 5, comprising at least one of the group consisting of%. 請求項1から3のいずれかに記載のガス浸炭用鋼に対して、純鉄に対するカーボンポテンシャルが0.90%以上である雰囲気でガス浸炭を行って得られるガス浸炭部品。 A gas carburized part obtained by gas carburizing the steel for gas carburizing according to any one of claims 1 to 3 in an atmosphere having a carbon potential of 0.90% or more with respect to pure iron. 請求項7に記載の前記雰囲気の温度が800℃〜1000℃であることを特徴とする請求項7に記載のガス浸炭部品。 The gas carburized part according to claim 7, wherein the temperature of the atmosphere according to claim 7 is 800C to 1000C. 請求項1から3のいずれかに記載のガス浸炭用鋼に対して、純鉄に対するカーボンポテンシャルが0.90%以上である雰囲気でガス浸炭を行うことを特徴とするガス浸炭部品の製造方法。 A method for producing a gas carburized component, comprising performing gas carburizing on the gas carburizing steel according to any one of claims 1 to 3 in an atmosphere having a carbon potential of 0.90% or more with respect to pure iron. 請求項9に記載の前記雰囲気の温度が800℃〜1000℃であることを特徴とする請求項9に記載のガス浸炭部品の製造方法。 The method for producing a gas carburized component according to claim 9, wherein the temperature of the atmosphere according to claim 9 is 800C to 1000C.
JP2007136821A 2007-05-23 2007-05-23 Steel for gas carburization, gas carburized parts, and method for manufacturing gas carburized parts Active JP5272330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007136821A JP5272330B2 (en) 2007-05-23 2007-05-23 Steel for gas carburization, gas carburized parts, and method for manufacturing gas carburized parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007136821A JP5272330B2 (en) 2007-05-23 2007-05-23 Steel for gas carburization, gas carburized parts, and method for manufacturing gas carburized parts

Publications (2)

Publication Number Publication Date
JP2008291298A JP2008291298A (en) 2008-12-04
JP5272330B2 true JP5272330B2 (en) 2013-08-28

Family

ID=40166336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007136821A Active JP5272330B2 (en) 2007-05-23 2007-05-23 Steel for gas carburization, gas carburized parts, and method for manufacturing gas carburized parts

Country Status (1)

Country Link
JP (1) JP5272330B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5793802B2 (en) * 2010-09-30 2015-10-14 Dowaサーモテック株式会社 Gas carburizing method
CN103119189B (en) 2011-02-10 2015-04-22 新日铁住金株式会社 Steel for carburizing, carburized steel component, and method for producing same
KR101482473B1 (en) 2011-02-10 2015-01-13 신닛테츠스미킨 카부시키카이샤 Steel for carburizing, carburized steel component, and method for producing same
JP6105992B2 (en) * 2013-03-21 2017-03-29 光洋サーモシステム株式会社 Continuous carburizing furnace
JP6337580B2 (en) * 2013-06-26 2018-06-06 大同特殊鋼株式会社 Carburized parts
US10202677B2 (en) * 2013-12-27 2019-02-12 Nippon Steel & Sumitomo Metal Corporation Production method of carburized steel component and carburized steel component

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360257A (en) * 1986-08-29 1988-03-16 Kobe Steel Ltd Carburizing steel having superior pitting resistance
JPH0860236A (en) * 1994-08-17 1996-03-05 Kobe Steel Ltd Production of highly accurate parts

Also Published As

Publication number Publication date
JP2008291298A (en) 2008-12-04

Similar Documents

Publication Publication Date Title
JP5777090B2 (en) Steel for machine structural use with excellent surface fatigue strength
JP5099276B1 (en) Gas carburized steel parts having excellent surface fatigue strength, steel for gas carburizing, and method for producing gas carburized steel parts
JP4725401B2 (en) Steel parts and manufacturing method thereof
WO2015098106A1 (en) Carburized-steel-component production method, and carburized steel component
JP4728883B2 (en) Carburized and hardened steel and carburized parts with excellent low cycle fatigue properties
JP4688727B2 (en) Carburized parts and manufacturing method thereof
JP5505263B2 (en) Carburized and hardened steel and carburized parts with excellent low cycle fatigue properties
JP5272330B2 (en) Steel for gas carburization, gas carburized parts, and method for manufacturing gas carburized parts
JP2013112827A (en) Gear excellent in pitching resistance and manufacturing method therefor
JP2016050350A (en) Steel component for high strength high toughness machine structure excellent in pitching resistance and abrasion resistance and manufacturing method therefor
JP4688691B2 (en) Case-hardened steel with excellent low cycle fatigue strength
JP5258458B2 (en) Gears with excellent surface pressure resistance
JP5206271B2 (en) Carbonitriding parts made of steel
JP2009263763A (en) Method for manufacturing steel material to be carburized
JP5541048B2 (en) Carbonitrided steel parts with excellent pitting resistance
JP5178104B2 (en) Hardened steel with excellent surface fatigue strength, impact strength and bending fatigue strength
JP2007308792A (en) Carburized component and manufacturing method thereof
JP6078008B2 (en) Case-hardening steel and method for manufacturing machine structural parts
JP2009293070A (en) Case hardening steel for shaft having excellent low cycle twisting fatigue strength
JP2009256769A (en) Method for producing steel material for carburizing
JP5272609B2 (en) Carbonitriding parts made of steel
JPH07188895A (en) Manufacture of parts for machine structure use
JP6078007B2 (en) Case-hardening steel and method for manufacturing machine structural parts
JPH08260039A (en) Production of carburized and case hardened steel
JP2008045178A (en) Carburizing steel and carburized member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130429

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5272330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150