JP2008255436A - Permanent magnet, and method for producing the same - Google Patents

Permanent magnet, and method for producing the same Download PDF

Info

Publication number
JP2008255436A
JP2008255436A JP2007100125A JP2007100125A JP2008255436A JP 2008255436 A JP2008255436 A JP 2008255436A JP 2007100125 A JP2007100125 A JP 2007100125A JP 2007100125 A JP2007100125 A JP 2007100125A JP 2008255436 A JP2008255436 A JP 2008255436A
Authority
JP
Japan
Prior art keywords
permanent magnet
powder
less
mass
magnet material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007100125A
Other languages
Japanese (ja)
Other versions
JP4968519B2 (en
Inventor
Keita Isotani
桂太 磯谷
Satoshi Sugimoto
諭 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Tokin Corp
Original Assignee
Tohoku University NUC
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, NEC Tokin Corp filed Critical Tohoku University NUC
Priority to JP2007100125A priority Critical patent/JP4968519B2/en
Publication of JP2008255436A publication Critical patent/JP2008255436A/en
Application granted granted Critical
Publication of JP4968519B2 publication Critical patent/JP4968519B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent magnet having temperature properties more excellent than those of an Nd<SB>2</SB>Fe<SB>14</SB>B based magnet, and having saturation magnetization higher than that of an Sm<SB>2</SB>Fe<SB>17</SB>N<SB>x</SB>bond magnet thus having excellent magnetic properties, to provide a method for producing the same, and to provide a permanent magnet material used therefor. <P>SOLUTION: The permanent magnet comprises MnBi powder and Sm<SB>2</SB>Fe<SB>17-x</SB>M<SB>x</SB>N<SB>y</SB>based magnet powder (wherein, M denotes at least one or more kinds selected from Mn, Co, Zr, Al, Ga, Ta, Nb and Ti), and in which the content of the MnBi lies in the range of 8 to 50 mass% of total weight. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、永久磁石とその製造方法に関し、詳しくは、永久磁石粉末に結合剤を含有させて成形することによって得られる永久磁石とその製造方法とそれに用いられる永久磁石粉末である永久磁石材料に関する。   The present invention relates to a permanent magnet and a method for producing the same, and more particularly, to a permanent magnet obtained by molding a permanent magnet powder containing a binder, a method for producing the permanent magnet, and a permanent magnet material used as the permanent magnet powder. .

現在、希土類磁石の中で最も生産金額が大きく、最も高特性なのはNdFe14B系磁石であるが、この磁石は熱的に不安定であり、温度の上昇に伴い、磁気特性が劣化するという欠点を持つ。そのため最大使用温度は約150℃程度となり、高温状態になる環境での使用はできない。 Currently, Nd 2 Fe 14 B-based magnets have the largest production value and the highest characteristics among rare earth magnets, but these magnets are thermally unstable, and the magnetic characteristics deteriorate as the temperature rises. Have the disadvantages. Therefore, the maximum use temperature is about 150 ° C. and cannot be used in an environment where the temperature is high.

そのため150℃以上の高温環境では、Co系磁石(SmCo17系磁石、SmCo系磁石、FeCrCo系磁石)やSmFe17系ボンド磁石しか選択肢が無いのが現状である。この中でCo系磁石は磁気特性に劣り高価であり、また、脆性を有するため、欠けや割れなどもおきやすいという欠点を持つ。また、SmFe172〜3は磁気特性は高いが約500℃以上で不均化反応を起こし、SmN+αFeに分解してしまうという欠点がある。そのため一般に焼結体の作製は不可能である。そのため、SmFe17系磁石は、製品としてはボンド磁石のみであり、一般に高価で、焼結体に比べ特性が低いという欠点を持つ。 Therefore, in a high temperature environment of 150 ° C. or higher, there are currently only options for Co-based magnets (Sm 2 Co 17- based magnets, SmCo 5- based magnets, FeCrCo-based magnets) and Sm 2 Fe 17 N x- based bonded magnets. Among these, Co-based magnets are inferior in magnetic properties and expensive, and have brittleness, so that they have the drawback of easily causing chipping and cracking. Sm 2 Fe 17 N 2-3 has high magnetic properties, but has a disadvantage that it causes a disproportionation reaction at about 500 ° C. or more and decomposes into SmN + αFe. Therefore, it is generally impossible to produce a sintered body. Therefore, the Sm 2 Fe 17 N x- based magnet is only a bonded magnet as a product, is generally expensive, and has a disadvantage that its characteristics are lower than that of a sintered body.

また、特許文献1などでは、希土類磁石粉末にフェライト磁性粉末を混合するハイブリッド磁石について述べられているが、このフェライトを混合するという手法では、飽和磁化が小さく、大きな磁気特性の向上は望めないのが現状である。   In addition, Patent Document 1 describes a hybrid magnet in which ferrite magnetic powder is mixed with rare earth magnet powder. However, the technique of mixing this ferrite has a small saturation magnetization, and a large improvement in magnetic characteristics cannot be expected. Is the current situation.

特開2003−59706号公報JP 2003-59706 A

そこで、本発明の技術的課題は、NdFe14B系磁石よりも温度特性に優れ、SmFe17ボンド磁石よりも飽和磁化の高い、磁気特性に優れた永久磁石および、その製造方法とそれに用いられる永久磁石材料を提供することにある。 Therefore, the technical problem of the present invention is that a permanent magnet having superior temperature characteristics than an Nd 2 Fe 14 B-based magnet, higher saturation magnetization than an Sm 2 Fe 17 N x bond magnet, and excellent magnetic characteristics, and its manufacture It is to provide a method and a permanent magnet material used therefor.

本発明によれば、MnBi粉末とSmFe17−x系磁石粉末(但し、MはMn,Co,Zr,Al,Ga,Ta,Nb,Tiの内から選ばれる、少なくとも一種類以上,x=0〜3,y=1〜4)を含み、前記MnBiの含有量が総重量の8質量%以上、50質量%以下の範囲であることを特徴とした永久磁石が得られる。 According to the present invention, MnBi powder and Sm 2 Fe 17-x M x N y- based magnet powder (where M is selected from among Mn, Co, Zr, Al, Ga, Ta, Nb, and Ti, at least one A permanent magnet characterized in that the content of MnBi is in the range of 8% by mass or more and 50% by mass or less of the total weight. .

また、本発明によれば、前記永久磁石材料において、前記SmFe17−x系磁石粉末(但し、MはMn,Co,Zr,Al,Ga,Ta,Nb,Tiから選ばれる、少なくとも一種類以上,x=0〜3,y=1〜4)の95質量%以下(0を含まない)を、強磁性体で置換したことを特徴とする永久磁石材料が得られる。 According to the invention, in the permanent magnet material, the Sm 2 Fe 17-x M x N y- based magnet powder (where M is selected from Mn, Co, Zr, Al, Ga, Ta, Nb, Ti). A permanent magnet material obtained by substituting 95% by mass or less (excluding 0) of at least one kind, x = 0 to 3, y = 1 to 4) with a ferromagnetic material is obtained.

また、本発明によれば、前記永久磁石材料において、前記強磁性体は、50質量%以上のFeと、Co、Cr、Ni、V、Mo、Mn、W、Al、Zn、C、Si、B、及びYのうちから選ばれる、少なくとも一種類以上の元素を含む第一の強磁性体、または、Coを50質量%以上含有し、Fe、Cr、Ni、V、Mo、Mn、W、Al、Cu、Zn、Si、C、B、Yから少なくとも一種類以上の元素を含む第二の強磁性体の、少なくともいずれかを含むことを特徴とする請求項2記載の永久磁石材料が得られる。   Further, according to the present invention, in the permanent magnet material, the ferromagnetic material includes Fe of 50 mass% or more, Co, Cr, Ni, V, Mo, Mn, W, Al, Zn, C, Si, A first ferromagnetic material containing at least one element selected from B and Y, or containing 50 mass% or more of Co, Fe, Cr, Ni, V, Mo, Mn, W, 3. The permanent magnet material according to claim 2, comprising at least one of a second ferromagnetic material containing at least one element selected from Al, Cu, Zn, Si, C, B, and Y. 4. It is done.

また、本発明によれば、前記永久磁石材料において、前記強磁性体の形状が粉末であり、その粉末の平均粒径が30nm以上、200μm以下の範囲であることを特徴とする永久磁石材料が得られる。   Further, according to the present invention, there is provided the permanent magnet material, wherein the ferromagnetic material has a powder shape and an average particle size of the powder is in a range of 30 nm to 200 μm. can get.

また、本発明によれば、前記いずれか一つの永久磁石材料において、前記強磁性体の少なくとも一部の形状が細線形状、即ち、ワイヤー形状を有し、その細線の平均線径が20nm以上、50μm以下、長さが5mm以下の範囲であることを特徴とする永久磁石材料が得られる。   According to the present invention, in any one of the permanent magnet materials, at least a part of the ferromagnetic material has a thin wire shape, that is, a wire shape, and the average wire diameter of the thin wire is 20 nm or more, A permanent magnet material having a length of 50 μm or less and a length of 5 mm or less is obtained.

また、本発明によれば、前記永久磁石材料において、前記強磁性体は、一部の形状が粉末であり、その粉末の平均粒径が30nm以上、200μm以下の範囲であり、前記強磁性体は、残部の形状が細線形状、即ち、ワイヤー形状を有し、その細線の平均線径が20nm以上、50μm以下、長さが5mm以下の範囲であることを特徴とする永久磁石材料が得られる。   Further, according to the present invention, in the permanent magnet material, the ferromagnetic body is partially powdered, and the average particle size of the powder is in the range of 30 nm to 200 μm, and the ferromagnetic body Has a thin wire shape, that is, a wire shape, and has an average wire diameter of 20 nm to 50 μm and a length of 5 mm or less. .

また、本発明によれば、前記永久磁石材料において、前記強磁性体は、一部の形状が粉末であり、その粉末の平均粒径が30nm以上、200μm以下の範囲であり、前記強磁性体は、残部の形状が細線形状、即ち、ワイヤー形状を有し、その細線の平均線径が20nm以上、50μm以下、長さが5mm以下の範囲であり、前記磁性体の残部は、50質量%以上のFeと、Co、Cr、Ni、V、Mo、Mn、W、Al、Zn、C、Si、B、及びYのうちから選ばれる、少なくとも一種類以上の元素を含む第一の強磁性体、または、Coを50質量%以上含有し、Fe、Cr、Ni、V、Mo、Mn、W、Al、Cu、Zn、Si、C、B、Yから少なくとも一種類以上の元素を含む第二の強磁性体の、少なくともいずれかを含むことを特徴とする永久磁石材料が得られる。   Further, according to the present invention, in the permanent magnet material, the ferromagnetic body is partially powdered, and the average particle size of the powder is in the range of 30 nm to 200 μm, and the ferromagnetic body Has a thin wire shape, that is, a wire shape, the average wire diameter of the fine wire is 20 nm or more and 50 μm or less, and the length is 5 mm or less. The balance of the magnetic material is 50% by mass. The first ferromagnetic containing at least one element selected from the above Fe and Co, Cr, Ni, V, Mo, Mn, W, Al, Zn, C, Si, B, and Y Or 50% by mass or more of Co and containing at least one element selected from Fe, Cr, Ni, V, Mo, Mn, W, Al, Cu, Zn, Si, C, B, and Y Including at least one of two ferromagnetic materials A permanent magnet material is obtained.

また、本発明によれば、前記いずれか一つの永久磁石材料において、前記SmFe17−x系磁石粉末(但し、MはMn,Co,Zr,Al,Ga,Ta,Nb,Tiの内の一つ、又はいずれか2つ以上,x=0〜3,y=1〜4)の表面に融点が500℃以下の金属被覆層、または酸処理による酸化物層の少なくともいずれかが形成されていることを特徴とする永久磁石材料が得られる。 According to the present invention, in any one of the permanent magnet materials, the Sm 2 Fe 17-x M x N y- based magnet powder (where M is Mn, Co, Zr, Al, Ga, Ta, Nb). , Ti, or any two or more thereof, x = 0 to 3, y = 1 to 4) on the surface, at least one of a metal coating layer having a melting point of 500 ° C. or less, or an oxide layer by acid treatment Thus, a permanent magnet material characterized in that is formed.

また、本発明によれば、前記いずれか一つの永久磁石材料の成形体を、真空中または非酸化性雰囲気で500℃以下の温度域で熱処理してなることを特徴とする永久磁石材料が得られる。   In addition, according to the present invention, there is obtained a permanent magnet material obtained by heat-treating a molded body of any one of the above permanent magnet materials in a temperature range of 500 ° C. or less in a vacuum or in a non-oxidizing atmosphere. It is done.

また、本発明によれば、前記いずれか一つの永久磁石材料を成形した成形体からなることを特徴とする永久磁石が得られる。   In addition, according to the present invention, there is obtained a permanent magnet comprising a molded body obtained by molding any one of the permanent magnet materials.

また、本発明によれば、前記いずれか一つの永久磁石材料を成形して成形体を得る工程と、前記成形体を、真空中または非酸化性雰囲気で500℃以下の温度域で熱処理することを特徴とする永久磁石の製造方法が得られる。   According to the present invention, the step of molding any one of the permanent magnet materials to obtain a molded body, and the molded body is heat-treated in a vacuum or in a non-oxidizing atmosphere at a temperature range of 500 ° C. or lower. Thus, a method for producing a permanent magnet can be obtained.

また、本発明によれば、前記いずれか一つの永久磁石材料を、真空中または非酸化性雰囲気において500℃以下の温度域で成形して成形体を得る工程を有することを特徴とする永久磁石の製造方法が得られる。   In addition, according to the present invention, there is provided a permanent magnet comprising a step of forming any one of the permanent magnet materials in a temperature range of 500 ° C. or lower in vacuum or in a non-oxidizing atmosphere to obtain a molded body. The manufacturing method is obtained.

また、本発明によれば、前記いずれか一つの永久磁石の製造方法において、前記成形体を得る工程は、磁場中で行われることを特徴とする永久磁石の製造方法が得られる。   In addition, according to the present invention, in the method for manufacturing any one of the above permanent magnets, there is obtained a method for manufacturing a permanent magnet, wherein the step of obtaining the compact is performed in a magnetic field.

本発明によれば、既存磁石の飽和磁化の高いFe、またはCo、またはFe系合金、Co系合金などの軟磁性合金、または半硬磁性合金をSmFe17系磁石粉末、MnBi系磁石粉末と混ぜ合わせることにより、混合前のSmFe17、MnBi系磁石粉末よりも高飽和磁化を備えた永久磁石およびその製造方法とを提供することができる。 According to the present invention, Fe, Co, or a soft magnetic alloy such as an Fe-based alloy, a Co-based alloy, or a semi-hard magnetic alloy with a high saturation magnetization of an existing magnet is converted into an Sm 2 Fe 17 N x- based magnet powder, MnBi-based. By mixing with magnet powder, it is possible to provide a permanent magnet having higher saturation magnetization than Sm 2 Fe 17 N x and MnBi magnet powder before mixing, and a method for manufacturing the permanent magnet.

また、本発明によれば、SmFe17系磁石粉末の異方性磁界・保磁力が大きいため、これらの軟磁性合金、または半硬磁性合金を混ぜたことによる保磁力の減少も比較的少なく、磁石として用いるのに必要な保磁力は確保できる。この成形体を熱処理することにより、または熱間成形することにより、優れた磁石を得ることができる永久磁石およびその製造方法を提供することができる。 Further, according to the present invention, since the anisotropic magnetic field and coercive force of the Sm 2 Fe 17 N x- based magnet powder are large, the coercive force is reduced by mixing these soft magnetic alloys or semi-hard magnetic alloys. The coercive force necessary for use as a magnet is relatively small and can be secured. A permanent magnet capable of obtaining an excellent magnet and a method for producing the same can be provided by heat-treating the molded body or by hot molding.

また、本発明によれば、投入する強磁性粉末の種類と粒径を選択することにより、またSmFe17系磁石粉末とMnBi系磁石粉末と強磁性合金粉末の比率を調整することにより、飽和磁化と保磁力の大きさを任意に調整でき、製品に必要とされる磁気特性に柔軟に変化させることができる永久磁石およびその製造方法とを提供することができる。 In addition, according to the present invention, the ratio of the Sm 2 Fe 17 N x magnet powder, the MnBi magnet powder and the ferromagnetic alloy powder is adjusted by selecting the type and particle size of the ferromagnetic powder to be introduced. Accordingly, it is possible to provide a permanent magnet that can arbitrarily adjust the magnitudes of saturation magnetization and coercive force, and can flexibly change the magnetic characteristics required for a product, and a method for manufacturing the permanent magnet.

本発明について更に詳細に説明する。   The present invention will be described in more detail.

本発明においては、ワイヤー、または粉末状で、かつ飽和磁化の高いFe、またはCo、またはFe系合金、Co系合金、の強磁性体を、SmFe17系磁石粉末とMnBi系磁石粉末と混ぜ合わせ、その混合粉を磁場中、もしくは無磁場中で圧縮成形、または押し出し成形、または射出成形により成形し、その後、または形成中に熱処理することにより作製を行う。 In the present invention, a ferromagnetic material of wire or powder and Fe, Co, Fe-based alloy, or Co-based alloy having high saturation magnetization is made of Sm 2 Fe 17 N x- based magnet powder and MnBi-based magnet. The powder mixture is mixed, and the mixed powder is molded by compression molding, extrusion molding, or injection molding in a magnetic field or in the absence of a magnetic field, and then heat-treated during or after the formation.

ここで、Fe系合金、Co系合金としては、Fe−Co系合金、Fe−Co−Ni系合金、Fe−Cr−Co系合金(鉄−クロム磁石)、Fe−Cr−Co−Mo−V合金、Fe−Al−Ni−Co−Cu−Nb−Ti合金(アルニコ磁石)、Fe−Co−Y合金、Co−Zn合金、Fe−Si系合金、Fe−Si−Bアモルファス合金、Fe−Co−Zr−Ti−Nb−Si−Gaアモルファス合金などで調査を行ったが、良好な特性を得られた。これらの元素の組み合わせによっても、良好な特性が出ることは容易に推測できる。   Here, Fe-based alloys and Co-based alloys include Fe-Co based alloys, Fe-Co-Ni based alloys, Fe-Cr-Co based alloys (iron-chromium magnets), Fe-Cr-Co-Mo-V. Alloy, Fe-Al-Ni-Co-Cu-Nb-Ti alloy (alnico magnet), Fe-Co-Y alloy, Co-Zn alloy, Fe-Si alloy, Fe-Si-B amorphous alloy, Fe-Co Although investigation was conducted using an —Zr—Ti—Nb—Si—Ga amorphous alloy or the like, good characteristics were obtained. It can be easily estimated that good characteristics can be obtained even by a combination of these elements.

本発明の永久磁石の構成物質として、上記に書かれている、FeまたはCo、またはFe系合金、またはCo系合金、またはこれらの混合粉(以下、強磁性体と呼ぶ)とSmFe17系合金とMnBiからなり、その構成比率として、上記の強磁性体とSmFe17(X=1〜4)系磁石の2つの重量比の関係を(強磁性体:SmFe17)=(a:b)とすると、0≦a≦95,5≦b≦100,a+b=100の関係式を満たすことを特徴とし、上記の強磁性体平均粒径が20nm〜200μmの粉末、または、平均線径が20nm〜100μm、長さが5mm以下である細線、即ち、ワイヤーである時、すぐれた硬質磁性を示す磁石が得られる。強磁性体の粒径や線径がこれより大きくなると、保磁力・角型等の磁気特性の劣化を起こし、これ以下だと密度が上がらなくなり、飽和磁化、残留磁化等の磁気特性が劣化したり、作製が困難となる。MnBiの組成範囲についても、総重量の8質量%以下だと、成形性が悪くなり、50質量%以上になると、磁気特性が劣り、従来の磁石に比べ優位性がない。 As the constituent material of the permanent magnet of the present invention, Fe or Co, Fe-based alloy, Co-based alloy, or a mixed powder thereof (hereinafter referred to as a ferromagnetic material) and Sm 2 Fe 17 described above are used. N x system consists alloy and MnBi, as its component ratio, said ferromagnetic and Sm 2 Fe 17 N x (X = 1~4) system the relationship between the two weight ratios of the magnet (ferromagnet: Sm 2 When Fe 17 N x ) = (a: b), the relational expressions of 0 ≦ a ≦ 95, 5 ≦ b ≦ 100, a + b = 100 are satisfied, and the average ferromagnetic particle diameter is 20 nm to When it is a 200 μm powder, or a thin wire having an average wire diameter of 20 nm to 100 μm and a length of 5 mm or less, that is, a wire, a magnet exhibiting excellent hard magnetism can be obtained. If the particle size or wire diameter of the ferromagnetic material is larger than this, the magnetic properties such as coercive force and square shape will deteriorate, and if it is less than this, the density will not increase and the magnetic properties such as saturation magnetization and residual magnetization will deteriorate. Or making it difficult. As for the composition range of MnBi, if it is 8% by mass or less of the total weight, the moldability is deteriorated, and if it is 50% by mass or more, the magnetic properties are inferior, and it is not superior to conventional magnets.

よってMnBiの比率は総重量の8質量%〜50質量%の範囲である必要がある。   Therefore, the ratio of MnBi needs to be in the range of 8% by mass to 50% by mass of the total weight.

製法としては、プレス、押し出し成形、射出成形を行った後に熱処理する方法と、ホットプレス等の熱間成形で作る方法がある。その際、SmFe17が不均化反応しないように、熱処理、または熱間成形の温度は500℃以下に抑える必要がある。熱処理、または熱間成形を行う際の雰囲気は、酸化を防止するため、真空または、Ar、N、He等の不活性雰囲気、またはHなどの還元雰囲気、または不活性ガスと還元ガスの混合雰囲気などで行う必要がある。 As a manufacturing method, there are a method in which heat treatment is performed after pressing, extrusion molding, and injection molding, and a method in which hot molding such as hot pressing is performed. At that time, it is necessary to suppress the temperature of heat treatment or hot forming to 500 ° C. or less so that Sm 2 Fe 17 N x does not disproportionate. In order to prevent oxidation, the atmosphere during the heat treatment or hot forming is vacuum, an inert atmosphere such as Ar, N 2 , or He, a reducing atmosphere such as H 2 , or an inert gas and a reducing gas. It is necessary to carry out in a mixed atmosphere.

また、耐蝕処理に用いる金属被覆も500℃以下で行う必要があるため、その被覆に使う金属の融点は500℃以下であるか、もしくは、熱処理を用いない酸処理等による酸化物層を施す必要がある。   Moreover, since it is necessary to perform metal coating used for the corrosion-resistant treatment at 500 ° C. or lower, the melting point of the metal used for the coating is 500 ° C. or lower, or it is necessary to apply an oxide layer by acid treatment without using heat treatment. There is.

以下、本発明の実施例について図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施例1)
MnとBiをそれぞれ48.6g、151.4gを電子天秤で量り取り、それをAr雰囲気中でアーク溶解を行い、MnBiインゴットを得た。そのインゴットを、Ar雰囲気中で300℃×10h熱処理を施した。冷却後、そのインゴットをディスクミルで粉砕し、150μm以下に分級した。
Example 1
48.6 g and 151.4 g of Mn and Bi were respectively weighed with an electronic balance and arc melted in an Ar atmosphere to obtain a MnBi ingot. The ingot was heat-treated at 300 ° C. for 10 hours in an Ar atmosphere. After cooling, the ingot was pulverized with a disk mill and classified to 150 μm or less.

実験に用いたFe粉末は、その平均粒径が100nmのFe粉末であり、カルボニルFe溶液を超音波で分解、それを採取・乾燥して作製した。   The Fe powder used in the experiment was an Fe powder having an average particle diameter of 100 nm, and was prepared by decomposing a carbonyl Fe solution with ultrasonic waves, collecting and drying it.

上記の方法で得られたFe粉と住友金属鉱山製のSmFe17粉末を用い、この粉末の比率を(SmFe17粉:Fe粉)=A:(100質量%:0質量%:),B:(95質量%:5質量%:),C:(70質量%:30質量%),D:(40質量%:60質量%),E:(5質量%:95質量%),F:(0質量%:100質量%)で、それぞれ電子天秤を用いて量り取り、さらにこれに総重量の25質量%となるように、上記に示したMnBi粉末を加え、アルゴン雰囲気中・乾式ボールミルを用いて30分間、混合・粉砕した。 Using the Fe powder obtained by the above method and Sm 2 Fe 17 N x powder manufactured by Sumitomo Metal Mining, the ratio of this powder is (Sm 2 Fe 17 N x powder: Fe powder) = A: (100 mass%: 0 mass% :), B: (95 mass%: 5 mass% :), C: (70 mass%: 30 mass%), D: (40 mass%: 60 mass%), E: (5 mass%: 95% by mass) and F: (0% by mass: 100% by mass), respectively, were weighed using an electronic balance, and the MnBi powder shown above was added to this so as to be 25% by mass of the total weight, The mixture was mixed and pulverized in an argon atmosphere using a dry ball mill for 30 minutes.

粉砕・混合したそれぞれの粉末を300℃・Ar雰囲気中・98MPaの条件で熱磁場配向プレスを行った。   Each of the pulverized and mixed powders was subjected to thermal magnetic field orientation pressing under the conditions of 300 ° C., Ar atmosphere, and 98 MPa.

このプレス体をさらにAr雰囲気中で300℃×10h熱処理を行い、BHトレーサーで磁気測定を行った。その結果を図1と下記表1に示す。   The pressed body was further heat-treated at 300 ° C. for 10 hours in an Ar atmosphere, and magnetic measurement was performed with a BH tracer. The results are shown in FIG.

Figure 2008255436
Figure 2008255436

図1及び表1に示すように、Brは1.11T〜1.62Tと、大きな値を示した。Fe添加量とともにBrは増加傾向で、Fe量95質量%において、最大値1.62Tを示した。一方、SmFe17を含まない、Fe:100%では、Eの(Fe粉:SmFe17粉)=(5質量%:95質量%)に比べ、Brは減少し、磁気特性はすべての面について劣っており、優位性がないことが明らかになった。 As shown in FIG. 1 and Table 1, Br showed a large value of 1.11T to 1.62T. Br increased with the amount of Fe added, and showed a maximum value of 1.62 T when the Fe content was 95% by mass. On the other hand, does not contain Sm 2 Fe 17 N x, Fe : 100%, of the E (Fe powder: Sm 2 Fe 17 N x powder) =: comparison with (5 wt% 95 wt%), Br decreases, It became clear that the magnetic properties were inferior in all aspects and no superiority.

iHcはFeの添加量に比例して減少するが、EのFe:SmFe17=95:5の組成でも、Br、iHc、(BH)maxにおいて、一般に市販されているFe−Cr−Co磁石の特性を超えており、より優れた磁気特性を示している。 Although iHc decreases in proportion to the amount of Fe added, even in the composition of E Fe: Sm 2 Fe 17 N x = 95: 5, Fe—Cr that is generally commercially available at Br, iHc, (BH) max. -Exceeds the properties of Co magnets and exhibits better magnetic properties.

また、Feの含有しないFのSmFeN+MnBiの組成でも、Br=1.11TとSmCo系磁石とほぼ同等の磁気特性値を示し、優れた磁石になることが明らかになった。   In addition, even in the composition of SmFeN + MnBi of F that does not contain Fe, Br = 1.11T, which is almost the same as that of the SmCo-based magnet, has been clarified to be an excellent magnet.

また、MnBi比を変えて、実験をおこなったところMnBi比が8質量%以下だと、成形性が悪くなり、50質量%以上になると、磁気特性が劣り、従来の磁石に比べ優位性がない。   Further, when the MnBi ratio was changed and an experiment was conducted, if the MnBi ratio was 8% by mass or less, the moldability deteriorated, and if it was 50% by mass or more, the magnetic properties were inferior and there was no advantage over the conventional magnet. .

以上の結果より、その構成物質の内、FeとSmFe17(X=1〜4)系磁石の2つの重量比の関係が、(Fe:SmFe17Nx)=(a:b)とすると、0≦a≦95,5≦b≦100,a+b=100の関係式を満たす時、良好な特性が得られることが明らかになった。 From the above results, among the constituent materials, the relationship between the two weight ratios of Fe and Sm 2 Fe 17 N x (X = 1 to 4) magnets is (Fe: Sm 2 Fe 17 Nx) = (a: As for b), it is clear that good characteristics can be obtained when the relational expressions of 0 ≦ a ≦ 95, 5 ≦ b ≦ 100, and a + b = 100 are satisfied.

また、MnBiは総重量の8〜50質量%の範囲にある時に成形性と特性の両立が可能であることが分かった。   It was also found that MnBi can achieve both formability and characteristics when it is in the range of 8 to 50% by mass of the total weight.

本実施例においては、Fe粉末を用いたが、Co粉末、またはFe−Co系合金粉末、Fe−Co−Ni系合金粉末、Fe−Cr−Co系合金粉末(鉄−クロム磁石粉末)、Fe−Cr−Co−Mo−V合金粉末、Fe−Al−Ni−Co−Cu−Nb−Ti合金粉末(アルニコ磁石粉末)、Fe−Co−W−C系合金粉末(KS鋼)、Fe−Ni−Al系合金(MK鋼)、Fe−Co−Y合金粉末、Co−Zn合金粉末、Fe−Si系合金粉末、Fe−Si−Bアモルファス合金粉末、Fe−Co−Zr−Ti−Nb−Si−Gaアモルファス合金などの強磁性合金粉末でも、同様に良好な特性を示すのを確認済みである。   In this example, Fe powder was used, but Co powder, Fe-Co alloy powder, Fe-Co-Ni alloy powder, Fe-Cr-Co alloy powder (iron-chromium magnet powder), Fe -Cr-Co-Mo-V alloy powder, Fe-Al-Ni-Co-Cu-Nb-Ti alloy powder (Alnico magnet powder), Fe-Co-WC system alloy powder (KS steel), Fe-Ni -Al alloy (MK steel), Fe-Co-Y alloy powder, Co-Zn alloy powder, Fe-Si alloy powder, Fe-Si-B amorphous alloy powder, Fe-Co-Zr-Ti-Nb-Si It has been confirmed that ferromagnetic alloy powders such as -Ga amorphous alloy also show good characteristics.

(実施例2)
実験に用いたFe粉末は、その平均粒径が30nm、1μm、12μm、200μm、500μmのFe粉であり、SmFe17粉末は住友金属鉱山製のものを使用した。
(Example 2)
The Fe powder used in the experiment is an Fe powder having an average particle size of 30 nm, 1 μm, 12 μm, 200 μm, and 500 μm, and Sm 2 Fe 17 N x powder manufactured by Sumitomo Metal Mining was used.

Fe粉は1〜200μmについては、市販のものを利用し、30μmのFe粉の作製についてはアルゴン雰囲気中でFe(CO)をジフェニルメタン中に溶解し、超音波で分解。その後、Ar中で600℃×5hr熱処理を行い、粉末を得た。 As for the Fe powder, a commercially available one is used for 1 to 200 μm, and for the production of 30 μm Fe powder, Fe (CO) 5 is dissolved in diphenylmethane in an argon atmosphere and decomposed by ultrasonic waves. Thereafter, heat treatment was performed at 600 ° C. for 5 hours in Ar to obtain a powder.

MnBiの作製については、MnとBiをそれぞれ48.6g、151.4gを電子天秤で量り取り、それをAr雰囲気中でアーク溶解を行い、MnBiインゴットを得た。そのインゴットを、Ar雰囲気中で300℃×10h熱処理を施した。そのインゴットをディスクミルで粉砕し、150μm以下に分級した。   For the production of MnBi, 48.6 g and 151.4 g of Mn and Bi were weighed with an electronic balance and arc melted in an Ar atmosphere to obtain a MnBi ingot. The ingot was heat-treated at 300 ° C. for 10 hours in an Ar atmosphere. The ingot was pulverized by a disk mill and classified to 150 μm or less.

以上のように得られた、Fe粉とSmFe17とMnBiの比率を(Fe粉:SmFe17粉:MnBi粉)=(45質量%:35質量%:20質量%)の比率で、それぞれ電子天秤を用いて測り取り、アルゴン雰囲気中・V型混合機を用いて1時間混合した。 The ratio of Fe powder, Sm 2 Fe 17 N x and MnBi obtained as described above (Fe powder: Sm 2 Fe 17 N x powder: MnBi powder) = (45 mass%: 35 mass%: 20 mass%) ) And measured with an electronic balance, and mixed for 1 hour in an argon atmosphere using a V-type mixer.

粉砕・混合したそれぞれの粉末をAr雰囲気中・198MPaの条件で磁場配向プレスを行った。このプレス体をさらにAr雰囲気中で300℃で、熱間等方加圧焼結(HIP)を行なった。得られた磁石体をBHトレーサーで磁気測定を行った。   Each of the pulverized and mixed powders was subjected to magnetic field orientation pressing in an Ar atmosphere at 198 MPa. This pressed body was further subjected to hot isostatic pressing (HIP) at 300 ° C. in an Ar atmosphere. The obtained magnet body was subjected to magnetic measurement with a BH tracer.

図2(a)は磁気特性(Ms,Br,SQ)のFe粒径依存性、図2(b)は磁気特性(iHc,SQ)を夫々示す図である。図2(a)および(b)より、Fe粒径の増大とともにMsは上昇した。粒径が増大するにつれMsが上昇した理由としては、Fe粉末の表面酸化の比率が下がったことと、密度の上昇があげられる。   FIG. 2A shows the Fe particle size dependence of the magnetic properties (Ms, Br, SQ), and FIG. 2B shows the magnetic properties (iHc, SQ). 2 (a) and 2 (b), Ms increased with increasing Fe particle size. The reason why Ms increases as the particle size increases includes a decrease in the surface oxidation ratio of Fe powder and an increase in density.

また、Brは粒径の増大とともに減少した。これは、第一象限での磁化の減少が大きいことを示している。   Also, Br decreased with increasing particle size. This indicates that the decrease in magnetization in the first quadrant is large.

また、粒径が大きくなるほど減磁曲線が2段化して行き、角形性の指標であるSQ値(=Br×iHcと第2象限の減磁ループの面積比)も大きく減少した。 In addition, the demagnetization curve became two steps as the particle size increased, and the SQ value (= Br × iHc and the area ratio of the demagnetization loop in the second quadrant), which is an index of squareness, was greatly reduced.

Feの平均粒径500μmの粉末では、Brが1Tを大きく下回り、SmCo磁石に対しても優位性はなく、またiHcも粒径200μmの時に比べ大きく低下、またヒシテリシス曲線が大きく2段になり、磁石として、優位性を見出せない。   In the powder of Fe having an average particle diameter of 500 μm, Br is much lower than 1T, and there is no advantage over the SmCo magnet, iHc is also greatly reduced as compared with the particle diameter of 200 μm, and the hysteresis curve is greatly divided into two stages. As a magnet, superiority cannot be found.

以上の結果より、その平均粒径(D50)が30nm〜200μmを添加した場合において、優れた磁石になる可能性があることが明らかになった。   From the above results, it was revealed that when the average particle size (D50) is 30 nm to 200 μm, an excellent magnet may be obtained.

また、Fe粒径は、上記の結果を元に、コスト、磁気特性、製品のパーミアンス係数などを考慮し、決定されるべきである。   In addition, the Fe particle size should be determined based on the above results in consideration of cost, magnetic characteristics, product permeance coefficient, and the like.

また、FeCo粉末についても粒径依存性の実験を行ったが、ほぼ同様の傾向を示した。 In addition, the Fe 2 Co powder was also subjected to a particle size dependence experiment, and showed almost the same tendency.

(実施例3)
実施例3に用いた強磁性体はCoワイヤー(または針状粉末)とFeワイヤー(または針状粉末のほぼ1:1の混合粉であり、その混合粉の平均線径は20nm、200nm、1μm、50μm、200μm、平均線長は50nm〜2mmであった。20nmと200nmの試料はカルボニルFe、カルボニルCoのガスとArガスの混合気体を熱分解させ、それを永久磁石表面に析出させることで得られた。1〜200μmの試料は、市販品を購入して得た。
(Example 3)
The ferromagnetic material used in Example 3 is a mixed powder of Co wire (or needle-shaped powder) and Fe wire (or needle powder of about 1: 1), and the average wire diameter of the mixed powder is 20 nm, 200 nm, 1 μm. , 50 μm, 200 μm, average line length was 50 nm to 2 mm Samples of 20 nm and 200 nm were obtained by thermally decomposing a mixed gas of carbonyl Fe, carbonyl Co gas and Ar gas and depositing it on the surface of the permanent magnet. Samples of 1 to 200 μm were obtained by purchasing commercially available products.

SmFe17粉末は住友金属鉱山製のものを使用した。 The Sm 2 Fe 17 N x powder was manufactured by Sumitomo Metal Mining.

MnBiの作製については、MnとBiをそれぞれ48.6g、151.4gを電子天秤で量り取り、それをAr雰囲気中でアーク溶解を行った。そのインゴットを、Ar雰囲気中で300℃×10h熱処理を施した。そのインゴットをディスクミルで粉砕し、150μm以下に分級した。   For the production of MnBi, 48.6 g and 151.4 g of Mn and Bi were weighed with an electronic balance, and arc melting was performed in an Ar atmosphere. The ingot was heat-treated at 300 ° C. for 10 hours in an Ar atmosphere. The ingot was pulverized by a disk mill and classified to 150 μm or less.

これらのそれぞれのFe/CoワイヤーとSmFe17とMnBiの比率を(Fe/Coワイヤー:SmFe17粉:MnBi粉)=(40質量%:40質量%:20質量%)の比率で、それぞれ電子天秤を用いて測り取り、アルゴン雰囲気中・V型混合機を用いて1時間混合した。粉砕・混合したそれぞれの粉末をAr雰囲気中・198MPaの条件で磁場配向プレスを行った。このプレス体をさらにAr雰囲気中で300℃で、HIPを行なった。得られた磁石をBHトレーサーで磁気測定を行った。 The ratio of each of these Fe / Co wires and Sm 2 Fe 17 N x and MnBi is (Fe / Co wire: Sm 2 Fe 17 N x powder: MnBi powder) = (40 mass%: 40 mass%: 20 mass%) ) And measured with an electronic balance, and mixed for 1 hour in an argon atmosphere using a V-type mixer. Each of the pulverized and mixed powders was subjected to magnetic field orientation pressing in an Ar atmosphere at 198 MPa. The pressed body was further subjected to HIP at 300 ° C. in an Ar atmosphere. The obtained magnet was subjected to magnetic measurement with a BH tracer.

図3(a)は磁気特性(Ms,Br,SQ)のFe/Co線径依存性、図3(b)は磁気特性(iHc,SQ)のFe/Co線径依存性を夫々示す図である。図3(a)および(b)より、Fe/Co線径の増大とともにMsは上昇した。線径が増大するにつれMsが上昇した理由としては、Fe/Co線の表面酸化の比率が下がったことと、密度の上昇があげられる。   FIG. 3A shows the Fe / Co wire diameter dependence of the magnetic properties (Ms, Br, SQ), and FIG. 3B shows the Fe / Co wire diameter dependence of the magnetic properties (iHc, SQ). is there. 3 (a) and 3 (b), Ms increased with increasing Fe / Co wire diameter. The reason why Ms increases as the wire diameter increases includes a decrease in the surface oxidation ratio of the Fe / Co wire and an increase in density.

また、BrはFe/Co線径の増大とともに減少した。これは、線径の増大とともに、第一象限での磁化の減少が大きいことを示している。   Further, Br decreased as the Fe / Co wire diameter increased. This indicates that the decrease in magnetization in the first quadrant is large as the wire diameter increases.

また、Fe/Co線径が大きくなるほど減磁曲線が2段化して行き、角型の指標であるSQ値(=Br×iHcとの第2象限の4πI−Hループの面積比)も大きく減少した。 In addition, the demagnetization curve becomes two steps as the Fe / Co wire diameter increases, and the SQ value (= Br × iHc, the area ratio of the 4πI-H loop in the second quadrant to Br × iHc) also decreases greatly. did.

Fe/Co線径200μmのワイヤーでは、Brが1Tを大きく下回り、SmCo磁石に対しても優位性はなく、またiHcもFe/Co線径50μmの時に比べ大きく低下、またヒシテリシス曲線が大きく2段になり、磁石として、優位性を見出せない。   For a wire with an Fe / Co wire diameter of 200 μm, Br is much lower than 1T, which is not superior to SmCo magnets, iHc is also significantly lower than when the Fe / Co wire diameter is 50 μm, and the hysteresis curve is large and has two steps. Therefore, superiority as a magnet cannot be found.

以上の結果より、その平均線径(D50)が20nm〜50μmのワイヤーを添加した場合において、優れた磁石になる可能性があることが明らかになった。   From the above results, it was revealed that when a wire having an average wire diameter (D50) of 20 nm to 50 μm was added, an excellent magnet could be obtained.

Fe/Co線径はコスト、磁気特性、製品のパーミアンス係数などを考慮し、決定されるべきだと考えられる。   It is considered that the Fe / Co wire diameter should be determined in consideration of cost, magnetic characteristics, product permeance coefficient, and the like.

本実施例においては、Fe/Coワイヤーを用いたが、Fe−Co系合金ワイヤー、Fe−Co−Ni系合金針状粉末、Fe−Cr−Co−Mo−V合金針状粉末、Fe−Si−Al(センダスト)系合金扁平粉末、Fe−Si−Bアモルファス合金ワイヤー、Fe−Co−Zr−Ti−Nb−Si−Gaアモルファス合金ワイヤーなどの強磁性合金粉末・ワイヤーについても粒径依存性の実験を行ったが、同様に良好な特性を示すのを確認済みである。   In this example, Fe / Co wire was used, but Fe—Co alloy wire, Fe—Co—Ni alloy needle powder, Fe—Cr—Co—Mo—V alloy needle powder, Fe—Si. -Ferromagnetic alloy powders and wires such as flat powders of Al (Sendust) alloys, Fe-Si-B amorphous alloy wires, and Fe-Co-Zr-Ti-Nb-Si-Ga amorphous alloy wires are also particle size dependent. An experiment was conducted, and it was confirmed that the same good characteristics were exhibited.

また、ワイヤーの平均長さが5mmを超えると、混合時に折れ曲がったり、絡まるなどして配向度が著しく低下するため、磁気特性が大きく劣化し、また形成能も低下することから、ワイヤーの平均長さは5mm以下が適当と考えられる。   In addition, if the average length of the wire exceeds 5 mm, the degree of orientation significantly decreases due to bending or entanglement at the time of mixing, so that the magnetic properties are greatly deteriorated, and the forming ability also decreases. A thickness of 5 mm or less is considered appropriate.

以上の説明のように、構成物質として、粉末又はワイヤー形状の強磁性体とSmFe17とMnBiからなり、その構成比率として、上記の強磁性体とSmFe17(X=1〜4)系磁石の2つの重量比の関係を(強磁性体:SmFe17)=(a:b)とすると、0≦a≦95,5≦b≦100,a+b=100の関係式を満たすことを特徴とし、上記の軟磁気特性粉末平均粒径が30nm〜200μmの粉末、または、平均線径が20nm〜50μm、長さが5mm以下である細線(ワイヤー)であり、かつ、MnBiの比率が総重量の8質量%〜50質量%の範囲である時、すぐれた硬質磁性を示す磁石が得られる。製法としては、プレス、押し出し成形、射出成形を行った後に熱処理する方法と、ホットプレス、HIP等の熱間成形で作る方法がある。その際、SmFe17が不均化反応しないように、熱処理、またはホットプレスの温度は500℃以下に抑える必要がある。よって、Biの融点近傍の250℃から、不均化反応の起こらない500℃以下で熱処理、または熱間加工をする時、密度・強度に優れた磁石が作製できる。 As described above, the constituent material is composed of powder or wire-shaped ferromagnetic material, Sm 2 Fe 17 N x and MnBi, and the constituent ratio is the above ferromagnetic material and Sm 2 Fe 17 N x (X = 1 to 4) When the relationship between the two weight ratios of the system magnet is (ferromagnetic material: Sm 2 Fe 17 N x ) = (a: b), 0 ≦ a ≦ 95, 5 ≦ b ≦ 100, a + b = It is characterized by satisfying a relational expression of 100, and is a powder having the above-mentioned soft magnetic property powder average particle diameter of 30 nm to 200 μm, or a thin wire (wire) having an average wire diameter of 20 nm to 50 μm and a length of 5 mm or less And when the ratio of MnBi is in the range of 8% by mass to 50% by mass of the total weight, a magnet exhibiting excellent hard magnetism can be obtained. As a manufacturing method, there are a method of performing heat treatment after performing press, extrusion molding, and injection molding, and a method of forming by hot molding such as hot pressing and HIP. At that time, it is necessary to suppress the temperature of the heat treatment or hot pressing to 500 ° C. or lower so that Sm 2 Fe 17 N x does not disproportionate. Therefore, when heat treatment or hot working is performed from 250 ° C. near the melting point of Bi to 500 ° C. or less at which disproportionation does not occur, a magnet having excellent density and strength can be produced.

本発明の永久磁石とその製造方法と、それに用いる永久磁石粉末は、電気、電子機器の素子用の永久磁石に用いられる。   The permanent magnet of the present invention, the production method thereof, and the permanent magnet powder used therefor are used for permanent magnets for elements of electric and electronic devices.

本発明の実施例1による永久磁石の各組成比における4πI−H曲線を示す図である。It is a figure which shows the 4 (pi) IH curve in each composition ratio of the permanent magnet by Example 1 of this invention. (a)は本発明の実施例2による永久磁石の磁気特性(Ms,Br,SQ)のFe粒径依存性を示す図、(b)は本発明の実施例2による永久磁石の磁気特性(iHc,SQ)のFe粒径依存性を示す図である。(A) is a figure which shows the Fe particle size dependence of the magnetic characteristic (Ms, Br, SQ) of the permanent magnet by Example 2 of this invention, (b) is the magnetic characteristic of the permanent magnet by Example 2 of this invention ( It is a figure which shows the Fe particle size dependence of iHc, SQ). (a)は本発明の実施例3による永久磁石の磁気特性(Ms,Br,SQ)のFe/Co線径依存性を示す図、(b)は本発明の実施例3による永久磁石の磁気特性(iHc,SQ)のFe/Co線径依存性を示す図である。(A) is a figure which shows the Fe / Co wire diameter dependence of the magnetic characteristic (Ms, Br, SQ) of the permanent magnet by Example 3 of this invention, (b) is the magnetism of the permanent magnet by Example 3 of this invention. It is a figure which shows the Fe / Co wire diameter dependence of the characteristic (iHc, SQ).

Claims (13)

MnBi粉末とSmFe17−x系磁石粉末(但し、MはMn,Co,Zr,Al,Ga,Ta,Nb,Tiの内から選ばれる、少なくとも一種類以上,x=0〜3,y=1〜4)を含み、前記MnBiの含有量が総重量の8質量%以上、50質量%以下の範囲であることを特徴とした永久磁石材料。 MnBi powder and Sm 2 Fe 17-x M x N y- based magnet powder (where M is at least one selected from Mn, Co, Zr, Al, Ga, Ta, Nb, Ti, x = 0 To 3 and y = 1 to 4), and the content of MnBi is in the range of 8% by mass to 50% by mass of the total weight. 請求項1に記載の永久磁石材料において、前記SmFe17−x系磁石粉末(但し、MはMn,Co,Zr,Al,Ga,Ta,Nb,Tiから選ばれる、少なくとも一種類以上,x=0〜3,y=1〜4)の95質量%以下(0を含まない)を、強磁性体で置換したことを特徴とする永久磁石材料。 The permanent magnet material according to claim 1, wherein the Sm 2 Fe 17-x M x N y- based magnet powder (where M is selected from Mn, Co, Zr, Al, Ga, Ta, Nb, Ti, at least A permanent magnet material in which 95% by mass or less (not including 0) of one or more types, x = 0 to 3, y = 1 to 4) is substituted with a ferromagnetic material. 請求項2に記載の永久磁石材料において、前記強磁性体は、50質量%以上のFeと、Co、Cr、Ni、V、Mo、Mn、W、Al、Zn、C、Si、B、及びYのうちから選ばれる、少なくとも一種類以上の元素を含む第一の強磁性体、または、Coを50質量%以上含有し、Fe、Cr、Ni、V、Mo、Mn、W、Al、Cu、Zn、Si、C、B、Yから少なくとも一種類以上の元素を含む第二の強磁性体の、少なくともいずれかを含むことを特徴とする永久磁石材料。   3. The permanent magnet material according to claim 2, wherein the ferromagnetic material includes 50 mass% or more of Fe, Co, Cr, Ni, V, Mo, Mn, W, Al, Zn, C, Si, B, and First ferromagnetic material containing at least one element selected from Y, or containing 50 mass% or more of Co, Fe, Cr, Ni, V, Mo, Mn, W, Al, Cu A permanent magnet material comprising at least one of a second ferromagnetic material containing at least one element selected from Zn, Si, C, B, and Y. 請求項3に記載の永久磁石材料において、前記強磁性体の形状が粉末であり、その粉末の平均粒径が30nm以上、200μm以下の範囲であることを特徴とする永久磁石材料。   The permanent magnet material according to claim 3, wherein the ferromagnetic material has a powder shape, and an average particle size of the powder is in a range of 30 nm to 200 μm. 請求項2又は3に記載の永久磁石材料において、前記強磁性体の少なくとも一部の形状が細線形状を有し、その細線の平均線径が20nm以上、50μm以下、長さが5mm以下の範囲であることを特徴とする永久磁石材料。   4. The permanent magnet material according to claim 2, wherein at least a part of the ferromagnetic material has a fine wire shape, an average wire diameter of the fine wire is 20 nm or more and 50 μm or less, and a length is 5 mm or less. A permanent magnet material characterized in that 請求項3に記載の永久磁石材料において、前記強磁性体は、一部の形状が粉末であり、その粉末の平均粒径が30nm以上、200μm以下の範囲であり、前記強磁性体は、残部の形状が細線形状を有し、その細線の平均線径が20nm以上、50μm以下、長さが5mm以下の範囲であることを特徴とする永久磁石材料。   4. The permanent magnet material according to claim 3, wherein a part of the ferromagnetic material is a powder, and an average particle diameter of the powder is in a range of 30 nm or more and 200 μm or less. The permanent magnet material is characterized in that the shape has a fine wire shape, and the average wire diameter of the fine wire is in the range of 20 nm to 50 μm and the length is 5 mm or less. 請求項2に記載の永久磁石材料において、前記強磁性体は、一部の形状が粉末であり、その粉末の平均粒径が30nm以上、200μm以下の範囲であり、前記強磁性体は、残部の形状が細線形状を有し、その細線の平均線径が20nm以上、50μm以下、長さが5mm以下の範囲であり、前記磁性体の残部は、50質量%以上のFeと、Co、Cr、Ni、V、Mo、Mn、W、Al、Zn、C、Si、B、及びYのうちから選ばれる、少なくとも一種類以上の元素を含む第一の強磁性体、または、Coを50質量%以上含有し、Fe、Cr、Ni、V、Mo、Mn、W、Al、Cu、Zn、Si、C、B、Yから少なくとも一種類以上の元素を含む第二の強磁性体の、少なくともいずれかを含むことを特徴とする永久磁石材料。   3. The permanent magnet material according to claim 2, wherein the ferromagnetic body is partially powdered, an average particle diameter of the powder is in a range of 30 nm to 200 μm, and the ferromagnetic body has a balance. The thin wire has an average wire diameter of 20 nm or more and 50 μm or less and a length of 5 mm or less, and the balance of the magnetic material is 50% by mass or more of Fe, Co, and Cr. , Ni, V, Mo, Mn, W, Al, Zn, C, Si, B, and Y, a first ferromagnetic material containing at least one element or 50 masses of Co % Of the second ferromagnetic material containing at least one element selected from Fe, Cr, Ni, V, Mo, Mn, W, Al, Cu, Zn, Si, C, B, and Y, A permanent magnet material comprising any of the above. 請求項1から7の内のいずれか一つに記載の永久磁石材料において、前記SmFe17−x系磁石粉末(但し、MはMn,Co,Zr,Al,Ga,Ta,Nb,Tiの内の一つ、又はいずれか2つ以上,x=0〜3,y=1〜4)の表面に融点が500℃以下の金属被覆層、または酸処理による酸化物層の少なくともいずれかが形成されていることを特徴とする永久磁石材料。 The permanent magnet material according to any one of claims 1 to 7, the Sm 2 Fe 17-x M x N y based magnetic powder (where, M is Mn, Co, Zr, Al, Ga, Ta , Nb, Ti, or any two or more thereof, x = 0 to 3, y = 1 to 4) on the surface of a metal coating layer having a melting point of 500 ° C. or less, or an oxide layer formed by acid treatment A permanent magnet material, wherein at least one of them is formed. 請求項1から8の内のいずれか一つに記載の永久磁石材料を成形した成形体からなることを特徴とする永久磁石。   A permanent magnet comprising a molded body obtained by molding the permanent magnet material according to any one of claims 1 to 8. 請求項1から8の内のいずれか一つに記載の永久磁石材料を成形した成形体を、真空中または非酸化性雰囲気で500℃以下の温度域で熱処理してなることを特徴とする永久磁石。   A permanent body formed by molding the permanent magnet material according to any one of claims 1 to 8 in a vacuum or in a non-oxidizing atmosphere at a temperature range of 500 ° C or lower. magnet. 請求項1から8の内のいずれか一つに記載の永久磁石材料を成形して成形体を得る工程と、前記成形体を、真空中または非酸化性雰囲気で500℃以下の温度域で熱処理することを特徴とする永久磁石の製造方法。   A step of forming the permanent magnet material according to any one of claims 1 to 8 to obtain a formed body, and heat-treating the formed body in a temperature range of 500 ° C or less in a vacuum or in a non-oxidizing atmosphere. A method for manufacturing a permanent magnet. 請求項1から8の内のいずれか一つに記載の永久磁石材料を、真空中または非酸化性雰囲気において500℃以下の温度域で成形して成形体を得る工程を有することを特徴とする永久磁石の製造方法。   It has the process of shape | molding the permanent magnet material as described in any one of Claim 1-8 in a temperature range of 500 degrees C or less in a vacuum or non-oxidizing atmosphere, and obtaining a molded object, It is characterized by the above-mentioned. A method for manufacturing a permanent magnet. 請求項11又は12に記載の永久磁石の製造方法において、前記成形体を得る工程は、磁場中で行われることを特徴とする永久磁石の製造方法。   The method for manufacturing a permanent magnet according to claim 11 or 12, wherein the step of obtaining the compact is performed in a magnetic field.
JP2007100125A 2007-04-06 2007-04-06 Permanent magnet and method for manufacturing the same Expired - Fee Related JP4968519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007100125A JP4968519B2 (en) 2007-04-06 2007-04-06 Permanent magnet and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007100125A JP4968519B2 (en) 2007-04-06 2007-04-06 Permanent magnet and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2008255436A true JP2008255436A (en) 2008-10-23
JP4968519B2 JP4968519B2 (en) 2012-07-04

Family

ID=39979311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007100125A Expired - Fee Related JP4968519B2 (en) 2007-04-06 2007-04-06 Permanent magnet and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4968519B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101535487B1 (en) * 2014-07-29 2015-07-09 엘지전자 주식회사 Magnetic substances based on mn-bi, fabrication method thereof, sintered magnet based on mn-bi and its fabrication method
KR101585478B1 (en) * 2014-12-15 2016-01-15 엘지전자 주식회사 Anisotropic Complex Sintered Magnet Comprising MnBi Which Has Improved Magnetic Properties and Method of Preparing the Same
KR101585479B1 (en) * 2015-04-20 2016-01-15 엘지전자 주식회사 Anisotropic Complex Sintered Magnet Comprising MnBi and Atmospheric Sintering Process for Preparing the Same
KR101585483B1 (en) * 2015-04-29 2016-01-15 엘지전자 주식회사 Sintered Magnet Based on MnBi Having Improved Heat Stability and Method of Preparing the Same
WO2017170129A1 (en) * 2016-03-28 2017-10-05 Tdk株式会社 Permanent magnet manufacturing method
CN112466651A (en) * 2020-12-10 2021-03-09 泮敏翔 Preparation method of rare earth-free high-performance composite magnet
CN112652433A (en) * 2021-01-13 2021-04-13 泮敏翔 Anisotropic composite magnet and preparation method thereof
CN113782331A (en) * 2021-09-18 2021-12-10 泮敏翔 Preparation method of high-performance double-hard-magnetic-phase nano composite magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167511A (en) * 1997-08-11 1999-03-09 Hitachi Maxell Ltd Magnetic material
JP2006278470A (en) * 2005-03-28 2006-10-12 Toyota Motor Corp Nano composite magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167511A (en) * 1997-08-11 1999-03-09 Hitachi Maxell Ltd Magnetic material
JP2006278470A (en) * 2005-03-28 2006-10-12 Toyota Motor Corp Nano composite magnet

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101535487B1 (en) * 2014-07-29 2015-07-09 엘지전자 주식회사 Magnetic substances based on mn-bi, fabrication method thereof, sintered magnet based on mn-bi and its fabrication method
KR101585478B1 (en) * 2014-12-15 2016-01-15 엘지전자 주식회사 Anisotropic Complex Sintered Magnet Comprising MnBi Which Has Improved Magnetic Properties and Method of Preparing the Same
JP2016115923A (en) * 2014-12-15 2016-06-23 エルジー エレクトロニクス インコーポレイティド ANISOTROPIC COMPLEX SINTERED MAGNET COMPRISING MnBi WHICH HAS IMPROVED MAGNETIC PROPERTY AND METHOD OF PREPARING THE SAME
EP3041005A1 (en) * 2014-12-15 2016-07-06 LG Electronics Inc. Anisotropic complex sintered magnet comprising mnbi which has improved magnetic properties and method of preparing the same
KR101585479B1 (en) * 2015-04-20 2016-01-15 엘지전자 주식회사 Anisotropic Complex Sintered Magnet Comprising MnBi and Atmospheric Sintering Process for Preparing the Same
US10741314B2 (en) 2015-04-20 2020-08-11 Lg Electronics Inc. Anisotropic complex sintered magnet comprising MnBi and atmospheric sintering process for preparing the same
WO2016171321A1 (en) * 2015-04-20 2016-10-27 엘지전자 주식회사 Anisotropic complex sintered magnet containing manganese bismuth and pressureless sintering method therefor
EP3288043A4 (en) * 2015-04-20 2019-01-16 Lg Electronics Inc. Anisotropic complex sintered magnet containing manganese bismuth and pressureless sintering method therefor
CN107077934A (en) * 2015-04-29 2017-08-18 Lg电子株式会社 Sintered magnet based on MnBi of heat endurance with raising and preparation method thereof
EP3291249A4 (en) * 2015-04-29 2018-09-12 Lg Electronics Inc. Manganese bismuth-based sintered magnet having improved thermal stability and preparation method therefor
WO2016175377A1 (en) * 2015-04-29 2016-11-03 엘지전자 주식회사 Manganese bismuth-based sintered magnet having improved thermal stability and preparation method therefor
US10695840B2 (en) 2015-04-29 2020-06-30 Lg Electronics Inc. Sintered magnet based on MnBi having improved heat stability and method of preparing the same
KR101585483B1 (en) * 2015-04-29 2016-01-15 엘지전자 주식회사 Sintered Magnet Based on MnBi Having Improved Heat Stability and Method of Preparing the Same
WO2017170129A1 (en) * 2016-03-28 2017-10-05 Tdk株式会社 Permanent magnet manufacturing method
CN112466651A (en) * 2020-12-10 2021-03-09 泮敏翔 Preparation method of rare earth-free high-performance composite magnet
CN112652433A (en) * 2021-01-13 2021-04-13 泮敏翔 Anisotropic composite magnet and preparation method thereof
CN113782331A (en) * 2021-09-18 2021-12-10 泮敏翔 Preparation method of high-performance double-hard-magnetic-phase nano composite magnet
CN113782331B (en) * 2021-09-18 2023-10-20 中国计量大学 Preparation method of high-performance double-hard-magnetic-phase nanocomposite magnet

Also Published As

Publication number Publication date
JP4968519B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4968519B2 (en) Permanent magnet and method for manufacturing the same
US9082538B2 (en) Sintered Nd—Fe—B permanent magnet with high coercivity for high temperature applications
JP2015142119A (en) Method for manufacturing rare earth magnet
CN101425355B (en) Pr/Nd based biphase composite permanent magnetic material and block body preparing method thereof
JP5370609B1 (en) R-T-B permanent magnet
JP2001189206A (en) Permanent magnet
JP6447380B2 (en) SmFeN-based metal bond magnet compact with high specific resistance
US11508502B2 (en) Soft magnetic alloy and magnetic component
JP5565499B1 (en) R-T-B permanent magnet
JP4863377B2 (en) Samarium-iron permanent magnet material
JP2000114017A (en) Permanent magnet and material thereof
WO1988006797A1 (en) Rare earth element-iron base permanent magnet and process for its production
JP2586198B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP4834869B2 (en) Permanent magnet material, permanent magnet using the same, and manufacturing method thereof
JP5565497B1 (en) R-T-B permanent magnet
JP5565498B1 (en) R-T-B permanent magnet
JP2576672B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH04116144A (en) Permanent magnet alloy of r-fe-co-b-c system which is small in irreversible demagnetization and excellent in thermal stability
JP2017135268A (en) Hybrid magnet
JP2586199B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPS59219453A (en) Permanent magnet material and its production
WO2017191790A1 (en) Rare-earth permanent magnet, and method for manufacturing same
JP3643214B2 (en) Method for producing laminated permanent magnet
JPS59215460A (en) Permanent magnet material and its production
JPH11297518A (en) Pare-earth magnet material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120229

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4968519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees