JP2008254451A - Insulating sheet with metal foil - Google Patents

Insulating sheet with metal foil Download PDF

Info

Publication number
JP2008254451A
JP2008254451A JP2008163513A JP2008163513A JP2008254451A JP 2008254451 A JP2008254451 A JP 2008254451A JP 2008163513 A JP2008163513 A JP 2008163513A JP 2008163513 A JP2008163513 A JP 2008163513A JP 2008254451 A JP2008254451 A JP 2008254451A
Authority
JP
Japan
Prior art keywords
metal foil
insulating sheet
woven fabric
insulating
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008163513A
Other languages
Japanese (ja)
Inventor
Tomoyuki Fujiki
智之 藤木
Yoshihide Sawa
佳秀 澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2008163513A priority Critical patent/JP2008254451A/en
Publication of JP2008254451A publication Critical patent/JP2008254451A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulation sheet with a metal foil whose cured insulation layer has high rigidity, capable of simplifying lamination work for making a multilayered board, and making the multilayered board using a metal foil without a carrier even if the thickness of the metal foil is not greater than 9 μm. <P>SOLUTION: The insulation sheet 1 with the metal foil is formed by joining integrally an insulation layer 2 with a metal foil 3 wherein the insulation layer 2 comprises a glass woven fabric 4 and a thermosetting resin 5 in a B stage state. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、多層配線板の製造に好適に用いられる金属箔付き絶縁シートに関する。   The present invention relates to an insulating sheet with a metal foil that is suitably used for the production of a multilayer wiring board.

従来より、ガラス織布とBステージ状態の熱硬化性樹脂とを備えているプリプレグ11を用いて多層配線板を製造することが広く行われている。プリプレグを用いて多層配線板を製造する場合、図5(a)に示すように、表面に内層回路6を設けた内層材7と外層回路形成のための金属箔3とをプリプレグ11を介して接着して、図5(b)に示す多層板8とし、この多層板8にスルーホール加工や、外層回路形成等を行って多層配線板を製造するのが一般的である。   Conventionally, a multilayer wiring board has been widely produced using a prepreg 11 including a glass woven fabric and a thermosetting resin in a B-stage state. When a multilayer wiring board is manufactured using a prepreg, as shown in FIG. 5A, an inner layer material 7 having an inner layer circuit 6 provided on the surface and a metal foil 3 for forming an outer layer circuit are interposed through a prepreg 11. Generally, a multilayer board 8 shown in FIG. 5B is bonded, and a multilayer wiring board is generally manufactured by performing through-hole processing, forming an outer layer circuit, or the like on the multilayer board 8.

この場合、多層板8とするために、内層材7と、プリプレグ11と、金属箔3とを重ね合せる積層作業は煩雑であるため、積層作業をもっと簡略化できる手段が求められている。また、多層板8とするために、内層材7と、プリプレグ11と、金属箔3とを重ね合せるとき、金属箔3の厚さが9μm以下と薄い場合には、金属箔3のハンドリング性がよくないため、金属箔3としてアルミ箔等のキャリア金属箔と一体化したいわゆるキャリア付き金属箔を使用せざるを得ず、コストアップになるという問題があった。そのため、金属箔の厚さが9μm以下と薄いいわゆる極薄金属箔の場合でも、キャリア付きでない金属箔を使用して容易に積層作業ができる方策が求められている。   In this case, in order to make the multilayer board 8, the laminating operation for superimposing the inner layer material 7, the prepreg 11, and the metal foil 3 is complicated, and thus means for further simplifying the laminating operation is required. In addition, when the inner layer material 7, the prepreg 11, and the metal foil 3 are overlapped to form the multilayer plate 8, the handleability of the metal foil 3 is reduced if the thickness of the metal foil 3 is as thin as 9 μm or less. Since it was not good, there was a problem that a metal foil with a carrier integrated with a carrier metal foil such as an aluminum foil had to be used as the metal foil 3 and the cost was increased. Therefore, even in the case of a so-called ultrathin metal foil having a thickness of 9 μm or less as a metal foil, there is a demand for a measure that can be easily laminated using a metal foil without a carrier.

一方、金属箔付き絶縁シート1を用いて、ビルドアップ法と呼ばれるプロセスで多層配線板を製造することも行われている。従来の金属箔付き絶縁シート1は、図2(a)に示すように、銅箔等の金属箔3とBステージ状態(半硬化状態)の絶縁層2とを一体に形成しているものであって、Bステージ状態の絶縁層2はエポキシ樹脂等を金属箔3に塗布して半硬化させることによって形成している。なお、金属箔付き絶縁シート1について、絶縁層付き金属箔や樹脂付き金属箔と表現する場合もある。   On the other hand, using the insulating sheet 1 with metal foil, a multilayer wiring board is also manufactured by a process called a build-up method. As shown in FIG. 2A, a conventional insulating sheet 1 with a metal foil is formed by integrally forming a metal foil 3 such as a copper foil and an insulating layer 2 in a B stage state (semi-cured state). The B-stage insulating layer 2 is formed by applying an epoxy resin or the like to the metal foil 3 and semi-curing it. In addition, about the insulating sheet 1 with a metal foil, it may be expressed as a metal foil with an insulating layer or a metal foil with a resin.

この金属箔付き絶縁シート1を用いて、ビルドアップ法で多層配線板13を製造するにあたっては、まず図2(a)に示すように、表面に内層回路6を設けた内層材7に、金属箔付き絶縁シート1を重ね合わせ、積層成形することにより絶縁層2を硬化させて、図2(b)に示すように、内層材7の表面に金属箔付き絶縁シート1を一体化して多層板8とする。なお、図2(a)の絶縁層2は半硬化状態であるが、図2(b)〜図2(e)における絶縁層2は、積層成形により硬化した状態となっている。   When the multilayer wiring board 13 is manufactured by the build-up method using the insulating sheet 1 with metal foil, first, as shown in FIG. 2A, the inner layer material 7 provided with the inner layer circuit 6 on the surface is coated with a metal. The insulating sheet 2 with foil is laminated and laminated to form the insulating layer 2, and the insulating sheet 1 with metal foil is integrated on the surface of the inner layer material 7 as shown in FIG. Eight. In addition, although the insulating layer 2 of Fig.2 (a) is a semi-hardened state, the insulating layer 2 in FIG.2 (b)-FIG.2 (e) is the state hardened | cured by lamination molding.

次に、内層回路6と電気導通を得たい箇所の金属箔3をエッチング等により除去し、次いで、図2(c)に示すように、金属箔3を除去した部分の絶縁層2をレーザ等で除去して、内層回路6に到達する孔9を、硬化している絶縁層2に形成する。その後、図2(d)に示すように、孔9の内面にめっき層10を設けて内層回路6と金属箔3を電気導通させる。次に、図示しないが、多層板8の金属箔3にエッチング等を施して回路12を形成する。このようにして所定枚数の金属箔付き絶縁シート1を順次積層し、最後に、最外に積層された金属箔付き絶縁シート1に回路12を形成したものにソルダーレジスト等を塗布するなどの加工を行って、図2(e)に示す多層配線板13を製造する。   Next, the metal foil 3 at a location where electrical continuity with the inner layer circuit 6 is desired is removed by etching or the like, and then, as shown in FIG. Then, the holes 9 reaching the inner layer circuit 6 are formed in the hardened insulating layer 2. Thereafter, as shown in FIG. 2 (d), a plating layer 10 is provided on the inner surface of the hole 9 to electrically connect the inner layer circuit 6 and the metal foil 3. Next, although not shown, the circuit 12 is formed by performing etching or the like on the metal foil 3 of the multilayer plate 8. In this manner, a predetermined number of insulating sheets 1 with metal foil are sequentially laminated, and finally, a solder resist or the like is applied to the outermost laminated insulating sheet 1 with metal foil formed with a circuit 12 The multilayer wiring board 13 shown in FIG.

上記のように、多層配線板13を製造する際に、金属箔付き絶縁シート1を用いると、硬化した絶縁層2による電気絶縁性の確保と金属箔3による電気回路用の導体の提供とを同時に行うことができる。しかし、絶縁層2が基材なしの樹脂成分だけで形成されているため、硬化した絶縁層2の剛性が低く、得られた多層配線板13に部品実装を施すリフローラインで、反りネジレが発生し易く、歩留まりが低下する問題があった。   As described above, when the insulating sheet 1 with a metal foil is used when the multilayer wiring board 13 is manufactured, ensuring of electrical insulation by the cured insulating layer 2 and provision of a conductor for an electric circuit by the metal foil 3 can be achieved. Can be done simultaneously. However, since the insulating layer 2 is formed only of a resin component without a base material, the rigidity of the cured insulating layer 2 is low, and warping and twisting occurs in the reflow line for mounting components on the obtained multilayer wiring board 13. It was easy to do and there was a problem that the yield fell.

また、絶縁層2が基材なしの樹脂成分だけで形成されているため、金属箔3の厚さが9μm以下と薄いと、金属箔付き絶縁シート1の状態でもハンドリング性がよくないため、金属箔3としてアルミ箔等のキャリア金属箔と一体化したいわゆるキャリア付き金属箔を使用せざるを得ず、コストアップになるという問題もあった。   Further, since the insulating layer 2 is formed only of a resin component without a base material, if the thickness of the metal foil 3 is as thin as 9 μm or less, the handling property is not good even in the state of the insulating sheet 1 with the metal foil. As the foil 3, a so-called metal foil with a carrier integrated with a carrier metal foil such as an aluminum foil has to be used, resulting in a problem of increased costs.

本願発明者等は、絶縁層2が基材なしの樹脂成分だけで形成されている従来の金属箔付き絶縁シート1では、絶縁層2を厚く形成できないという問題を改善するために、絶縁層2に全芳香族ポリアミド又は全芳香族ポリエステルで形成している有機基材を備えることを提案している(特許文献1参照)。この有機基材を備える金属箔付き絶縁シート1では、金属箔3の厚さが9μm以下と薄い場合でも、キャリア付きでない金属箔を使用してもハンドリング性について問題のない金属箔付き絶縁シート1となるが、硬化した絶縁層2の剛性が低いため、得られた多層配線板13に部品実装を施すリフローラインで、反りネジレが発生し易く、歩留まりが低下する問題は解消できていなかった。
特開平10−235795号公報
In order to improve the problem that the insulating layer 2 cannot be formed thick in the conventional insulating sheet with metal foil in which the insulating layer 2 is formed only of a resin component without a base material, the inventors of the present application It is proposed to provide an organic base material formed of wholly aromatic polyamide or wholly aromatic polyester (see Patent Document 1). In the insulating sheet 1 with a metal foil provided with this organic base material, even when the thickness of the metal foil 3 is as thin as 9 μm or less, even if a metal foil without a carrier is used, the insulating sheet 1 with a metal foil has no problem with handling. However, since the rigidity of the cured insulating layer 2 is low, the problem that the warp twist easily occurs and the yield decreases in the reflow line for mounting components on the obtained multilayer wiring board 13 has not been solved.
Japanese Patent Laid-Open No. 10-235795

本発明は、上記事情に鑑みてなされたもので、その目的とする所は、多層板とするために行う積層作業について、プリプレグと銅箔とを個別に用いる場合よりも積層作業が簡略化できる金属箔付き絶縁シートであって、且つ、金属箔の厚さが9μm以下と薄い場合でも、キャリア付きでない金属箔を使用して多層板とすることができる金属箔付き絶縁シートであって、しかも、部品実装を施すリフローラインで、反りネジレが発生して、歩留まりが低下するという問題が生じない多層配線板が得られるように、硬化した絶縁層の剛性が高い金属箔付き絶縁シートを提供することにある。   The present invention has been made in view of the above circumstances. The purpose of the present invention is to simplify the laminating work for laminating work to obtain a multilayer board as compared with the case of using prepreg and copper foil individually. An insulating sheet with a metal foil, and even if the thickness of the metal foil is as thin as 9 μm or less, an insulating sheet with a metal foil that can be made into a multilayer board using a metal foil without a carrier, An insulating sheet with a metal foil having a high rigidity of a hardened insulating layer is provided so as to obtain a multilayer wiring board that does not cause a problem of warping and twisting in a reflow line for mounting components and reducing yield. There is.

請求項1に係る発明の金属箔付き絶縁シートは、絶縁層と、金属箔とを一体に形成している金属箔付き絶縁シートであって、前記絶縁層が、ガラス織布とBステージ状態の熱硬化性樹脂とを備えていることを特徴とする。   The insulating sheet with metal foil of the invention according to claim 1 is an insulating sheet with metal foil in which an insulating layer and a metal foil are integrally formed, and the insulating layer is in a glass woven fabric and a B-stage state. And a thermosetting resin.

請求項2に係る発明の金属箔付き絶縁シートは、請求項1記載の金属箔付き絶縁シートにおいて、ガラス織布が、開繊処理したガラス織布であることを特徴とする。   The insulating sheet with metal foil of the invention according to claim 2 is characterized in that, in the insulating sheet with metal foil according to claim 1, the glass woven fabric is a glass woven fabric subjected to fiber opening treatment.

請求項3に係る発明の金属箔付き絶縁シートは、請求項2記載の金属箔付き絶縁シートにおいて、ガラス織布の単位質量が25〜60g/mで、通気度が1〜100cc/cm/秒であることを特徴とする。 The insulating sheet with metal foil of the invention according to claim 3 is the insulating sheet with metal foil according to claim 2, wherein the unit mass of the glass woven fabric is 25 to 60 g / m 2 and the air permeability is 1 to 100 cc / cm 2. / Sec.

請求項4に係る発明の金属箔付き絶縁シートは、請求項1乃至請求項3の何れかに記載の金属箔付き絶縁シートにおいて、金属箔の厚さが9μm以下であることを特徴とする。   The insulating sheet with metal foil of the invention according to claim 4 is the insulating sheet with metal foil according to any one of claims 1 to 3, wherein the thickness of the metal foil is 9 μm or less.

請求項1に係る発明の金属箔付き絶縁シートは、絶縁層と、金属箔とを一体に形成している金属箔付き絶縁シートであって、絶縁層が、ガラス織布とBステージ状態の熱硬化性樹脂とを備えているので、多層板とするために行う積層作業について、プリプレグと銅箔とを個別に用いる場合よりも積層作業が簡略化できる金属箔付き絶縁シートであって、且つ、金属箔の厚さが9μm以下と薄い場合でも、キャリア付きでない金属箔を使用して多層板とすることができる金属箔付き絶縁シートであって、しかも、硬化した絶縁層の剛性が高い金属箔付き絶縁シートとなる。   The insulating sheet with metal foil of the invention according to claim 1 is an insulating sheet with metal foil in which an insulating layer and a metal foil are integrally formed, and the insulating layer is a glass woven fabric and heat in a B-stage state. Since it is provided with a curable resin, it is an insulating sheet with a metal foil that can simplify the laminating operation as compared with the case of using the prepreg and the copper foil individually for the laminating operation to be performed as a multilayer board, and Even if the thickness of the metal foil is as thin as 9 μm or less, the metal foil is an insulating sheet with a metal foil that can be made into a multilayer board by using a metal foil without a carrier, and the cured foil has a high rigidity. It becomes an attached insulating sheet.

請求項2に係る発明の金属箔付き絶縁シートは、請求項1記載の金属箔付き絶縁シートにおいて、ガラス織布が、開繊処理したガラス織布であるので、請求項1に係る発明の効果に加えて、導通信頼性が高い多層配線板が得られるという効果も奏する。   The insulating sheet with metal foil of the invention according to claim 2 is the insulating sheet with metal foil of claim 1, and the glass woven fabric is a glass woven fabric that has been subjected to fiber opening treatment. In addition, there is an effect that a multilayer wiring board having high conduction reliability can be obtained.

請求項3に係る発明の金属箔付き絶縁シートは、請求項2記載の金属箔付き絶縁シートにおいて、ガラス織布の単位質量が25〜60g/mで、通気度が1〜100cc/cm/秒であるので、請求項2に係る発明の効果に加えて、ビルドアップ法で多層配線板を製造する際に、レーザー加工して得られる孔の寸法精度が向上するという効果も奏する。 The insulating sheet with metal foil of the invention according to claim 3 is the insulating sheet with metal foil according to claim 2, wherein the unit mass of the glass woven fabric is 25 to 60 g / m 2 and the air permeability is 1 to 100 cc / cm 2. Therefore, in addition to the effect of the invention according to claim 2, when manufacturing a multilayer wiring board by the build-up method, there is an effect that the dimensional accuracy of the hole obtained by laser processing is improved.

請求項4に係る発明の金属箔付き絶縁シートは、請求項1乃至請求項3の何れかに記載の金属箔付き絶縁シートにおいて、金属箔の厚さが9μm以下であるので、請求項1に係る発明の効果に加えて、ファインパターンを容易に形成できるという効果も奏する。   The insulating sheet with metal foil of the invention according to claim 4 is the insulating sheet with metal foil according to any one of claims 1 to 3, wherein the thickness of the metal foil is 9 μm or less. In addition to the effect of the invention, there is an effect that a fine pattern can be easily formed.

まず、本発明の金属箔付き絶縁シートに係る実施形態を説明する。本発明の金属箔付き絶縁シートに係る一実施形態を図1に示す。この金属箔付き絶縁シート1は、絶縁層2と、金属箔3とを一体に形成していて、絶縁層2が、ガラス織布4とBステージ状態の熱硬化性樹脂5とを備えている。金属箔3としては銅箔が電気性能や、入手のし易さの点で好ましく、その厚みについては特に制限はないが、9μm以下であるとファインパターンを容易に形成できるので好ましい。Bステージ状態の熱硬化性樹脂5としては、エポキシ樹脂、ポリイミド樹脂、熱硬化性タイプのポリフェニレンオキサイド系樹脂等を例示できるが、接着性等の点でエポキシ樹脂が好ましい。絶縁層2については、例えば、ガラス織布に熱硬化性樹脂5を含んだワニスを含浸・乾燥して、熱硬化性樹脂5がBステージ状態となったプリプレグを作製した後、このプリプレグと金属箔3とを加熱して一体化することによって形成する。   First, an embodiment according to the insulating sheet with metal foil of the present invention will be described. One embodiment according to the insulating sheet with metal foil of the present invention is shown in FIG. This insulating sheet with metal foil 1 is formed by integrally forming an insulating layer 2 and a metal foil 3, and the insulating layer 2 includes a glass woven fabric 4 and a thermosetting resin 5 in a B-stage state. . As the metal foil 3, a copper foil is preferable in terms of electrical performance and availability, and the thickness is not particularly limited, but is preferably 9 μm or less because a fine pattern can be easily formed. Examples of the thermosetting resin 5 in the B stage state include an epoxy resin, a polyimide resin, a thermosetting type polyphenylene oxide resin, and the like, but an epoxy resin is preferable in terms of adhesiveness. For the insulating layer 2, for example, a glass woven fabric is impregnated with varnish containing a thermosetting resin 5 and dried to prepare a prepreg in which the thermosetting resin 5 is in a B-stage state. It forms by heating and integrating with the foil 3.

この金属箔付き絶縁シート1は絶縁層2と、金属箔3とを一体に形成しているため、多層板8を作製する場合、例えば、図3(a)に示すように、内層材7と金属箔付き絶縁シート1とを積層して、図3(b)の多層板8とすることができるため、多層板8とするために行う積層作業について、プリプレグと銅箔とを個別に用いる場合よりも簡略化でき、作業能率が向上する。   Since this insulating sheet 1 with a metal foil integrally forms an insulating layer 2 and a metal foil 3, when producing a multilayer board 8, for example, as shown in FIG. When the insulating sheet 1 with metal foil can be laminated to obtain the multilayer board 8 in FIG. 3B, the prepreg and the copper foil are separately used for the laminating work performed to obtain the multilayer board 8. Can be simplified and work efficiency can be improved.

また、この金属箔付き絶縁シート1では、絶縁層2にガラス織布4を備えているため、金属箔3の厚さが9μm以下と薄い場合でも金属箔付き絶縁シート1には、コシがあるため、アルミ箔等のキャリア金属箔と一体化したキャリア付き金属箔を使用しなくても、ハンドリング性について問題のない金属箔付き絶縁シート1となる。   Moreover, in this insulating sheet 1 with metal foil, since the insulating layer 2 is provided with the glass woven fabric 4, the insulating sheet 1 with metal foil has stiffness even when the thickness of the metal foil 3 is as thin as 9 μm or less. Therefore, even if it does not use the metal foil with a carrier integrated with carrier metal foils, such as aluminum foil, it becomes the insulating sheet 1 with a metal foil without a problem about handling property.

そして、ガラス織布4としては、開繊処理したガラス織布を用いると、多層配線板における導通信頼性が向上するので好ましい。ガラス織布に織られる前の原糸であるガラスヤーンは、カップリング剤やサイジング剤等で固められているのが一般的であるが、ガラス織布に水圧をかけたり、高圧空気を吹付けたりして、ガラスヤーンを形成しているフィラメント間を開繊することによって、ガラスヤーンがばらけて、樹脂の含浸性が良好となるため、開繊処理したガラス織布を用いると、多層配線板における導通信頼性が向上するものと考えられる。また、ガラス織布に開繊処理を施すと、ヤーンの交点に発生する開口が小さくなり、ガラス織布の通気度が小さくなると共に安定する。そのため、開繊処理したガラス織布に樹脂を含浸してプリプレグにした場合、樹脂とガラス繊維の構成比率の場所によるバラツキを小さくでき、その結果、レーザー加工した際の孔径バラツキを小さく押えることが可能となる。   And as the glass woven fabric 4, it is preferable to use a glass woven fabric that has been subjected to fiber opening treatment because the conduction reliability in the multilayer wiring board is improved. Glass yarn, which is the raw yarn before being woven into a glass woven fabric, is generally hardened with a coupling agent or sizing agent, but water pressure is applied to the glass woven fabric or high-pressure air is blown onto it. In other words, by opening between the filaments forming the glass yarn, the glass yarn is scattered and the resin impregnation is good. It is considered that the conduction reliability in the plate is improved. Moreover, when the opening process is performed on the glass woven fabric, the opening generated at the intersection of the yarns is reduced, and the air permeability of the glass woven fabric is reduced and stabilized. Therefore, when a glass woven fabric that has been subjected to fiber opening treatment is impregnated with a resin to make a prepreg, variation due to the location of the composition ratio of the resin and glass fiber can be reduced, and as a result, variation in hole diameter during laser processing can be suppressed small. It becomes possible.

この金属箔付き絶縁シート1を用いて、ビルドアップ法で多層配線板を製造する工程については、従来の技術で説明した工程と同じである。すなわち、まず、図2(a)に示すように、表面に内層回路6を設けた内層材7に、金属箔付き絶縁シート1を重ね合わせ、積層成形することにより絶縁層2を硬化させて、図2(b)に示すように、内層材7の表面に金属箔付き絶縁シート1を一体化して多層板8とする。次に、内層回路6と電気導通を得たい箇所の金属箔3をエッチング等により除去し、次いで、図2(c)に示すように、金属箔3を除去した部分の絶縁層2をレーザ等で除去して、内層回路6に到達する孔9を、硬化している絶縁層2に形成する。その後、図2(d)に示すように、孔9の内面にめっき層10を設けて内層回路6と金属箔3を電気導通させる。次に、図示しないが、多層板8の金属箔3にエッチング等を施して回路12を形成する。このようにして所定枚数の金属箔付き絶縁シート1を順次積層し、最後に、最外に積層された金属箔付き絶縁シート1に回路12を形成したものにソルダーレジスト等を塗布するなどの加工を行って、図2(e)に示す多層配線板13を製造する。   About the process of manufacturing a multilayer wiring board by the buildup method using this insulating sheet 1 with a metal foil, it is the same as the process demonstrated by the prior art. That is, first, as shown in FIG. 2 (a), the insulating layer 1 with the metal foil is superposed on the inner layer material 7 provided with the inner layer circuit 6 on the surface, and the insulating layer 2 is cured by laminating and molding, As shown in FIG. 2 (b), the insulating sheet 1 with metal foil is integrated with the surface of the inner layer material 7 to form a multilayer board 8. Next, the metal foil 3 at a location where electrical continuity with the inner layer circuit 6 is desired is removed by etching or the like, and then, as shown in FIG. Then, the holes 9 reaching the inner layer circuit 6 are formed in the hardened insulating layer 2. Thereafter, as shown in FIG. 2 (d), a plating layer 10 is provided on the inner surface of the hole 9 to electrically connect the inner layer circuit 6 and the metal foil 3. Next, although not shown, the circuit 12 is formed by performing etching or the like on the metal foil 3 of the multilayer plate 8. In this manner, a predetermined number of insulating sheets 1 with metal foil are sequentially laminated, and finally, a solder resist or the like is applied to the outermost laminated insulating sheet 1 with metal foil formed with a circuit 12 The multilayer wiring board 13 shown in FIG.

この金属箔付き絶縁シート1では、絶縁層2にガラス織布4を備えているため、基材なしの樹脂成分だけで形成されている絶縁層や、有機基材を備える絶縁層に比べて、硬化した絶縁層2の曲げ弾性率は高くなり、したがって剛性は高くなる。そのため、この金属箔付き絶縁シート1を用いて、ビルドアップ法で作製される多層配線板は、部品実装を施すリフローラインで、反りネジレが発生しにくい多層配線板となる。   In this insulating sheet 1 with a metal foil, since the insulating layer 2 includes the glass woven fabric 4, compared to an insulating layer formed only of a resin component without a base material, or an insulating layer including an organic base material, The flexural modulus of the cured insulating layer 2 is high and therefore the rigidity is high. Therefore, a multilayer wiring board manufactured by the build-up method using this insulating sheet with metal foil 1 is a multilayer wiring board in which warpage and twisting hardly occur in a reflow line for mounting components.

さらに、ガラス織布4としては、開繊処理していて、且つ、単位質量が25〜60g/mと薄いガラス織布であって、通気度が1〜100cc/cm/秒であると、よりガラス繊維の密度ムラが少なくなり、レーザー加工部分における樹脂とガラス繊維の構成比率のバラツキが小さくなるため、ビルドアップ法で多層配線板13を製造する際のレーザー加工して得られる孔9の寸法精度が向上するのでより好ましい。 Further, the glass woven fabric 4 is a fiber woven fabric that has been subjected to fiber opening treatment and is thin with a unit mass of 25 to 60 g / m 2, and has an air permeability of 1 to 100 cc / cm 2 / sec. Since the density unevenness of the glass fiber is further reduced and the variation in the composition ratio between the resin and the glass fiber in the laser processed portion is reduced, the holes 9 obtained by laser processing when the multilayer wiring board 13 is manufactured by the build-up method. This is more preferable because the dimensional accuracy is improved.

次に、本発明の金属箔付き絶縁シートの製造方法に係る実施形態を、図4に基づいて説明する。この金属箔付き絶縁シートの製造方法では、絶縁層として、ガラス織布に熱硬化性樹脂を含浸・乾燥してロール状にしたプリプレグ11を用い、図4に示すように、ロール状にした金属箔3と、ロール状にしたプリプレグ11とを、連続的に、熱ロール14と加熱していない押圧ロール15とで貼り合せて一体化して金属箔付き絶縁シート1とする。このように、絶縁層と金属箔とを連続的に熱ロール14で貼り合せて一体化するので、容易に金属箔付き絶縁シート1を作製することができる。また、この製造方法では、金属箔3は、熱ロール14に到達する前の段階で、予備加熱ゾーン16を通過させて予備加熱するので、金属箔3と、プリプレグ11との密着性が安定する。   Next, an embodiment according to the method for producing an insulating sheet with metal foil of the present invention will be described with reference to FIG. In this method for producing an insulating sheet with metal foil, a roll-shaped metal is used as the insulating layer, as shown in FIG. 4, using a prepreg 11 in which a glass woven fabric is impregnated with a thermosetting resin and dried. The foil 3 and the roll-shaped prepreg 11 are continuously bonded and integrated with a hot roll 14 and an unheated pressure roll 15 to obtain an insulating sheet 1 with a metal foil. Thus, since an insulating layer and metal foil are continuously bonded and integrated by the heat roll 14, the insulating sheet 1 with metal foil can be produced easily. Moreover, in this manufacturing method, since the metal foil 3 is preheated by passing through the preheating zone 16 before reaching the heat roll 14, the adhesion between the metal foil 3 and the prepreg 11 is stabilized. .

以下、具体的な実施例、比較例によって、本発明をさらに説明する。   Hereinafter, the present invention will be further described with reference to specific examples and comparative examples.

(実施例1〜8、比較例1〜4)
ワニス調製
表1に示す配合割合で、熱硬化性樹脂を溶剤に溶解した樹脂ワニス(エポキシ系ワニスA、エポキシ系ワニスB、PPO系ワニスC)を調製した。なお、ここでいう熱硬化性樹脂は、溶剤を除く成分全体を表している。
(Examples 1-8, Comparative Examples 1-4)
Varnish preparation Resin varnishes (epoxy varnish A, epoxy varnish B, PPO varnish C) in which a thermosetting resin was dissolved in a solvent were prepared at the blending ratios shown in Table 1. In addition, the thermosetting resin here represents the whole component except a solvent.

Figure 2008254451
Figure 2008254451

実施例1〜8の金属箔付き絶縁シートの作製
下記の3種類のガラス織布と、上記で調製した樹脂ワニスとを、表2に示すように組み合せ、ガラス織布に樹脂ワニスを含浸し、次いで表2に示す加熱条件で加熱して溶剤を除去すると共に、熱硬化性樹脂をBステージ化したプリプレグを作製した。
Production of Insulating Sheet with Metal Foil of Examples 1 to 8 The following three types of glass woven fabrics and the resin varnishes prepared above were combined as shown in Table 2, and the glass woven fabric was impregnated with the resin varnish, Next, heating was performed under the heating conditions shown in Table 2 to remove the solvent, and a prepreg in which a thermosetting resin was B-staged was produced.

使用したガラス織布
ガラス織布A:日東紡績社製の品番WEA1078−X136(開繊処理品、単位質量48.1g/m、通気度22cc/cm/秒)
ガラス織布B:日東紡績社製の品番WEA05E−S136(開繊処理品、単位質量47.8g/m、通気度168cc/cm/秒)
ガラス織布C:日東紡績社製の品番WEA1035−X136(開繊処理品、単位質量27.8g/m、通気度50cc/cm/秒)
なお、通気度の測定は、JIS−R−3420に準拠して行った。
Glass woven fabric used Glass woven fabric A: Product number WEA1078-X136 manufactured by Nitto Boseki Co., Ltd. (opening processed product, unit mass 48.1 g / m 2 , air permeability 22 cc / cm 2 / sec)
Glass woven fabric B: product number WEA05E-S136 (manufactured by Nitto Boseki Co., Ltd., fiber-treated product, unit mass 47.8 g / m 2 , air permeability 168 cc / cm 2 / sec)
Glass woven fabric C: product number WEA1035-X136 manufactured by Nitto Boseki Co., Ltd. (open fiber processed product, unit mass 27.8 g / m 2 , air permeability 50 cc / cm 2 / sec)
The air permeability was measured according to JIS-R-3420.

次いで、図4に示すように、ロール状にした金属箔(銅箔)3と、作製したプリプレグ11とを、連続的に熱ロール14と加熱していない押圧ロール15とで貼り合せて一体化して金属箔付き絶縁シート1とした。金属箔(銅箔)3は、熱ロール14に到達する前の段階で、予備加熱ゾーン16を通過させて予備加熱した。金属箔付き絶縁シート1の作製条件は表2に示す条件とした。また、銅箔としては、下記の3種類の銅箔を使用した。得られた金属箔付き絶縁シート1の絶縁層について、樹脂含有率と、硬化時間を測定し、得られた結果を表2に示した。なお、硬化時間は、絶縁層より樹脂をもみ出し、IPC−TM−650−2.3.18に準拠して、171℃でのゲル化時間を測定することにより行った。   Next, as shown in FIG. 4, the rolled metal foil (copper foil) 3 and the produced prepreg 11 are continuously bonded and integrated with a hot roll 14 and an unheated pressure roll 15. Thus, an insulating sheet 1 with metal foil was obtained. The metal foil (copper foil) 3 was preheated by passing through the preheating zone 16 at a stage before reaching the hot roll 14. The production conditions of the insulating sheet 1 with metal foil were the conditions shown in Table 2. Moreover, the following three types of copper foil were used as the copper foil. With respect to the insulating layer of the obtained insulating sheet 1 with metal foil, the resin content and the curing time were measured, and the obtained results are shown in Table 2. The curing time was determined by measuring the gelation time at 171 ° C. in accordance with IPC-TM-650-2.3.18, extruding the resin from the insulating layer.

得られた金属箔付き絶縁シート1を500mm×500mmに切断したものを取り扱ってみて、ハンドリング性についてコシがあるか否かを調べ、コシがあってハンドリングに問題がなければ問題なし、コシがなくてハンドリングに問題があれば問題有りとして、結果を表2に示した。   Handling the obtained insulating sheet 1 with a metal foil cut to 500 mm × 500 mm, investigate whether or not there is any stiffness in handling properties, and if there is stiffness and there is no problem in handling, there is no problem, there is no stiffness If there is a problem with handling, it is assumed that there is a problem and the results are shown in Table 2.

使用した銅箔
銅箔a:古河サーキットフォイル社製の品番GTS−18μ(厚み18μm)
銅箔b:古河サーキットフォイル社製の品番GTS−5μ(厚み5μm、キャリア付き)
銅箔c:古河サーキットフォイル社製の品番GTS−5μ(厚み5μm、キャリア無し)
Used copper foil Copper foil a: Product number GTS-18μ (thickness 18 μm) manufactured by Furukawa Circuit Foil
Copper foil b: product number GTS-5μ (thickness 5 μm, with carrier) manufactured by Furukawa Circuit Foil
Copper foil c: Product number GTS-5μ (thickness 5 μm, no carrier) manufactured by Furukawa Circuit Foil

Figure 2008254451
Figure 2008254451

比較例1のプリプレグの作製
前記のガラス織布Aと、上記で調製したエポキシ系ワニスAとを組み合せ、ガラス織布に樹脂ワニスを含浸し、次いで表3に示す加熱条件で加熱して溶剤を除去すると共に、熱硬化性樹脂をBステージ化したプリプレグを作製した。得られた、プリプレグの樹脂含有率と、硬化時間を測定し、その結果を表3に示した。
Preparation of Prepreg of Comparative Example 1 The glass woven fabric A and the epoxy varnish A prepared above are combined, the glass woven fabric is impregnated with a resin varnish, and then heated under the heating conditions shown in Table 3 to remove the solvent. While removing, the prepreg which made the thermosetting resin B-stage was produced. The resin content and the curing time of the obtained prepreg were measured, and the results are shown in Table 3.

比較例2〜4の金属箔付き絶縁シートの作製
上記で調製したエポキシ系ワニスBを上記の銅箔a又は銅箔cにロールコータを用いて塗布し、次いで表3に示す加熱条件で加熱して溶剤を除去すると共に、熱硬化性樹脂をBステージ化して、金属箔付き絶縁シートを作製した。得られた金属箔付き絶縁シートの絶縁層の厚さと、硬化時間を測定し、その結果を表3に示した。得られた金属箔付き絶縁シートを500mm×500mmに切断したものを取り扱ってみて、ハンドリング性についてコシがあるか否かを調べ、コシがあってハンドリングに問題がなければ問題なし、コシがなくてハンドリングに問題があれば問題有りとして、結果を表3に示した。
Production of Insulating Sheet with Metal Foil of Comparative Examples 2 to 4 The epoxy varnish B prepared above was applied to the copper foil a or copper foil c using a roll coater, and then heated under the heating conditions shown in Table 3. Then, the solvent was removed and the thermosetting resin was changed to B stage to produce an insulating sheet with metal foil. The thickness of the insulating layer and the curing time of the obtained insulating sheet with metal foil were measured, and the results are shown in Table 3. Handle the obtained insulation sheet with metal foil cut to 500 mm x 500 mm, and check if there is a problem with handling. If there is a problem with handling, there is no problem. If there is a problem in handling, there is a problem, and the results are shown in Table 3.

Figure 2008254451
Figure 2008254451

評価用多層配線板の作製
厚さ0.8mmのガラス布基材エポキシ樹脂両面銅張積層板(銅箔厚さ18μm、FR−4グレード)を使用して、一方の面のみに内層回路を形成している内層材を作製した。
Production of multilayer wiring board for evaluation Using a glass cloth base epoxy resin double-sided copper-clad laminate (copper foil thickness 18 μm, FR-4 grade) with a thickness of 0.8 mm, an inner layer circuit is formed only on one side. An inner layer material was produced.

実施例1〜8、比較例2〜4については、内層材の内層回路を形成している面に金属箔付き絶縁シートを配し、金属箔付き絶縁シートと内層材とを、温度170℃、圧力2.94MPa(30kg/cm)、加熱加圧時間40分間の条件で積層成形して、多層板を得た。比較例1については、内層材の内層回路を形成している面にプリプレグ1枚を配し、さらにプリプレグの上に銅箔を配して積層し、この積層物を温度170℃、圧力2.94MPa(30kg/cm)、加熱加圧時間40分間の条件で積層成形して、多層板を得た。なお、内層材については、予め内層材の内層回路面に黒化処理を施したものを用いた。 For Examples 1 to 8 and Comparative Examples 2 to 4, the insulating sheet with metal foil was disposed on the surface of the inner layer material forming the inner layer circuit, and the insulating sheet with metal foil and the inner layer material had a temperature of 170 ° C. Lamination was performed under conditions of a pressure of 2.94 MPa (30 kg / cm 2 ) and a heating and pressing time of 40 minutes to obtain a multilayer board. For Comparative Example 1, one prepreg was placed on the surface of the inner layer material forming the inner layer circuit, and a copper foil was placed on the prepreg and laminated. Lamination was performed under the conditions of 94 MPa (30 kg / cm 2 ) and heating and pressing time of 40 minutes to obtain a multilayer board. As the inner layer material, a material obtained by previously blackening the inner layer circuit surface of the inner layer material was used.

得られた各多層板について、内層材の内層回路を形成した面上に形成された、硬化した絶縁層の厚さを20ポイントについて測定し、その平均値とバラツキ(σn−1)とを表4、表5に示した。 About each obtained multilayer board, the thickness of the hardened | cured insulating layer formed on the surface in which the inner layer circuit of the inner layer material was formed was measured for 20 points, and the average value and the variation (σ n-1 ) were determined. The results are shown in Tables 4 and 5.

得られた多層板のビア形成位置にある銅箔をエッチングして除去し、次に、銅箔を除去した部分の絶縁層をレーザを用いて除去して、内層回路に到達する孔を絶縁層に形成した。この加工条件は、炭酸ガスレーザ加工機(三菱電機製、「ML605GTX−5100U」)を用いて、エネルギー密度30mJ/P、パルス幅15μsec、1孔当り1ショット加工の条件で、200μmの孔を形成した。孔を形成した後に、無電解銅めっき及び電解銅めっきによって、めっき層を孔の内壁を被覆するように形成した。次いで、表面の銅箔をエッチングして1000孔(ビア)を直列に接続している抵抗値測定用パターンを20ブロック(n=20)分形成している評価用多層配線板を作製した。   The copper foil in the via formation position of the obtained multilayer board is removed by etching, and then the insulating layer in the portion where the copper foil is removed is removed using a laser, so that the holes reaching the inner layer circuit are formed in the insulating layer. Formed. The processing conditions were as follows: a carbon dioxide laser processing machine (Mitsubishi Electric, “ML605GTX-5100U”) was used to form a 200 μm hole under the conditions of an energy density of 30 mJ / P, a pulse width of 15 μsec, and one shot per hole. . After forming the hole, the plating layer was formed so as to cover the inner wall of the hole by electroless copper plating and electrolytic copper plating. Next, the copper foil on the surface was etched to produce a multilayer wiring board for evaluation in which 20 blocks (n = 20) of resistance value measurement patterns in which 1000 holes (vias) were connected in series were formed.

金属箔付き絶縁シート及びプリプレグの硬化物の評価
熱膨張係数:金属箔付き絶縁シートの絶縁層側に前記銅箔aを配置し、前記の多層板作製と同様の条件で成形した後、両側の銅箔をエッチングで除去したものを試験片とし、TMA法(熱機械分析法)の引張法を用いて、50℃〜150℃において10℃/分の昇温スピードで昇温させて、硬化した絶縁層の熱膨張係数(平面方向)を測定し、得られた結果を表4、5に示した。また、比較例1についてはプリプレグの両側に前記銅箔aを配置し、同様の条件で成形した後、両側の銅箔をエッチングで除去したものを試験片として、硬化物の熱膨張係数(平面方向)を測定し、得られた結果を表5に示した。
Evaluation of hardened product of insulating sheet with metal foil and prepreg Thermal expansion coefficient: After placing the copper foil a on the insulating layer side of the insulating sheet with metal foil and molding under the same conditions as in the production of the multilayer board, The copper foil removed by etching was used as a test piece, and cured using a TMA method (thermomechanical analysis) tension method at a temperature increase rate of 10 ° C./min at 50 ° C. to 150 ° C. The thermal expansion coefficient (planar direction) of the insulating layer was measured, and the obtained results are shown in Tables 4 and 5. In Comparative Example 1, the copper foil a was placed on both sides of the prepreg, molded under the same conditions, and then the copper foil on both sides was removed by etching. Direction) were measured, and the results obtained are shown in Table 5.

曲げ弾性率:実施例1〜8については、金属箔付き絶縁シートを作製するために準備したプリプレグを、また比較例1については比較例1のプリプレグを、それぞれ14枚重ね、さらに、その上下に前記銅箔aを配置し、前記の多層板作製と同様の条件で成形した後、両側の銅箔をエッチングで除去したものを試験片とした。比較例2〜4については、2枚の金属箔付き絶縁シートを、互いの絶縁層同士が接するように重ね、前記の多層板作製と同様の条件で成形した後、両側の銅箔をエッチングで除去して絶縁層の硬化物を得た。さらに、この硬化物の表裏に金属箔付き絶縁シートを重ねて、前記と同様の条件で成形する作業を繰り返し、金属箔付き絶縁シートの絶縁層14枚相当の硬化物としたものを試験片とした。得られた試験片について、ASTM−D−790に準拠して曲げ弾性率を測定し、得られた結果を表4、5に示した。   Bending elastic modulus: For Examples 1 to 8, 14 prepregs prepared for producing an insulating sheet with metal foil were laminated, and for Comparative Example 1, 14 prepregs of Comparative Example 1 were stacked, and further above and below The copper foil a was placed and molded under the same conditions as in the production of the multilayer board, and then the copper foil on both sides was removed by etching was used as a test piece. For Comparative Examples 2 to 4, two insulating sheets with metal foil were stacked so that the insulating layers were in contact with each other, and after molding under the same conditions as in the production of the multilayer board, the copper foils on both sides were etched. This was removed to obtain a cured product of the insulating layer. Furthermore, the work of overlapping the insulating sheets with metal foil on the front and back of the cured product and molding under the same conditions as described above was repeated to obtain a cured product corresponding to 14 insulating layers of the insulating sheet with metal foil. did. About the obtained test piece, the bending elastic modulus was measured based on ASTM-D-790, and the obtained results are shown in Tables 4 and 5.

誘電率、誘電正接:弾性率の測定に際して作製した積層板について、JIS C−6481に準拠して誘電率、誘電正接を測定し、得られた結果を表4、5に示した。   Dielectric constant and dielectric loss tangent: The laminates produced for the measurement of elastic modulus were measured for dielectric constant and dielectric loss tangent according to JIS C-6481, and the obtained results are shown in Tables 4 and 5.

めっき前の孔径バラツキ:レーザを用いて、内層回路に到達する孔を形成した段階での100個の孔についてそれぞれの孔の最小孔径を顕微鏡を用いて測定し、得られた測定結果から孔径バラツキ(σn−1)を求め、その結果を表4、5に示した。 Pre-plating hole diameter variation: Using a laser, the minimum hole diameter of each of 100 holes at the stage where holes reaching the inner layer circuit were formed was measured using a microscope, and the hole diameter variation was obtained from the obtained measurement results. (Σ n-1 ) was determined, and the results are shown in Tables 4 and 5.

評価用多層配線板の性能評価
冷熱サイクル試験による導通信頼性:評価用多層配線板を、55℃と、125℃との2種類の雰囲気中で、各30分保持するサイクルを、1000サイクル行い、1000サイクル終了後の導体パターンの抵抗値を除いたビア1個当りの抵抗値と、n=20の試験片における断線発生数とを求め、その結果を表4、5に示した。
Performance evaluation of multilayer wiring board for evaluation Conduction reliability by cooling cycle test: 1000 cycles of holding the multilayer wiring board for evaluation in two types of atmospheres of 55 ° C. and 125 ° C. for 30 minutes, The resistance value per via hole excluding the resistance value of the conductor pattern after the end of 1000 cycles and the number of disconnection occurrences in the test piece of n = 20 were obtained, and the results are shown in Tables 4 and 5.

オイルディップサイクル試験による導通信頼性:評価用多層配線板を、260℃のオイルに30秒浸漬後に、25℃の水に15秒浸漬するサイクルを100サイクル行い、100サイクル終了後の導体パターンの抵抗値を除いたビア1個当りの抵抗値と、n=20の試験片における断線発生数とを求め、その結果を表4、5に示した。   Conduction reliability by oil dip cycle test: A multilayer wiring board for evaluation is immersed in 260 ° C. oil for 30 seconds and then immersed in water at 25 ° C. for 15 seconds for 100 cycles, and the resistance of the conductor pattern after 100 cycles is completed. The resistance value per via excluding the value and the number of breaks in the n = 20 test piece were determined, and the results are shown in Tables 4 and 5.

Figure 2008254451
Figure 2008254451

Figure 2008254451
Figure 2008254451

表2、表3、表4、表5の結果から、実施例1〜8の金属箔付き絶縁シートは、金属箔の厚さが9μm以下と薄い場合でも、カット後のハンドリング性について問題がなく、また、実施例1〜8では、硬化した絶縁層の曲げ弾性率が、基材なしの比較例2〜4の金属箔付き絶縁シートよりも高くなっていて、剛性が高いことが確認された。そして、実施例1〜8では、冷熱サイクル試験による導通信頼性、オイルディップサイクル試験による導通信頼性の両試験で共に、基材なしの比較例2〜4に比べて良好な結果が得られている。また、実施例1〜8における硬化した絶縁層の熱膨張係数は、比較例2〜4の熱膨張係数よりも小さくなっている。   From the results of Table 2, Table 3, Table 4, and Table 5, the insulating sheets with metal foils of Examples 1 to 8 have no problem with handling properties after cutting even when the thickness of the metal foil is as thin as 9 μm or less. Moreover, in Examples 1-8, the bending elastic modulus of the hardened | cured insulating layer was higher than the insulating sheet with a metal foil of Comparative Examples 2-4 without a base material, and it was confirmed that rigidity is high. . And in Examples 1-8, a favorable result was obtained compared with Comparative Examples 2-4 without a base material in both of the conduction reliability by a thermal cycle test and the conduction reliability by an oil dip cycle test. Yes. Moreover, the thermal expansion coefficient of the hardened insulating layer in Examples 1-8 is smaller than the thermal expansion coefficient of Comparative Examples 2-4.

さらに、単位質量が25〜60g/mと薄いガラス織布であって、通気度が1〜100cc/cm/秒であるガラス織布を用いている、実施例1〜3及び実施例6〜8は、単位質量が47.8g/m、通気度が168cc/cm/秒であるガラス織布を用いている実施例4よりも、孔径バラツキが小さいことが確認された。 Furthermore, Examples 1-3 and Example 6 which are glass woven fabrics whose unit mass is 25-60 g / m < 2 > and are thin, and whose air permeability is 1-100 cc / cm < 2 > / second are used. It was confirmed that ˜8 had smaller pore size variations than Example 4 using a glass woven fabric having a unit mass of 47.8 g / m 2 and an air permeability of 168 cc / cm 2 / sec.

本発明の金属箔付き絶縁シートに係る一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment which concerns on the insulating sheet with metal foil of this invention. 金属箔付き絶縁シートを用いてビルドアップ法で多層配線板を製造する工程を示す、各工程毎の断面図である。It is sectional drawing for every process which shows the process of manufacturing a multilayer wiring board by the buildup method using the insulating sheet with metal foil. 本発明の金属箔付き絶縁シートを用いて多層配線板を製造する工程を示す断面図である。It is sectional drawing which shows the process of manufacturing a multilayer wiring board using the insulating sheet with metal foil of this invention. 本発明の金属箔付き絶縁シートの製造方法に係る一実施形態を示す概略図である。It is the schematic which shows one Embodiment which concerns on the manufacturing method of the insulating sheet with metal foil of this invention. 従来技術における多層配線板を製造する工程を示す断面図である。It is sectional drawing which shows the process of manufacturing the multilayer wiring board in a prior art.

符号の説明Explanation of symbols

1 金属箔付き絶縁シート
2 絶縁層
3 金属箔
4 ガラス織布
5 熱硬化性樹脂
6 内層回路
7 内層材
8 多層板
9 孔
10 めっき層
11 プリプレグ
12 回路
13 多層配線板
14 熱ロール
15 押圧ロール
16 予備加熱ゾーン
DESCRIPTION OF SYMBOLS 1 Insulating sheet with metal foil 2 Insulating layer 3 Metal foil 4 Glass woven cloth 5 Thermosetting resin 6 Inner layer circuit 7 Inner layer material 8 Multilayer board 9 Hole 10 Plating layer 11 Prepreg 12 Circuit 13 Multilayer wiring board 14 Thermal roll 15 Press roll 16 Preheating zone

Claims (4)

絶縁層と、金属箔とを一体に形成している金属箔付き絶縁シートであって、前記絶縁層が、ガラス織布とBステージ状態の熱硬化性樹脂とを備えていることを特徴とする金属箔付き絶縁シート。   An insulating sheet with a metal foil in which an insulating layer and a metal foil are integrally formed, wherein the insulating layer includes a glass woven fabric and a thermosetting resin in a B-stage state. Insulating sheet with metal foil. ガラス織布が、開繊処理したガラス織布であることを特徴とする請求項1記載の金属箔付き絶縁シート。   2. The insulating sheet with metal foil according to claim 1, wherein the glass woven fabric is a glass woven fabric subjected to fiber opening treatment. ガラス織布の単位質量が25〜60g/mで、通気度が1〜100cc/cm/秒であることを特徴とする請求項2記載の金属箔付き絶縁シート。 The insulating sheet with metal foil according to claim 2 , wherein the unit mass of the glass woven fabric is 25 to 60 g / m 2 and the air permeability is 1 to 100 cc / cm 2 / sec. 金属箔の厚さが9μm以下であることを特徴とする請求項1乃至請求項3の何れかに記載の金属箔付き絶縁シート。   The thickness of a metal foil is 9 micrometers or less, The insulating sheet with a metal foil in any one of Claim 1 thru | or 3 characterized by the above-mentioned.
JP2008163513A 2008-06-23 2008-06-23 Insulating sheet with metal foil Pending JP2008254451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008163513A JP2008254451A (en) 2008-06-23 2008-06-23 Insulating sheet with metal foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008163513A JP2008254451A (en) 2008-06-23 2008-06-23 Insulating sheet with metal foil

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003079366A Division JP2004284192A (en) 2003-03-24 2003-03-24 Insulating sheet with metal foil and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008254451A true JP2008254451A (en) 2008-10-23

Family

ID=39978498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008163513A Pending JP2008254451A (en) 2008-06-23 2008-06-23 Insulating sheet with metal foil

Country Status (1)

Country Link
JP (1) JP2008254451A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04185336A (en) * 1990-11-16 1992-07-02 Sekisui Jushi Co Ltd Manufacture of metal laminated sheet
JPH10337809A (en) * 1997-06-06 1998-12-22 Mitsubishi Gas Chem Co Inc Ultra-thin copper foil with base material reinforced b-stage resin and its manufacture
JP2001038836A (en) * 1999-07-29 2001-02-13 Mitsubishi Gas Chem Co Inc Copper-clad laminated sheet high in elastic modulus using glass cloth base impregnated with thermosetting resin
JP2002353583A (en) * 2001-05-23 2002-12-06 Matsushita Electric Works Ltd Resin-attached metal foil and multilayered printed wiring board
WO2003018675A1 (en) * 2001-08-31 2003-03-06 Sumitomo Bakelite Company Limited Resin composition, prepreg, laminated sheet and semiconductor package

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04185336A (en) * 1990-11-16 1992-07-02 Sekisui Jushi Co Ltd Manufacture of metal laminated sheet
JPH10337809A (en) * 1997-06-06 1998-12-22 Mitsubishi Gas Chem Co Inc Ultra-thin copper foil with base material reinforced b-stage resin and its manufacture
JP2001038836A (en) * 1999-07-29 2001-02-13 Mitsubishi Gas Chem Co Inc Copper-clad laminated sheet high in elastic modulus using glass cloth base impregnated with thermosetting resin
JP2002353583A (en) * 2001-05-23 2002-12-06 Matsushita Electric Works Ltd Resin-attached metal foil and multilayered printed wiring board
WO2003018675A1 (en) * 2001-08-31 2003-03-06 Sumitomo Bakelite Company Limited Resin composition, prepreg, laminated sheet and semiconductor package

Similar Documents

Publication Publication Date Title
JP3905325B2 (en) Multilayer printed wiring board
JP3324916B2 (en) Glass cloth, prepreg, laminated board and multilayer printed wiring board
JP2009246333A (en) Insulating sheet and manufacturing method therefor, and printed circuit board using the sheet, and manufacturing method for the printed circuit board
JP4924871B2 (en) Composite board and wiring board
JP3631385B2 (en) Laminate substrate and method for producing the same
WO2003047323A1 (en) Method for preparing copper foil with insulating layer and copper foil with insulating layer prepared by the method, and printed wiring board using the copper foil with insulating layer
JP3862770B2 (en) Method for producing metal-clad laminate
JP6015303B2 (en) Prepreg, laminated board and printed wiring board
JP2009220556A (en) Method of manufacturing insulating sheet, metal laminate using the same, and method of manufacturing printed circuit board
JP4467449B2 (en) Substrate reinforcing fiber fabric, prepreg using the reinforcing fiber fabric, and printed wiring board substrate
JP2006315391A (en) Laminated plate and printed circuit board using the same
JP2007277463A (en) Low dielectric prepreg, and metal foil clad laminate and multilayer printed wiring board using the same
JP2004284192A (en) Insulating sheet with metal foil and its manufacturing method
JP4442938B2 (en) Laser drilling method for laminated board and laminated board for laser drilling
JP2008254451A (en) Insulating sheet with metal foil
JP2002232152A (en) Multilayer wiring board
JP4433651B2 (en) High laser processability insulating resin material, high laser processability prepreg, and high laser processability metal-clad laminate
JP2006299189A (en) Prepreg sheet, metal foil-clad laminate, circuit board, and method for manufacturing circuit board
JP4276227B2 (en) Multilayer printed wiring board
JP4802541B2 (en) Method for producing metal foil-clad laminate and multilayer printed wiring board
JP4099681B2 (en) Manufacturing method of multilayer printed wiring board
JP5077661B2 (en) Composite board and printed wiring board
JP3596899B2 (en) Low expansion metal foil and laminate for printed circuit
JP2006315392A (en) Method for manufacturing metal foil-clad laminate
JP2002192522A (en) Prepreg, laminated sheet and multilayered wiring board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20100713

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20101116

Free format text: JAPANESE INTERMEDIATE CODE: A02