JP2008253069A - Laminated piezoelectric element and oscillatory wave drive device - Google Patents

Laminated piezoelectric element and oscillatory wave drive device Download PDF

Info

Publication number
JP2008253069A
JP2008253069A JP2007092572A JP2007092572A JP2008253069A JP 2008253069 A JP2008253069 A JP 2008253069A JP 2007092572 A JP2007092572 A JP 2007092572A JP 2007092572 A JP2007092572 A JP 2007092572A JP 2008253069 A JP2008253069 A JP 2008253069A
Authority
JP
Japan
Prior art keywords
piezoelectric element
wiring
laminated piezoelectric
laminated
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007092572A
Other languages
Japanese (ja)
Other versions
JP2008253069A5 (en
JP5328109B2 (en
Inventor
Yutaka Maruyama
裕 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007092572A priority Critical patent/JP5328109B2/en
Publication of JP2008253069A publication Critical patent/JP2008253069A/en
Publication of JP2008253069A5 publication Critical patent/JP2008253069A5/ja
Application granted granted Critical
Publication of JP5328109B2 publication Critical patent/JP5328109B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated piezoelectric element and an oscillatory wave drive device, capable of enhancing the performance of the oscillatory wave drive unit, without having to install a new manufacturing facility or increase the cost of manufacturing, while maintaining the reliability. <P>SOLUTION: This laminated piezoelectric element 1 is constituted of a plurality of piezoelectric layers 4-1, 4-2, 4-3, 4-4, 4-3, ..., 4-3, 4-4, which are layers formed from a piezoelectric material, and internal electrodes 5 mounted on the surfaces of the piezoelectric layers 4-3, 4-4, which are layers of an electrode material. Furthermore, the piezoelectric layer 4-2 has eight through holes 6 for conducting the internal electrodes 5 installed, and eight wiring conductive films 2 installed for respectively conducting the eight through holes 6. The ends 3 of the wiring conductive films 2 are gathered and exposed on the circumferential surface of the piezoelectric layer 4-2. Power is supplied with respective internal electrodes 5, from an external power supply through the wiring substrate 11, the wiring conductive films 2 and the through holes 6, and the laminated piezoelectric element 1 is used as the exciting source of the vibrator 21 of a vibration wave motor 20. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、圧電材料の層と電極材料の層とを交互に積層した積層圧電素子及び振動波駆動装置に関する。   The present invention relates to a laminated piezoelectric element and a vibration wave driving device in which piezoelectric material layers and electrode material layers are alternately laminated.

近年、複数の圧電素子を積層化した小型で高性能な積層圧電素子の開発が進展している。第1の従来例に係る積層圧電素子として、振動波モータ(特に棒状構造の振動波モータ)の振動体の加振源である図5に示す構成を有する積層圧電素子が提案されている(例えば、特許文献1参照)。   In recent years, development of a small and high-performance multilayer piezoelectric element in which a plurality of piezoelectric elements are laminated has progressed. As a multilayer piezoelectric element according to a first conventional example, a multilayer piezoelectric element having a configuration shown in FIG. 5 that is an excitation source of a vibration body of a vibration wave motor (particularly a vibration wave motor having a rod-like structure) has been proposed (for example, , See Patent Document 1).

図5は、第1の従来例に係る積層圧電素子の構成を示す分解斜視図である。   FIG. 5 is an exploded perspective view showing the configuration of the laminated piezoelectric element according to the first conventional example.

図5において、積層圧電素子40は、圧電材料(圧電セラミックス)の層である複数の圧電層41と、各圧電層41の表面に設けられた電極材料の層である電極層(以下内部電極)42から構成されている。また、各圧電層間の内部電極42を接続するための層間配線として、圧電層41の層内に軸方向に沿って設けた貫通孔に導電材料を充填したいわゆるスルーホール(バイヤホール)43を用いている。   In FIG. 5, a laminated piezoelectric element 40 includes a plurality of piezoelectric layers 41 that are layers of piezoelectric material (piezoelectric ceramics), and an electrode layer that is a layer of electrode material provided on the surface of each piezoelectric layer 41 (hereinafter referred to as an internal electrode). 42. Further, as an interlayer wiring for connecting the internal electrodes 42 between the piezoelectric layers, a so-called through hole (via hole) 43 in which a conductive material is filled in a through hole provided in the layer of the piezoelectric layer 41 along the axial direction is used. ing.

各内部電極42は、圧電層41の周方向に4分割されて形成されると共に、互いに非導通に構成されている。また、各内部電極42は、スルーホール43により接続されている。スルーホール43は、その端部を積層圧電素子40の最上層の圧電層41の表面に露出している。これにより、表面電極44を形成している。   Each internal electrode 42 is formed by being divided into four in the circumferential direction of the piezoelectric layer 41 and is configured to be non-conductive with each other. Each internal electrode 42 is connected by a through hole 43. The end of the through hole 43 is exposed on the surface of the uppermost piezoelectric layer 41 of the laminated piezoelectric element 40. Thereby, the surface electrode 44 is formed.

図6は、図5の積層圧電素子を振動体に組み込んだ振動波モータの構成を示す断面図である。   FIG. 6 is a cross-sectional view showing a configuration of a vibration wave motor in which the multilayered piezoelectric element of FIG. 5 is incorporated in a vibrating body.

図6において、振動波モータ50は、棒状に形成されており、積層圧電素子40を振動体51に組み込んだ構成を有する。積層圧電素子40は、上記表面電極44に可撓性を有する柔らかい樹脂からなる配線基板52が接触させられると共に、中空の部材53と部材54との間に配置される。ボルト55を部材54側から挿入して部材53にねじ込むことにより、部材53と部材54との間に積層圧電素子40と配線基板52が挟持された状態で固定される。これにより、振動体51が構成される。   In FIG. 6, the vibration wave motor 50 is formed in a rod shape and has a configuration in which the laminated piezoelectric element 40 is incorporated in a vibrating body 51. The laminated piezoelectric element 40 is disposed between the hollow member 53 and the member 54 while the wiring substrate 52 made of a soft resin having flexibility is brought into contact with the surface electrode 44. By inserting the bolt 55 from the member 54 side and screwing it into the member 53, the laminated piezoelectric element 40 and the wiring board 52 are fixed between the member 53 and the member 54. Thereby, the vibrating body 51 is configured.

更に、配線基板52を外部電源の駆動回路(不図示)に接続する。これにより、駆動用の交流電圧が積層圧電素子40に印加され、振動体51の振動によりロータ56が回転駆動される。   Further, the wiring board 52 is connected to a drive circuit (not shown) of an external power source. Accordingly, a driving AC voltage is applied to the laminated piezoelectric element 40, and the rotor 56 is rotationally driven by the vibration of the vibrating body 51.

第2の従来例に係る積層圧電素子として、図7に示す構成を有する積層圧電素子が提案されている(例えば、特許文献2参照)。   As a multilayer piezoelectric element according to a second conventional example, a multilayer piezoelectric element having a configuration shown in FIG. 7 has been proposed (see, for example, Patent Document 2).

図7は、第2の従来例に係る積層圧電素子と配線基板を示す図である。   FIG. 7 is a view showing a laminated piezoelectric element and a wiring board according to a second conventional example.

図7において、積層圧電素子60は、棒状の振動波モータの振動体に組み込まれるものであり、外周部に外部電極65が形成されると共に可撓性を有する配線基板61が設けられている。配線基板61は、配線66と外部端子67を有する。   In FIG. 7, a laminated piezoelectric element 60 is incorporated in a vibrating body of a rod-shaped vibration wave motor. An outer electrode 65 is formed on the outer peripheral portion, and a flexible wiring board 61 is provided. The wiring board 61 has wiring 66 and external terminals 67.

図8は、図7の積層圧電素子の構成を示す分解斜視図である。   FIG. 8 is an exploded perspective view showing the configuration of the multilayer piezoelectric element of FIG.

図8において、積層圧電素子60は、複数の圧電層62と、各圧電層62の表面に4分割して設けられた内部電極63から構成されている。内部電極63の外周端は、圧電層62の外周端よりも内側に位置している。更に、圧電層62の表面には、各内部電極63と接続されて圧電層62の外周端まで延びる接続電極64が形成されている。接続電極64は、例えば同一位相位置の内部電極63に対して一層おきに且つ同一位相位置に形成されている。   In FIG. 8, the laminated piezoelectric element 60 is composed of a plurality of piezoelectric layers 62 and internal electrodes 63 provided on the surface of each piezoelectric layer 62 by being divided into four. The outer peripheral end of the internal electrode 63 is located inside the outer peripheral end of the piezoelectric layer 62. Further, on the surface of the piezoelectric layer 62, connection electrodes 64 connected to the internal electrodes 63 and extending to the outer peripheral end of the piezoelectric layer 62 are formed. For example, the connection electrodes 64 are formed in every other layer and at the same phase position with respect to the internal electrode 63 at the same phase position.

更に、同一位相位置同士の接続電極64は、積層圧電素子60の外周部に設けられている層間電極である外部電極65により接続されている。外部電極65は、積層圧電素子60の軸方向の同一位相位置に位置する接続電極64毎に周方向に合計8箇所に形成されている。なお、積層圧電素子60の上下の両端面は圧電層62で形成されており、内部電極63と外部を絶縁している。   Further, the connection electrodes 64 at the same phase position are connected by an external electrode 65 which is an interlayer electrode provided on the outer peripheral portion of the multilayer piezoelectric element 60. The external electrodes 65 are formed at a total of eight locations in the circumferential direction for each connection electrode 64 positioned at the same phase position in the axial direction of the laminated piezoelectric element 60. Note that the upper and lower end faces of the laminated piezoelectric element 60 are formed of a piezoelectric layer 62 and insulate the internal electrode 63 from the outside.

更に、積層圧電素子60は、図7に示したように、その外周部の所定位置に可撓性を有する配線基板61が巻き付けられ接着により固定されている。配線基板61の表面側の各配線66は、配線基板61の裏面側の積層圧電素子60の各外部電極65にそれぞれ導通すると共に、配線基板61の外周表面の外部端子67に集められている。   Furthermore, as shown in FIG. 7, the laminated piezoelectric element 60 has a flexible wiring substrate 61 wound around a predetermined position on the outer periphery thereof and fixed by adhesion. Each wiring 66 on the front surface side of the wiring substrate 61 is electrically connected to each external electrode 65 of the laminated piezoelectric element 60 on the back surface side of the wiring substrate 61 and is collected at an external terminal 67 on the outer peripheral surface of the wiring substrate 61.

図9は、図7の積層圧電素子を振動体に組み込んだ振動波モータの構成を示す断面図である。   FIG. 9 is a cross-sectional view showing a configuration of a vibration wave motor in which the laminated piezoelectric element of FIG. 7 is incorporated in a vibrating body.

図9において、振動波モータ70は、棒状に形成されており、積層圧電素子60を振動体71に組み込んだ構成を有する。積層圧電素子60は、中空の部材53と部材54との間に配置される。ボルト55を部材54側から挿入して部材53にねじ込むことにより、部材53と部材54との間に積層圧電素子60が直接挟持され固定される。これにより、振動体71が構成される。   In FIG. 9, the vibration wave motor 70 is formed in a rod shape and has a configuration in which the laminated piezoelectric element 60 is incorporated in a vibration body 71. The laminated piezoelectric element 60 is disposed between the hollow member 53 and the member 54. By inserting the bolt 55 from the member 54 side and screwing it into the member 53, the laminated piezoelectric element 60 is directly sandwiched and fixed between the member 53 and the member 54. Thereby, the vibrating body 71 is configured.

更に、積層圧電素子60の外周部に固着された配線基板61の外部端子67に、フレキシブルな配線基板72(或いはフラットケーブル)をはんだ付けする。更に、配線基板72を外部電源の駆動回路(不図示)に接続する。これにより、駆動用の交流電圧が積層圧電素子60に印加され、振動体71の振動によりロータ56が回転駆動される。
特開平8−213664号公報 特開2003−9555号公報
Further, a flexible wiring board 72 (or a flat cable) is soldered to the external terminal 67 of the wiring board 61 fixed to the outer peripheral portion of the laminated piezoelectric element 60. Further, the wiring board 72 is connected to a drive circuit (not shown) of an external power source. Thereby, a driving AC voltage is applied to the laminated piezoelectric element 60, and the rotor 56 is rotationally driven by the vibration of the vibrating body 71.
JP-A-8-213664 JP 2003-9555 A

上記第1の従来例では、積層圧電素子と可撓性を有する柔らかい樹脂からなる配線基板とを2つの部材間に挟持することで、振動波モータの振動体を構成している。そのため、振動体の振動の減衰(エネルギー損失)が大きくなり、振動波モータの効率を悪化させ、振動波モータの性能を低下させるという問題があった。   In the first conventional example, a vibrating body of a vibration wave motor is configured by sandwiching a laminated piezoelectric element and a wiring board made of flexible soft resin between two members. For this reason, there is a problem that the vibration attenuation (energy loss) of the vibrating body is increased, the efficiency of the vibration wave motor is deteriorated, and the performance of the vibration wave motor is deteriorated.

また、上記第2の従来例では、外部電極を設けた積層圧電素子の外周面に可撓性を有する配線基板を積層圧電素子に巻き付けることで、振動波モータの振動体を構成している。そのため、積層圧電素子に外部電極を設けるための新たな工程が増加する。更に、積層圧電素子の外周面の略全周に配線基板を巻き付ける構造のため、振動体の振動の減衰の原因となり、上記第1の従来例と同様に振動波モータの性能を低下させるという問題があった。   In the second conventional example, the vibrating body of the vibration wave motor is configured by winding a flexible wiring board around the outer peripheral surface of the laminated piezoelectric element provided with the external electrode around the laminated piezoelectric element. Therefore, a new process for providing external electrodes to the laminated piezoelectric element increases. Further, since the wiring board is wound around substantially the entire circumference of the outer peripheral surface of the multilayer piezoelectric element, the vibration of the vibrator is attenuated, and the performance of the vibration wave motor is reduced as in the first conventional example. was there.

本発明の目的は、信頼性を保ちつつ、新たな製造設備を設置することなく且つ製造コストを上げることなく、振動波駆動装置の性能の向上を図ることができる積層圧電素子及び振動波駆動装置を提供することにある。   An object of the present invention is to provide a laminated piezoelectric element and a vibration wave driving device capable of improving the performance of the vibration wave driving device while maintaining reliability, without installing new manufacturing equipment and without increasing the manufacturing cost. Is to provide.

上述の目的を達成するために、本発明の積層圧電素子は、圧電材料から構成される圧電層と、電極材料から構成される電極層とを交互に複数重ねて積層化すると共に、複数の前記電極層と電気的に導通する複数のスルーホールを設け、複数の前記圧電層のうち少なくとも1つの圧電層に前記複数のスルーホールとそれぞれ電気的に導通する配線用導電膜を設け、前記配線用導電膜が設けられた前記圧電層の外周面に前記配線用導電膜の端部を露出させたことを特徴とする。   In order to achieve the above-described object, the laminated piezoelectric element of the present invention includes a plurality of piezoelectric layers made of a piezoelectric material and electrode layers made of an electrode material which are alternately stacked and stacked. A plurality of through holes that are electrically connected to the electrode layer are provided, and at least one piezoelectric layer of the plurality of piezoelectric layers is provided with a conductive film for wiring that is electrically connected to the plurality of through holes, respectively. An end portion of the wiring conductive film is exposed on an outer peripheral surface of the piezoelectric layer provided with the conductive film.

本発明によれば、積層圧電素子の外周面に配線用導電膜の端部を露出させるため、積層圧電素子を振動波駆動装置の振動体の部材間に直接挟持することができる。その結果、積層圧電素子と共に配線基板を振動体の部材間に挟持する場合と比較し、振動体の振動減衰を少なくできる。これにより、信頼性を保ちつつ、新たな製造設備を設置することなく且つ製造コストを上げることなく、振動体の振動減衰が少なく振動波駆動装置の性能の向上を図ることができる積層圧電素子を提供することが可能となる。   According to the present invention, since the end of the conductive film for wiring is exposed on the outer peripheral surface of the multilayer piezoelectric element, the multilayer piezoelectric element can be directly sandwiched between members of the vibration body of the vibration wave driving device. As a result, the vibration attenuation of the vibrating body can be reduced as compared with the case where the wiring board is sandwiched between the laminated piezoelectric elements and the members of the vibrating body. Accordingly, a laminated piezoelectric element capable of improving the performance of the vibration wave driving device with less vibration attenuation of the vibrating body without increasing new manufacturing equipment and without increasing the manufacturing cost while maintaining reliability. It becomes possible to provide.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施の形態に係る積層圧電素子の構成を示す分解斜視図である。   FIG. 1 is an exploded perspective view showing a configuration of a laminated piezoelectric element according to an embodiment of the present invention.

図1において、積層圧電素子1は、圧電材料の層である複数の圧電層4−1、4−2、4−3、4−4、4−3、・・・、4−3、4−4と、圧電層4−3、4−4の表面に設けられた電極材料の層である内部電極5から構成されている。即ち、積層圧電素子1は、圧電材料の層と電極材料の層とを交互に複数重ねて積層化されたものであり、両端面が圧電層4−1と圧電層4−4から構成されている。さらに、圧電層4−2以下は、圧電層4−3と4−4が交互に重ねられている。図中11は配線基板であり、図4の説明箇所で詳述する。   In FIG. 1, the laminated piezoelectric element 1 includes a plurality of piezoelectric layers 4-1, 4-2, 4-3, 4-4, 4-3,. 4 and an internal electrode 5 which is a layer of electrode material provided on the surface of the piezoelectric layers 4-3 and 4-4. That is, the laminated piezoelectric element 1 is formed by laminating a plurality of layers of piezoelectric material and electrode material alternately, and both end surfaces are composed of the piezoelectric layer 4-1 and the piezoelectric layer 4-4. Yes. Further, piezoelectric layers 4-3 and 4-4 are alternately stacked below the piezoelectric layer 4-2. In the figure, reference numeral 11 denotes a wiring board, which will be described in detail in the explanation of FIG.

内部電極5の外周端は、圧電層4−3、4−4の外周端よりも内周側に設けられている。圧電層4−3は、表面が周方向に4分割されることで内部電極A+、A−、B+、B−が形成されている。内部電極A+、A−、B+、B−は、互いに非導通に構成されている。圧電層4−4は、表面が周方向に4分割されることで内部電極AG+、AG−、BG+、BG−が形成されている。内部電極AG+、AG−、BG+、BG−は、互いに非導通に構成されている。圧電層4−3と圧電層4−4とは交互に積層されている。   The outer peripheral end of the internal electrode 5 is provided closer to the inner peripheral side than the outer peripheral ends of the piezoelectric layers 4-3 and 4-4. The piezoelectric layer 4-3 has internal surfaces A +, A−, B +, and B− formed by dividing the surface into four in the circumferential direction. The internal electrodes A +, A−, B +, and B− are configured to be non-conductive with each other. The piezoelectric layer 4-4 has a surface divided into four in the circumferential direction, thereby forming internal electrodes AG +, AG−, BG +, and BG−. The internal electrodes AG +, AG−, BG +, BG− are configured to be non-conductive with each other. The piezoelectric layers 4-3 and the piezoelectric layers 4-4 are alternately stacked.

圧電層4−3に形成された内部電極A+、A−、B+、B−、圧電層4−4に形成されたAG+、AG−、BG+、BG−は、8個のスルーホール6により接続されている。即ち、内部電極A+、A−、B+、B−、AG+、AG−、BG+、BG−と、8個のスルーホール6とは電気的に導通している。8個のスルーホール6は、圧電層4−2の表面に達している。   Internal electrodes A +, A−, B +, B− formed on the piezoelectric layer 4-3 and AG +, AG−, BG +, BG− formed on the piezoelectric layer 4-4 are connected by eight through holes 6. ing. That is, the internal electrodes A +, A−, B +, B−, AG +, AG−, BG +, BG− and the eight through holes 6 are electrically connected. The eight through holes 6 reach the surface of the piezoelectric layer 4-2.

圧電層4−2には、8個のスルーホール6にそれぞれ電気的に導通した8本の配線用導電膜2が設けられている。8本の配線用導電膜2のそれぞれの端部3は、圧電層4−2の外周面に一列に集合した状態で露出している。8本の配線用導電膜2のそれぞれの端部3は、配線基板11が接触状態で固定されるものであり、電気的な端子として利用することができる。   In the piezoelectric layer 4-2, eight conductive films 2 for wiring that are electrically connected to the eight through holes 6 are provided. The end portions 3 of the eight conductive films 2 for wiring are exposed in a state of being gathered in a line on the outer peripheral surface of the piezoelectric layer 4-2. The end portions 3 of the eight conductive films 2 for wiring are fixed to the wiring substrate 11 in contact, and can be used as electrical terminals.

図2は、図1の積層圧電素子の製造方法を示す図である。   FIG. 2 is a diagram showing a method for manufacturing the multilayer piezoelectric element of FIG.

図2において、最初に、圧電層4となる圧電セラミックス粉末と有機バインダからなる一定寸法の角形状に切り出したグリーンシート10に、スルーホール6となる小さな孔を形成する。更に、グリーンシート10に形成した孔の中に、導電粉末材料(銀・パラジウム粉末)からなるペーストをスクリーン印刷法で充填する。更に、グリーンシート10の表面に、内部電極5と配線用導電膜2を形成する導電粉末材料(銀・パラジウム粉末)からなるペーストをスクリーン印刷法で印刷する。   In FIG. 2, first, a small hole to be a through hole 6 is formed in a green sheet 10 cut into a square shape having a certain size made of a piezoelectric ceramic powder to be the piezoelectric layer 4 and an organic binder. Further, a paste made of a conductive powder material (silver / palladium powder) is filled into the holes formed in the green sheet 10 by a screen printing method. Further, a paste made of a conductive powder material (silver / palladium powder) for forming the internal electrode 5 and the wiring conductive film 2 is printed on the surface of the green sheet 10 by a screen printing method.

図示の破線が最終的な積層圧電素子1の内径部と外径部を示している。最上層の下側の圧電層4−2において、配線用導電膜2は、電気的に導通するスルーホール6から積層圧電素子1の破線で示す外径部の外側まで形成されている。また、最上層の圧電層4−1において、表面の露出したスルーホール7とその周囲の分極用表面電極膜8は、積層圧電素子1の外径部の外側に形成されている。圧電層4−1のスルーホール7と分極用表面電極膜8は、その下の圧電層4−2の配線用導電膜2の端部と電気的に導通している。   The broken lines in the figure indicate the inner diameter portion and the outer diameter portion of the final laminated piezoelectric element 1. In the piezoelectric layer 4-2 on the lower side of the uppermost layer, the wiring conductive film 2 is formed from the electrically conductive through hole 6 to the outside of the outer diameter portion indicated by the broken line of the laminated piezoelectric element 1. In the uppermost piezoelectric layer 4-1, the exposed through-hole 7 and the surrounding surface electrode film 8 for polarization are formed outside the outer diameter portion of the laminated piezoelectric element 1. The through hole 7 of the piezoelectric layer 4-1 and the surface electrode film 8 for polarization are electrically connected to the end of the conductive film 2 for wiring of the piezoelectric layer 4-2 below.

積層圧電素子1の製造においては、図示のように複数枚のグリーンシート10を下から順に重ねて、加熱・加圧装置(不図示)により加熱しながら加圧し、積層化する。更に、複数枚のグリーンシート10を積層化した直方体に対して、積層圧電素子の内径部となる部分の内側をドリル(不図示)により穿孔する。その後、積層化した直方体を1100℃〜1200℃の鉛雰囲気下で焼成を行う。焼成を行った後、配線用電動膜2を使用して分極処理を行う。   In the production of the laminated piezoelectric element 1, a plurality of green sheets 10 are stacked in order from the bottom as shown in the figure, and are pressed and laminated while being heated by a heating / pressurizing device (not shown). Further, the inside of the portion that becomes the inner diameter portion of the laminated piezoelectric element is drilled by a drill (not shown) in a rectangular parallelepiped in which a plurality of green sheets 10 are laminated. Then, the laminated rectangular parallelepiped is fired in a lead atmosphere at 1100 ° C. to 1200 ° C. After firing, polarization treatment is performed using the wiring electric film 2.

図3は、図1の積層圧電素子を構成する複数枚のグリーンシートを積層化した直方体を示す斜視図である。   FIG. 3 is a perspective view showing a rectangular parallelepiped in which a plurality of green sheets constituting the laminated piezoelectric element of FIG. 1 are laminated.

図3において、積層化した直方体を後述する条件で分極処理を行う。最終的に、直方体の両端面を加工装置(不図示)によりわずかに削り平坦化すると共に、積層圧電素子の外径部となる部分の外側を除去する機械加工を行い、内径部を有するリング形状の積層圧電素子1として仕上げる。この機械加工によりスルーホール7と分極用表面電極膜8は除去され、積層圧電素子1の外周面には図1に示したように配線用導電膜2の端部3が現れる。   In FIG. 3, the stacked rectangular parallelepiped is subjected to polarization processing under the conditions described later. Finally, the both ends of the rectangular parallelepiped are slightly cut and flattened by a processing device (not shown), and machining is performed to remove the outside of the outer diameter portion of the laminated piezoelectric element, thereby forming a ring shape having an inner diameter portion. The laminated piezoelectric element 1 is finished. Through the machining, the through hole 7 and the polarization surface electrode film 8 are removed, and the end portion 3 of the wiring conductive film 2 appears on the outer peripheral surface of the multilayer piezoelectric element 1 as shown in FIG.

分極処理は、8箇所の分極用表面電極膜8にそれぞれプローブ(不図示)を押し当て、以下のように直流電圧を印加する。スルーホール7、配線用導電膜2、スルーホール6に繋がる各内部電極A+、A−、B+、B−、AG+、AG−、BG+、BG−に対して、A+とB+には+300Vを印加する。A−とB−には−300Vを印加する。AG+、AG−、BG+、BG−はグランドとする。更に、120〜130℃のシリコーンオイル中で30〜60分間の分極処理を行う。即ち、4分割された内部電極のうち、180度の位置関係にある2つの内部電極を互いに分極方向が異なるように分極する。   In the polarization treatment, a probe (not shown) is pressed against each of the eight surface electrode films 8 for polarization, and a DC voltage is applied as follows. For each of the internal electrodes A +, A−, B +, B−, AG +, AG−, BG +, and BG− connected to the through hole 7, the conductive film 2 for wiring, and the through hole 6, +300 V is applied to A + and B +. . -300V is applied to A- and B-. AG +, AG−, BG +, and BG− are grounds. Further, a polarization treatment is performed for 30 to 60 minutes in a 120 to 130 ° C. silicone oil. That is, of the four divided internal electrodes, two internal electrodes having a positional relationship of 180 degrees are polarized so that their polarization directions are different from each other.

製造した積層圧電素子1の各部の具体的な数値は以下の通りである。積層圧電素子1は外径10mm、内径2.8mm、厚さ約2.2mmである。圧電層は厚さ85μmである。内部電極は外径9.5mm、厚さ2〜3μmである。圧電層の層数は25層、内部電極の層数は24層である。スルーホールの径はφ0.1mmである。配線用電極膜は幅0.4mm、厚さ20μmである。   Specific numerical values of each part of the manufactured laminated piezoelectric element 1 are as follows. The laminated piezoelectric element 1 has an outer diameter of 10 mm, an inner diameter of 2.8 mm, and a thickness of about 2.2 mm. The piezoelectric layer has a thickness of 85 μm. The internal electrode has an outer diameter of 9.5 mm and a thickness of 2 to 3 μm. The number of piezoelectric layers is 25, and the number of internal electrodes is 24. The diameter of the through hole is φ0.1 mm. The wiring electrode film has a width of 0.4 mm and a thickness of 20 μm.

図4は、図1の積層圧電素子を振動体に組み込んだ振動波駆動装置としての振動波モータの構成を示す断面図である。   FIG. 4 is a cross-sectional view illustrating a configuration of a vibration wave motor as a vibration wave driving device in which the multilayer piezoelectric element of FIG. 1 is incorporated in a vibration body.

図4において、振動波モータ20は、部材22、部材23、ボルト24を有すると共に積層圧電素子1が組み込まれた振動体21と、ロータ25と、出力部材26とから構成されている。振動波モータ20を組み立てる際は、内径部を有するリング形状の積層圧電素子1を、中空で円筒状の部材22と部材23との間に配置する。更に、先端細径部がピン形状に形成されたボルト24を部材23側から挿入して部材22にねじ込むことにより、部材22と部材23との間に積層圧電素子1を挟持した状態で固定する。   In FIG. 4, the vibration wave motor 20 includes a vibrating body 21 having a member 22, a member 23, and a bolt 24 and incorporating the laminated piezoelectric element 1, a rotor 25, and an output member 26. When assembling the vibration wave motor 20, the ring-shaped laminated piezoelectric element 1 having an inner diameter portion is disposed between the hollow cylindrical member 22 and the member 23. Further, a bolt 24 having a pin tip formed in a pin shape is inserted from the member 23 side and screwed into the member 22, thereby fixing the laminated piezoelectric element 1 between the member 22 and the member 23. .

積層圧電素子1の両端面は、上述したように圧電層4−1と圧電層4−4から構成されている。両端面の圧電層4−1と圧電層4−4は、内部電極5に対して電気的に絶縁されると共に、表面が平坦に形成されている。一方、振動波モータ20の部材22と部材23も、積層圧電素子1を挟持する側の表面が平坦に形成されている。これにより、振動波モータ20の部材22と部材23との間に、積層圧電素子1を確実に挟持して固定することが可能となる。   Both end surfaces of the laminated piezoelectric element 1 are composed of the piezoelectric layer 4-1 and the piezoelectric layer 4-4 as described above. The piezoelectric layer 4-1 and the piezoelectric layer 4-4 on both end surfaces are electrically insulated from the internal electrode 5 and have a flat surface. On the other hand, the member 22 and the member 23 of the vibration wave motor 20 are also formed with a flat surface on the side sandwiching the laminated piezoelectric element 1. Thereby, the laminated piezoelectric element 1 can be securely sandwiched and fixed between the member 22 and the member 23 of the vibration wave motor 20.

振動波モータ20の部材22と部材23との間に積層圧電素子1を挟持固定した後、積層圧電素子1の外周面の一部分に一列に整列して集合され露出した配線用導電膜2の端部3に、配線基板11を接触固定させる(図1)。配線用導電膜2の端部3を電気的な端子として利用することで、配線用導電膜2が配線基板11を介して外部電源の駆動回路(不図示)に接続される。これに伴い、積層圧電素子1には、外部電源から配線用導電膜2、スルーホール6を介して各内部電極5に駆動用の交流電圧が印加され、電力が供給される。これにより、積層圧電素子1は振動波モータ20の振動体21の加振源となる。   After the laminated piezoelectric element 1 is sandwiched and fixed between the member 22 and the member 23 of the vibration wave motor 20, the end of the wiring conductive film 2 that is gathered and exposed in a line on a part of the outer peripheral surface of the laminated piezoelectric element 1. The wiring board 11 is fixed in contact with the part 3 (FIG. 1). By using the end portion 3 of the wiring conductive film 2 as an electrical terminal, the wiring conductive film 2 is connected to a drive circuit (not shown) of an external power source via the wiring substrate 11. Along with this, driving AC voltage is applied to the laminated piezoelectric element 1 from the external power source to the internal electrodes 5 through the wiring conductive film 2 and the through holes 6, and power is supplied. Thereby, the laminated piezoelectric element 1 becomes a vibration source of the vibrating body 21 of the vibration wave motor 20.

配線基板11は、例えば、厚さ30μmのポリイミド樹脂からなる基材の表面に、25μm厚の銅箔からなる複数の配線パターンが形成された可撓性を有する基板である。配線基板11は、積層圧電素子1の外周面の一部に接着固定される(図1)。配線基板11の複数の配線パターンが、積層圧電素子1の外周面に露出した配線用導電膜2の複数の端部3とそれぞれ電気的に導通する。   The wiring substrate 11 is a flexible substrate in which a plurality of wiring patterns made of copper foil with a thickness of 25 μm are formed on the surface of a base material made of polyimide resin with a thickness of 30 μm, for example. The wiring board 11 is bonded and fixed to a part of the outer peripheral surface of the laminated piezoelectric element 1 (FIG. 1). The plurality of wiring patterns on the wiring substrate 11 are electrically connected to the plurality of ends 3 of the wiring conductive film 2 exposed on the outer peripheral surface of the multilayer piezoelectric element 1, respectively.

振動波モータ20の駆動時には、以下のように積層圧電素子1の各内部電極に高周波電圧が印加される。電気的なグランドに相当する内部電極AG+、AG−、BG+、BG−に対し、内部電極A+、A−に振動体の固有振動数に略一致した高周波電圧が、内部電極B+、B−に内部電極A+、A−と90°の位相差を有する高周波電圧が各々印加される。先の分極処理とこの高周波電圧の印加により、振動体21には軸方向に対して直交する2つの曲げ振動を発生させることが可能となる。   When the vibration wave motor 20 is driven, a high frequency voltage is applied to each internal electrode of the laminated piezoelectric element 1 as follows. In contrast to the internal electrodes AG +, AG−, BG +, and BG− corresponding to the electrical ground, the internal electrodes A + and A− have a high-frequency voltage substantially matching the natural frequency of the vibrating body. A high frequency voltage having a phase difference of 90 ° is applied to the electrodes A + and A−. By the previous polarization process and the application of the high frequency voltage, it is possible to generate two bending vibrations perpendicular to the axial direction in the vibrating body 21.

即ち、棒状の振動波モータ20の駆動原理は、以下のようになる。積層圧電素子1を組み込んだ振動体21に軸方向に対して直交する2つの曲げ振動を時間的位相差を有して発生させる。これに伴い、振動体21を構成する部材22の先端部を駆動部として部材22が首振りのような運動を行い、部材22にバネ力により加圧状態で接触される接触体としてのロータ25が摩擦接触により回転する(相対的に移動する)。ロータ25の回転は、ロータ上方に配置されているギヤから構成される出力部材26に伝達され、出力部材26を介して振動波モータ外部に出力される。   That is, the driving principle of the rod-shaped vibration wave motor 20 is as follows. Two bending vibrations perpendicular to the axial direction are generated in the vibrating body 21 incorporating the laminated piezoelectric element 1 with a temporal phase difference. Along with this, the member 22 moves like a swing using the tip of the member 22 constituting the vibrating body 21 as a drive unit, and the rotor 25 is a contact body that is brought into contact with the member 22 in a pressurized state by a spring force. Rotate (moves relatively) by frictional contact. The rotation of the rotor 25 is transmitted to an output member 26 composed of gears disposed above the rotor, and is output to the outside of the vibration wave motor via the output member 26.

積層圧電素子1の外周面に露出した配線用導電膜2の複数の端部3は、積層圧電素子内部に広く散在するスルーホール6の位置に関わらず、スクリーン印刷により任意にその位置を選定することができる。   The positions of the plurality of ends 3 of the conductive film for wiring 2 exposed on the outer peripheral surface of the multilayer piezoelectric element 1 are arbitrarily selected by screen printing regardless of the positions of the through holes 6 widely dispersed inside the multilayer piezoelectric element. be able to.

本実施の形態では、配線用導電膜2の複数の端部3を積層圧電素子1の外周面の約4分の1の部分に集合させる構成としているが(図1)、これに限定されるものではない。配線用導電膜2の複数の端部3を積層圧電素子1の外周面の更に狭い範囲に集合させる構成としてもよい。   In the present embodiment, the plurality of end portions 3 of the conductive film 2 for wiring are configured to be gathered in about a quarter of the outer peripheral surface of the laminated piezoelectric element 1 (FIG. 1), but the present invention is limited to this. It is not a thing. A plurality of end portions 3 of the wiring conductive film 2 may be gathered in a narrower range of the outer peripheral surface of the laminated piezoelectric element 1.

また、本実施の形態では、配線用導電膜2の複数の端部3を積層圧電素子1の最上層である圧電層4−1の下の圧電層4−2に設ける構成としているが、これに限定されるものではない。配線用導電膜2の複数の端部3は積層圧電素子1の各圧電層のうちの任意の圧電層に設ける構成としてもよいし、1つの圧電層ではなく複数の圧電層に設ける構成としてもよい。   In the present embodiment, the plurality of end portions 3 of the wiring conductive film 2 are provided in the piezoelectric layer 4-2 under the piezoelectric layer 4-1 that is the uppermost layer of the laminated piezoelectric element 1. It is not limited to. The plurality of end portions 3 of the wiring conductive film 2 may be provided in an arbitrary piezoelectric layer of the piezoelectric layers of the laminated piezoelectric element 1 or may be provided in a plurality of piezoelectric layers instead of a single piezoelectric layer. Good.

このように、本実施の形態では、積層圧電素子1と外部電源の駆動回路との接続を、積層圧電素子1の外周面に露出させた配線用導電膜2の端部3を介して行う構成としている。本構成により、上記第1の従来例と異なり、振動波モータ20の振動体21を構成する2つの部材22と部材23との間に積層圧電素子1を直接挟持することができる。これにより、配線基板11による振動波モータ20の振動体21の振動減衰を少なくすることが可能となる。   Thus, in the present embodiment, the connection between the laminated piezoelectric element 1 and the drive circuit of the external power source is performed via the end 3 of the conductive film 2 for wiring exposed on the outer peripheral surface of the laminated piezoelectric element 1. It is said. With this configuration, unlike the first conventional example, the laminated piezoelectric element 1 can be directly sandwiched between the two members 22 and 23 constituting the vibrating body 21 of the vibration wave motor 20. Thereby, it is possible to reduce the vibration attenuation of the vibration body 21 of the vibration wave motor 20 by the wiring board 11.

また、上記第2の従来例では、積層圧電素子の外周の略全周に配線基板を巻き付ける構成としている。これに対し、本実施の形態では、配線用導電膜2の複数の端部3を積層圧電素子1の外周面の約4分の1の部分に集合させ、端部3に配線基板11を固定している。本構成により、配線基板11の面積を小さくすることができると共に、積層圧電素子1の厚さ方向の長さも短くすることができる。これにより、振動波モータ20の振動体21の振動減衰を更に少なくすることが可能となる。   In the second conventional example, the wiring board is wound around substantially the entire circumference of the multilayer piezoelectric element. On the other hand, in the present embodiment, the plurality of end portions 3 of the conductive film 2 for wiring are gathered at about a quarter of the outer peripheral surface of the laminated piezoelectric element 1, and the wiring substrate 11 is fixed to the end portion 3. is doing. With this configuration, the area of the wiring substrate 11 can be reduced, and the length of the laminated piezoelectric element 1 in the thickness direction can also be reduced. As a result, the vibration attenuation of the vibration body 21 of the vibration wave motor 20 can be further reduced.

以上説明したように、本実施の形態によれば、積層圧電素子の外周面に配線用導電膜の端部を露出させる構成としているため、積層圧電素子を振動波モータの振動体の両部材間に直接挟持することができる。そのため、積層圧電素子と共に配線基板を振動体の部材間に挟持する場合と比較し、振動体の振動減衰を少なくできる。また、圧電層の内部電極を接続するスルーホールはスクリーン印刷法で製造するため、専用の製造設備を設置する必要はない。これにより、信頼性を保ちつつ、特別に新たな製造設備を設置することなく且つ製造コストを特別に上げることなく、振動体の振動減衰が少なく振動波モータの性能の向上を図ることができる積層圧電素子を提供することが可能となる。   As described above, according to the present embodiment, since the end of the conductive film for wiring is exposed on the outer peripheral surface of the multilayer piezoelectric element, the multilayer piezoelectric element is disposed between both members of the vibration body of the vibration wave motor. Can be pinched directly. Therefore, the vibration attenuation of the vibrating body can be reduced as compared with the case where the wiring board is sandwiched between the laminated piezoelectric elements and the members of the vibrating body. Moreover, since the through-hole connecting the internal electrodes of the piezoelectric layer is manufactured by a screen printing method, it is not necessary to install a dedicated manufacturing facility. This makes it possible to improve the performance of the vibration wave motor with less vibration damping of the vibrating body without specially installing new manufacturing equipment and without specially increasing the manufacturing cost while maintaining reliability. A piezoelectric element can be provided.

また、積層圧電素子の内部に配線用導電膜を設ける構成としている。これにより、積層圧電素子に今後予想される複雑に分割(4分割以上の多分割)した内部電極やセンサ用の内部電極を設ける構成でも、換言すればスルーホールの個数が増加する構成でも、配線用導電膜と端部を容易に製造することが可能となる。更に、本構成の積層圧電素子の実現により、将来予想される高機能な振動波モータを開発する際においても有益となる。   Further, a conductive film for wiring is provided inside the laminated piezoelectric element. As a result, even in a configuration in which a multilayered piezoelectric element is provided with an internal electrode that is expected to be complicatedly divided (multiple divisions of 4 or more) and an internal electrode for a sensor, in other words, in a configuration in which the number of through holes increases, It becomes possible to easily manufacture the conductive film and the end portion. Furthermore, the realization of the multilayer piezoelectric element of this configuration will be useful when developing a high-performance vibration wave motor expected in the future.

[他の実施の形態]
上記実施の形態では、積層圧電素子に8個のスルーホールと8本の配線用導電膜を形成した場合を例に挙げたが、これに限定されるものではない。積層圧電素子に形成するスルーホールと配線用導電膜の個数は本発明の主旨を逸脱しない範囲で任意とすることが可能である。
[Other embodiments]
In the above embodiment, the case where eight through-holes and eight conductive films for wiring are formed in the laminated piezoelectric element has been described as an example. However, the present invention is not limited to this. The number of through holes and conductive films for wiring formed in the laminated piezoelectric element can be arbitrarily set without departing from the gist of the present invention.

上記実施の形態では、積層圧電素子の圧電層を4分割して内部電極を形成した場合を例に挙げたが、これに限定されるものではない。本発明は、積層圧電素子の圧電層を4分割以上の多分割を行って内部電極を形成する場合にも適用可能である。   In the above embodiment, the case where the piezoelectric layer of the multilayer piezoelectric element is divided into four and the internal electrode is formed is taken as an example, but the present invention is not limited to this. The present invention is also applicable to the case where an internal electrode is formed by dividing a piezoelectric layer of a laminated piezoelectric element into four or more parts.

本発明の実施の形態に係る積層圧電素子の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the laminated piezoelectric element which concerns on embodiment of this invention. 図1の積層圧電素子の製造方法を示す図である。It is a figure which shows the manufacturing method of the laminated piezoelectric element of FIG. 図1の積層圧電素子を構成する複数枚のグリーンシートを積層化した直方体を示す斜視図である。It is a perspective view which shows the rectangular parallelepiped which laminated | stacked the several green sheet which comprises the laminated piezoelectric element of FIG. 図1の積層圧電素子を振動体に組み込んだ振動波駆動装置としての振動波モータの構成を示す断面図である。It is sectional drawing which shows the structure of the vibration wave motor as a vibration wave drive device which integrated the laminated piezoelectric element of FIG. 1 in the vibrating body. 第1の従来例に係る積層圧電素子の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the laminated piezoelectric element which concerns on a 1st prior art example. 図5の積層圧電素子を振動体に組み込んだ振動波モータの構成を示す断面図である。It is sectional drawing which shows the structure of the vibration wave motor which integrated the laminated piezoelectric element of FIG. 5 in the vibrating body. 第2の従来例に係る積層圧電素子と配線基板を示す図である。It is a figure which shows the laminated piezoelectric element and wiring board which concern on a 2nd prior art example. 図7の積層圧電素子の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the laminated piezoelectric element of FIG. 図7の積層圧電素子を振動体に組み込んだ振動波モータの構成を示す断面図である。It is sectional drawing which shows the structure of the vibration wave motor which integrated the laminated piezoelectric element of FIG. 7 in the vibrating body.

符号の説明Explanation of symbols

1 積層圧電素子
2 配線用導電膜
3 配線用導電膜の端部
4 圧電層
5 内部電極(電極層)
6、7 スルーホール
8 分極用表面電極膜
11 配線基板
20 振動波モータ(振動波駆動装置)
21 振動体
22 部材(駆動部)
23 部材
25 ロータ(接触体)
26 出力部材
DESCRIPTION OF SYMBOLS 1 Laminated piezoelectric element 2 Conductive film for wiring 3 End part of conductive film for wiring 4 Piezoelectric layer 5 Internal electrode (electrode layer)
6, 7 Through-hole 8 Surface electrode film for polarization 11 Wiring board 20 Vibration wave motor (vibration wave driving device)
21 vibrating body 22 member (driving unit)
23 member 25 rotor (contact body)
26 Output member

Claims (6)

圧電材料から構成される圧電層と、電極材料から構成される電極層とを交互に複数重ねて積層化すると共に、
複数の前記電極層と電気的に導通する複数のスルーホールを設け、
複数の前記圧電層のうち少なくとも1つの圧電層に前記複数のスルーホールとそれぞれ電気的に導通する配線用導電膜を設け、
前記配線用導電膜が設けられた前記圧電層の外周面に前記配線用導電膜の端部を露出させたことを特徴とする積層圧電素子。
A plurality of piezoelectric layers composed of piezoelectric materials and electrode layers composed of electrode materials are alternately stacked and laminated,
Providing a plurality of through holes that are electrically connected to the plurality of electrode layers,
A conductive film for wiring that is electrically connected to each of the plurality of through holes is provided in at least one of the plurality of piezoelectric layers,
A laminated piezoelectric element, wherein an end of the wiring conductive film is exposed on an outer peripheral surface of the piezoelectric layer provided with the wiring conductive film.
前記積層圧電素子の両端面は前記圧電層から構成されると共に、前記両端面の前記圧電層は前記電極層とは電気的に絶縁されていることを特徴とする請求項1に記載の積層圧電素子。   2. The laminated piezoelectric element according to claim 1, wherein both end faces of the laminated piezoelectric element are constituted by the piezoelectric layers, and the piezoelectric layers on the both end faces are electrically insulated from the electrode layers. element. 前記配線用導電膜が設けられた前記圧電層の外周面の一部に前記配線用導電膜の端部を集合させた状態で露出させたことを特徴とする請求項1に記載の積層圧電素子。   2. The laminated piezoelectric element according to claim 1, wherein an end portion of the wiring conductive film is exposed in a part of an outer peripheral surface of the piezoelectric layer provided with the wiring conductive film. . 前記配線用導電膜の端部を介して積層圧電素子の外部から電力の供給を受けることを特徴とする請求項1、3のいずれかに記載の積層圧電素子。   The multilayer piezoelectric element according to claim 1, wherein power is supplied from the outside of the multilayer piezoelectric element through an end portion of the conductive film for wiring. 前記配線用導電膜を使用して分極処理を行うことを特徴とする請求項1、3、4のいずれかに記載の積層圧電素子。   The multilayer piezoelectric element according to claim 1, wherein polarization treatment is performed using the conductive film for wiring. 前記請求項1乃至5のいずれかに記載の積層圧電素子を加振源とする振動波駆動装置であって、
前記積層圧電素子が組み込まれると共に駆動部を有し前記駆動部に振動を形成する振動体と、前記振動体の前記駆動部に加圧状態で接触される接触体とを備え、前記振動体と前記接触体とを相対的に移動させることを特徴とする振動波駆動装置。
A vibration wave driving apparatus using the multilayered piezoelectric element according to any one of claims 1 to 5 as an excitation source,
A vibration body that incorporates the multilayer piezoelectric element and has a drive unit to form vibrations in the drive unit; and a contact body that is in contact with the drive unit of the vibration body in a pressurized state; and A vibration wave driving device characterized by relatively moving the contact body.
JP2007092572A 2007-03-30 2007-03-30 Multilayer piezoelectric element and vibration wave drive device Expired - Fee Related JP5328109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007092572A JP5328109B2 (en) 2007-03-30 2007-03-30 Multilayer piezoelectric element and vibration wave drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007092572A JP5328109B2 (en) 2007-03-30 2007-03-30 Multilayer piezoelectric element and vibration wave drive device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012120582A Division JP5465274B2 (en) 2012-05-28 2012-05-28 Manufacturing method of laminated piezoelectric element

Publications (3)

Publication Number Publication Date
JP2008253069A true JP2008253069A (en) 2008-10-16
JP2008253069A5 JP2008253069A5 (en) 2010-04-30
JP5328109B2 JP5328109B2 (en) 2013-10-30

Family

ID=39977366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007092572A Expired - Fee Related JP5328109B2 (en) 2007-03-30 2007-03-30 Multilayer piezoelectric element and vibration wave drive device

Country Status (1)

Country Link
JP (1) JP5328109B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06225555A (en) * 1993-01-27 1994-08-12 Olympus Optical Co Ltd Ultrasonic motor
JPH07284282A (en) * 1994-04-07 1995-10-27 Nikon Corp Ultrasonic motor
JPH07332983A (en) * 1994-06-07 1995-12-22 Canon Inc Sliding distortion element and vibration device
JPH08182357A (en) * 1994-12-22 1996-07-12 Canon Inc Ultrasonic motor driving circuit
JP2003009555A (en) * 2001-06-25 2003-01-10 Canon Inc Laminated electrical energy-mechanical energy transducer and vibration wave drive device
JP2004268325A (en) * 2003-03-06 2004-09-30 Brother Ind Ltd Piezoelectric actuator
JP2006087285A (en) * 2004-08-17 2006-03-30 Ngk Insulators Ltd One-dimensional piezoelectric actuator array
JP2006186099A (en) * 2004-12-27 2006-07-13 Canon Inc Laminated piezoelectric element and oscillatory wave driving device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06225555A (en) * 1993-01-27 1994-08-12 Olympus Optical Co Ltd Ultrasonic motor
JPH07284282A (en) * 1994-04-07 1995-10-27 Nikon Corp Ultrasonic motor
JPH07332983A (en) * 1994-06-07 1995-12-22 Canon Inc Sliding distortion element and vibration device
JPH08182357A (en) * 1994-12-22 1996-07-12 Canon Inc Ultrasonic motor driving circuit
JP2003009555A (en) * 2001-06-25 2003-01-10 Canon Inc Laminated electrical energy-mechanical energy transducer and vibration wave drive device
JP2004268325A (en) * 2003-03-06 2004-09-30 Brother Ind Ltd Piezoelectric actuator
JP2006087285A (en) * 2004-08-17 2006-03-30 Ngk Insulators Ltd One-dimensional piezoelectric actuator array
JP2006186099A (en) * 2004-12-27 2006-07-13 Canon Inc Laminated piezoelectric element and oscillatory wave driving device

Also Published As

Publication number Publication date
JP5328109B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5265370B2 (en) Electromechanical wave device
JP4881062B2 (en) Multilayer piezoelectric element, manufacturing method thereof, and vibration wave driving device
US6114798A (en) Stacked element and vibration drive device
JP2004297951A (en) Ultrasonic vibrator and ultrasonic motor
US20020014810A1 (en) Stacked electro-mechanical energy conversion element and vibration wave driving device using the same
JP5984523B2 (en) Vibration wave drive
JP5298999B2 (en) Multilayer piezoelectric element
JPH11298061A (en) Piezoelectric transformer and its manufacture
EP2297776A1 (en) Sandwich piezoelectric device with solid copper electrode
JP2003009555A (en) Laminated electrical energy-mechanical energy transducer and vibration wave drive device
WO2013031715A1 (en) Layered piezoelectric element
JP5465274B2 (en) Manufacturing method of laminated piezoelectric element
JP5328109B2 (en) Multilayer piezoelectric element and vibration wave drive device
JP5429141B2 (en) Piezoelectric actuator and method for manufacturing piezoelectric actuator
JP2007185049A (en) Vibrator and vibration wave drive unit
JP3311034B2 (en) Laminated piezoelectric element, method for manufacturing laminated piezoelectric element, vibration wave driving device, and apparatus equipped with vibration wave driving device
JP2011172465A (en) Piezoelectric actuator
CN109524537A (en) Piezoelektrisches mehrschichtelement and vibratory equipment
JP2013182904A (en) Lamination type piezoelectric actuator
JP5031153B2 (en) Laminated electro-mechanical energy conversion element and vibration wave drive device
JP3867823B2 (en) Manufacturing method of laminated piezoelectric element
KR101685104B1 (en) Piezoelectric device and method of manufacturing the same
JP5589395B2 (en) Piezoelectric actuator
JP5062927B2 (en) Vibration wave drive
JPH0878747A (en) Lamination-type piezoelectric body

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130723

LAPS Cancellation because of no payment of annual fees