JP2008249075A - Fluid sealed type vibration damper - Google Patents

Fluid sealed type vibration damper Download PDF

Info

Publication number
JP2008249075A
JP2008249075A JP2007093492A JP2007093492A JP2008249075A JP 2008249075 A JP2008249075 A JP 2008249075A JP 2007093492 A JP2007093492 A JP 2007093492A JP 2007093492 A JP2007093492 A JP 2007093492A JP 2008249075 A JP2008249075 A JP 2008249075A
Authority
JP
Japan
Prior art keywords
movable rubber
receiving chamber
rubber film
pressure
pressure receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007093492A
Other languages
Japanese (ja)
Other versions
JP4741540B2 (en
Inventor
Satoshi Umemura
聡 梅村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2007093492A priority Critical patent/JP4741540B2/en
Publication of JP2008249075A publication Critical patent/JP2008249075A/en
Application granted granted Critical
Publication of JP4741540B2 publication Critical patent/JP4741540B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid sealed type vibration damper having a novel structure capable of reducing or avoiding the occurrence of noise and vibration which is a problem upon inputting a shocking vibration load while effectively realizing a target vibration damping effect based on flowing action of a fluid during normal vibration input. <P>SOLUTION: A movable rubber membrane 64 is assembled to a partitioning member 44. A liquid pressure absorbing mechanism is composed for absorbing pressure fluctuation of a pressure receiving chamber 78 by exerting pressure of the pressure receiving chamber 78 and an equilibration chamber 80 on each face of the movable rubber membrane. A projection part 68 projecting toward the pressure receiving chamber 78 side is formed at a central part of the movable rubber membrane 64. A short-circuiting slot 72 is formed that penetrates the movable rubber membrane 64 at the portion where the projection part 68 is formed, and the short-circuiting slot 72 is held in a closed state based on elasticity of the movable rubber membrane 64. A valve mechanism that becomes communicated by the movable rubber membrane 64 being elastically deformed toward the pressure receiving chamber 78 side during input of vibration is composed of the projection part 68. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば、自動車のエンジンマウント等として好適に用いられる防振装置に係り、特に、内部に封入された流体の流動作用に基づいて防振効果が発揮されるようにした流体封入式防振装置に関するものである。   The present invention relates to an anti-vibration device that is suitably used as, for example, an engine mount of an automobile, and more particularly to a fluid-filled anti-vibration device that exhibits an anti-vibration effect based on the flow action of a fluid enclosed inside. The present invention relates to a vibration device.

従来から、防振連結すべき一方の部材を他方の部材に防振連結する手段として、例えば、第一の取付部材を、筒状部を有する第二の取付部材の一方の開口部側に離隔配置せしめて、それら第一の取付部材と第二の取付部材を本体ゴム弾性体で相互に連結した構造を有する防振装置が知られている。また、問題となる特定周波数域の振動に対して優れた防振効果を得るために、内部に封入された流体の流動作用に基づく防振効果を利用した流体封入式の防振装置も提案されている。   Conventionally, as a means for anti-vibration connection of one member to be anti-vibration connected to the other member, for example, the first attachment member is separated from one opening side of the second attachment member having a cylindrical portion. An anti-vibration device having a structure in which the first mounting member and the second mounting member are connected to each other with a main rubber elastic body is known. In addition, in order to obtain an excellent anti-vibration effect against vibrations in a specific frequency range in question, a fluid-filled vibration-proof device utilizing the anti-vibration effect based on the fluid action of the fluid enclosed inside has also been proposed. ing.

すなわち、流体封入式防振装置は、例えば、特許文献1(特許第2805305号公報)に示されているように、第一の取付部材を筒状部を備えた第二の取付部材の一方の開口部側に離隔配置せしめると共に、該第二の取付部材で仕切部材を支持せしめて、該仕切部材を挟んだ一方の側に壁部の一部が該本体ゴム弾性体で構成された受圧室を形成すると共に、該仕切部材を挟んだ他方の側に壁部の一部が可撓性膜で構成された平衡室を形成し、それら受圧室と平衡室に非圧縮性流体を封入すると共に、該受圧室と該平衡室を相互に連通するオリフィス通路を設けた構造とされている。このような流体封入式防振装置によれば、振動入力時において、内圧変動が生ぜしめられる受圧室と、容積変化が許容されて略大気圧に維持される平衡室の間で相対的な圧力変動が生ぜしめられる。そして、かかる相対的な圧力変動によってそれら両室を相互に連通するオリフィス通路を通じての流体流動が生ぜしめられて、流体の流動作用に基づく優れた防振効果が発揮されるようになっている。   That is, as shown in Patent Document 1 (Japanese Patent No. 2805305), for example, the fluid-filled vibration isolator is configured such that the first mounting member is one of the second mounting members having a cylindrical portion. A pressure receiving chamber in which the partition member is supported by the second mounting member and a part of the wall portion is formed of the main rubber elastic body on one side across the partition member while being spaced apart from the opening side. And forming an equilibrium chamber in which a part of the wall is made of a flexible film on the other side across the partition member, and enclosing an incompressible fluid in the pressure receiving chamber and the equilibrium chamber The pressure receiving chamber and the equilibrium chamber are provided with an orifice passage that communicates with each other. According to such a fluid-filled vibration isolator, when vibration is input, the relative pressure between the pressure receiving chamber in which the internal pressure fluctuation occurs and the equilibrium chamber in which the volume change is allowed and maintained at substantially atmospheric pressure. Variations are produced. Such relative pressure fluctuations cause fluid flow through an orifice passage that communicates the two chambers with each other, and an excellent vibration-proofing effect based on the fluid flow action is exhibited.

しかしながら、例えば、上述の如き流体封入式防振装置を自動車用のエンジンマウントとして採用する場合等においては、自動車の走行状態等に応じて入力振動の周波数が変化する。それ故、オリフィス通路のチューニング周波数域の振動が入力されると、流体の流動作用に基づいて有効な防振効果が発揮される一方、チューニング周波数よりも高周波数域の振動が入力されると、オリフィス通路が実質的に閉塞状態とされて防振性能が低下するという問題があった。   However, for example, when the fluid-filled vibration isolator as described above is employed as an engine mount for an automobile, the frequency of the input vibration changes depending on the running state of the automobile. Therefore, when vibration in the tuning frequency range of the orifice passage is input, an effective anti-vibration effect is exhibited based on the fluid flow action, while when vibration in a frequency range higher than the tuning frequency is input, There was a problem that the vibration-proof performance deteriorated due to the orifice passage being substantially closed.

そこで、特許文献1等において、受圧室と平衡室を仕切る可動ゴム膜を仕切部材に組み付けて、該可動ゴム膜の微小変形による液圧吸収作用を利用して、オリフィス通路のチューニング周波数域よりも高周波数域の振動に対して有効な防振効果を得られるようにした構造が提案されている。   Therefore, in Patent Document 1 or the like, a movable rubber film that divides the pressure receiving chamber and the equilibrium chamber is assembled to the partition member, and the hydraulic pressure absorption action due to minute deformation of the movable rubber film is utilized, so that the tuning frequency range of the orifice passage is higher than There has been proposed a structure capable of obtaining an effective anti-vibration effect against vibrations in a high frequency range.

ところで、従来の流体封入式防振装置においては、第一の取付部材と第二の取付部材の間に大きな振動が入力された場合に、異音や振動が発生するおそれがあった。例えば、流体封入式防振装置を自動車のエンジンマウントとして採用する場合には、凹凸のある波状路上の走行時等において、第一の取付部材と第二の取付部材の間に衝撃的な振動荷重が入力されて、乗員が体感できる程の異音や振動を生じる場合があった。   By the way, in the conventional fluid-filled vibration isolator, when a large vibration is input between the first mounting member and the second mounting member, there is a possibility that abnormal noise or vibration may occur. For example, when a fluid-filled vibration isolator is used as an engine mount for an automobile, a shocking vibration load is applied between the first mounting member and the second mounting member when traveling on an uneven wavy road. May be generated, causing abnormal noise and vibration that can be felt by the passenger.

このような異音や振動が発生するメカニズムは、未だ充分に明らかとはなっていないが、大きな加速度で衝撃的な振動荷重が第一の取付部材と第二の取付部材の間に入力されると、受圧室内においてキャビテーションと解される気泡が発生する。そして、かかる気泡の崩壊に際して形成される爆発的な微小噴流が水撃圧となって第一の取付部材や第二の取付部材に伝播し、車両ボデーに伝達されることによって、問題となる異音や振動が生ぜしめられるものと考えられる。従って、衝撃荷重の入力に際して発生する受圧室内の負圧を可及的速やかに解消することが、キャビテーションに起因する異音や振動を低減乃至は回避するために有効とされている。   The mechanism for generating such abnormal noise and vibration has not been sufficiently clarified yet, but a shocking vibration load with a large acceleration is input between the first mounting member and the second mounting member. Then, bubbles that are understood as cavitation are generated in the pressure receiving chamber. Then, the explosive micro jet formed when the bubbles collapse is propagated to the first mounting member and the second mounting member as water hammer pressure, and is transmitted to the vehicle body. It is thought that sound and vibration are generated. Therefore, it is effective to reduce or avoid abnormal noise and vibration caused by cavitation as soon as possible to eliminate the negative pressure generated in the pressure receiving chamber when an impact load is input.

そこで、このような異音や振動を低減乃至は回避する一つの方法として、特許文献1に示された流体封入式防振装置においては、受圧室と平衡室を仕切るように配設された可動ゴム膜に短絡孔としてのスリットを形成した構造が提案されている。このような特許文献1に記載の流体封入式防振装置では、第一の取付部材と第二の取付部材の間に衝撃的な振動荷重が入力されて受圧室内に負圧が発生すると、可動ゴム膜に形成されたスリットが開口せしめられて、該スリットを通じて受圧室と平衡室が相互に短絡されることにより、受圧室内の負圧が速やかに解消されるようになっている。   Therefore, as one method for reducing or avoiding such abnormal noise and vibration, in the fluid-filled vibration isolator disclosed in Patent Document 1, a movable chamber is provided so as to partition the pressure receiving chamber and the equilibrium chamber. A structure in which a slit as a short-circuit hole is formed in a rubber film has been proposed. In such a fluid-filled vibration isolator described in Patent Document 1, when a shocking vibration load is input between the first mounting member and the second mounting member and a negative pressure is generated in the pressure receiving chamber, the movable vibration isolator is movable. A slit formed in the rubber film is opened, and the pressure receiving chamber and the equilibrium chamber are short-circuited with each other through the slit, so that the negative pressure in the pressure receiving chamber is quickly eliminated.

ところが、このような特許文献1に示された流体封入式防振装置においては、受圧室と平衡室を隔てる可動ゴム膜にスリットが設けられていることから、受圧室に負圧が及ぼされた場合だけでなく、受圧室に正圧が及ぼされた場合にもスリットが開いて、スリットを通じて受圧室と平衡室が短絡せしめられる。それ故、受圧室と平衡室の相対的な圧力変動が充分には生じ得ず、オリフィス通路を通じて両室間を流動せしめられる流体の流動量を充分に得ることが難しい。従って、目的とする防振効果が有効に得られないおそれがある。   However, in such a fluid-filled vibration isolator shown in Patent Document 1, since the movable rubber film separating the pressure receiving chamber and the equilibrium chamber is provided with a slit, a negative pressure is exerted on the pressure receiving chamber. In addition to the case, when a positive pressure is applied to the pressure receiving chamber, the slit opens, and the pressure receiving chamber and the equilibrium chamber are short-circuited through the slit. Therefore, the relative pressure fluctuation between the pressure receiving chamber and the equilibrium chamber cannot sufficiently occur, and it is difficult to obtain a sufficient amount of fluid that can flow between the two chambers through the orifice passage. Therefore, there is a possibility that the intended vibration isolation effect cannot be obtained effectively.

また、例えば、可動ゴム膜を厚肉として可動ゴム膜の弾性変形を制限することにより、スリットを開き難くすることも考えられる。これによれば、有効な防振効果を実現でき得るが、一方では、衝撃的な振動荷重が入力されて受圧室内の圧力が大きく低下した場合にも、スリットが開くことによって得られる受圧室内の負圧解消効果が不十分となり易く、上述の如きキャビテーションに起因する異音や振動の問題を解決することが困難となるおそれがある。   Further, for example, it may be possible to make the slit difficult to open by limiting the elastic deformation of the movable rubber film by making the movable rubber film thick. According to this, an effective anti-vibration effect can be realized, but on the other hand, even when a shocking vibration load is input and the pressure in the pressure receiving chamber is greatly reduced, the inside of the pressure receiving chamber obtained by opening the slit is also provided. The negative pressure elimination effect tends to be insufficient, and it may be difficult to solve the problem of abnormal noise and vibration caused by cavitation as described above.

特許第2805305号公報Japanese Patent No. 2805305

ここにおいて、本発明は、上述の如き事情を背景として為されたものであって、その解決課題とするところは、通常の振動入力時における流体の流動作用に基づく目的とする防振効果を有効に実現しつつ、衝撃的な振動荷重の入力に際して問題となる異音や振動の発生を低減乃至は回避することが出来る、新規な構造の流体封入式防振装置を提供することを目的とする。   Here, the present invention has been made against the background of the above-mentioned circumstances, and the problem to be solved is that the intended vibration isolation effect based on the fluid flow action during normal vibration input is effective. An object of the present invention is to provide a fluid-filled vibration isolator having a novel structure capable of reducing or avoiding the generation of abnormal noise and vibration, which are problems when inputting shock vibration load. .

以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意な組み合わせで採用可能である。また、本発明の態様乃至は技術的特徴は、以下に記載のものに限定されることなく、明細書全体および図面に記載されたもの、或いはそれらの記載から当業者が把握することの出来る発明思想に基づいて認識されるものであることが理解されるべきである。   Hereinafter, the aspect of this invention made | formed in order to solve such a subject is described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible. Further, aspects or technical features of the present invention are not limited to those described below, but are described in the entire specification and drawings, or an invention that can be understood by those skilled in the art from those descriptions. It should be understood that it is recognized based on thought.

すなわち、本発明は、第一の取付部材が筒状部を有する第二の取付部材の一方の開口部側に離隔配置されて、それら第一の取付部材と第二の取付部材が本体ゴム弾性体で相互に連結されることにより、該第二の取付部材の一方の開口部が該本体ゴム弾性体で閉塞されると共に、該第二の取付部材の他方の開口部が可撓性膜で閉塞されて、それら本体ゴム弾性体と可撓性膜の間に外部から密閉されて非圧縮性流体が封入された流体室が形成されると共に、該第二の取付部材で支持される仕切部材によって該流体室が二分されており、該仕切部材を挟んだ一方の側に壁部の一部を該本体ゴム弾性体で構成した受圧室が形成されると共に、該仕切部材を挟んだ他方の側に壁部の一部を該可撓性膜で構成した平衡室が形成されて、それら受圧室と平衡室を相互に連通するオリフィス通路が形成された流体封入式防振装置において、前記仕切部材に可動ゴム膜が組み付けられており、該可動ゴム膜の一方の面に前記受圧室の圧力が及ぼされると共に他方の面に前記平衡室の圧力が及ぼされてこれら受圧室と平衡室の圧力差に基づく該可動ゴム膜の弾性変形によって該受圧室の圧力変動を吸収する液圧吸収機構が構成されていると共に、該可動ゴム膜の中央部分には該受圧室側に向かって突出する突部が形成されていると共に、該突部の形成部分において該可動ゴム膜を貫通する短絡孔が形成されており、更に、該可動ゴム膜の弾性に基づいて該短絡孔が閉塞状態に保持される一方、振動入力時に該受圧室に対して所定の負圧が惹起されて該可動ゴム膜が該受圧室側に向かって弾性変形せしめられることにより連通状態とされる弁機構が、該突部によって構成されていることを特徴とする。   That is, according to the present invention, the first mounting member is spaced from one opening side of the second mounting member having a cylindrical portion, and the first mounting member and the second mounting member are elastic on the main body. By being connected to each other by the body, one opening of the second mounting member is closed by the main rubber elastic body, and the other opening of the second mounting member is made of a flexible membrane. A partition member that is closed and sealed between the main rubber elastic body and the flexible membrane to form an incompressible fluid chamber and is supported by the second mounting member. The fluid chamber is divided into two parts, and a pressure receiving chamber in which a part of the wall portion is formed of the main rubber elastic body is formed on one side across the partition member, and the other side across the partition member is formed. An equilibration chamber is formed on the side with a part of the wall made of the flexible membrane. In the fluid-filled vibration isolator having an orifice passage communicating with each other, a movable rubber film is assembled to the partition member, and the pressure of the pressure receiving chamber is exerted on one surface of the movable rubber film. A hydraulic pressure absorption mechanism is constructed in which the pressure in the equilibrium chamber is exerted on the other surface, and the pressure variation in the pressure chamber is absorbed by elastic deformation of the movable rubber film based on the pressure difference between the pressure chamber and the equilibrium chamber. In addition, a protrusion projecting toward the pressure receiving chamber is formed at the central portion of the movable rubber film, and a short-circuit hole penetrating the movable rubber film is formed at a portion where the protrusion is formed. Further, the short-circuit hole is held in a closed state based on the elasticity of the movable rubber film, while a predetermined negative pressure is induced to the pressure receiving chamber at the time of vibration input, so that the movable rubber film is moved to the pressure receiving chamber side. Elastic deformation towards A valve mechanism which is communicated state by Rukoto, characterized in that it is constituted by the projecting portion.

このような本発明に従う構造とされた流体封入式防振装置において、衝撃的な振動荷重の入力によって受圧室内の圧力が大きく低下せしめられた場合には、可動ゴム膜が受圧室側に向かって弾性変形せしめられて、可動ゴム膜の弾性に基づいて短絡孔が開口せしめられる。これにより、短絡孔を通じて受圧室と平衡室の間で流体流動が生ぜしめられて、受圧室内の負圧が可及的速やかに解消される。従って、受圧室内の圧力低下に起因すると考えられている異音や振動を低減乃至は回避することが出来る。   In such a fluid filled type vibration isolator having a structure according to the present invention, when the pressure in the pressure receiving chamber is greatly reduced by the input of shocking vibration load, the movable rubber film moves toward the pressure receiving chamber. Due to the elastic deformation, the short-circuit hole is opened based on the elasticity of the movable rubber film. As a result, a fluid flow is generated between the pressure receiving chamber and the equilibrium chamber through the short-circuit hole, and the negative pressure in the pressure receiving chamber is eliminated as quickly as possible. Therefore, it is possible to reduce or avoid abnormal noise and vibration that are considered to be caused by a pressure drop in the pressure receiving chamber.

一方、衝撃的な振動荷重の入力によって受圧室に正圧が及ぼされた場合には、可動ゴム膜が平衡室側に向かって弾性変形せしめられて、可動ゴム膜の弾性に基づいて短絡孔が閉塞状態に保持される。これにより、受圧室と平衡室の間で短絡孔を通じての流体流動が防がれて、受圧室に惹起される内圧変動が平衡室側に逃されることなく有利に確保される。従って、オリフィス通路を通じての流体の流動を有利に生ぜしめることが出来て、流体の流動作用に基づく防振効果を有効に得ることが出来る。   On the other hand, when a positive pressure is exerted on the pressure receiving chamber by the input of a shocking vibration load, the movable rubber film is elastically deformed toward the equilibrium chamber side, and the short-circuit hole is formed based on the elasticity of the movable rubber film. It is kept closed. Thus, fluid flow through the short-circuit hole between the pressure receiving chamber and the equilibrium chamber is prevented, and internal pressure fluctuations induced in the pressure receiving chamber are advantageously ensured without being released to the equilibrium chamber side. Therefore, the flow of fluid through the orifice passage can be advantageously produced, and the vibration isolation effect based on the fluid flow action can be effectively obtained.

しかも、本発明に従う構造とされた流体封入式防振装置においては、可動ゴム膜に形成された突部が受圧室側に突出せしめられている。これにより、受圧室内に負圧が及ぼされた場合には、突部が可動ゴム膜の外周側に向かって吸引変形せしめられることにより、短絡孔がより有利に開口せしめられるようになっている。一方、受圧室内に正圧が及ぼされた場合には、突部が内周側に向かって押圧されることにより、短絡孔がより有利に閉塞状態で保持されるようになっている。このように、突部が受圧室内に突出せしめられていることにより、受圧室内に及ぼされる圧力変動に応じて弁機構を有利に開閉作動せしめることが出来る。   In addition, in the fluid-filled vibration isolator having a structure according to the present invention, the protrusion formed on the movable rubber film is protruded toward the pressure receiving chamber. Thereby, when a negative pressure is exerted in the pressure receiving chamber, the projecting portion is sucked and deformed toward the outer peripheral side of the movable rubber film, so that the short-circuit hole is opened more advantageously. On the other hand, when a positive pressure is exerted in the pressure receiving chamber, the projecting portion is pressed toward the inner peripheral side, whereby the short-circuit hole is more advantageously held in a closed state. As described above, since the protrusion is protruded into the pressure receiving chamber, the valve mechanism can be advantageously opened and closed according to the pressure fluctuation exerted in the pressure receiving chamber.

また、本発明に係る流体封入式防振装置においては、前記可動ゴム膜における前記突部の形成部分には、前記短絡孔の前記平衡室側への開口部分において該平衡室側に向かって拡開する形状の開口凹所が形成されていることが望ましい。   Further, in the fluid filled type vibration damping device according to the present invention, the projecting portion of the movable rubber film is formed at a portion where the short-circuit hole is opened toward the equilibrium chamber, and is expanded toward the equilibrium chamber. It is desirable that an opening recess having an opening shape is formed.

これによれば、衝撃的な振動の入力により受圧室内の圧力が低下し、可動ゴム膜が受圧室側に吸引されて変形せしめられると、平衡室側に向かって拡開するように形成された開口凹所が設けられていることにより、短絡孔が有利に開口せしめられる。それ故、キャビテーションによる気泡が生じる程の負圧が受圧室に及ぼされた場合には、短絡孔を通じての流体流動が有利に生ぜしめられて、受圧室の負圧が速やかに解消されるようになっている。   According to this, when the pressure in the pressure receiving chamber decreases due to the input of shocking vibration and the movable rubber film is sucked into the pressure receiving chamber and deformed, it is formed to expand toward the equilibrium chamber. By providing the opening recess, the short-circuit hole is advantageously opened. Therefore, when a negative pressure that causes bubbles due to cavitation is exerted on the pressure receiving chamber, fluid flow through the short-circuit hole is advantageously generated so that the negative pressure in the pressure receiving chamber is quickly eliminated. It has become.

また、本発明に係る流体封入式防振装置においては、前記突部が、前記可動ゴム膜の中央部分を通って直線的に延びる突条形状とされていると共に、前記短絡孔が該突部に沿って延びるスリット形状の短絡スリットとされていても良い。   Further, in the fluid filled type vibration damping device according to the present invention, the protrusion has a protrusion shape extending linearly through a central portion of the movable rubber film, and the short-circuit hole is the protrusion. It may be a slit-shaped short-circuit slit extending along the line.

このような突条形状の突部とスリット形状の短絡孔を採用することにより、衝撃的な振動荷重の入力によって受圧室に負圧が及ぼされた場合には、可動ゴム膜の変形に伴って、突部において短絡スリットを挟んだ両側に位置する部分が相互に離隔変位せしめられて、短絡スリットが開口せしめられる一方、受圧室に正圧が及ぼされた場合には、突部において短絡スリットを挟んで両側に位置する部分が相互に押し当てられることにより、短絡スリットの閉塞状態がより有利に維持される。それ故、目的とする防振性能とキャビテーションによる異音や振動の低減乃至は回避を、両立して実現することが出来る。   By adopting such ridge-shaped protrusions and slit-shaped short-circuit holes, when negative pressure is applied to the pressure receiving chamber by the input of shocking vibration load, along with the deformation of the movable rubber film The portions located on both sides of the short-circuit slit in the protrusion are displaced away from each other, and the short-circuit slit is opened.On the other hand, when positive pressure is applied to the pressure receiving chamber, the short-circuit slit is Since the portions located on both sides of the sandwich are pressed against each other, the closed state of the short-circuit slit is more advantageously maintained. Therefore, it is possible to achieve both the intended vibration isolation performance and the reduction or avoidance of abnormal noise and vibration due to cavitation.

また、本発明に係る流体封入式防振装置においては、前記短絡スリットにおいて直線的に延びた両端部分には、前記可動ゴム膜を貫通する亀裂防止孔が形成されていると共に、該可動ゴム膜の前記仕切部材への組付状態下では該亀裂防止孔が閉塞されている構造を採用することも出来る。   In the fluid-filled vibration isolator according to the present invention, crack preventing holes penetrating the movable rubber film are formed at both end portions linearly extending in the short-circuit slit, and the movable rubber film It is also possible to adopt a structure in which the crack prevention hole is closed under the state of being assembled to the partition member.

このように亀裂が生じ易い短絡スリットの長手方向両端部に亀裂防止孔を形成することにより、亀裂の進展を防いで、可動ゴム膜の耐久性を有利に向上せしめることが出来る。しかも、可動ゴム膜の仕切部材への組付け状態下で亀裂防止孔が閉塞されるようにすることにより、防振対象振動の入力に際して、受圧室と平衡室の間で亀裂防止孔を通じて流体が流動せしめられるのを防いで、オリフィス通路を通じての流体流動量を有利に確保し、流体の流動作用に基づく防振効果を有効に発揮せしめることが出来る。   Thus, by forming a crack prevention hole in the longitudinal direction both ends of the short-circuit slit where a crack is likely to occur, the progress of the crack can be prevented and the durability of the movable rubber film can be advantageously improved. In addition, the crack prevention hole is closed when the movable rubber film is attached to the partition member, so that fluid can be passed between the pressure receiving chamber and the equilibrium chamber through the crack prevention hole when the vibration target vibration is input. By preventing the fluid from flowing, it is possible to advantageously secure the amount of fluid flow through the orifice passage and to effectively exhibit the vibration-proofing effect based on the fluid flow action.

以下、本発明を更に具体的に明らかにするために、本発明の実施形態について、図面を参照しつつ、詳細に説明する。   Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings.

先ず、図1には、本発明に従う構造とされた流体封入式防振装置の一実施形態として、自動車用エンジンマウント10が示されている。エンジンマウント10は、第一の取付部材としての第一の取付金具12と第二の取付部材としての第二の取付金具14が本体ゴム弾性体16で連結された構造を有している。そして、第一の取付金具12が振動伝達系を構成する一方の部材である図示しないパワーユニットに取り付けられると共に、第二の取付金具14が振動伝達系を構成する他方の部材である図示しない車両ボデーに取り付けられることにより、振動伝達系を構成する部材間にエンジンマウント10が介装されて、パワーユニットが車両ボデーによって防振支持されるようになっている。なお、以下の説明において、上下方向とは、原則として、主たる振動入力方向である図1中の上下方向を言うものとする。また、図1には、本実施形態に係るエンジンマウント10の非装着状態が示されている。   First, FIG. 1 shows an automobile engine mount 10 as an embodiment of a fluid filled type vibration damping device having a structure according to the present invention. The engine mount 10 has a structure in which a first mounting bracket 12 as a first mounting member and a second mounting bracket 14 as a second mounting member are connected by a main rubber elastic body 16. The first mounting bracket 12 is attached to a power unit (not shown) that is one member constituting the vibration transmission system, and the second mounting bracket 14 is a vehicle body (not shown) that is the other member constituting the vibration transmission system. As a result, the engine mount 10 is interposed between the members constituting the vibration transmission system, and the power unit is supported in a vibration-proof manner by the vehicle body. In the following description, the vertical direction means the vertical direction in FIG. 1 which is the main vibration input direction in principle. FIG. 1 shows a non-mounted state of the engine mount 10 according to the present embodiment.

より詳細には、第一の取付金具12は、鉄やアルミニウム合金等の剛性材で形成されており、略円形ブロック形状を有している。また、第一の取付金具12の上端部には、径方向外方に向かって広がるフランジ部18が一体形成されている。更に、第一の取付金具12の上端面に開口して中心軸上を延びるようにボルト穴20が形成されており、ボルト穴20の内周面には雌ねじが刻設されている。このような第一の取付金具12は、例えば、ボルト穴20に螺着される図示しない取付ボルトによって図示しないパワーユニットにボルト固定されるようになっている。   More specifically, the first mounting bracket 12 is made of a rigid material such as iron or aluminum alloy, and has a substantially circular block shape. Further, a flange portion 18 that extends radially outward is integrally formed at the upper end portion of the first mounting member 12. Further, a bolt hole 20 is formed so as to open on the upper end surface of the first mounting member 12 and extend on the central axis, and an internal thread is engraved on the inner peripheral surface of the bolt hole 20. Such a first mounting bracket 12 is bolted to a power unit (not shown) by a mounting bolt (not shown) screwed into the bolt hole 20, for example.

一方、第二の取付金具14は、第一の取付金具12と同様の剛性材で形成されており、薄肉大径の略円筒形状を有している。また、第二の取付金具14の軸方向中間部分には、くびれ部22が設けられている。くびれ部22は、軸方向下方に向かって次第に縮径するテーパ部24と、テーパ部24の下端部から外周側に向かって広がる段差部26を含んで構成されている。また、第二の取付金具14の下端部には、外周側に向かって広がる段差28が形成されており、段差28の外周縁部から下方に向かって延び出す大径円筒形状のかしめ片29が一体形成されている。このような第二の取付金具14は、例えば、第二の取付金具14に外嵌固定される図示しないブラケットが車両ボデーに取り付けられること等により、車両ボデーに固定されるようになっている。   On the other hand, the second mounting bracket 14 is formed of a rigid material similar to that of the first mounting bracket 12 and has a thin cylindrical shape with a large diameter. In addition, a constricted portion 22 is provided at an intermediate portion in the axial direction of the second mounting bracket 14. The constricted portion 22 includes a tapered portion 24 that gradually decreases in diameter toward the lower side in the axial direction, and a stepped portion 26 that widens from the lower end portion of the tapered portion 24 toward the outer peripheral side. Further, a step 28 that extends toward the outer peripheral side is formed at the lower end of the second mounting bracket 14, and a large-diameter cylindrical caulking piece 29 that extends downward from the outer peripheral edge of the step 28 is formed. It is integrally formed. Such a second mounting bracket 14 is fixed to the vehicle body, for example, by attaching a bracket (not shown) fitted and fixed to the second mounting bracket 14 to the vehicle body.

このような第一の取付金具12と第二の取付金具14は、同一中心軸上に配設されると共に、第一の取付金具12が第二の取付金具14に対して軸方向上方に離隔配置される。そして、それら第一の取付金具12と第二の取付金具14の間に本体ゴム弾性体16が介装されることにより、第一の取付金具12と第二の取付金具14が本体ゴム弾性体16で弾性的に連結されている。   The first mounting bracket 12 and the second mounting bracket 14 are disposed on the same central axis, and the first mounting bracket 12 is spaced apart from the second mounting bracket 14 in the axial direction. Be placed. The main rubber elastic body 16 is interposed between the first mounting metal 12 and the second mounting metal 14, so that the first mounting metal 12 and the second mounting metal 14 are connected to the main rubber elastic body. 16 is elastically connected.

本体ゴム弾性体16は、厚肉の略円錐台形状を有するゴム弾性体で形成されている。また、本体ゴム弾性体16の径方向中央部分には、大径側端面(図1中、下側の端面)に開口するように大径の円形凹所30が形成されている。このような本体ゴム弾性体16の小径側端部には、第一の取付金具12が埋設されており、フランジ部18の下面が本体ゴム弾性体16の小径側端面に重ね合わされるようにして加硫接着されている。一方、本体ゴム弾性体16の大径側端部の外周面には、第二の取付金具14の上端部およびテーパ部24が重ね合わされて加硫接着されている。これにより、第一の取付金具12と第二の取付金具14が本体ゴム弾性体16で相互に連結されている。なお、本実施形態における本体ゴム弾性体16は、第一の取付金具12と第二の取付金具14を一体的に備えた一体加硫成形品として形成されている。   The main rubber elastic body 16 is formed of a rubber elastic body having a thick, substantially truncated cone shape. A large-diameter circular recess 30 is formed in the central portion of the main rubber elastic body 16 in the radial direction so as to open to the large-diameter side end surface (the lower end surface in FIG. 1). The first mounting bracket 12 is embedded in the end portion of the main rubber elastic body 16 on the small diameter side, and the lower surface of the flange portion 18 is overlapped with the end surface of the main rubber elastic body 16 on the small diameter side. It is vulcanized and bonded. On the other hand, on the outer peripheral surface of the large-diameter end of the main rubber elastic body 16, the upper end portion of the second mounting bracket 14 and the taper portion 24 are overlapped and vulcanized and bonded. Thereby, the first mounting bracket 12 and the second mounting bracket 14 are connected to each other by the main rubber elastic body 16. In addition, the main rubber elastic body 16 in the present embodiment is formed as an integrally vulcanized molded product that integrally includes the first mounting bracket 12 and the second mounting bracket 14.

さらに、本体ゴム弾性体16と一体形成されたシールゴム層32が第二の取付金具14の内周面に固着せしめられている。シールゴム層32は、薄肉のゴム膜で形成されており、第二の取付金具14における段差部26の内周面から段差28の内周縁部に亘る部位を覆うように被着形成されている。   Further, a seal rubber layer 32 integrally formed with the main rubber elastic body 16 is fixed to the inner peripheral surface of the second mounting bracket 14. The seal rubber layer 32 is formed of a thin rubber film, and is formed so as to cover a portion from the inner peripheral surface of the step portion 26 to the inner peripheral portion of the step 28 in the second mounting bracket 14.

また、第二の取付金具14の下端開口部には、可撓性膜としてのダイヤフラム34が配設されている。ダイヤフラム34は、薄肉大径の略円形ドーム形状を有するゴム膜で形成されており、弾性変形が容易に許容されるようになっている。また、ダイヤフラム34の外周縁部には、固定金具36が固着されている。固定金具36は、略円環形状を有しており、筒状の固着部38と該固着部38の上端から外周側に向かって広がるかしめ部40を一体的に備えている。そして、固定金具36の固着部38に対してダイヤフラム34の外周縁部が加硫接着されることにより、ダイヤフラム34が固定金具36を一体的に備えた一体加硫成形品として形成されている。なお、本実施形態では、かしめ部40の外周縁部と上端面を除く略全面に亘って固定金具36がダイヤフラム34と一体形成されたゴム層で覆われている。   In addition, a diaphragm 34 as a flexible film is disposed at the lower end opening of the second mounting bracket 14. The diaphragm 34 is formed of a rubber film having a thin, large-diameter, generally circular dome shape, so that elastic deformation is easily allowed. A fixing metal fitting 36 is fixed to the outer peripheral edge of the diaphragm 34. The fixing bracket 36 has a substantially annular shape, and integrally includes a cylindrical fixing portion 38 and a caulking portion 40 that spreads from the upper end of the fixing portion 38 toward the outer peripheral side. Then, the outer peripheral edge of the diaphragm 34 is vulcanized and bonded to the fixing portion 38 of the fixing bracket 36, whereby the diaphragm 34 is formed as an integrally vulcanized molded product integrally provided with the fixing bracket 36. In the present embodiment, the fixing bracket 36 is covered with a rubber layer integrally formed with the diaphragm 34 over substantially the entire surface excluding the outer peripheral edge portion and the upper end surface of the caulking portion 40.

このようなダイヤフラム34は、第二の取付金具14に組み付けられる。即ち、固定金具36におけるかしめ部40の外周縁部が、第二の取付金具14の下端部に設けられた段差28に対して下方から重ね合わされると共に、かしめ部40が第二の取付金具14に一体形成されたかしめ片29によってかしめ固定されることにより、ダイヤフラム34が第二の取付金具14の下端部に固定されるようになっている。   Such a diaphragm 34 is assembled to the second mounting bracket 14. That is, the outer peripheral edge portion of the caulking portion 40 of the fixing bracket 36 is overlapped from below with respect to the step 28 provided at the lower end portion of the second mounting bracket 14, and the caulking portion 40 is overlapped with the second mounting bracket 14. The diaphragm 34 is fixed to the lower end portion of the second mounting bracket 14 by being caulked and fixed by a caulking piece 29 formed integrally with the second mounting bracket 14.

このように第一の取付金具12と第二の取付金具14を備えた本体ゴム弾性体16の一体加硫成形品に対してダイヤフラム34が組み付けられることにより、第二の取付金具14の軸方向上側の開口部が本体ゴム弾性体16で流体密に閉塞されていると共に、第二の取付金具14の軸方向下側の開口部がダイヤフラム34で流体密に閉塞されている。これにより、第二の取付金具14の内周側において本体ゴム弾性体16とダイヤフラム34の軸方向間には、外部から密閉された流体室としての流体封入領域42が形成されている。また、流体封入領域42には、水やアルキレングリコール,ポリアルキレングリコール,シリコーン油、或いはそれらの混合液等の非圧縮性流体が封入流体として封入されている。なお、封入流体は、特に限定されるものではないが、後述するオリフィス通路82を流動せしめられる流体の共振作用等に基づく防振効果を有利に得るために、粘度が0.1Pa・s以下の低粘性流体を採用することが望ましい。また、このような流体の封入は、ダイヤフラム34の第二の取付金具14(第二の取付金具14を備えた本体ゴム弾性体16の一体加硫成形品)への組付けを非圧縮性流体中で行うことにより、有利に実現することが出来る。   In this way, the diaphragm 34 is assembled to the integrally vulcanized molded product of the main rubber elastic body 16 having the first mounting bracket 12 and the second mounting bracket 14, so that the axial direction of the second mounting bracket 14 is achieved. The upper opening is fluid-tightly closed with the main rubber elastic body 16, and the lower opening in the axial direction of the second mounting bracket 14 is fluid-tightly closed with a diaphragm 34. Thus, a fluid sealing region 42 as a fluid chamber sealed from the outside is formed between the main rubber elastic body 16 and the diaphragm 34 on the inner peripheral side of the second mounting bracket 14. Further, in the fluid sealing region 42, an incompressible fluid such as water, alkylene glycol, polyalkylene glycol, silicone oil, or a mixture thereof is sealed as a sealing fluid. The sealed fluid is not particularly limited, but the viscosity is 0.1 Pa · s or less in order to advantageously obtain a vibration isolation effect based on the resonance action of the fluid flowing through the orifice passage 82 described later. It is desirable to employ a low viscosity fluid. In addition, the fluid is sealed in such a manner that the diaphragm 34 is assembled to the second mounting bracket 14 (an integrally vulcanized molded product of the main rubber elastic body 16 provided with the second mounting bracket 14). It can be realized advantageously by performing in.

また、流体封入領域42には、仕切部材44が収容配置されている。仕切部材44は、厚肉の略円板形状を有しており、本実施形態では、仕切金具本体46と蓋金具48を備えている。   A partition member 44 is accommodated in the fluid sealing area 42. The partition member 44 has a thick, substantially disk shape, and includes a partition metal body 46 and a lid metal 48 in the present embodiment.

仕切金具本体46は、全体として厚肉の略円板形状を有しており、その外周縁部が下方に向かって突出せしめられている。また、仕切金具本体46の径方向中間部分には、周溝52が形成されている。周溝52は、仕切金具本体46の上面に開口する凹溝であって、周方向に所定の長さで延びるように形成されている。   The partition metal fitting body 46 as a whole has a thick, substantially disk shape, and its outer peripheral edge projects downward. In addition, a circumferential groove 52 is formed in a radially intermediate portion of the partition fitting body 46. The circumferential groove 52 is a concave groove that opens on the upper surface of the partition metal body 46 and is formed to extend in the circumferential direction by a predetermined length.

また、仕切金具本体46の径方向中央部分には、上方に向かって開口する円形の中央凹所54が形成されていると共に、中央凹所54の底壁部の中央を貫通する中央孔56が形成されている。中央孔56は、一定の円形断面を有しており、仕切金具本体46の径方向中央部分を貫通するように形成されている。更に、中央孔56の開口周縁部には、支持突条58が仕切金具本体46と一体形成されている。支持突条58は、周方向に延びる円環形状を有しており、中央凹所54の底壁部の内周縁部から上方に向かって突出せしめられている。なお、仕切金具本体46の内周縁部に支持突条58が設けられることにより、支持突条58と中央凹所54の壁部の協働によって、周方向に全周に亘って延びて上方に向かって開口する凹溝が設けられている。   In addition, a circular central recess 54 that opens upward is formed in the central portion in the radial direction of the partition metal fitting 46, and a central hole 56 that passes through the center of the bottom wall portion of the central recess 54. Is formed. The central hole 56 has a certain circular cross section and is formed so as to penetrate the radial center portion of the partition fitting body 46. Further, a support protrusion 58 is integrally formed with the partition metal fitting body 46 at the opening peripheral edge of the central hole 56. The support protrusion 58 has an annular shape extending in the circumferential direction, and protrudes upward from the inner peripheral edge of the bottom wall portion of the central recess 54. In addition, by providing the support protrusion 58 on the inner peripheral edge of the partition metal fitting body 46, the support protrusion 58 and the wall of the central recess 54 cooperate to extend over the entire circumference in the circumferential direction. A concave groove is provided that opens toward the front.

一方、蓋金具48は、薄肉大径の板状とされており、本実施形態では、中央部分が外周部分よりも上方に位置せしめられた段付きの円板形状を有している。また、蓋金具48の径方向中央部分には、貫通孔60が形成されている。貫通孔60は、仕切金具本体46の中央孔56と略等しい直径で形成された円形の孔であって、蓋金具48の径方向中央部分を板厚方向で貫通するように形成されている。また、貫通孔60の開口周縁部には、蓋突条62が一体形成されている。蓋突条62は、全周に亘って延びる円環形状を有しており、蓋金具48の内周縁部から下方に向かって突出するように形成されている。   On the other hand, the lid metal fitting 48 is a thin-walled large-diameter plate, and in this embodiment, has a stepped disk shape in which the central portion is positioned above the outer peripheral portion. Further, a through hole 60 is formed in the central portion of the lid metal 48 in the radial direction. The through hole 60 is a circular hole formed with a diameter substantially equal to the central hole 56 of the partition metal fitting 46, and is formed so as to penetrate the radial center portion of the lid metal 48 in the plate thickness direction. Further, a lid protrusion 62 is integrally formed on the opening peripheral edge of the through hole 60. The lid protrusion 62 has an annular shape extending over the entire circumference, and is formed so as to protrude downward from the inner peripheral edge portion of the lid fitting 48.

そして、蓋金具48は、仕切金具本体46の上端面に対して上方から重ね合わされて組み合わされている。これにより、仕切金具本体46の上端面に開口するように形成された周溝52の上側開口部が蓋金具48で覆蓋されて、周方向に所定の長さで延びるトンネル状の流路が形成されている。   The lid metal 48 is overlapped and combined with the upper end surface of the partition metal body 46 from above. As a result, the upper opening of the circumferential groove 52 formed so as to open to the upper end surface of the partition metal body 46 is covered with the lid metal 48 to form a tunnel-like flow path extending in a predetermined length in the circumferential direction. Has been.

また、これら仕切金具本体46と蓋金具48の間には、可動ゴム膜64が配設されている。可動ゴム膜64は、図2〜4に示されているように、略円板形状のゴム弾性体で形成されており、外周縁部には、中央部分に比して厚肉とされた環状支持部66が一体形成されている。   A movable rubber film 64 is disposed between the partition metal body 46 and the cover metal 48. As shown in FIGS. 2 to 4, the movable rubber film 64 is formed of a substantially disc-shaped rubber elastic body, and the outer peripheral edge portion has an annular shape that is thicker than the central portion. A support portion 66 is integrally formed.

ここにおいて、可動ゴム膜64には、突部としての弁突条68が形成されている。弁突条68は、可動ゴム膜64の板厚方向一方の側に向かって突出せしめられており、環状支持部66よりも内周側に離隔した位置において径方向一方向で延びるように形成されている。また、本実施形態における弁突条68は、その突出先端部分が基端部分に比して薄肉となっている。   Here, the movable rubber film 64 is formed with a valve protrusion 68 as a protrusion. The valve protrusion 68 protrudes toward one side of the movable rubber film 64 in the plate thickness direction, and is formed so as to extend in one radial direction at a position separated from the annular support portion 66 toward the inner peripheral side. ing. Further, the valve protrusion 68 in the present embodiment has a protruding tip portion that is thinner than the base end portion.

また、可動ゴム膜64において弁突条68が形成された部分には、弁突条68と反対側の面に開口する開口凹所70が形成されている。開口凹所70は、弁突条68の長手方向に延びるように直線的に形成されており、可動ゴム膜64の下端面に開口せしめられている。また、本実施形態における開口凹所70は、開口部側である下方に向かって次第に拡開するように形成されている。   In addition, an opening recess 70 that opens to the surface opposite to the valve protrusion 68 is formed in a portion of the movable rubber film 64 where the valve protrusion 68 is formed. The opening recess 70 is linearly formed so as to extend in the longitudinal direction of the valve protrusion 68, and is opened at the lower end surface of the movable rubber film 64. Moreover, the opening recess 70 in this embodiment is formed so that it may expand gradually toward the downward direction which is the opening part side.

さらに、可動ゴム膜64における弁突条68の形成部位には、短絡孔としての短絡スリット72が形成されている。短絡スリット72は、弁突条68の長手方向で直線的に延びて、可動ゴム膜64を板厚方向に貫通する切込みであって、弁突条68の幅方向(図2中、左右)中央に形成されている。また、短絡スリット72は、可動ゴム膜64の板厚方向一方の側において弁突条68の突出先端部分に開口すると共に、板厚方向他方の側において開口凹所70内に開口するように形成されている。また、かかる短絡スリット72によって弁突条68が幅方向両側に分割されており、一対の弁突条68a,68bとされている。そして、後述する仕切金具本体46及び蓋金具48に対する可動ゴム膜64の組付け状態下において、第一の取付金具12と第二の取付金具14の間に振動荷重が入力されない静置状態下では、一対の弁突条68a,68bが可動ゴム膜64の弾性によって相互に当接せしめられており、短絡スリット72が閉塞状態に保持されるようになっている。   Further, a short-circuit slit 72 as a short-circuit hole is formed at a portion where the valve protrusion 68 is formed in the movable rubber film 64. The short-circuit slit 72 is a notch that extends linearly in the longitudinal direction of the valve protrusion 68 and penetrates the movable rubber film 64 in the thickness direction, and is centered in the width direction (left and right in FIG. 2) of the valve protrusion 68. Is formed. Further, the short-circuit slit 72 is formed so as to open to the protruding tip portion of the valve protrusion 68 on one side in the plate thickness direction of the movable rubber film 64 and to open in the opening recess 70 on the other side in the plate thickness direction. Has been. Moreover, the valve protrusion 68 is divided | segmented into the width direction both sides by this short-circuit slit 72, and it is set as a pair of valve protrusion 68a, 68b. In a stationary state in which no vibration load is input between the first mounting bracket 12 and the second mounting bracket 14 under the assembled state of the movable rubber film 64 with respect to the partition bracket main body 46 and the lid bracket 48 described later. The pair of valve protrusions 68a and 68b are brought into contact with each other by the elasticity of the movable rubber film 64, so that the short-circuit slit 72 is held in a closed state.

更にまた、弁突条68a,68bの長手方向両側には、補強部74,74が形成されている。補強部74は、平面視で周方向に湾曲する略矩形状を呈しており、弁突条68a,68bの形成部分よりも薄肉とされている一方、可動ゴム膜64の中央部分において弁突条68a,68bを外れた部分よりも厚肉とされている。また、可動ゴム膜64の補強部74には、亀裂防止孔76が形成されている。亀裂防止孔76は、可動ゴム膜64における一対の補強部74,74の形成部位にそれぞれ貫通形成された小径の円形孔であって、弁突条68a,68bの長手方向両側に形成されている。更に、本実施形態では、短絡スリット72が弁突条68a,68bの長手方向両端よりも僅かに両側に延び出すように形成されており、短絡スリット72が亀裂防止孔76に至る長さで形成されている。   Furthermore, reinforcing portions 74 and 74 are formed on both longitudinal sides of the valve protrusions 68a and 68b. The reinforcing portion 74 has a substantially rectangular shape that is curved in the circumferential direction in plan view, and is thinner than the portions where the valve protrusions 68a and 68b are formed, while the valve protrusion at the central portion of the movable rubber film 64. It is thicker than the part which removed 68a, 68b. A crack prevention hole 76 is formed in the reinforcing portion 74 of the movable rubber film 64. The crack preventing hole 76 is a small-diameter circular hole formed through each of the movable rubber film 64 where the pair of reinforcing portions 74 and 74 are formed, and is formed on both longitudinal sides of the valve protrusions 68a and 68b. . Furthermore, in the present embodiment, the short-circuit slit 72 is formed so as to extend slightly on both sides of the longitudinal ends of the valve protrusions 68a and 68b, and the short-circuit slit 72 is formed with a length reaching the crack prevention hole 76. Has been.

そして、このような本実施形態に係る可動ゴム膜64は、仕切金具本体46と蓋金具48の間で挟持されて、それら金具46,48に組み付けられている。即ち、可動ゴム膜64が、仕切金具本体46の中央部分に形成された中央凹所54に嵌め付けられて、可動ゴム膜64の外周縁部に設けられた環状支持部66が、中央凹所54の周壁部と支持突条58の径方向間で位置決め支持されると共に、仕切金具本体46と仕切金具本体46に対して上方から重ね合わされる蓋金具48との間で環状支持部66が挟み込まれることにより、可動ゴム膜64が仕切金具本体46と蓋金具48に対して固定的に取り付けられている。   The movable rubber film 64 according to this embodiment is sandwiched between the partition metal body 46 and the lid metal 48 and assembled to the metal fittings 46 and 48. That is, the movable rubber film 64 is fitted in the central recess 54 formed in the central portion of the partition metal body 46, and the annular support portion 66 provided on the outer peripheral edge of the movable rubber film 64 is the central recess. The annular support portion 66 is sandwiched between the partition wall body 46 and the lid member 48 that is overlapped with the partition member body 46 from above while being positioned and supported between the peripheral wall portion 54 and the radial direction of the support protrusion 58. As a result, the movable rubber film 64 is fixedly attached to the partition metal body 46 and the lid metal 48.

かかる可動ゴム膜64の仕切金具本体46および蓋金具48への組付け状態下においては、仕切金具本体46に形成された中央孔56と蓋金具48に形成された貫通孔60が、可動ゴム膜64によって遮断されている。これにより、可動ゴム膜64を備えた本実施形態に係る仕切部材44が構成されている。特に本実施形態では、蓋金具48の内周縁部に設けられた蓋突条62の突出先端面が、亀裂防止孔76に対して上方から重ね合わされることにより、可動ゴム膜64の仕切金具本体46及び蓋金具48への組付け状態下において亀裂防止孔76が閉塞されるようになっている。   When the movable rubber film 64 is assembled to the partition metal body 46 and the lid metal 48, the central hole 56 formed in the partition metal body 46 and the through-hole 60 formed in the lid metal 48 serve as the movable rubber film. It is blocked by 64. Thereby, the partition member 44 according to the present embodiment including the movable rubber film 64 is configured. In particular, in the present embodiment, the protruding front end surface of the cover protrusion 62 provided on the inner peripheral edge of the cover metal 48 is overlapped with the crack prevention hole 76 from above, so that the partition metal body of the movable rubber film 64 is provided. The crack prevention hole 76 is closed under the assembled state to the 46 and the lid fitting 48.

このような構造とされた仕切部材44は、第二の取付金具14に支持されて流体封入領域42に収容配置されている。即ち、ダイヤフラム34が第二の取付金具14に組み付けられる前に、仕切部材44が第二の取付金具14に対して下側開口部から挿し入れられて、第二の取付金具14に設けられた段差部26に対してシールゴム層32を介して下方から当接せしめられる。そして、第二の取付金具14に対して八方絞り等の縮径加工を施すことにより、仕切部材44が第二の取付金具14に対して内嵌固定されて支持されるようになっている。なお、本実施形態では、仕切部材44が第二の取付金具14に組み付けられた状態で、ダイヤフラム34が第二の取付金具14に対して組み付けられるようになっており、かしめ部40の内周縁部上面が仕切金具本体46の外周縁部下面に当接せしめられることにより、ダイヤフラム34と仕切部材44が相対的に位置決めされるようになっている。   The partition member 44 having such a structure is supported by the second mounting bracket 14 and accommodated in the fluid sealing region 42. That is, before the diaphragm 34 is assembled to the second mounting bracket 14, the partition member 44 is inserted into the second mounting bracket 14 from the lower opening and provided to the second mounting bracket 14. The stepped portion 26 is brought into contact with the stepped portion 26 through the seal rubber layer 32 from below. Then, by subjecting the second mounting bracket 14 to diameter reduction processing such as an eight-way drawing, the partition member 44 is fitted and fixed to the second mounting bracket 14 to be supported. In the present embodiment, the diaphragm 34 is assembled to the second mounting bracket 14 in a state where the partition member 44 is assembled to the second mounting bracket 14, and the inner peripheral edge of the caulking portion 40. The upper surface of the part is brought into contact with the lower surface of the outer peripheral edge of the partition metal fitting 46 so that the diaphragm 34 and the partition member 44 are relatively positioned.

また、仕切部材44がシールゴム層32を介して第二の取付金具14で支持されることにより、仕切部材44が第二の取付金具14に対して流体密に組み付けられている。これにより、仕切部材44が流体封入領域42内に収容配置された組付け状態下においては、流体封入領域42が仕切部材44を挟んだ両側に二分されている。そして、仕切部材44を挟んだ一方の側(図1中、上)に、壁部の一部が本体ゴム弾性体16で構成されて、振動の入力に際して圧力変動が及ぼされる受圧室78が形成されていると共に、仕切部材44を挟んだ他方の側(図1中、下)に、壁部の一部がダイヤフラム34で構成されて、容積変化が容易に許容される平衡室80が形成されている。なお、本実施形態では、仕切部材44がシールゴム層32を介して第二の取付金具14に組み付けられており、第二の取付金具14と仕切部材44の間が流体密にシールされている。   Further, the partition member 44 is supported by the second mounting bracket 14 via the seal rubber layer 32, so that the partition member 44 is assembled fluid-tightly to the second mounting bracket 14. Thus, in the assembled state in which the partition member 44 is accommodated and disposed in the fluid sealing region 42, the fluid sealing region 42 is divided into two sides sandwiching the partition member 44. Further, a pressure receiving chamber 78 in which a part of the wall portion is constituted by the main rubber elastic body 16 and is subjected to pressure fluctuation when vibration is input is formed on one side (upper in FIG. 1) sandwiching the partition member 44. In addition, on the other side (lower side in FIG. 1) across the partition member 44, a part of the wall portion is configured by the diaphragm 34, and an equilibrium chamber 80 in which volume change is easily allowed is formed. ing. In the present embodiment, the partition member 44 is assembled to the second mounting bracket 14 via the seal rubber layer 32, and the space between the second mounting bracket 14 and the partition member 44 is sealed in a fluid-tight manner.

また、仕切部材44が第二の取付金具14に対して組み付けられた状態においては、可動ゴム膜64の一方の面に対して蓋金具48に形成された貫通孔60を通じて受圧室78内の圧力が及ぼされるようになっていると共に、他方の面に対して仕切金具本体46に形成された中央孔56を通じて平衡室80内の圧力が及ぼされるようになっている。更に、仕切部材44の第二の取付金具14への組付け状態下において、可動ゴム膜64に形成された弁突条68a,68bが受圧室78側に突出せしめられていると共に、可動ゴム膜64に形成された開口凹所70が平衡室80側に向かって開口せしめられている。   In the state where the partition member 44 is assembled to the second mounting bracket 14, the pressure in the pressure receiving chamber 78 through the through hole 60 formed in the lid bracket 48 with respect to one surface of the movable rubber film 64. And the pressure in the equilibrium chamber 80 is applied to the other surface through a central hole 56 formed in the partition metal body 46. Further, the valve protrusions 68a and 68b formed on the movable rubber film 64 are projected to the pressure receiving chamber 78 side in the assembled state of the partition member 44 to the second mounting bracket 14 and the movable rubber film. An opening recess 70 formed in 64 is opened toward the equilibrium chamber 80 side.

また、周溝52の開口部を蓋金具48で覆うことにより形成されるトンネル状の流路は、その一方の端部が蓋金具48に形成された図示しない連通孔を通じて受圧室78に連通せしめられると共に、他方の端部が仕切金具本体46に形成された図示しない連通孔を通じて平衡室80に連通せしめられる。これにより、仕切部材44に形成された周溝52を利用して、受圧室78と平衡室80を相互に連通するオリフィス通路82が形成されている。   Further, the tunnel-like flow path formed by covering the opening of the circumferential groove 52 with the lid fitting 48 is communicated with the pressure receiving chamber 78 through a communication hole (not shown) formed at one end of the lid fitting 48. At the same time, the other end is communicated with the equilibrium chamber 80 through a communication hole (not shown) formed in the partition metal fitting body 46. Thus, an orifice passage 82 that communicates the pressure receiving chamber 78 and the equilibrium chamber 80 with each other is formed by using the circumferential groove 52 formed in the partition member 44.

なお、本実施形態におけるオリフィス通路82は、内部を流動せしめられる流体の共振周波数が10Hz程度の低周波数域となるようにチューニングされており、自動車のエンジンシェイク等に相当する低周波数振動に対して、オリフィス通路82を通じて流動する流体の共振作用等の流動作用に基づく防振効果が有効に発揮されるようになっている。このようなオリフィス通路82のチューニングは、オリフィス通路82の通路長と通路断面積の比を適当に調節することにより、設定することが出来る。   In addition, the orifice passage 82 in the present embodiment is tuned so that the resonance frequency of the fluid that flows inside is in a low frequency range of about 10 Hz, and is low with respect to low frequency vibration corresponding to an engine shake of an automobile. The vibration isolation effect based on the flow action such as the resonance action of the fluid flowing through the orifice passage 82 is effectively exhibited. Such tuning of the orifice passage 82 can be set by appropriately adjusting the ratio of the passage length and the passage sectional area of the orifice passage 82.

このような本実施形態に従う構造とされた自動車用エンジンマウント10は、第一の取付金具12が図示しないパワーユニットに取り付けられると共に、第二の取付金具14が図示しない車両ボデーに取り付けられた車両への装着される。そして、第一の取付金具12と第二の取付金具14の間に主たる振動入力方向である上下方向で振動荷重が入力されると、流体の流動作用等に基づいて目的とする防振効果が発揮されるようになっている。   In the vehicle engine mount 10 having the structure according to the present embodiment, the first mounting bracket 12 is mounted on a power unit (not shown) and the second mounting bracket 14 is mounted on a vehicle body (not shown). To be fitted. When a vibration load is input between the first mounting bracket 12 and the second mounting bracket 14 in the vertical direction, which is the main vibration input direction, the intended vibration-proofing effect is based on the fluid flow action and the like. It has come to be demonstrated.

すなわち、自動車の走行時等において、エンジンシェイク等の低周波大振幅振動が第一の取付金具12と第二の取付金具14の間に入力されると、本体ゴム弾性体16が弾性変形せしめられて、受圧室78内に圧力変動が及ぼされる。これにより、エンジンシェイク等に相当する低周波数域にチューニングされたオリフィス通路82を通じて、受圧室78と平衡室80の間で封入流体が流動せしめられて、流体の共振作用等の流動作用に基づいた高減衰効果等の防振効果が有効に発揮される。なお、低周波数域の振動入力に際しては、入力振動の振幅が大きいことから、可動ゴム膜64の微小な弾性変形による液圧吸収効果が有効に発揮されない。それ故、受圧室78に充分な内圧変動が及ぼされて、オリフィス通路82を通じての流体流動を有利に生ぜしめることが出来る。   That is, when a low-frequency large-amplitude vibration such as an engine shake is input between the first mounting bracket 12 and the second mounting bracket 14 when the automobile is running, the main rubber elastic body 16 is elastically deformed. Thus, pressure fluctuation is exerted in the pressure receiving chamber 78. Accordingly, the sealed fluid is caused to flow between the pressure receiving chamber 78 and the equilibrium chamber 80 through the orifice passage 82 tuned to a low frequency range corresponding to an engine shake or the like, and based on a fluid action such as a resonance action of the fluid. Anti-vibration effects such as a high damping effect are effectively exhibited. Note that when the vibration is input in the low frequency range, the amplitude of the input vibration is large, so that the hydraulic pressure absorption effect due to the minute elastic deformation of the movable rubber film 64 is not exhibited effectively. Therefore, a sufficient internal pressure fluctuation is exerted on the pressure receiving chamber 78, and fluid flow through the orifice passage 82 can be advantageously generated.

一方、自動車の停車時等において、アイドリング時振動などの中乃至高周波小振幅振動が第一の取付金具12と第二の取付金具14の間に入力されると、受圧室78と平衡室80の間で相対的な圧力差が生ぜしめられて、かかる圧力差に基づいて可動ゴム膜64が微小変形せしめられる。そして、可動ゴム膜64の微小変形によって受圧室78内の液圧が平衡室80側に伝達される。これにより、可動ゴム膜64の微小な弾性変形による液圧吸収作用に基づいた低動ばね効果等の防振効果が有効に発揮される。なお、以上の説明からも明らかなように、可動ゴム膜64によって本実施形態における液圧吸収機構が構成されている。   On the other hand, when medium to high frequency small amplitude vibration such as idling vibration is input between the first mounting bracket 12 and the second mounting bracket 14 when the automobile is stopped, the pressure receiving chamber 78 and the equilibrium chamber 80 A relative pressure difference is generated between them, and the movable rubber film 64 is slightly deformed based on the pressure difference. Then, the hydraulic pressure in the pressure receiving chamber 78 is transmitted to the equilibrium chamber 80 side by the minute deformation of the movable rubber film 64. As a result, an anti-vibration effect such as a low dynamic spring effect based on the hydraulic pressure absorbing action due to minute elastic deformation of the movable rubber film 64 is effectively exhibited. As is clear from the above description, the movable rubber film 64 constitutes the hydraulic pressure absorbing mechanism in the present embodiment.

なお、本実施形態において、防振対象となる通常の振動荷重が入力されることにより可動ゴム膜64が微小変形せしめられた場合には、弁突条68a,68b間での当接が維持されて、可動ゴム膜64に形成された短絡スリット72が閉塞状態に保持されるようになっている。   In the present embodiment, when the movable rubber film 64 is slightly deformed by inputting a normal vibration load to be subjected to vibration isolation, the contact between the valve protrusions 68a and 68b is maintained. Thus, the short-circuit slit 72 formed in the movable rubber film 64 is held in a closed state.

さらに、自動車の走行時における段差の乗越え等により、第一の取付金具12と第二の取付金具14の間に衝撃的な振動荷重が入力されて、受圧室78内の圧力が大幅に低下せしめられると、図5に示されているように、可動ゴム膜64に形成された短絡スリット72が開口せしめられるようになっている。即ち、受圧室78内が大幅に減圧されると、受圧室78内の負圧が可動ゴム膜64に及ぼされて、可動ゴム膜64に対して受圧室78側への吸引力が作用する。かかる吸引力によって可動ゴム膜64は、受圧室78側に向かって弾性変形せしめられて受圧室78側に吸引変位せしめられる。   Furthermore, an impact vibration load is input between the first mounting bracket 12 and the second mounting bracket 14 due to, for example, overcoming a step during driving of the automobile, and the pressure in the pressure receiving chamber 78 is greatly reduced. Then, as shown in FIG. 5, the short-circuit slit 72 formed in the movable rubber film 64 is opened. That is, when the pressure receiving chamber 78 is greatly depressurized, the negative pressure in the pressure receiving chamber 78 is exerted on the movable rubber film 64, and the suction force toward the pressure receiving chamber 78 acts on the movable rubber film 64. With this suction force, the movable rubber film 64 is elastically deformed toward the pressure receiving chamber 78 and is displaced to the pressure receiving chamber 78 side.

ここにおいて、可動ゴム膜64に一体形成された弁突条68a,68bが受圧室78側に向かって突出せしめられていることにより、図5にも示されているように、可動ゴム膜64が受圧室78側に向かって凸となるように弾性変形せしめられるに従って、弁突条68a,68bが相互に離隔するように変位せしめられる。そして、一対の弁突条68a,68bが離隔するように変位せしめられることにより、短絡スリット72が開口せしめられて、短絡スリット72を通じて受圧室78と平衡室80が相互に連通せしめられる。   Here, the valve protrusions 68a and 68b formed integrally with the movable rubber film 64 are protruded toward the pressure receiving chamber 78, so that the movable rubber film 64 is also shown in FIG. The valve protrusions 68a and 68b are displaced so as to be separated from each other as they are elastically deformed so as to protrude toward the pressure receiving chamber 78 side. Then, the pair of valve protrusions 68 a and 68 b are displaced so as to be separated from each other, whereby the short-circuit slit 72 is opened, and the pressure receiving chamber 78 and the equilibrium chamber 80 are communicated with each other through the short-circuit slit 72.

特に本実施形態における可動ゴム膜64には、平衡室80側に向かって次第に拡開する開口凹所70が形成されており、開口凹所70内に開口するように短絡スリット72が形成されている。それ故、受圧室78内の負圧に起因する可動ゴム膜64の弾性変形によって短絡スリット72が開き易くなっている。   In particular, the movable rubber film 64 in the present embodiment is formed with an opening recess 70 that gradually expands toward the equilibrium chamber 80 side, and a short-circuit slit 72 is formed so as to open into the opening recess 70. Yes. Therefore, the short-circuit slit 72 is easily opened by elastic deformation of the movable rubber film 64 due to the negative pressure in the pressure receiving chamber 78.

このように、受圧室78内の圧力が大きく低下して、可動ゴム膜64が受圧室78側に向かって弾性変形せしめられると、可動ゴム膜64に形成された短絡スリット72が開口せしめられて、受圧室78と平衡室80が短絡スリット72を通じて相互に連通せしめられる。これにより、受圧室78と平衡室80の間で短絡スリット72を通じての流体流動が生ぜしめられて、受圧室78内の負圧が可及的速やかに解消される。従って、受圧室78内の圧力低下に起因すると考えられる異音や振動の発生を効果的に防ぐことが出来る。   As described above, when the pressure in the pressure receiving chamber 78 is greatly reduced and the movable rubber film 64 is elastically deformed toward the pressure receiving chamber 78 side, the short-circuit slit 72 formed in the movable rubber film 64 is opened. The pressure receiving chamber 78 and the equilibrium chamber 80 are communicated with each other through the short-circuit slit 72. Thereby, the fluid flow through the short-circuit slit 72 is generated between the pressure receiving chamber 78 and the equilibrium chamber 80, and the negative pressure in the pressure receiving chamber 78 is eliminated as quickly as possible. Therefore, it is possible to effectively prevent the generation of abnormal noise and vibration that are considered to be caused by the pressure drop in the pressure receiving chamber 78.

しかも、本実施形態では、弁突条68が受圧室78内に突出するように設けられており、短絡スリット72が弁突条68の形成部分において可動ゴム膜64を貫通するように形成されている。これにより、受圧室78内の圧力が低下せしめられると、受圧室78内の負圧が弁突条68に対して作用せしめられることにより、弁突条68を幅方向両側に向かって吸引する引張力が及ぼされる。そして、可動ゴム膜64の弾性と受圧室78内の圧力の作用によって、一対の弁突条68a,68bがより有利に離隔せしめられて、短絡スリット72が充分に開口せしめられるようになっている。   In addition, in the present embodiment, the valve protrusion 68 is provided so as to protrude into the pressure receiving chamber 78, and the short-circuit slit 72 is formed so as to penetrate the movable rubber film 64 at a portion where the valve protrusion 68 is formed. Yes. As a result, when the pressure in the pressure receiving chamber 78 is reduced, the negative pressure in the pressure receiving chamber 78 is applied to the valve protrusion 68, thereby pulling the valve protrusion 68 toward both sides in the width direction. Power is exerted. Then, due to the elasticity of the movable rubber film 64 and the action of the pressure in the pressure receiving chamber 78, the pair of valve protrusions 68a and 68b are separated more advantageously, and the short-circuit slit 72 is sufficiently opened. .

一方、衝撃的な振動荷重の入力によって、受圧室78内の圧力が上昇した場合には、図6に示されているように、可動ゴム膜64に形成された短絡スリット72が遮断状態に維持されるようになっている。即ち、受圧室78内の圧力が大幅に上昇せしめられると、受圧室78内の正圧が可動ゴム膜64に及ぼされて、可動ゴム膜64に対して平衡室80側への押圧力が作用する。かかる押圧力によって可動ゴム膜64が弾性変形せしめられて、中央部分が平衡室80側に変位せしめられる。   On the other hand, when the pressure in the pressure receiving chamber 78 rises due to the input of a shocking vibration load, as shown in FIG. 6, the short-circuit slit 72 formed in the movable rubber film 64 is maintained in the cut-off state. It has come to be. That is, when the pressure in the pressure receiving chamber 78 is significantly increased, the positive pressure in the pressure receiving chamber 78 is exerted on the movable rubber film 64, and the pressing force toward the equilibrium chamber 80 acts on the movable rubber film 64. To do. The movable rubber film 64 is elastically deformed by the pressing force, and the central portion is displaced toward the equilibrium chamber 80 side.

ここにおいて、可動ゴム膜64が平衡室80側に突出するように弾性変形せしめられると、可動ゴム膜64に一体形成された弁突条68a,68bが受圧室78側に向かって突出せしめられていることにより、図6にも示されているように、弁突条68a,68bの突出先端部分が相互に押し付けられて、短絡スリット72が閉塞状態に維持される。これにより、受圧室78に正圧が及ぼされた場合には、受圧室78内の液圧が短絡スリット72を通じての流体流動によって平衡室80側に逃されるのを防いで、オリフィス通路82を通じての流体流動量を有利に確保し、流体の流動作用に基づく防振効果が有効に発揮されるようになっている。   Here, when the movable rubber film 64 is elastically deformed so as to protrude toward the equilibrium chamber 80, the valve protrusions 68a and 68b formed integrally with the movable rubber film 64 are protruded toward the pressure receiving chamber 78. Accordingly, as shown in FIG. 6, the projecting tip portions of the valve protrusions 68a and 68b are pressed against each other, and the short-circuit slit 72 is maintained in the closed state. As a result, when a positive pressure is applied to the pressure receiving chamber 78, the hydraulic pressure in the pressure receiving chamber 78 is prevented from being released to the equilibrium chamber 80 side by the fluid flow through the short-circuit slit 72, and the pressure through the orifice passage 82. The amount of fluid flow is advantageously ensured, and the vibration isolation effect based on the fluid flow action is effectively exhibited.

しかも、本実施形態では、弁突条68が受圧室78内に突出するように設けられており、短絡スリット72が弁突条68の形成部分において可動ゴム膜64を貫通するように形成されている。これにより、受圧室78内の圧力が上昇せしめられると、受圧室78内の正圧が弁突条68に対して作用せしめられることにより、弁突条68を幅方向中央側に向かって押圧する圧縮力が及ぼされる。そして、可動ゴム膜64の弾性と受圧室78内の圧力の作用によって、一対の弁突条68a,68bがより有利に密着せしめられて、短絡スリット72が閉塞状態で安定して保持されるようになっている。   In addition, in the present embodiment, the valve protrusion 68 is provided so as to protrude into the pressure receiving chamber 78, and the short-circuit slit 72 is formed so as to penetrate the movable rubber film 64 at a portion where the valve protrusion 68 is formed. Yes. Thus, when the pressure in the pressure receiving chamber 78 is increased, the positive pressure in the pressure receiving chamber 78 is applied to the valve protrusion 68, thereby pressing the valve protrusion 68 toward the center in the width direction. A compressive force is exerted. Then, the elasticity of the movable rubber film 64 and the pressure in the pressure receiving chamber 78 cause the pair of valve protrusions 68a and 68b to adhere more advantageously so that the short-circuit slit 72 is stably held in the closed state. It has become.

なお、以上の説明からも明らかなように、受圧室78に作用する圧力に応じて弁突条68a,68bの密着と離隔が切り換えられることにより、短絡スリット72の遮断状態と連通状態が切り替えられるようになっており、本実施形態における弁機構が弁突条68a,68bによって構成されている。   As is clear from the above description, the contact state and separation of the valve protrusions 68a and 68b are switched according to the pressure acting on the pressure receiving chamber 78, so that the blocking state and the communication state of the short-circuit slit 72 are switched. Thus, the valve mechanism in the present embodiment is constituted by the valve protrusions 68a and 68b.

以上のように、本実施形態に係るエンジンマウント10では、衝撃的な振動荷重の入力に際して、キャビテーションに起因する異音や振動の低減乃至は回避と、流体の流動作用に基づいた優れた防振効果を、両立して高度に実現することが出来る。しかも、受圧室78内に突出する特定形状の弁突条68a,68bを可動ゴム膜64に一体形成し、弁突条68a,68bの重ね合せ面間に受圧室78と平衡室80を連通せしめる短絡スリット72を設けることにより、受圧室78に正圧が及ぼされた場合には、可動ゴム膜64自体の弾性や受圧室78内の圧力を利用して弁突条68a,68bを相互に圧接せしめて、短絡スリット72の開口を防ぐことが出来るようになっている。それ故、可動ゴム膜64の弾性変形を制限するために拘束部材等の特別な部材を設けることなく、簡易な構造と少ない部品点数で上記の如き優れた効果を実現することが出来る。   As described above, in the engine mount 10 according to the present embodiment, when an impact vibration load is input, it is possible to reduce or avoid abnormal noise and vibration caused by cavitation, and excellent vibration isolation based on fluid flow action. The effect can be realized at a high level in a balanced manner. In addition, valve protrusions 68a and 68b having a specific shape protruding into the pressure receiving chamber 78 are formed integrally with the movable rubber film 64, and the pressure receiving chamber 78 and the equilibrium chamber 80 are communicated between the overlapping surfaces of the valve protrusions 68a and 68b. By providing the short-circuit slit 72, when a positive pressure is exerted on the pressure receiving chamber 78, the valve protrusions 68 a and 68 b are pressed against each other using the elasticity of the movable rubber film 64 itself and the pressure in the pressure receiving chamber 78. At least, the opening of the short-circuit slit 72 can be prevented. Therefore, the above-described excellent effects can be realized with a simple structure and a small number of parts without providing a special member such as a restraining member in order to limit the elastic deformation of the movable rubber film 64.

また、本実施形態に従う構造のエンジンマウント10では、可動ゴム膜64に形成された短絡スリット72の長手方向両側に亀裂防止孔76が形成されており、短絡スリット72が亀裂防止孔76に至る長さで形成されている。これにより、短絡スリット72の開閉に伴って短絡スリット72の長手方向両端部で亀裂が生じるのを防いで、可動ゴム膜64の耐久性の向上を図ることが出来る。特に本実施形態では、亀裂防止孔76が厚肉とされた補強部74を貫通するように形成されており、短絡スリット72の端部付近における亀裂の発生がより有利に防がれるようになっている。   Further, in the engine mount 10 having the structure according to the present embodiment, the crack prevention holes 76 are formed on both sides in the longitudinal direction of the short-circuit slit 72 formed in the movable rubber film 64, and the length of the short-circuit slit 72 reaching the crack prevention hole 76 is long. Is formed. Accordingly, it is possible to prevent cracks from occurring at both ends in the longitudinal direction of the short-circuit slit 72 as the short-circuit slit 72 is opened and closed, and to improve the durability of the movable rubber film 64. In particular, in this embodiment, the crack prevention hole 76 is formed so as to penetrate the thickened reinforcing portion 74, and the occurrence of cracks near the end of the short-circuit slit 72 can be prevented more advantageously. ing.

しかも、本実施形態では、可動ゴム膜64の仕切部材44への組付け状態下において、亀裂防止孔76が蓋金具48の内周縁部に設けられた蓋突条62で覆われて遮断されている。これにより、亀裂防止孔76を通じて受圧室78と平衡室80の間で流体が流動せしめられるのを防いで、振動入力時において受圧室78内に内圧変動を有利に惹起せしめることが出来る。それ故、オリフィス通路82を通じての流体流動を有利に実現して、目的とする防振効果を有効に得ることが出来る。   Moreover, in this embodiment, the crack prevention hole 76 is covered and blocked by the lid protrusion 62 provided at the inner peripheral edge of the lid metal 48 under the assembled state of the movable rubber film 64 to the partition member 44. Yes. Thereby, the fluid is prevented from flowing between the pressure receiving chamber 78 and the equilibrium chamber 80 through the crack preventing hole 76, and the internal pressure fluctuation can be advantageously caused in the pressure receiving chamber 78 at the time of vibration input. Therefore, the fluid flow through the orifice passage 82 can be advantageously realized, and the intended vibration isolation effect can be effectively obtained.

以上、本発明の一実施形態について説明してきたが、これはあくまでも例示であって、本発明は、かかる実施形態における具体的な記載によって、何等、限定的に解釈されるものではない。   As mentioned above, although one Embodiment of this invention was described, this is an illustration to the last, Comprising: This invention is not interpreted restrictively at all by the specific description in this Embodiment.

例えば、前記実施形態においては、可動ゴム膜64に設けられる突部として径方向で延びる弁突条68が形成されており、短絡孔として弁突条68の長手方向で延びる短絡スリット72が形成されているが、突部及び短絡孔の形状等は、前記実施形態に記載された具体的な形状によって限定的に解釈されるものではない。具体的には、例えば、突部が互いに直交する径方向で延びる十字状とされており、かかる突部の幅方向中央を延びるように十字スリット状の短絡孔が形成されていても良い。更に、例えば、突部が可動ゴム膜64の径方向中央において突出する山形の突起状とされていると共に、短絡孔が突部の中央を貫通する針孔状の小径孔とされていても良い。また、前記実施形態では、弁突条68と短絡スリット72が直線的に延びているが、例えば、突部や短絡孔が湾曲や屈曲等して延びるスリット状とされていても良い。   For example, in the embodiment, the valve protrusion 68 extending in the radial direction is formed as a protrusion provided on the movable rubber film 64, and the short-circuit slit 72 extending in the longitudinal direction of the valve protrusion 68 is formed as a short-circuit hole. However, the shape and the like of the protrusion and the short-circuit hole are not limitedly interpreted by the specific shape described in the embodiment. Specifically, for example, the protrusion may have a cross shape extending in a radial direction perpendicular to each other, and a cross slit-like short-circuit hole may be formed so as to extend in the center in the width direction of the protrusion. Further, for example, the protrusion may be a mountain-shaped protrusion protruding at the center of the movable rubber film 64 in the radial direction, and the short-circuit hole may be a needle hole-shaped small-diameter hole penetrating the center of the protrusion. . Moreover, in the said embodiment, although the valve protrusion 68 and the short circuit slit 72 are extended linearly, you may make it the slit shape which a protrusion part and a short circuit hole extend, for example by curving or bending.

さらに、前記実施形態では、可動ゴム膜64において弁突条68や開口凹所70,環状支持部66を外れた径方向中間部分が、略一定の板厚で形成されているが、例えば、内周側に行くに従って次第に板厚寸法が大きくなる等、径方向や周方向で板厚が変化せしめられていても良い。   Further, in the embodiment, the radial intermediate portion of the movable rubber film 64 that is out of the valve protrusion 68, the opening recess 70, and the annular support portion 66 is formed with a substantially constant plate thickness. The plate thickness may be changed in the radial direction or the circumferential direction, for example, the plate thickness dimension gradually increases toward the circumferential side.

また、前記実施形態では、低周波数域にチューニングされたオリフィス通路82を備えた構造のエンジンマウント10が示されているが、例えば、エンジンシェイク等に相当する低周波数域にチューニングされた第一のオリフィス通路82と、アイドリング時振動等に相当する中周波数域にチューニングされた第二のオリフィス通路82を備えた構造の流体封入式防振装置等、各種公知の構造の流体封入式防振装置に対して、本発明は適用可能である。   Moreover, in the said embodiment, although the engine mount 10 of the structure provided with the orifice channel | path 82 tuned to the low frequency range is shown, for example, the 1st tuned to the low frequency range corresponding to an engine shake etc. is shown. The fluid-filled vibration isolator having various known structures, such as a fluid-filled vibration-proof device having a structure including the orifice passage 82 and a second orifice passage 82 tuned to an intermediate frequency range corresponding to vibration during idling, etc. On the other hand, the present invention is applicable.

また、前記実施形態では、本発明を自動車用のエンジンマウントに適用した例を示したが、本発明は、例えばサブフレームマウント等、エンジンマウント以外の流体封入式防振装置に適用することも出来る。なお、本発明が自動車以外に用いられる流体封入式防振装置に対しても適用可能であることは言うまでもない。   In the above embodiment, the present invention is applied to an automobile engine mount. However, the present invention can also be applied to a fluid-filled vibration isolator other than the engine mount, such as a subframe mount. . Needless to say, the present invention can also be applied to a fluid-filled vibration isolator used for other than automobiles.

その他、一々列挙はしないが、本発明は、当業者の知識に基づいて種々なる変更,修正,改良等を加えた態様において実施され得るものであり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。   In addition, although not enumerated one by one, the present invention can be carried out in a mode to which various changes, modifications, improvements and the like are added based on the knowledge of those skilled in the art. It goes without saying that all are included in the scope of the present invention without departing from the spirit of the present invention.

本発明の一実施形態としての自動車用エンジンマウントを示す縦断面図であって、図2におけるI−I線断面図。It is a longitudinal cross-sectional view which shows the engine mount for motor vehicles as one Embodiment of this invention, Comprising: The II sectional view taken on the line in FIG. 図1に示されたエンジンマウントを構成する可動ゴム膜を示す平面図。The top view which shows the movable rubber film which comprises the engine mount shown by FIG. 図2に示された可動ゴム膜のIII−III線断面図。III-III sectional view taken on the line of the movable rubber film shown in FIG. 図2に示された可動ゴム膜のIV−IV線断面図。FIG. 4 is a sectional view of the movable rubber film shown in FIG. 2 taken along the line IV-IV. 図1に示されたエンジンマウントにおいて、受圧室に負圧が及ぼされた状態を示す縦断面図。The longitudinal cross-sectional view which shows the state in which the negative pressure was exerted on the receiving pressure chamber in the engine mount shown by FIG. 図1に示されたエンジンマウントにおいて、受圧室に正圧が及ぼされた状態を示す縦断面図。The longitudinal cross-sectional view which shows the state in which the positive pressure was exerted on the receiving pressure chamber in the engine mount shown by FIG.

符号の説明Explanation of symbols

10:エンジンマウント,12:第一の取付金具,14:第二の取付金具,16本体ゴム弾性体,34:ダイヤフラム,42:流体封入領域,44:仕切部材,64:可動ゴム膜,68:弁突条,70:開口凹所,72:短絡スリット,76:亀裂防止孔,78:受圧室,80:平衡室,82:オリフィス通路 10: engine mount, 12: first mounting bracket, 14: second mounting bracket, 16 main rubber elastic body, 34: diaphragm, 42: fluid sealing region, 44: partition member, 64: movable rubber film, 68: Valve ridge, 70: Opening recess, 72: Short-circuit slit, 76: Crack prevention hole, 78: Pressure receiving chamber, 80: Equilibrium chamber, 82: Orifice passage

Claims (4)

第一の取付部材が筒状部を有する第二の取付部材の一方の開口部側に離隔配置されて、それら第一の取付部材と第二の取付部材が本体ゴム弾性体で相互に連結されることにより、該第二の取付部材の一方の開口部が該本体ゴム弾性体で閉塞されると共に、該第二の取付部材の他方の開口部が可撓性膜で閉塞されて、それら本体ゴム弾性体と可撓性膜の間に外部から密閉されて非圧縮性流体が封入された流体室が形成されると共に、該第二の取付部材で支持される仕切部材によって該流体室が二分されており、該仕切部材を挟んだ一方の側に壁部の一部を該本体ゴム弾性体で構成した受圧室が形成されると共に、該仕切部材を挟んだ他方の側に壁部の一部を該可撓性膜で構成した平衡室が形成されて、それら受圧室と平衡室を相互に連通するオリフィス通路が形成された流体封入式防振装置において、
前記仕切部材に可動ゴム膜が組み付けられており、該可動ゴム膜の一方の面に前記受圧室の圧力が及ぼされると共に他方の面に前記平衡室の圧力が及ぼされてこれら受圧室と平衡室の圧力差に基づく該可動ゴム膜の弾性変形によって該受圧室の圧力変動を吸収する液圧吸収機構が構成されていると共に、
該可動ゴム膜の中央部分には該受圧室側に向かって突出する突部が形成されていると共に、該突部の形成部分において該可動ゴム膜を貫通する短絡孔が形成されており、
更に、該可動ゴム膜の弾性に基づいて該短絡孔が閉塞状態に保持される一方、振動入力時に該受圧室に対して所定の負圧が惹起されて該可動ゴム膜が該受圧室側に向かって弾性変形せしめられることにより連通状態とされる弁機構が、該突部によって構成されていることを特徴とする流体封入式防振装置。
The first mounting member is spaced apart from one opening side of the second mounting member having the cylindrical portion, and the first mounting member and the second mounting member are connected to each other by the main rubber elastic body. As a result, one opening of the second mounting member is closed by the main rubber elastic body, and the other opening of the second mounting member is closed by a flexible membrane, so that the main body A fluid chamber sealed from the outside and sealed with an incompressible fluid is formed between the rubber elastic body and the flexible membrane, and the fluid chamber is divided into two by the partition member supported by the second mounting member. A pressure receiving chamber having a part of the wall made of the main rubber elastic body is formed on one side of the partition member, and one wall portion is formed on the other side of the partition member. An equilibration chamber is formed by the flexible membrane, and the pressure receiving chamber and the equilibration chamber communicate with each other. In the fluid filled type vibration damping device office passage is formed,
A movable rubber film is assembled to the partition member, and the pressure of the pressure receiving chamber is exerted on one surface of the movable rubber film, and the pressure of the equilibrium chamber is exerted on the other surface. A hydraulic pressure absorbing mechanism configured to absorb the pressure fluctuation of the pressure receiving chamber by elastic deformation of the movable rubber film based on the pressure difference of
A protrusion projecting toward the pressure-receiving chamber is formed in the central portion of the movable rubber film, and a short-circuit hole penetrating the movable rubber film is formed in the formation portion of the protrusion,
Further, the short-circuit hole is held closed based on the elasticity of the movable rubber film, while a predetermined negative pressure is induced to the pressure receiving chamber at the time of vibration input so that the movable rubber film is moved to the pressure receiving chamber side. A fluid-filled vibration damping device, characterized in that a valve mechanism that is brought into a communication state by being elastically deformed toward the surface is constituted by the protrusions.
前記可動ゴム膜における前記突部の形成部分には、前記短絡孔の前記平衡室側への開口部分において該平衡室側に向かって拡開する形状の開口凹所が形成されている請求項1に記載の流体封入式防振装置。   2. An opening recess having a shape that expands toward the equilibrium chamber is formed in an opening portion of the short-circuit hole toward the equilibrium chamber at a portion where the protrusion is formed in the movable rubber film. The fluid-filled vibration isolator described in 1. 前記突部が、前記可動ゴム膜の中央部分を通って直線的に延びる突条形状とされていると共に、前記短絡孔が該突部に沿って延びるスリット形状の短絡スリットとされている請求項1又は2に記載の流体封入式防振装置。   The projecting portion has a ridge shape that linearly extends through a central portion of the movable rubber film, and the short-circuit hole is a slit-shaped short-circuit slit extending along the projecting portion. The fluid-filled vibration isolator according to 1 or 2. 前記短絡スリットにおいて直線的に延びた両端部分には、前記可動ゴム膜を貫通する亀裂防止孔が形成されていると共に、該可動ゴム膜の前記仕切部材への組付状態下では該亀裂防止孔が閉塞されている請求項3に記載の流体封入式防振装置。   At both end portions that extend linearly in the short-circuit slit, a crack prevention hole that penetrates the movable rubber film is formed, and the crack prevention hole is in an assembled state of the movable rubber film to the partition member. The fluid-filled vibration isolator according to claim 3, wherein is closed.
JP2007093492A 2007-03-30 2007-03-30 Fluid filled vibration isolator Active JP4741540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007093492A JP4741540B2 (en) 2007-03-30 2007-03-30 Fluid filled vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007093492A JP4741540B2 (en) 2007-03-30 2007-03-30 Fluid filled vibration isolator

Publications (2)

Publication Number Publication Date
JP2008249075A true JP2008249075A (en) 2008-10-16
JP4741540B2 JP4741540B2 (en) 2011-08-03

Family

ID=39974248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007093492A Active JP4741540B2 (en) 2007-03-30 2007-03-30 Fluid filled vibration isolator

Country Status (1)

Country Link
JP (1) JP4741540B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085344A (en) * 2007-09-28 2009-04-23 Tokai Rubber Ind Ltd Liquid-sealed vibration isolating device
JP2010196747A (en) * 2009-02-24 2010-09-09 Kurashiki Kako Co Ltd Liquid-filled vibration isolator
JP2010196874A (en) * 2009-02-27 2010-09-09 Kurashiki Kako Co Ltd Liquid-filled vibration isolator
JP2011069428A (en) * 2009-09-25 2011-04-07 Tokai Rubber Ind Ltd Fluid-filled type vibration control device
JP2011185291A (en) * 2010-03-04 2011-09-22 Toyo Tire & Rubber Co Ltd Liquid filled vibration isolating device
JP2011256930A (en) * 2010-06-08 2011-12-22 Tokai Rubber Ind Ltd Fluid-sealed anti-vibration device
DE112009002210B4 (en) * 2008-09-17 2020-03-05 Toyota Jidosha Kabushiki Kaisha Vibration absorber with trapped liquid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102215764B1 (en) * 2017-03-29 2021-02-15 현대자동차주식회사 Hydraulic Mount

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171931A (en) * 1985-01-19 1986-08-02 ボ−ゲ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツンク Hydraulic cushion rubber bearing
JPH03168439A (en) * 1989-11-09 1991-07-22 Carl Freudenberg:Fa Hydraulic shock-absorbing rubber sheet
JPH1047425A (en) * 1996-05-24 1998-02-20 Carl Freudenberg:Fa Fluid vibration damping block
JP2805305B2 (en) * 1986-09-26 1998-09-30 ボ−ゲ・ゲゼルシヤフト・ミツト・ヘシユレンクテル・ハフツング Hydraulic shock-absorbing silent block
JP2004340312A (en) * 2003-05-19 2004-12-02 Nok Corp Liquid sealed mount
JP2005121162A (en) * 2003-10-17 2005-05-12 Bridgestone Corp Vibration control device
JP2006083979A (en) * 2004-09-17 2006-03-30 Nok Corp Liquid-enclosed mount
JP2006112607A (en) * 2004-10-18 2006-04-27 Tokai Rubber Ind Ltd Fluid enclosed anti-vibrational device
JP2007051713A (en) * 2005-08-18 2007-03-01 Nissan Motor Co Ltd Liquid sealed type vibration control device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171931A (en) * 1985-01-19 1986-08-02 ボ−ゲ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツンク Hydraulic cushion rubber bearing
JP2805305B2 (en) * 1986-09-26 1998-09-30 ボ−ゲ・ゲゼルシヤフト・ミツト・ヘシユレンクテル・ハフツング Hydraulic shock-absorbing silent block
JPH03168439A (en) * 1989-11-09 1991-07-22 Carl Freudenberg:Fa Hydraulic shock-absorbing rubber sheet
JPH1047425A (en) * 1996-05-24 1998-02-20 Carl Freudenberg:Fa Fluid vibration damping block
JP2004340312A (en) * 2003-05-19 2004-12-02 Nok Corp Liquid sealed mount
JP2005121162A (en) * 2003-10-17 2005-05-12 Bridgestone Corp Vibration control device
JP2006083979A (en) * 2004-09-17 2006-03-30 Nok Corp Liquid-enclosed mount
JP2006112607A (en) * 2004-10-18 2006-04-27 Tokai Rubber Ind Ltd Fluid enclosed anti-vibrational device
JP2007051713A (en) * 2005-08-18 2007-03-01 Nissan Motor Co Ltd Liquid sealed type vibration control device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085344A (en) * 2007-09-28 2009-04-23 Tokai Rubber Ind Ltd Liquid-sealed vibration isolating device
DE112009002210B4 (en) * 2008-09-17 2020-03-05 Toyota Jidosha Kabushiki Kaisha Vibration absorber with trapped liquid
JP2010196747A (en) * 2009-02-24 2010-09-09 Kurashiki Kako Co Ltd Liquid-filled vibration isolator
JP2010196874A (en) * 2009-02-27 2010-09-09 Kurashiki Kako Co Ltd Liquid-filled vibration isolator
JP2011069428A (en) * 2009-09-25 2011-04-07 Tokai Rubber Ind Ltd Fluid-filled type vibration control device
JP2011185291A (en) * 2010-03-04 2011-09-22 Toyo Tire & Rubber Co Ltd Liquid filled vibration isolating device
JP2011256930A (en) * 2010-06-08 2011-12-22 Tokai Rubber Ind Ltd Fluid-sealed anti-vibration device

Also Published As

Publication number Publication date
JP4741540B2 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
JP4741540B2 (en) Fluid filled vibration isolator
JP4671176B2 (en) Fluid filled vibration isolator
JP4392667B2 (en) Fluid filled vibration isolator
JP4820792B2 (en) Fluid filled vibration isolator
JP6431795B2 (en) Fluid filled vibration isolator
JP2009275910A (en) Fluid-filled type vibration control device
JP2008002618A (en) Fluid filled vibration isolating device
JP4861843B2 (en) Fluid filled vibration isolator
JP4820793B2 (en) Fluid filled vibration isolator
JP2007085523A (en) Fluid-enclosed type vibration isolator
JP6240482B2 (en) Fluid filled vibration isolator
JP2007139024A (en) Fluid-sealed vibration control device
JP2009058084A (en) Liquid-filled vibration isolation device
JP2009014013A (en) Fluid filled type vibration damping device
JP2007271004A (en) Fluid-sealed vibration isolating device
JP2008185152A (en) Fluid filled vibration absorbing device and engine mount using the same
JP4959390B2 (en) Fluid filled vibration isolator
JP5108658B2 (en) Fluid filled vibration isolator
JP2008133937A (en) Fluid sealing type damping device
JP5243863B2 (en) Fluid filled vibration isolator
JP2006177530A (en) Fluid sealed vibration isolator
JP2008249076A (en) Fluid sealed type vibration damper
JP4751740B2 (en) Fluid filled vibration isolator
JP4181162B2 (en) Liquid-filled vibration isolator
JP2005233243A (en) Fluid-filled engine mount

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110506

R150 Certificate of patent or registration of utility model

Ref document number: 4741540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350