JP2008246968A - Water-repellent and oil-repellent anti-staining reflecting plate, its manufacturing method and tunnel, road sign, display plate, signboard, vehicle and building using water-repellent and oil-repellent anti-staining reflecting plate - Google Patents

Water-repellent and oil-repellent anti-staining reflecting plate, its manufacturing method and tunnel, road sign, display plate, signboard, vehicle and building using water-repellent and oil-repellent anti-staining reflecting plate Download PDF

Info

Publication number
JP2008246968A
JP2008246968A JP2007093667A JP2007093667A JP2008246968A JP 2008246968 A JP2008246968 A JP 2008246968A JP 2007093667 A JP2007093667 A JP 2007093667A JP 2007093667 A JP2007093667 A JP 2007093667A JP 2008246968 A JP2008246968 A JP 2008246968A
Authority
JP
Japan
Prior art keywords
water
repellent
antifouling
oil
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007093667A
Other languages
Japanese (ja)
Inventor
Kazufumi Ogawa
小川  一文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima Industrial Promotion Organization
Kagawa University NUC
Original Assignee
Hiroshima Industrial Promotion Organization
Kagawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima Industrial Promotion Organization, Kagawa University NUC filed Critical Hiroshima Industrial Promotion Organization
Priority to JP2007093667A priority Critical patent/JP2008246968A/en
Priority to PCT/JP2008/055955 priority patent/WO2008120693A1/en
Publication of JP2008246968A publication Critical patent/JP2008246968A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/008Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/004Reflecting paints; Signal paints
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/003Linings or provisions thereon, specially adapted for traffic tunnels, e.g. with built-in cleaning devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0006Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/75Hydrophilic and oleophilic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/76Hydrophobic and oleophobic coatings

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water-repellent and oil-repellent anti-staining reflecting plate enhanced in water-repellent and oil-repellent anti-staining properties, water-repellent droplet separation properties (also said as water-repellent sliding properties) and durability such as abrasion resistance or weatherability, its manufacturing method and a tunnel, a road sign, a signboard, a vehicle and a building all of which use the water-repellent and oil-repellent anti-staining reflecting plate. <P>SOLUTION: The water-repellent and oil-repellent anti-staining reflecting plate 10 is manufactured by coating the surface of a base material 11 with a fine particle dispersion in which transparent fine particles 18 are dispersed, drying the coated base material to heat-treat the same in an oxygen-containing atmosphere to obtain a fine particle welded base material 19 and forming a water-repellent and oil-repellent anti-staining film 14 on the surface of the fine particle welded base material 19. The tunnel, the road sign, the signboard, the vehicle and the building all of which use the water-repellent and oil-repellent anti-staining reflecting plate are also disclosed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高耐久性でかつ撥水撥油防汚性の被膜が表面に形成された反射板およびその製造方法に係り、更に詳細には、撥水撥油防汚機能が要求されるトンネル、道路標識、表示板、看板、自動車等の乗り物、ビル等の建築物内の外壁に用いる撥水撥油防汚性反射板およびその製造方法に関する。 The present invention relates to a reflector having a highly durable and water-repellent / oil-repellent antifouling film formed on the surface thereof, and a method for producing the same, and more specifically, a tunnel that requires a water / oil repellent / antifouling function. The present invention relates to a water- and oil-repellent and antifouling reflector used for road signs, display boards, signs, vehicles such as automobiles, and outer walls in buildings such as buildings, and a method for manufacturing the same.

一般にフッ化炭素基含有クロロシラン系の吸着剤と非水系の有機溶媒よりなる化学吸着液を用い、液相で化学吸着して単分子膜状の撥水撥油防汚性化学吸着膜を形成できることはすでによく知られている(例えば、特許文献1参照)。 In general, a chemical adsorption solution consisting of a fluorocarbon group-containing chlorosilane-based adsorbent and a non-aqueous organic solvent can be used for chemical adsorption in the liquid phase to form a monomolecular film-like water / oil repellent / antifouling chemical adsorption film. Is already well known (see, for example, Patent Document 1).

このような溶液中での化学吸着単分子膜の製造原理は、基材表面の水酸基などの活性水素とクロロシラン系の吸着剤のクロロシリル基との脱塩酸反応を用いて単分子膜を形成することにある。 The principle of production of a chemisorbed monolayer in such a solution is to form a monolayer using a dehydrochlorination reaction between active hydrogen such as hydroxyl groups on the substrate surface and chlorosilyl groups of chlorosilane-based adsorbents. It is in.

特開平4−132637号公報JP-A-4-132737

しかしながら、従来の化学吸着膜は吸着剤と平坦な基材表面との化学結合のみを用いているため、水滴接触角は高々120度程度止まりであり、水滴や汚れが自然に除去されるためには撥水撥油防汚性や離水性が乏しいという課題があった。また、耐摩耗性や耐候性等の耐久性も乏しいという課題があった。 However, since the conventional chemical adsorption film uses only the chemical bond between the adsorbent and the flat substrate surface, the contact angle of the water droplet is only about 120 degrees, and the water droplets and dirt are naturally removed. Has the problem of poor water and oil repellency and antifouling properties and water separation. Moreover, the subject that durability, such as abrasion resistance and a weather resistance, was also scarce occurred.

本発明は、撥水撥油防汚機能が要求されるトンネル、道路標識、表示板、看板、乗り物、および建築物に用いる反射板において、撥水撥油防汚性、水滴離水性(滑水性ともいう)、および耐摩耗性や耐候性等の耐久性の向上を目的とする。 The present invention relates to a water- and oil-repellent and water-repellent (water-sliding property) water-repellent and oil-repellent and water-repellent (water-sliding property) It is also intended to improve durability such as wear resistance and weather resistance.

前記課題を解決するための手段として提供される第1の発明に係る撥水撥油防汚性反射板は、板状の基材と、前記基材の表面に融着した撥水撥油防汚性の透明微粒子と、前記基材の表面のうち前記透明微粒子が融着していない部分を覆う撥水撥油防汚性被膜とを有する。 The water / oil repellent / antifouling reflective plate according to the first invention provided as means for solving the above-mentioned problems is a plate-like base material and a water / oil / oil repellent preventive material fused to the surface of the base material. It has a dirty transparent fine particle and a water / oil repellent / antifouling coating covering a portion of the surface of the substrate where the transparent fine particle is not fused.

第1の発明に係る撥水撥油防汚性反射板において、前記透明微粒子は、その表面の一部分が前記基材の表面に融着しており、かつ他の露出した部分が前記撥水撥油防汚性被膜で被われているのが好ましい。 In the water / oil repellent / antifouling reflective plate according to the first aspect of the present invention, the transparent fine particles have a part of the surface fused to the surface of the substrate, and the other exposed part is the water repellent / repellent. It is preferably covered with an oil antifouling film.

第1の発明に係る撥水撥油防汚性反射板において、前記撥水撥油防汚性被膜が、前記透明微粒子および前記基材の表面に共有結合しているのが好ましい。 In the water / oil repellent / antifouling reflective plate according to the first aspect of the present invention, it is preferable that the water / oil repellent / antifouling coating is covalently bonded to the surface of the transparent fine particles and the substrate.

第1の発明に係る撥水撥油防汚性反射板において、前記透明微粒子として、粒径の異なるものが混合して用いられていてもよい。 In the water- and oil-repellent and antifouling reflective plate according to the first invention, the transparent fine particles having different particle diameters may be mixed and used.

第1の発明に係る撥水撥油防汚性反射板において、前記撥水撥油防汚性被膜が−CF基を含んでいることが好ましい。 In the water / oil repellent / antifouling reflective plate according to the first invention, the water / oil repellent / antifouling coating preferably contains —CF 3 groups.

第1の発明に係る撥水撥油防汚性反射板において、前記透明微粒子が透光性であり、かつその軟化温度が前記基材表面の軟化温度よりも高いシリカ、アルミナ、およびジルコニアのいずれかであるのが好ましい。 In the water / oil repellent / antifouling reflective plate according to the first invention, any one of silica, alumina, and zirconia, wherein the transparent fine particles are translucent and the softening temperature thereof is higher than the softening temperature of the substrate surface. It is preferable.

第1の発明に係る撥水撥油防汚性反射板において、前記透明微粒子の粒径が400nm未満であるのが好ましい。 In the water- and oil-repellent and antifouling reflective plate according to the first invention, it is preferable that the transparent fine particles have a particle size of less than 400 nm.

第1の発明に係る撥水撥油防汚性反射板において、水に対する接触角が130度以上であるのが好ましい。 In the water- and oil-repellent and antifouling reflective plate according to the first aspect of the invention, the contact angle with respect to water is preferably 130 degrees or more.

第1の発明に係る撥水撥油防汚性反射板において、前記透明微粒子は、樹脂膜、シリカ系ガラス膜、および釉膜のいずれか1よりなる被膜を介して前記基材の表面に融着しており、前記撥水撥油防汚性被膜は、前記透明被膜を介して前記透明微粒子が融着していない部分を覆っていることが好ましい。 In the water / oil repellent / antifouling reflective plate according to the first aspect of the present invention, the transparent fine particles are melted on the surface of the base material through a film made of any one of a resin film, a silica glass film, and a coating film. It is preferable that the water / oil repellent / antifouling coating covers a portion where the transparent fine particles are not fused via the transparent coating.

第1の発明に係る撥水撥油防汚性反射板において、前記基材が光反射性のステンレス板、およびアルミニウム板のいずれかであり、前記被膜が透明であるのが好ましい。 In the water / oil repellent / antifouling reflective plate according to the first aspect of the present invention, it is preferable that the substrate is a light reflective stainless steel plate or an aluminum plate, and the coating is transparent.

第1の発明に係る撥水撥油防汚性反射板において、前記基材が紙、布、樹脂、ガラス板、金属板、およびセラミックス板のいずれか1であり、前記被膜が染料、顔料、金属微粒子、およびマイカ微粒子のいずれか1または複数を含むのが好ましい。 In the water- and oil-repellent and antifouling reflective plate according to the first invention, the substrate is any one of paper, cloth, resin, glass plate, metal plate, and ceramic plate, and the coating is a dye, pigment, It is preferable to include one or more of metal fine particles and mica fine particles.

第2の発明に係るトンネルは、第1の発明に係る撥水撥油防汚性反射板を壁面に装着している。 The tunnel according to the second invention is equipped with the water / oil repellent / antifouling reflecting plate according to the first invention on the wall surface.

第3の発明に係る道路標識は、第1の発明に係る撥水撥油防汚性反射板を用いている。 The road sign according to the third invention uses the water / oil repellent antifouling reflector according to the first invention.

第4の発明に係る表示板は、第1の発明に係る撥水撥油防汚性反射板を用いている。 The display plate according to the fourth invention uses the water / oil repellent / antifouling reflective plate according to the first invention.

第5の発明に係る看板は、第1の発明に係る撥水撥油防汚性反射板を用いている。 The signboard according to the fifth invention uses the water / oil repellent / antifouling reflecting plate according to the first invention.

第6の発明に係る乗り物は、第1の発明に係る撥水撥油防汚性反射板を車体の内部および外部に用いている。 A vehicle according to a sixth aspect uses the water / oil repellent / antifouling reflecting plate according to the first aspect inside and outside the vehicle body.

第7の発明に係る建築物は、第1の発明に係る撥水撥油防汚性反射板を外壁および内壁に用いている。 The building according to the seventh invention uses the water and oil repellent antifouling reflecting plate according to the first invention for the outer wall and the inner wall.

第8の発明に係る撥水撥油防汚性反射板の製造方法は、透明微粒子を分散した微粒子分散液を調製する工程Cと、基材の表面に前記微粒子分散液を塗布し乾燥することにより、前記基材の表面に前記透明微粒子を付着させる工程Dと、前記透明微粒子が表面に付着した前記基材を、前記透明微粒子の軟化温度よりも低い温度で加熱処理し、前記基材の表面に前記透明微粒子を融着させる工程Eと、前記基材の表面に融着しなかった前記透明微粒子を洗浄除去する工程Fと、前記透明微粒子が融着した微粒子融着基材の表面に撥水撥油防汚性被膜を形成する工程Gとを含む。 The method for producing a water- and oil-repellent and antifouling reflecting plate according to the eighth invention comprises a step C of preparing a fine particle dispersion in which transparent fine particles are dispersed, and applying and drying the fine particle dispersion on the surface of the substrate. The process D for attaching the transparent fine particles to the surface of the base material and the base material with the transparent fine particles attached to the surface are heat-treated at a temperature lower than the softening temperature of the transparent fine particles, A step E of fusing the transparent fine particles to the surface; a step F of washing and removing the transparent fine particles that have not been fused to the surface of the substrate; and a surface of the fine particle fused substrate to which the transparent fine particles are fused. And a step G of forming a water and oil repellent antifouling film.

第8の発明に係る撥水撥油防汚性反射板の製造方法において、前記工程Dの前に、前記基材の表面に、前記微粒子分散液に溶解せず、前記基材よりも低い温度で前記透明微粒子と融着する被膜を形成する工程Bをさらに有していてもよい。 In the method for producing a water- and oil-repellent and antifouling reflective plate according to the eighth invention, before the step D, the surface of the base material does not dissolve in the fine particle dispersion and has a temperature lower than that of the base material. The method may further include a step B of forming a film to be fused with the transparent fine particles.

第8の発明に係る撥水撥油防汚性反射板の製造方法において、前記基材が光反射性のステンレス板、およびアルミニウム板のいずれかであり、前記被膜が透明であるのが好ましい。 In the method for producing a water- and oil-repellent and antifouling reflective plate according to the eighth aspect of the invention, it is preferable that the base material is a light-reflective stainless steel plate or an aluminum plate, and the coating is transparent.

第8の発明に係る撥水撥油防汚性反射板の製造方法において、前記基材が紙、布、樹脂、ガラス板、金属板、およびセラミックス板のいずれか1であり、前記被膜が染料、顔料、金属微粒子、およびマイカ微粒子のいずれか1または複数を含むのが好ましい。 In the method for producing a water / oil repellent / antifouling reflective plate according to the eighth invention, the substrate is any one of paper, cloth, resin, glass plate, metal plate and ceramic plate, and the coating is a dye. And any one or more of pigments, metal fine particles, and mica fine particles.

第8の発明に係る撥水撥油防汚性反射板の製造方法において、前記被膜がゾルゲル法により形成されたシリカ系ガラスでもよい。 In the method for producing a water- and oil-repellent and antifouling reflective plate according to the eighth invention, the coating film may be silica-based glass formed by a sol-gel method.

第8の発明に係る撥水撥油防汚性反射板の製造方法において、前記工程Eにおける加熱処理温度が、前記基材および前記透明微粒子の軟化温度のいずれよりも低い方が好ましい。 In the method for producing a water / oil repellent / antifouling reflective plate according to the eighth invention, the heat treatment temperature in the step E is preferably lower than either the softening temperature of the substrate or the transparent fine particles.

第8の発明に係る撥水撥油防汚性反射板の製造方法において、前記工程Cの前に、直鎖状の基を含む第1のシラン化合物と非水系の有機溶媒とを含む第1の化学吸着液中に透明微粒子aを分散し、前記第1のシラン化合物のシリル基と前記透明微粒子aの表面の反応性基との反応により前記第1のシラン化合物の単分子膜で表面が覆われた前記透明微粒子を製造する工程Aを有し、かつ前記工程Eにおける加熱処理は酸素を含む雰囲気中で行われるのが好ましい。 In the method for producing a water- and oil-repellent and antifouling reflective plate according to the eighth invention, before the step C, the first silane compound containing a linear group and a non-aqueous organic solvent are included. The surface of the monomolecular film of the first silane compound is dispersed by the reaction of the silyl group of the first silane compound and the reactive group on the surface of the transparent microparticle a. It is preferable to include the step A for manufacturing the covered transparent fine particles, and the heat treatment in the step E is performed in an atmosphere containing oxygen.

第8の発明に係る撥水撥油防汚性反射板の製造方法において、前記微粒子分散液には有機溶媒が用いられ、前記直鎖状の基はフッ化炭素基であってもよい。 In the method for producing a water- and oil-repellent and antifouling reflective plate according to the eighth invention, an organic solvent is used for the fine particle dispersion, and the linear group may be a fluorocarbon group.

第8の発明に係る撥水撥油防汚性反射板の製造方法において、前記微粒子分散液には水およびアルコールのいずれか一方または両者の混合液が用いられ、前記直鎖状の基は炭化水素基であってもよい。 In the method for producing a water- and oil-repellent and antifouling reflective plate according to the eighth aspect of the invention, the fine particle dispersion uses one or both of water and alcohol, and the linear group is carbonized. It may be a hydrogen group.

第8の発明に係る撥水撥油防汚性反射板の製造方法において、前記工程Gにおける前記撥水撥油防汚性被膜の形成は、フッ化炭素基を含む第2のシラン化合物と非水系の有機溶媒とを含む第2の化学吸着液を前記微粒子融着ガラス基材に接触させて、前記第2のシラン化合物のシリル基と前記微粒子融着ガラス基材の表面の反応性基との反応により行うのが好ましい。 In the method for producing a water- and oil-repellent and antifouling reflective plate according to the eighth invention, the formation of the water and oil and oil repellent and antifouling coating in the step G is performed with a second silane compound containing a fluorocarbon group. A second chemical adsorption liquid containing an aqueous organic solvent is brought into contact with the fine particle fused glass substrate, and a silyl group of the second silane compound and a reactive group on the surface of the fine particle fused glass substrate are obtained. It is preferable to carry out by this reaction.

第8の発明に係る撥水撥油防汚性反射板の製造方法において、前記工程Gにおける前記シリル基と前記反応性基との反応後、未反応の前記第2のシラン化合物を洗浄除去してもよい。 In the method for producing a water- and oil-repellent and antifouling reflective plate according to the eighth invention, after the reaction between the silyl group and the reactive group in the step G, the unreacted second silane compound is washed away. May be.

第8の発明に係る撥水撥油防汚性反射板の製造方法において、前記第1および第2の化学吸着液にそれぞれ含まれる前記第1および第2のシラン化合物のいずれか一方または双方がアルコキシシラン化合物であってもよい。 In the method for producing a water- and oil-repellent and antifouling reflective plate according to the eighth invention, either one or both of the first and second silane compounds contained in the first and second chemical adsorption liquids, respectively. An alkoxysilane compound may be used.

第8の発明に係る撥水撥油防汚性反射板の製造方法において、前記第1および第2の化学吸着液にそれぞれ含まれる前記第1および第2のシラン化合物のいずれか一方または双方がハロシラン化合物であってもよい。 In the method for producing a water- and oil-repellent and antifouling reflective plate according to the eighth invention, either one or both of the first and second silane compounds contained in the first and second chemical adsorption liquids, respectively. It may be a halosilane compound.

第8の発明に係る撥水撥油防汚性反射板の製造方法において、前記第1および第2の化学吸着液にそれぞれ含まれる前記第1および第2のシラン化合物のいずれか一方または双方がイソシアネートシラン化合物であってもよい。 In the method for producing a water- and oil-repellent and antifouling reflective plate according to the eighth invention, either one or both of the first and second silane compounds contained in the first and second chemical adsorption liquids, respectively. It may be an isocyanate silane compound.

第8の発明に係る撥水撥油防汚性反射板の製造方法において、前記第1および第2の化学吸着液のうち前記アルコキシシラン化合物を含むものは、さらに縮合触媒として、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステル、およびチタン酸エステルキレートからなる群から選択される1または2以上の化合物を含んでいてもよい。 In the method for producing a water- and oil-repellent and antifouling reflective plate according to the eighth invention, the first and second chemical adsorption liquids containing the alkoxysilane compound further include a metal carboxylate as a condensation catalyst. 1 or 2 or more compounds selected from the group consisting of a carboxylate metal salt, a carboxylate metal salt polymer, a carboxylate metal salt chelate, a titanate ester, and a titanate ester chelate may be included.

第8の発明に係る撥水撥油防汚性反射板の製造方法において、前記第1および第2の化学吸着液のうち前記アルコキシシラン化合物を含むものは、縮合触媒としてケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、およびアミノアルキルアルコキシシラン化合物からなる群より選択される1または2以上の化合物をさらに含んでいてもよい。 In the method for producing a water- and oil-repellent and antifouling reflecting plate according to the eighth invention, the first and second chemical adsorption liquids containing the alkoxysilane compound include a ketimine compound, an organic acid, One or more compounds selected from the group consisting of an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound may be further included.

第8の発明に係る撥水撥油防汚性反射板の製造方法において、さらに助触媒として、ケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、およびアミノアルキルアルコキシシラン化合物からなる群より選択される1または2以上の化合物を含んでいてもよい。 In the method for producing a water- and oil-repellent and antifouling reflective plate according to the eighth invention, the cocatalyst further comprises a ketimine compound, an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound. One or more selected compounds may be included.

請求項1〜11記載の撥水撥油防汚性反射板、および請求項18〜34記載の撥水撥油防汚性反射板の製造方法は、撥水撥油防汚機能が要求されるトンネル、道路標識、表示板、看板、乗り物、および建築物の反射板において、水滴離水性(滑水性ともいう)、防汚性、および耐摩耗性や耐候性等の耐久性に優れた撥水撥油防汚性ガラス板を提供できる。 The water repellent / oil repellent / antifouling reflective plate according to claims 1 to 11 and the method for producing a water / oil repellent / antifouling reflective plate according to claims 18 to 34 require a water / oil repellent / antifouling function. Water repellent excellent in water-drop separation (also referred to as water slidability), antifouling properties, wear resistance, weather resistance, etc. in tunnels, road signs, display boards, signboards, vehicles, and building reflectors An oil-repellent antifouling glass plate can be provided.

請求項1〜11記載の撥水撥油防汚性反射板、請求項12記載のトンネル、請求項13記載の道路標識、請求項14記載の表示板、請求項15記載の看板、請求項16記載の乗り物、請求項17記載の建築物、および請求項18〜34記載の撥水撥油防汚性反射板の製造方法においては、基材の表面が融着した撥水撥油防汚性の透明微粒子で覆われているので、撥水撥油防汚性反射板が凹凸を有する複雑な表面形状を呈する。そのため、いわゆる「蓮の葉効果」により高い撥水撥油防汚性を有する。 A water repellent and oil repellent antifouling reflector according to claims 1 to 11, a tunnel according to claim 12, a road sign according to claim 13, a display sign according to claim 14, a signboard according to claim 15, and a claim 16. In the manufacturing method of the vehicle according to claim 17, the building according to claim 17, and the water / oil repellent / antifouling reflecting plate according to claims 18 to 34, the water / oil / oil repellent / antifouling property in which the surface of the substrate is fused. Therefore, the water and oil repellent and antifouling reflector has a complex surface shape with irregularities. Therefore, it has high water and oil repellency and antifouling properties due to the so-called “lotus leaf effect”.

特に、請求項2記載の撥水撥油防汚性反射板は、透明微粒子が、その表面の一部分で基材の表面に融着しているので、表面が複雑な凹凸構造を呈するとともに、他の露出した部分が撥水撥油防汚性被膜で被われているので、高い撥水撥油防汚性を有する。 In particular, the water / oil / oil repellent / antifouling reflector according to claim 2 has a surface having a complex uneven structure because the transparent fine particles are fused to the surface of the base material at a part of the surface. Since the exposed portion is covered with a water / oil repellent / antifouling film, it has high water / oil repellent / antifouling properties.

請求項3記載の撥水撥油防汚性反射板は、撥水撥油防汚性被膜が透明微粒子およびガラス基材の表面に共有結合しているので、その耐久性を向上できる。 The water / oil repellent / antifouling reflective plate according to claim 3 can improve durability because the water / oil repellent / antifouling coating is covalently bonded to the surface of the transparent fine particles and the glass substrate.

請求項4記載の撥水撥油防汚性反射板は、粒径の異なる透明微粒子が混合して用いられているので、撥水撥油防汚性反射板の表面形状がフラクタル性を有し、撥水撥油防汚性を向上できる。 Since the water- and oil-repellent and antifouling reflective plate according to claim 4 is used by mixing transparent fine particles having different particle diameters, the surface shape of the water and oil-repellent and antifouling reflective plate has fractal properties. Water and oil repellency can be improved.

請求項5記載の撥水撥油防汚性反射板は、撥水撥油防汚性被膜が−CF基を含んでいるので、撥水撥油防汚性を向上できる。 The water / oil repellent / antifouling reflective plate according to claim 5 can improve the water / oil repellent / antifouling property since the water / oil repellent / antifouling coating film contains —CF 3 groups.

請求項6記載の撥水撥油防汚性反射板は、透明微粒子が透光性であり、かつその軟化温度が基材表面の軟化温度よりも高いシリカ、アルミナ、あるいはジルコニアであるので、微粒子の形状を損なうことなく基材の表面に融着できる。 The water- and oil-repellent and antifouling reflecting plate according to claim 6, wherein the transparent fine particles are translucent and the softening temperature thereof is silica, alumina or zirconia higher than the softening temperature of the substrate surface. Can be fused to the surface of the substrate without impairing the shape of the substrate.

請求項7記載の撥水撥油防汚性反射板は、透明微粒子の粒径が可視光の波長より小さい400nm未満であるので、可視光の散乱が少なく、高い透光性を維持できる。 In the water and oil repellent and antifouling reflecting plate according to claim 7, since the particle diameter of the transparent fine particles is less than 400 nm, which is smaller than the wavelength of visible light, there is little scattering of visible light and high translucency can be maintained.

請求項8記載の撥水撥油防汚性反射板は、水に対する接触角が130度以上であるので、水滴の転落角が小さくなり、実質上水滴が付着しなくなる。 In the water / oil repellent / antifouling reflective plate according to claim 8, since the contact angle with respect to water is 130 degrees or more, the falling angle of the water droplet becomes small, and the water droplet does not substantially adhere.

請求項9記載の撥水撥油防汚性反射板は、基材の表面に、基材よりも低い温度で透明微粒子と融着する金属酸化物の透明被膜が形成されているので、融着時の加熱処理温度を低くすることが可能となり、融着時における透明微粒子の熱変形を抑制できる。 The water- and oil-repellent and antifouling reflective plate according to claim 9 has a metal oxide transparent film that is fused to the transparent fine particles at a lower temperature than the substrate. It is possible to lower the heat treatment temperature at the time, and it is possible to suppress the thermal deformation of the transparent fine particles during fusion.

請求項10記載の撥水撥油防汚性反射板は、基材が光反射性のステンレス板、およびアルミニウム板のいずれかであり、被膜が透明であるので、基材からの反射光も有効利用できる。 In the water and oil repellent and antifouling reflecting plate according to claim 10, since the base material is either a light reflecting stainless steel plate or an aluminum plate, and the coating is transparent, reflected light from the base material is also effective. Available.

請求項11記載の撥水撥油防汚性反射板は、基材が紙、布、樹脂、ガラス板、金属板、およびセラミックス板のいずれか1であり、被膜が染料、顔料、金属微粒子、およびマイカ微粒子のいずれか1または複数を含むので、反射面を着色できる。 The water / oil / oil repellent / antifouling reflective plate according to claim 11 is such that the substrate is any one of paper, cloth, resin, glass plate, metal plate, and ceramic plate, and the coating is a dye, pigment, metal fine particle, And any one or more of mica fine particles, the reflective surface can be colored.

請求項12記載のトンネルは、請求項1〜11記載の撥水撥油防汚性反射板を装着しているので、例えば、トンネル内を通過する車のヘッドランプを点灯していなくとも、照明光が側壁で反射するため、側壁の視認性は大幅に向上でき、トンネル内の照明電力を低減でき経済的である。
また、反射板により、トンネルの壁の洗浄も容易になる。
Since the tunnel according to claim 12 is equipped with the water- and oil-repellent and antifouling reflecting plate according to claims 1 to 11, for example, even if the headlamp of a car passing through the tunnel is not lit, illumination Since the light is reflected by the side wall, the visibility of the side wall can be greatly improved, and the illumination power in the tunnel can be reduced, which is economical.
Moreover, the cleaning of the tunnel wall is facilitated by the reflector.

請求項13記載の道路標識は、請求項1〜11記載の撥水撥油防汚性反射板を装着しているので、夜間における視認性を向上でき、従来よりも安全性を向上できる。 Since the road sign according to claim 13 is equipped with the water- and oil-repellent antifouling reflective plate according to claims 1 to 11, visibility at night can be improved, and safety can be improved as compared with the past.

請求項14記載の表示板は、請求項1〜11記載の撥水撥油防汚性反射板を装着しているので、夜間における視認性を向上でき、従来よりも安全性を向上できる。 Since the display board of Claim 14 is equipped with the water- and oil-repellent antifouling reflective board of Claims 1 to 11, visibility at night can be improved and safety can be improved as compared with the conventional display board.

請求項15記載の看板は、請求項1〜11記載の撥水撥油防汚性反射板を装着しているので、夜間における視認性を向上でき、従来よりも安全性を向上できる。 Since the sign of Claim 15 is equipped with the water- and oil-repellent and antifouling reflecting plate of Claims 1 to 11, visibility at night can be improved, and safety can be improved as compared with the prior art.

請求項16記載の乗り物は、請求項1〜11記載の撥水撥油防汚性反射板を装着しているので、乗り物の運行、特に夜間における視認性を向上でき、従来よりも安全性を向上できる。 Since the vehicle according to claim 16 is equipped with the water- and oil-repellent antifouling reflective plate according to claims 1 to 11, it is possible to improve the visibility of the vehicle, particularly at night, and it is safer than before. Can be improved.

請求項17記載の建築物は、請求項1〜11記載の撥水撥油防汚性反射板を装着しているので、建築物の照明電力を低減でき経済的である。 Since the building according to claim 17 is equipped with the water- and oil-repellent and antifouling reflecting plate according to claims 1 to 11, the illumination power of the building can be reduced and it is economical.

請求項18〜34記載の撥水撥油防汚性反射板の製造方法では、基材の表面に微粒子分散液を塗布し乾燥することにより、基材の表面に透明微粒子を付着させ、次いでこれを加熱処理して、微粒子融着基材を製造し、その上に撥水撥油防汚性被膜を形成しているので、全表面にわたり実質的に均一に透明微粒子で覆われ、視認性、透明性、および耐久性に優れた撥水撥油防汚性反射板が得られる。
また、加熱処理温度が透明微粒子の軟化温度よりも低いので、融着時における透明微粒子の熱変形を抑制できる。
In the method for producing a water- and oil-repellent and antifouling reflecting plate according to claims 18 to 34, the fine particle dispersion is applied to the surface of the base material and dried to adhere the transparent fine particles to the surface of the base material. Is heated to produce a fine particle fusion base material, and a water and oil repellent and antifouling film is formed thereon, so that it is covered with transparent fine particles substantially uniformly over the entire surface. A water and oil repellent antifouling reflector excellent in transparency and durability can be obtained.
Moreover, since the heat treatment temperature is lower than the softening temperature of the transparent fine particles, thermal deformation of the transparent fine particles at the time of fusion can be suppressed.

請求項19記載の撥水撥油防汚性反射板の製造方法は、工程Dの前に、基材の表面に、微粒子分散液に溶解せず、基材よりも低い温度で透明微粒子と融着する金属酸化物の透明被膜を形成する工程Bを有するので、工程Eにおける加熱処理をより低温で行うことが可能となる。 The method for producing a water- and oil-repellent and antifouling reflector according to claim 19 does not dissolve in the fine particle dispersion on the surface of the base material before Step D, and melts the transparent fine particles and the fine particles at a temperature lower than that of the base material. Since it has the process B which forms the transparent film of the metal oxide to wear, it becomes possible to perform the heat processing in the process E at lower temperature.

請求項20記載の撥水撥油防汚性反射板の製造方法では、基材が光反射性のステンレス板、およびアルミニウム板のいずれかであり、被膜が透明であるので、基材からの反射も有効利用できる。 In the method for producing a water- and oil-repellent and antifouling reflecting plate according to claim 20, since the substrate is either a light-reflective stainless steel plate or an aluminum plate, and the coating is transparent, reflection from the substrate Can also be used effectively.

請求項21記載の撥水撥油防汚性反射板の製造方法では、被膜が染料、顔料、金属微粒子、およびマイカ微粒子のいずれか1または複数を含むので、基材の反射光を任意の色に調整できる。 In the method for producing a water / oil / oil repellent antifouling reflector according to claim 21, since the coating film contains any one or more of a dye, a pigment, a metal fine particle, and a mica fine particle, Can be adjusted.

請求項22記載の撥水撥油防汚性反射板の製造方法では、被膜はゾルゲル法により形成されたシリカ系ガラスであるので、例えば、基材として、紙、布、または樹脂を使用する場合は、より低温で撥水撥油防汚性反射板を製造できる。また、基材として、ガラス板、金属板、またはセラミックス板を使用する場合は、より耐久性の高い撥水撥油防汚性反射板を製造できる。 In the method for producing a water- and oil-repellent and antifouling reflective plate according to claim 22, since the coating is silica-based glass formed by a sol-gel method, for example, when paper, cloth, or resin is used as the substrate Can produce a water and oil repellent antifouling reflector at a lower temperature. Further, when a glass plate, a metal plate, or a ceramic plate is used as the substrate, a more durable water / oil repellent / antifouling reflecting plate can be produced.

請求項23記載の撥水撥油防汚性反射板の製造方法では、工程Eにおける加熱処理温度が、基材および透明微粒子の軟化温度のいずれよりも低いので、基材の表面粗さを最大に保つことが可能となり、撥水撥油防汚性能に優れた反射板を製造できる。 In the method for producing a water- and oil-repellent and antifouling reflective plate according to claim 23, since the heat treatment temperature in step E is lower than both the base material and the softening temperature of the transparent fine particles, the surface roughness of the base material is maximized. Therefore, it is possible to produce a reflector having excellent water and oil repellency and antifouling performance.

請求項24記載の撥水撥油防汚性反射板の製造方法は、工程Cの前に、直鎖状の基を含む第1のシラン化合物と非水系の有機溶媒とを含む第1の化学吸着液中に透明微粒子aを分散し、第1のシラン化合物のシリル基と透明微粒子aの表面の反応性基との反応により第1のシラン化合物の単分子膜で表面が覆われた透明微粒子を製造する工程Aを有し、工程Cにおいて、微粒子分散液の調製には第1のシラン化合物の単分子膜で表面が覆われた透明微粒子が用いられるので、微粒子分散液中での透明微粒子の凝集を抑制し、均一に分散させることができる。
また、工程Eにおける加熱処理が酸素を含む雰囲気中で行われるので、低い加熱温度で第1のシラン化合物の単分子膜を完全に分解除去できる。
The method for producing a water- and oil-repellent and antifouling reflective plate according to claim 24 comprises the first chemistry comprising a first silane compound containing a linear group and a non-aqueous organic solvent before Step C. Transparent fine particles in which transparent fine particles a are dispersed in an adsorbent and the surfaces are covered with a monomolecular film of the first silane compound by the reaction between the silyl group of the first silane compound and the reactive groups on the surface of the transparent fine particles a In the step C, transparent fine particles whose surface is covered with a monomolecular film of the first silane compound are used in the step C, so that the transparent fine particles in the fine particle dispersion are used. Can be dispersed uniformly.
In addition, since the heat treatment in step E is performed in an atmosphere containing oxygen, the monomolecular film of the first silane compound can be completely decomposed and removed at a low heating temperature.

請求項25記載の撥水撥油防汚性反射板の製造方法では、微粒子分散液に有機溶媒が用いられ、第1のシラン化合物の直鎖状の基はフッ化炭素基であるので、透明微粒子の表面エネルギーが小さくなり、透明微粒子の凝集を確実に抑制できる。 In the method for producing a water- and oil-repellent and antifouling reflective plate according to claim 25, an organic solvent is used for the fine particle dispersion, and the linear group of the first silane compound is a fluorocarbon group. The surface energy of the fine particles is reduced, and the aggregation of transparent fine particles can be reliably suppressed.

請求項26記載の撥水撥油防汚性反射板の製造方法では、微粒子分散液に水およびアルコールのいずれか一方または両者の混合液が用いられ、第1のシラン化合物の直鎖状の基は炭化水素基であるので、微粒子分散液の調製に要するコストを低下できるとともに、微粒子分酸液の安全性がより高くなる。 In the method for producing a water- and oil-repellent and antifouling reflecting plate according to claim 26, one or a mixture of water and alcohol is used as the fine particle dispersion, and the linear group of the first silane compound is used. Since is a hydrocarbon group, the cost required for the preparation of the fine particle dispersion can be reduced, and the safety of the fine particle acid solution is further increased.

請求項27記載の撥水撥油防汚性反射板の製造方法では、工程Gにおける撥水撥油防汚性被膜の形成が、フッ化炭素基を含む第2のシラン化合物を微粒子融着基材に接触させて、第2のシラン化合物のシリル基と微粒子融着基材の表面の反応性基との反応により行われるので、撥水撥油防汚性被膜の耐久性を高めることができる。 28. In the method for producing a water / oil / oil / repellency / antifouling reflector according to claim 27, the formation of the water / oil / oil / repellency / antifouling film in the step G is carried out by applying a second silane compound containing a fluorocarbon group to a fine particle fusion group. Since the contact is made with the silyl group of the second silane compound and the reactive group on the surface of the fine particle fusion base material in contact with the material, the durability of the water / oil repellent / antifouling coating can be improved. .

請求項28記載の撥水撥油防汚性反射板の製造方法では、工程Gにおけるシリル基と反応性基との反応後、未反応の第2のシラン化合物を洗浄除去するので、微粒子融着基材の表面に共有結合した撥水撥油防汚性被膜のみが形成されることにより、撥水撥油防汚性反射板の撥水撥油防汚性および耐久性を向上できる。 In the method for producing a water- and oil-repellent and antifouling reflecting plate according to claim 28, the unreacted second silane compound is washed away after the reaction between the silyl group and the reactive group in Step G. By forming only the water / oil repellent / antifouling coating covalently bonded to the surface of the substrate, the water / oil repellent / antifouling property and durability of the water / oil repellent / antifouling reflector can be improved.

請求項29記載の撥水撥油防汚性反射板の製造方法では、第1および第2のシラン化合物のいずれか一方または双方が、反応性基との反応の際に有害な塩化水素を発生しないアルコキシシラン化合物であるので、撥水撥油防汚性反射板の製造をより安全に行うことができるとともに、製造設備の腐食や酸性廃液の発生を抑制できる。 30. The method for producing a water / oil / oil repellent antifouling reflector according to claim 29, wherein one or both of the first and second silane compounds generate harmful hydrogen chloride upon reaction with a reactive group. Since the non-alkoxysilane compound is used, the production of the water / oil repellent / antifouling reflective plate can be performed more safely, and the corrosion of the production facility and the generation of acidic waste liquid can be suppressed.

請求項30記載の撥水撥油防汚性反射板の製造方法では、第1および第2のシラン化合物のいずれか一方または双方が、反応性基との反応性の高いハロシラン化合物であるので、撥水撥油防汚性反射板の製造をより高効率に行うことができるとともに、触媒の添加が不要になる。 In the method for producing a water- and oil-repellent and antifouling reflective plate according to claim 30, one or both of the first and second silane compounds are halosilane compounds having high reactivity with a reactive group. The production of the water / oil repellent / antifouling reflective plate can be carried out more efficiently, and the addition of a catalyst becomes unnecessary.

請求項31記載の撥水撥油防汚性反射板の製造方法では、第1および第2のシラン化合物のいずれか一方または双方が、反応性基との反応の際に有害な塩化水素を発生せず、かつ反応性の高いイソシアネートシラン化合物であるので、製造設備の腐食や酸性廃液の発生を抑制できるとともに、触媒の添加が不要になる。 32. In the method for producing a water / oil / oil repellent antifouling reflector according to claim 31, any one or both of the first and second silane compounds generate harmful hydrogen chloride upon reaction with a reactive group. In addition, since it is a highly reactive isocyanate silane compound, corrosion of production facilities and generation of acidic waste liquid can be suppressed, and addition of a catalyst becomes unnecessary.

請求項32記載の撥水撥油防汚性反射板の製造方法は、第1および第2の化学吸着液のうちアルコキシシラン化合物を含むものが、さらに縮合触媒として、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステル、およびチタン酸エステルキレートからなる群から選択される1または2以上の化合物を含むので、アルコキシシラン化合物と反応性基との反応時間を短縮し、撥水撥油防汚性反射板の製造をより高効率に行うことができる。 The method for producing a water- and oil-repellent and antifouling reflective plate according to claim 32, wherein the first and second chemical adsorption liquids containing an alkoxysilane compound are further used as a condensation catalyst as a carboxylic acid metal salt or a carboxylic acid. Since it contains one or more compounds selected from the group consisting of ester metal salts, carboxylate metal salt polymers, carboxylate metal salt chelates, titanate esters, and titanate ester chelates, alkoxysilane compounds and reactive groups The reaction time can be shortened, and the production of the water- and oil-repellent and antifouling reflector can be carried out more efficiently.

請求項33および34記載の撥水撥油防汚性反射板の製造方法は、第1および第2の化学吸着液のうちアルコキシシラン化合物を含むものが、ケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物からからなる群より選択される1または2以上の化合物をさらに含むので、アルコキシシラン化合物と活性水素基との反応時間を短縮し、撥水撥油防汚性反射板の製造をより高効率に行うことができる。特に、これらの化合物と上述の縮合触媒の両者をともに含む場合には、反応時間をさらに短縮できる。 35. The method for producing a water- and oil-repellent and antifouling reflective plate according to claim 33, wherein the first and second chemical adsorption liquids containing an alkoxysilane compound are ketimine compounds, organic acids, aldimine compounds, enamines. Further comprising one or more compounds selected from the group consisting of a compound, an oxazolidine compound and an aminoalkylalkoxysilane compound, the reaction time between the alkoxysilane compound and the active hydrogen group is shortened, and the water and oil repellent and antifouling agent is reduced. The reflective reflector can be manufactured with higher efficiency. In particular, when both of these compounds and the above condensation catalyst are included, the reaction time can be further shortened.

以下、図面を参照しながら本発明の一実施の形態に係る撥水撥油防汚性反射板について説明する。
図1に示すように、本発明の一実施の形態に係る撥水撥油防汚性反射板(以下、単に反射板ともいう)10は、板状のアルミニウム基材11と、アルミニウム基材11の表面にシリカ系透明皮膜(皮膜の一例)12を介して融着した撥水撥油防汚性のシリカ微粒子(透明微粒子の一例)13と、アルミニウム基材11の表面のうちシリカ微粒子13が融着していない部分を覆うフッ化炭素基を含む化学吸着単分子膜(撥水撥油防汚性被膜の一例)14とを有する。
Hereinafter, a water / oil repellent / antifouling reflective plate according to an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a water- and oil-repellent and antifouling reflective plate (hereinafter also simply referred to as a reflective plate) 10 according to an embodiment of the present invention includes a plate-like aluminum substrate 11 and an aluminum substrate 11. Water-repellent / oil-repellent antifouling silica fine particles (an example of transparent fine particles) 13 fused to the surface of the aluminum substrate 11 via a silica-based transparent film (an example of the film) 12 and silica fine particles 13 out of the surface of the aluminum base 11. And a chemisorbed monomolecular film (an example of a water / oil repellent / antifouling film) 14 containing a fluorocarbon group covering a portion that is not fused.

撥水撥油防汚性反射板10の製造方法は、図2(a)および(b)に示すように、直鎖状の基を含む第1のシラン化合物と非水系の有機溶媒とを含む第1の化学吸着液中に透明微粒子(元となる透明微粒子a)の一例であるシリカ微粒子15を分散し、第1のシラン化合物のシリル基とシリカ微粒子15の表面の水酸基(反応性基の一例)16との反応により第1のシラン化合物の単分子膜17で表面が覆われたシリカ微粒子18を製造する工程Aと、図3に示すように、アルミニウム基材11の表面に、シリカ系透明被膜12を形成する工程Bと、第1のシラン化合物の単分子膜17で表面が覆われたシリカ微粒子18を分散した微粒子分散液を調製する工程Cと、図4(a)に示すようにアルミニウム基材11の表面(詳しくは、シリカ系透明被膜12の表面)に微粒子分散液を塗布し乾燥することにより、アルミニウム基材11表面のシリカ系透明被膜12の上にシリカ微粒子18を付着させる工程Dと、シリカ微粒子18が表面に付着したアルミニウム基材11を加熱処理し、シリカ微粒子18をシリカ系透明被膜12を介してアルミニウム基材11の表面に融着させ、融着したシリカ微粒子13で覆われた凹凸アルミニウム基材(微粒子融着基材の一例)19を製造する工程Eと、アルミニウム基材11の表面に融着しなかったシリカ微粒子18を洗浄除去する工程Fと、凹凸アルミニウム基材19の表面にフッ化炭素基を含む化学吸着単分子膜14を形成する工程Gとを含んでいる。
以下、工程A〜Gについてより詳細に説明する。
As shown in FIGS. 2 (a) and 2 (b), the manufacturing method of the water / oil repellent / antifouling reflective plate 10 includes a first silane compound containing a linear group and a non-aqueous organic solvent. Silica fine particles 15 as an example of transparent fine particles (original transparent fine particles a) are dispersed in the first chemical adsorption liquid, and the silyl groups of the first silane compound and the hydroxyl groups (reactive groups of the reactive groups) of the silica fine particles 15 are dispersed. Example) Step A for producing silica fine particles 18 whose surface is covered with a monomolecular film 17 of a first silane compound by reaction with 16, and a silica-based material on the surface of an aluminum substrate 11 as shown in FIG. As shown in FIG. 4 (a), a process B for forming the transparent coating 12, a process C for preparing a fine particle dispersion in which the silica fine particles 18 whose surface is covered with the monomolecular film 17 of the first silane compound is dispersed. On the surface of the aluminum substrate 11 (in detail, silica The fine particle dispersion is applied to the surface of the transparent coating 12 and dried to thereby attach the silica fine particles 18 on the silica-based transparent coating 12 on the surface of the aluminum substrate 11, and the silica fine particles 18 are attached to the surface. The aluminum base material 11 is heat-treated, the silica fine particles 18 are fused to the surface of the aluminum base material 11 through the silica-based transparent coating 12, and the uneven aluminum base material covered with the fused silica fine particles 13 (fine particle fusion) An example of a base material) Step E for producing 19; Step F for washing and removing silica fine particles 18 that have not been fused to the surface of the aluminum base material 11; And a step G of forming the chemical adsorption monomolecular film 14.
Hereinafter, steps A to G will be described in more detail.

工程Aでは、第1のシラン化合物の単分子膜17で表面が覆われたシリカ微粒子18を製造する。
製造される撥水撥油防汚製反射板10の透明度を損なわないためには、第1のシラン化合物の単分子膜17で表面が覆われたシリカ微粒子18の製造に用いるシリカ微粒子15の直径は、可視光波長(380〜700nm)より小さいことが好ましい。具体的には、微粒子の直径は10〜400nmであることが好ましく、10〜300nmであることがより好ましく、10〜100nmであることがさらに好ましい。用いられるシリカ微粒子15の粒径は単一であってもよいが、2以上の異なる粒径を有するシリカ微粒子を混合して用いると、表面がフラクタル構造を有する撥水撥油防汚性反射板20(図5参照)が得られ、撥水撥油防汚性が向上するため好ましい。
In step A, silica fine particles 18 whose surfaces are covered with the monomolecular film 17 of the first silane compound are produced.
In order not to impair the transparency of the manufactured water / oil repellent / antifouling reflector 10, the diameter of the silica fine particles 15 used for the production of the silica fine particles 18 whose surface is covered with the monomolecular film 17 of the first silane compound. Is preferably smaller than the visible light wavelength (380 to 700 nm). Specifically, the diameter of the fine particles is preferably 10 to 400 nm, more preferably 10 to 300 nm, and even more preferably 10 to 100 nm. The silica fine particles 15 to be used may have a single particle size, but when silica fine particles having two or more different particle sizes are mixed and used, the surface has a fractal structure. 20 (see FIG. 5) is obtained, which is preferable because the water and oil repellency and antifouling properties are improved.

本実施の形態では、透明微粒子としてシリカ微粒子を用いているが、水酸基、アミノ基等の、アルコキシシリル基およびハロシリル基と反応する活性水素基(反応性基の一例)を表面に有し、透光性でアルミニウム基材よりも軟化点の高い任意の微粒子を用いることができる。シリカ以外に用いることのできる透明微粒子としては、例えば、アルミナまたはジルコニアの微粒子が挙げられる。 In the present embodiment, silica fine particles are used as the transparent fine particles. However, the surface has active hydrogen groups (an example of reactive groups) that react with alkoxysilyl groups and halosilyl groups, such as hydroxyl groups and amino groups. Any fine particles that are light and have a softening point higher than that of the aluminum substrate can be used. Examples of transparent fine particles that can be used other than silica include alumina or zirconia fine particles.

第1のシラン化合物の単分子膜17で表面が覆われたシリカ微粒子18の製造に用いる第1の化学吸着液は、第1のシラン化合物と、シリル基とシリカ微粒子15の表面の水酸基16との縮合反応を促進するための縮合触媒と、非水系の有機溶媒とを混合することにより調製される。 The first chemical adsorption liquid used for the production of the silica fine particles 18 whose surface is covered with the monomolecular film 17 of the first silane compound includes the first silane compound, the silyl group, and the hydroxyl groups 16 on the surface of the silica fine particles 15. It is prepared by mixing a condensation catalyst for accelerating the condensation reaction with a non-aqueous organic solvent.

第1のシラン化合物としては、下記の化1および化2のいずれか一方で表されるアルコキシシラン化合物が用いられる。 As the first silane compound, an alkoxysilane compound represented by any one of the following chemical formulas 1 and 2 is used.

Figure 2008246968
Figure 2008246968

Figure 2008246968
Figure 2008246968

前記化1および化2において、mは5〜20の整数を、nは0〜9の整数を、Rは炭素数1〜4のアルキル基をそれぞれ表す。
また、Yは、(CH(kは1〜3の整数を表す)および単結合のいずれかを表し、Zは、O(エーテル酸素)、COO、Si(CH、および単結合のいずれかを表す。
In the above chemical formulas 1 and 2, m represents an integer of 5 to 20, n represents an integer of 0 to 9, and R represents an alkyl group having 1 to 4 carbon atoms.
Y represents (CH 2 ) k (k represents an integer of 1 to 3) and a single bond, and Z represents O (ether oxygen), COO, Si (CH 3 ) 2 , and a single bond. Represents one of the bonds.

第1のシラン化合物として用いることのできるアルコキシシラン化合物の具体例としては、下記の(1)〜(12)に示すフッ化炭素基を含むアルコキシシラン誘導体、および下記の(21)〜(32)に示す炭化水素基を含むアルコキシシラン誘導体が挙げられる。 Specific examples of the alkoxysilane compound that can be used as the first silane compound include alkoxysilane derivatives containing a fluorocarbon group shown in the following (1) to (12), and the following (21) to (32). And alkoxysilane derivatives containing the hydrocarbon group shown in FIG.

(1)CFCHO(CH15Si(OCH
(2)CF(CHSi(CH(CH15Si(OCH
(3)CF(CF(CHSi(CH(CHSi(OCH
(4)CF(CF(CHSi(CH(CHSi(OCH
(5)CFCOO(CH15Si(OCH
(6)CF(CF(CHSi(OCH
(7)CFCHO(CH15Si(OC
(8)CF(CHSi(CH(CH15Si(OC
(9)CF(CF(CHSi(CH(CHSi(OC
(10)CF(CF(CHSi(CH(CHSi(OC
(11)CFCOO(CH15Si(OC
(12)CF(CF(CHSi(OC
(1) CF 3 CH 2 O (CH 2 ) 15 Si (OCH 3 ) 3
(2) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 Si (OCH 3 ) 3
(3) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(4) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(5) CF 3 COO (CH 2 ) 15 Si (OCH 3 ) 3
(6) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OCH 3 ) 3
(7) CF 3 CH 2 O (CH 2 ) 15 Si (OC 2 H 5 ) 3
(8) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 Si (OC 2 H 5 ) 3
(9) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OC 2 H 5 ) 3
(10) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OC 2 H 5 ) 3
(11) CF 3 COO (CH 2 ) 15 Si (OC 2 H 5 ) 3
(12) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OC 2 H 5 ) 3

(21)CHCHO(CH15Si(OCH
(22)CH(CHSi(CH(CH15Si(OCH
(23)CH(CH(CHSi(CH(CHSi(OCH
(24)CH(CHSi(CH(CHSi(OCH
(25)CHCOO(CH15Si(OCH
(26)CH(CHSi(OCH
(27)CHCHO(CH15Si(OC
(28)CH(CHSi(CH(CH15Si(OC
(29)CH(CHSi(CH(CHSi(OC
(30)CH(CHSi(CH(CHSi(OC
(31)CHCOO(CH15Si(OC
(32)CH(CHSi(OC
(21) CH 3 CH 2 O (CH 2 ) 15 Si (OCH 3 ) 3
(22) CH 3 (CH 2 ) 3 Si (CH 3) 2 (CH 2) 15 Si (OCH 3) 3
(23) CH 3 (CH 2 ) 5 (CH 2) 2 Si (CH 3) 2 (CH 2) 9 Si (OCH 3) 3
(24) CH 3 (CH 2 ) 9 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(25) CH 3 COO (CH 2 ) 15 Si (OCH 3 ) 3
(26) CH 3 (CH 2 ) 7 Si (OCH 3 ) 3
(27) CH 3 CH 2 O (CH 2) 15 Si (OC 2 H 5) 3
(28) CH 3 (CH 2 ) 3 Si (CH 3) 2 (CH 2) 15 Si (OC 2 H 5) 3
(29) CH 3 (CH 2 ) 7 Si (CH 3) 2 (CH 2) 9 Si (OC 2 H 5) 3
(30) CH 3 (CH 2 ) 9 Si (CH 3) 2 (CH 2) 9 Si (OC 2 H 5) 3
(31) CH 3 COO (CH 2 ) 15 Si (OC 2 H 5 ) 3
(32) CH 3 (CH 2 ) 7 Si (OC 2 H 5) 3

縮合触媒としては、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステル、およびチタン酸エステルキレート等の金属塩が利用可能である。
縮合触媒の添加量は、好ましくはアルコキシシラン化合物の0.2〜5質量%であり、より好ましくは0.5〜1質量%である。
As the condensation catalyst, metal salts such as carboxylic acid metal salts, carboxylic acid ester metal salts, carboxylic acid metal salt polymers, carboxylic acid metal salt chelates, titanate esters, and titanate ester chelates can be used.
The addition amount of the condensation catalyst is preferably 0.2 to 5% by mass of the alkoxysilane compound, and more preferably 0.5 to 1% by mass.

カルボン酸金属塩の具体例としては、酢酸第1スズ、ジブチルスズジラウレート、ジブチルスズジオクテート、ジブチルスズジアセテート、ジオクチルスズジラウレート、ジオクチルスズジオクテート、ジオクチルスズジアセテート、ジオクタン酸第1スズ、ナフテン酸鉛、ナフテン酸コバルト、2−エチルヘキセン酸鉄が挙げられる。 Specific examples of carboxylic acid metal salts include stannous acetate, dibutyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, dioctyltin dilaurate, dioctyltin dioctate, dioctyltin diacetate, stannous dioctanoate, naphthenic acid Lead, cobalt naphthenate, and iron 2-ethylhexenoate.

カルボン酸エステル金属塩の具体例としては、ジオクチルスズビスオクチリチオグリコール酸エステル塩、ジオクチルスズマレイン酸エステル塩が挙げられる。
カルボン酸金属塩ポリマーの具体例としては、ジブチルスズマレイン酸塩ポリマー、ジメチルスズメルカプトプロピオン酸塩ポリマーが挙げられる。
カルボン酸金属塩キレートの具体例としては、ジブチルスズビスアセチルアセテート、ジオクチルスズビスアセチルラウレートが挙げられる。
Specific examples of the carboxylic acid ester metal salt include dioctyltin bisoctylthioglycolate ester salt and dioctyltin maleate ester salt.
Specific examples of the carboxylic acid metal salt polymer include dibutyltin maleate polymer and dimethyltin mercaptopropionate polymer.
Specific examples of the carboxylic acid metal salt chelate include dibutyltin bisacetylacetate and dioctyltin bisacetyllaurate.

チタン酸エステルの具体例としては、テトラブチルチタネート、テトラノニルチタネートが挙げられる。
チタン酸エステルキレート類の具体例としては、ビス(アセチルアセトニル)ジ−プロピルチタネートが挙げられる。
Specific examples of the titanate ester include tetrabutyl titanate and tetranonyl titanate.
Specific examples of titanate chelates include bis (acetylacetonyl) dipropyl titanate.

アルコキシシラン化合物を含む第1の化学吸着液中にシリカ微粒子15を分散させ、室温の空気中で反応させると、アルコキシシリル基とシリカ微粒子15の表面の水酸基16とが縮合反応を起こし、下記の化3または化4のいずれか一方で示されるような構造を有する第1のシラン化合物の単分子膜17を生成する。なお、酸素原子から延びた3本の単結合はシリカ微粒子15の表面または隣接するシラン化合物のケイ素(Si)原子と結合しており、そのうち少なくとも1本はシリカ微粒子15の表面のケイ素原子と結合している。 When the silica fine particles 15 are dispersed in the first chemical adsorption liquid containing the alkoxysilane compound and reacted in air at room temperature, the alkoxysilyl group and the hydroxyl groups 16 on the surface of the silica fine particles 15 cause a condensation reaction, and A monomolecular film 17 of the first silane compound having a structure as shown in either chemical formula 3 or chemical formula 4 is generated. The three single bonds extending from the oxygen atom are bonded to the surface of the silica fine particle 15 or the silicon (Si) atom of the adjacent silane compound, and at least one of them is bonded to the silicon atom on the surface of the silica fine particle 15. is doing.

Figure 2008246968
Figure 2008246968

Figure 2008246968
Figure 2008246968

アルコキシシリル基は、水分の存在下で分解するので、反応は相対湿度45%以下の空気中で行うことが好ましい。なお、縮合反応は、シリカ微粒子15の表面に付着した油脂分や水分により阻害されるので、シリカ微粒子15をよく洗浄して乾燥することにより、これらの不純物を予め除去しておくことが好ましい。
縮合触媒として上述の金属塩のいずれかを用いた場合、縮合反応の完了までに要する時間は2時間程度である。
Since the alkoxysilyl group decomposes in the presence of moisture, the reaction is preferably performed in air with a relative humidity of 45% or less. The condensation reaction is hindered by oils and fats and moisture adhering to the surface of the silica fine particles 15, and it is preferable to remove these impurities in advance by thoroughly washing and drying the silica fine particles 15.
When any of the above metal salts is used as the condensation catalyst, the time required for completion of the condensation reaction is about 2 hours.

上述の金属塩の代わりに、ケチミン化合物、有機酸、TiO等の金属酸化物、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物からなる群より選択される1または2以上の化合物を縮合触媒として用いた場合、反応時間を1/2〜2/3程度まで短縮できる。 Instead of the above metal salt, one or more compounds selected from the group consisting of ketimine compounds, organic acids, metal oxides such as TiO 2 , aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds are used. When used as a condensation catalyst, the reaction time can be shortened to about 1/2 to 2/3.

あるいは、これらの化合物を助触媒として、上述の金属塩と混合(質量比1:9〜9:1の範囲で使用可能だが、1:1前後が好ましい)して用いると、反応時間をさらに短縮できる。 Alternatively, when these compounds are used as a co-catalyst and mixed with the above-described metal salt (mass ratio 1: 9 to 9: 1 can be used, preferably around 1: 1), the reaction time is further shortened. it can.

例えば、縮合触媒として、ジブチルスズオキサイドの代わりにケチミン化合物であるジャパンエポキシレジン社のH3を用い、その他の条件は同一にして第1のシラン化合物の単分子膜17で表面が覆われたシリカ微粒子18の製造を行うと、品質を損なうことなく反応時間を1時間程度にまで短縮できる。 For example, as a condensation catalyst, silica fine particles 18 whose surface is covered with a monomolecular film 17 of the first silane compound under the same conditions except that H3 of Japan Epoxy Resin Co., which is a ketimine compound, is used instead of dibutyltin oxide. When the production of is carried out, the reaction time can be shortened to about 1 hour without impairing the quality.

さらに、縮合触媒として、ジャパンエポキシレジン社のH3とジブチルスズビスアセチルアセトネートとの混合物(混合比は1:1)を用い、その他の条件は同一にして第1のシラン化合物の単分子膜17で表面が覆われたシリカ微粒子18の製造を行うと、反応時間を20分程度に短縮できる。 In addition, as a condensation catalyst, a mixture of H3 and dibutyltin bisacetylacetonate (Japan epoxy resin) (mixing ratio is 1: 1) was used, and the other conditions were the same. When the silica fine particles 18 whose surface is covered are manufactured, the reaction time can be shortened to about 20 minutes.

なお、ここで用いることができるケチミン化合物は特に限定されるものではないが、例えば、2,5,8−トリアザ−1,8−ノナジエン、3,11−ジメチル−4,7,10−トリアザ−3,10−トリデカジエン、2,10−ジメチル−3,6,9−トリアザ−2,9−ウンデカジエン、2,4,12,14−テトラメチル−5,8,11−トリアザ−4,11−ペンタデカジエン、2,4,15,17−テトラメチル−5,8,11,14−テトラアザ−4,14−オクタデカジエン、2,4,20,22−テトラメチル−5,12,19−トリアザ−4,19−トリエイコサジエン等が挙げられる。 The ketimine compound that can be used here is not particularly limited, and examples thereof include 2,5,8-triaza-1,8-nonadiene, 3,11-dimethyl-4,7,10-triaza- 3,10-tridecadiene, 2,10-dimethyl-3,6,9-triaza-2,9-undecadiene, 2,4,12,14-tetramethyl-5,8,11-triaza-4,11-penta Decadiene, 2,4,15,17-tetramethyl-5,8,11,14-tetraaza-4,14-octadecadiene, 2,4,20,22-tetramethyl-5,12,19-triaza -4,19-trieicosadiene and the like.

また、用いることができる有機酸としても特に限定されるものではないが、例えば、ギ酸、酢酸、プロピオン酸、酪酸、マロン酸等が挙げられる。 Moreover, although it does not specifically limit as an organic acid which can be used, For example, a formic acid, an acetic acid, propionic acid, a butyric acid, malonic acid etc. are mentioned.

第1の化学吸着液の調製には、有機塩素系溶媒、炭化水素系溶媒、フッ化炭素系溶媒、シリコーン系溶媒、およびこれらの混合溶媒を用いることができる。アルコキシシラン化合物の加水分解を防止するために、乾燥剤または蒸留により使用する溶媒から水分を除去しておくことが好ましい。また、溶媒の沸点は50〜250℃であることが好ましい。 For the preparation of the first chemical adsorption solution, an organic chlorine solvent, a hydrocarbon solvent, a fluorocarbon solvent, a silicone solvent, and a mixed solvent thereof can be used. In order to prevent hydrolysis of the alkoxysilane compound, it is preferable to remove water from the desiccant or the solvent used by distillation. Moreover, it is preferable that the boiling point of a solvent is 50-250 degreeC.

具体的に使用可能な溶媒としては、非水系の石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、ノナン、デカン、灯油、ジメチルシリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエーテルシリコーン、ジメチルホルムアミド等を挙げることができる。
さらに、メタノール、エタノール、プロパノール等のアルコール系溶媒、あるいはそれらの混合物を用いることもできる。
Specific usable solvents include non-aqueous petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, isoparaffin, normal paraffin, decalin, industrial gasoline, nonane, decane, kerosene, dimethyl silicone, phenyl silicone, and alkyl-modified silicone. , Polyether silicone, dimethylformamide and the like.
Furthermore, alcohol solvents such as methanol, ethanol, propanol, or a mixture thereof can also be used.

また、用いることができるフッ化炭素系溶媒としては、フロン系溶媒、フロリナート(米国3M社製)、アフルード(旭硝子株式会社製)等がある。なお、これらは1種単独で用いても良いし、良く混ざるものなら2種以上を組み合わせてもよい。さらに、ジクロロメタン、クロロホルム等の有機塩素系溶媒を添加してもよい。 Fluorocarbon solvents that can be used include fluorocarbon solvents, Fluorinert (manufactured by 3M, USA), Afludo (manufactured by Asahi Glass Co., Ltd.), and the like. In addition, these may be used individually by 1 type and may mix 2 or more types as long as it mixes well. Furthermore, an organic chlorine solvent such as dichloromethane or chloroform may be added.

第1の化学吸着液におけるアルコキシシラン化合物の好ましい濃度は、0.5〜3質量%である。 A preferable concentration of the alkoxysilane compound in the first chemical adsorption solution is 0.5 to 3% by mass.

反応後、溶媒で洗浄し、表面に残った過剰なアルコキシシラン化合物および縮合触媒を除去すると、第1のシラン化合物の単分子膜17で覆われたシリカ微粒子18が得られる。このようにして製造される第1のシラン化合物の単分子膜17で覆われたシリカ微粒子18の断面構造の模式図を図2(b)に示す。なお、図2(b)においては、第1のシラン化合物の単分子膜17の一例として、下記の化5で表される構造を有するものを示している。 After the reaction, washing with a solvent to remove excess alkoxysilane compound and condensation catalyst remaining on the surface, silica particles 18 covered with the monomolecular film 17 of the first silane compound are obtained. FIG. 2B shows a schematic diagram of a cross-sectional structure of the silica fine particles 18 covered with the monomolecular film 17 of the first silane compound thus manufactured. In FIG. 2B, an example having the structure represented by the following chemical formula 5 is shown as an example of the monomolecular film 17 of the first silane compound.

Figure 2008246968
Figure 2008246968

洗浄溶媒としては、アルコキシシラン化合物を溶解できる任意の溶媒を用いることができるが、安価であり、溶解性が高く、風乾により容易に除去することのできるジクロロメタン、クロロホルム、N−メチルピロリドン等が好ましい。 As the cleaning solvent, any solvent that can dissolve the alkoxysilane compound can be used, but dichloromethane, chloroform, N-methylpyrrolidone, etc. that are inexpensive, have high solubility, and can be easily removed by air drying are preferable. .

反応後、生成した第1のシラン化合物の単分子膜17で覆われたシリカ微粒子18を溶媒で洗浄せずに空気中に放置すると、表面に残ったアルコキシシラン化合物の一部が空気中の水分により加水分解を受け、生成したシラノール基がアルコキシシリル基と縮合反応を起こす。その結果、第1のシラン化合物の単分子膜17で覆われたシリカ微粒子18の表面にポリシロキサンよりなる極薄のポリマー膜が形成される。このポリマー膜は、第1のシラン化合物の単分子膜17で覆われたシリカ微粒子18の表面に共有結合により固定されていないが、工程A以降の製造工程に特に支障をきたすことはない。 After the reaction, when the fine silica particles 18 covered with the monomolecular film 17 of the first silane compound formed are left in the air without being washed with a solvent, a part of the alkoxysilane compound remaining on the surface is part of the moisture in the air. The resulting silanol group undergoes a condensation reaction with the alkoxysilyl group. As a result, an ultrathin polymer film made of polysiloxane is formed on the surface of the silica fine particles 18 covered with the monomolecular film 17 of the first silane compound. This polymer film is not fixed to the surface of the silica fine particles 18 covered with the monomolecular film 17 of the first silane compound by a covalent bond, but does not particularly hinder the manufacturing process after the process A.

本実施の形態においては、第1のシラン化合物としてアルコキシシラン化合物を用いた場合について説明したが、フッ化炭素基を有するハロシラン化合物またはイソシアネートシラン化合物を用いてもよい。これらのシラン化合物を用いる場合には、縮合触媒および助触媒が不要であること、アルコール系溶媒が使用できないこと、アルコキシシラン化合物より加水分解を受けやすいので、乾燥溶媒を用い、乾燥空気中(相対湿度30%以下)で反応を行うことを除き、アルコキシシラン化合物と同様に第1の化学吸着液の調製および第1のシラン化合物の単分子膜で覆われたシリカ微粒子の製造を行うことができる。
第1のシラン化合物として用いることのできるハロシラン化合物およびイソシアネートシラン化合物としては、下記の(41)〜(52)に示す化合物が挙げられる。
Although the case where an alkoxysilane compound is used as the first silane compound has been described in this embodiment, a halosilane compound or an isocyanate silane compound having a fluorocarbon group may be used. When these silane compounds are used, a condensation catalyst and a co-catalyst are not required, alcohol solvents cannot be used, and they are more susceptible to hydrolysis than alkoxysilane compounds. Except that the reaction is carried out at a humidity of 30% or less, the first chemical adsorption solution can be prepared and the silica fine particles covered with the monomolecular film of the first silane compound can be produced in the same manner as the alkoxysilane compound. .
Examples of the halosilane compound and isocyanate silane compound that can be used as the first silane compound include compounds shown in the following (41) to (52).

(41)CFCHO(CH15SiCl
(42)CF(CHSi(CH(CH15SiCl
(43)CF(CF(CHSi(CH(CHSiCl
(44)CF(CF(CHSi(CH(CHSiCl
(45)CFCOO(CH15SiCl
(46)CF(CF(CHSi(NCO)
(47)CFCHO(CH15Si(NCO)
(48)CF(CHSi(CH(CH15Si(NCO)
(49)CF(CF(CHSi(CH(CHSi(NCO)
(50)CF(CF(CHSi(CH(CHSi(NCO)
(51)CFCOO(CH15Si(NCO)
(52)CF(CF(CHSi(NCO)
(以上工程A)。
(41) CF 3 CH 2 O (CH 2 ) 15 SiCl 3
(42) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 SiCl 3
(43) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(44) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(45) CF 3 COO (CH 2 ) 15 SiCl 3
(46) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (NCO) 3
(47) CF 3 CH 2 O (CH 2 ) 15 Si (NCO) 3
(48) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 Si (NCO) 3
(49) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (NCO) 3
(50) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (NCO) 3
(51) CF 3 COO (CH 2 ) 15 Si (NCO) 3
(52) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (NCO) 3
(Step A).

工程Bでは、アルミニウム基材11の表面に、微粒子分散液(工程Cで使用)に溶解せず、アルミニウム基材11よりも低い温度でシリカ微粒子18と融着するシリカ系透明被膜12を形成する(図3参照)。
用いるアルミニウム基材11の材質、形状、および大きさについて特に制限はなく、トンネル、道路標識、表示板、看板、乗り物、および建築物において使用される任意の材料を用いることができる。また、表面に活性水素基が存在していれば、表面被膜が形成されていてもよい。なお、活性水素基は、水酸基でもよいが、アミノ基等の活性水素を有する他の官能基であってもよい。
In Step B, a silica-based transparent coating 12 that does not dissolve in the fine particle dispersion (used in Step C) and is fused with the silica fine particles 18 at a temperature lower than that of the aluminum base 11 is formed on the surface of the aluminum base 11. (See FIG. 3).
There is no restriction | limiting in particular about the material of the aluminum base material 11 to be used, a shape, and a magnitude | size, Arbitrary materials used in a tunnel, a road sign, a display board, a signboard, a vehicle, and a building can be used. Moreover, as long as an active hydrogen group exists on the surface, a surface film may be formed. The active hydrogen group may be a hydroxyl group, but may be another functional group having an active hydrogen such as an amino group.

アルミニウム基材11の表面に形成されるシリカ系透明被膜12としては、ゾルゲル法により形成されたシリカの乾燥ゲル膜が好ましい。
未焼結の乾燥ゲル膜の表面および内部には、透明被膜を有しないアルミニウム基材11の表面よりも多くの遊離の水酸基が存在するため、アルミニウム基材11よりも低い温度でシリカ微粒子18と融着できる。
As the silica-based transparent film 12 formed on the surface of the aluminum substrate 11, a silica dry gel film formed by a sol-gel method is preferable.
Since there are more free hydroxyl groups on the surface and inside of the unsintered dry gel film than on the surface of the aluminum base material 11 having no transparent coating, the silica fine particles 18 and Can be fused.

シリカの乾燥ゲル膜の形成は、テトラメトキシシラン(Si(OCH)等のテトラアルコキシシラン、縮合触媒および溶媒を混合して得られるゾル溶液(金属アルコキシドの溶液の一例)をアルミニウム基材11の表面に塗布し、溶媒を蒸発させることにより行うことができる。
その結果、空気中の水分によるアルコキシル基の加水分解により生成する水酸基とアルコキシル基との間で縮合反応が起こり、アルミニウム基材11の表面に、シリカの透明な乾燥ゲル膜(シリカ系透明被膜12の一例)が形成される。
用いることのできる縮合触媒、助触媒、溶媒の種類、テトラアルコキシシランの濃度、触媒の添加量については第1の化学吸着液と同様であるので、説明を省略する。
The formation of a silica dry gel film is achieved by using a sol solution (an example of a metal alkoxide solution) obtained by mixing a tetraalkoxysilane such as tetramethoxysilane (Si (OCH 3 ) 4 ), a condensation catalyst, and a solvent with an aluminum substrate. 11 can be applied by evaporating the solvent.
As a result, a condensation reaction occurs between the hydroxyl group generated by hydrolysis of the alkoxyl group by moisture in the air and the alkoxyl group, and a transparent dry gel film of silica (silica-based transparent film 12) is formed on the surface of the aluminum substrate 11. Example) is formed.
Since the condensation catalyst, cocatalyst, solvent type, tetraalkoxysilane concentration, and addition amount of the catalyst that can be used are the same as those in the first chemical adsorption solution, description thereof is omitted.

ゾル溶液の塗布は、ディップコート法、スピンコート法、スプレー法、スクリーン印刷法等の任意の方法により行うことができる。
また、乾燥ゲル膜の膜厚は、撥水撥油防汚性反射板10の製造に用いるシリカ微粒子15の粒径にもよるが、10〜50nmが好ましい。
このようにして製造されるシリカの乾燥ゲル膜を有するアルミニウム基材11の断面構造の模式図を図3に示す。
透明被膜としてシリカの乾燥ゲル膜を有するアルミニウム基材11を用いて撥水撥油防汚性反射板10の製造を行うと、工程Eにおける加熱処理を300度以下の低温で行うことが可能となり、アルミニウム基材の強化度を劣化させることなくシリカ微粒子13を融着した凹凸アルミニウム基材19を製造できる。
The application of the sol solution can be performed by an arbitrary method such as a dip coating method, a spin coating method, a spray method, or a screen printing method.
Moreover, although the film thickness of a dry gel film is based also on the particle size of the silica fine particle 15 used for manufacture of the water-repellent / oil-repellent antifouling reflector 10, it is preferably 10 to 50 nm.
FIG. 3 shows a schematic diagram of a cross-sectional structure of the aluminum base material 11 having a silica dry gel film produced in this manner.
When the water-repellent / oil-repellent antifouling reflective plate 10 is produced using the aluminum substrate 11 having a silica dry gel film as a transparent film, the heat treatment in the step E can be performed at a low temperature of 300 ° C. or less. The uneven aluminum base material 19 in which the silica fine particles 13 are fused can be produced without deteriorating the strengthening degree of the aluminum base material.

なお、本実施の形態においては、透明被膜としてシリカの乾燥ゲル膜を形成しているが、透明性を有しアルミニウム基材11よりも低い温度でシリカ微粒子15を融着することのできる任意の透明被膜を形成し用いることができる。用いることのできる透明被膜としては、例えば、アルミナ、酸化チタン等の乾燥ゲル膜等が挙げられる。
また、ゾル溶液にリン酸またはホウ酸をそれぞれ数パーセント添加しておくと、リンシリケートガラス(PSG)やボロンシリケートガラス(BSG)の乾燥ゲル膜が形成され、工程Eにおける加熱処理温度を250℃程度まで低減できる(以上工程B)。
In the present embodiment, a dry gel film of silica is formed as the transparent film. However, the silica gel 15 can be fused arbitrarily at a temperature lower than that of the aluminum substrate 11. A transparent film can be formed and used. Examples of the transparent film that can be used include dry gel films such as alumina and titanium oxide.
Moreover, when phosphoric acid or boric acid is added to the sol solution at several percents, a dry gel film of phosphorus silicate glass (PSG) or boron silicate glass (BSG) is formed, and the heat treatment temperature in step E is 250 ° C. It can be reduced to the extent (step B above).

工程Cでは、第1のシラン化合物の単分子膜17で表面が覆われたシリカ微粒子18を分散した微粒子分散液を調製する。
第1のシラン化合物の単分子膜17で表面が覆われたシリカ微粒子18を溶媒に加え、撹拌ばね、マグネチックスターラー等の任意の撹拌手段により激しく撹拌するか、超音波照射を行うことにより、第1のシラン化合物の単分子膜17で表面が覆われたシリカ微粒子15を溶媒中に均一に分散させる。
微粒子分散液の調製に用いることのできる溶媒としては、シリカ微粒子18を均一に分散させることができ、アルミニウム基材11上に塗布した後、蒸発させることで容易に除去できる任意の溶媒を用いることができる。
In step C, a fine particle dispersion in which silica fine particles 18 whose surfaces are covered with the monomolecular film 17 of the first silane compound is dispersed is prepared.
By adding the silica fine particles 18 whose surface is covered with the monomolecular film 17 of the first silane compound to the solvent and stirring vigorously by any stirring means such as a stirring spring and a magnetic stirrer, or by performing ultrasonic irradiation, The silica fine particles 15 whose surface is covered with the monomolecular film 17 of the first silane compound are uniformly dispersed in the solvent.
As the solvent that can be used for the preparation of the fine particle dispersion, any solvent that can uniformly disperse the silica fine particles 18 and that can be easily removed by evaporation after being coated on the aluminum substrate 11 is used. Can do.

第1のシラン化合物として、前記化1で表されるフッ化炭素基を有するシラン化合物(例えば前記(1)〜(12)等)を用いる場合には、水およびアルコール系の溶媒を除く任意の非水系の有機溶媒が好ましく、前記化2で表される炭化水素基を有するシラン化合物(例えば前記(21)〜(32))を用いる場合には、水およびアルコール系の溶媒を含む任意の有機溶媒を用いることができるが、毒性の低さや廃棄物処理の容易さの観点からは水およびアルコール系の溶媒が好ましい。 When a silane compound having a fluorocarbon group represented by the chemical formula 1 (for example, the above (1) to (12)) is used as the first silane compound, any water and alcohol-based solvents can be excluded. A non-aqueous organic solvent is preferable, and when using a silane compound having a hydrocarbon group represented by Chemical Formula 2 (for example, the above (21) to (32)), any organic material including water and an alcohol-based solvent is used. Although a solvent can be used, water and alcohol solvents are preferable from the viewpoint of low toxicity and ease of waste disposal.

第1のシラン化合物の単分子膜17で表面が覆われたシリカ微粒子18の微粒子分散液中における質量比は、0.5〜5質量%であることが好ましい。質量比が0.5質量%を下回ると多量の微粒子分散液が必要となり、5質量%を上回るとシリカ微粒子18を均一に分散させることが困難になるため、ともに好ましくない。 The mass ratio in the fine particle dispersion of the silica fine particles 18 whose surface is covered with the monomolecular film 17 of the first silane compound is preferably 0.5 to 5% by mass. When the mass ratio is less than 0.5% by mass, a large amount of the fine particle dispersion is required, and when it exceeds 5% by mass, it is difficult to uniformly disperse the silica fine particles 18, which is not preferable.

シリカ微粒子18の表面を覆う第1のシラン化合物の単分子膜17は、シリカ微粒子18の表面エネルギーを小さくする作用があり、微粒子液内での凝集を押さえ、分散性を向上できる効果を有する。
なお、本実施の形態においては工程Aにより製造した第1のシラン化合物の単分子膜17で表面が覆われたシリカ微粒子18を用いたが、工程Aを省略して直接シリカ微粒子15を前記の溶媒中に分散させることにより微粒子分散液を調製した場合でも、工程Eにおいて製造される凹凸アルミニウム基材19表面の欠陥密度はやや大きくなるものの、撥水撥油防汚性反射板10の製造に大きな支障をきたすことはない(以上工程C)。
The monomolecular film 17 of the first silane compound covering the surface of the silica fine particles 18 has an effect of reducing the surface energy of the silica fine particles 18, and has an effect of suppressing aggregation in the fine particle liquid and improving dispersibility.
In the present embodiment, the silica fine particles 18 whose surfaces are covered with the monomolecular film 17 of the first silane compound produced in the process A are used. However, the silica fine particles 15 are directly removed by omitting the process A. Even when a fine particle dispersion is prepared by dispersing in a solvent, although the defect density on the surface of the concavo-convex aluminum substrate 19 produced in the step E is slightly increased, the water- and oil-repellent and antifouling reflective plate 10 is produced. There will be no major hindrance (step C).

工程Dでは、アルミニウム基材11の表面(シリカ系透明被膜12の表面)に微粒子分散液を塗布し乾燥することにより、アルミニウム基材11の表面にシリカ系透明被膜12を介してシリカ微粒子18を付着させる。
微粒子分散液の塗布は、ディップコート法、スピンコート法、スプレー法、スクリーン印刷法等の任意の方法により行うことができる。また、溶媒の蒸発は、用いた溶媒の沸点、蒸気圧等に応じて、風乾、減圧乾燥、加熱乾燥等の公知の方法を単独で、または適宜組み合わせて用いることができる。
このようにして得られる、第1のシラン化合物の単分子膜17で表面が覆われたシリカ微粒子18が付着した、シリカ系透明被膜12を有するアルミニウム基材11の断面構造の模式図を図4(a)に示す(以上工程D)。
In step D, the fine particle dispersion is applied to the surface of the aluminum base 11 (the surface of the silica-based transparent coating 12) and dried, whereby the silica fine particles 18 are formed on the surface of the aluminum base 11 via the silica-based transparent coating 12. Adhere.
The fine particle dispersion can be applied by an arbitrary method such as a dip coating method, a spin coating method, a spray method, or a screen printing method. Further, for the evaporation of the solvent, known methods such as air drying, reduced pressure drying, heat drying and the like can be used alone or in appropriate combination depending on the boiling point, vapor pressure and the like of the solvent used.
FIG. 4 is a schematic diagram of the cross-sectional structure of the aluminum base material 11 having the silica-based transparent coating 12 to which the silica fine particles 18 whose surfaces are covered with the monomolecular film 17 of the first silane compound attached are obtained in this manner. Shown in (a) (step D above).

工程Eでは、第1のシラン化合物の単分子膜17で表面が覆われたシリカ微粒子18が乗ったシリカ系透明被膜12を有するアルミニウム基材11を、酸素を含む雰囲気中で加熱処理し、シリカ微粒子18の表面を覆う第1のシラン化合物の単分子膜17を分解させ、アルミニウム基材11表面のシリカ系透明被膜12とシリカ微粒子18とを融着させることにより、シリカ微粒子18を融着した(すなわち、融着したシリカ微粒子13を表面に有する)凹凸アルミニウム基材19(図4(b)参照)を製造する。
加熱処理は、酸素を含む雰囲気中で、アルミニウム基材11とシリカ微粒子18との融着が起こる温度よりも高く、かつアルミニウム基材11およびシリカ微粒子18の融解温度よりも低い温度で行われる。加熱処理温度が高いほどシリカ微粒子18をより強固にアルミニウム基材11の表面に融着できるが、温度が高くなりすぎるとシリカ微粒子18がアルミニウム基材11(またはシリカ系透明被膜12)の内部に埋没してしまうため好ましくない。
In step E, the aluminum substrate 11 having the silica-based transparent coating 12 on which the silica fine particles 18 whose surfaces are covered with the monomolecular film 17 of the first silane compound is mounted is heat-treated in an atmosphere containing oxygen, and silica The silica fine particles 18 were fused by decomposing the monomolecular film 17 of the first silane compound covering the surfaces of the fine particles 18 and fusing the silica-based transparent coating 12 and the silica fine particles 18 on the surface of the aluminum substrate 11. An uneven aluminum base 19 (see FIG. 4B) is manufactured (that is, having fused silica fine particles 13 on the surface).
The heat treatment is performed in an atmosphere containing oxygen at a temperature higher than the temperature at which the aluminum base material 11 and the silica fine particles 18 are fused and lower than the melting temperature of the aluminum base material 11 and the silica fine particles 18. The higher the heat treatment temperature, the stronger the silica fine particles 18 can be fused to the surface of the aluminum base 11. However, when the temperature becomes too high, the silica fine particles 18 are placed inside the aluminum base 11 (or the silica-based transparent coating 12). Since it will be buried, it is not preferable.

アルミニウム基材11がシリカ系透明被膜12を有する場合、アルミニウム基材11とシリカ微粒子18との融着のためには、250〜300℃程度の低温で加熱処理を行うことができる。しかし、シリカ微粒子18の表面を覆う第1のシラン化合物の単分子膜17を完全に分解させるためには、350〜400℃で加熱処理を行う必要がある。
第1のシラン化合物がフッ化炭素基を有する場合、その単分子膜を完全に分解するためには400℃程度で加熱処理を行う必要があるが、炭化水素基を有する場合には、350℃程度でその単分子膜を完全に分解できる。したがって、工程Aにおいて炭化水素基を含む第1のシラン化合物を用いた場合、アルミニウム基材11を用いても、その強度低下がないため好ましい。
このようにして得られた凹凸アルミニウム基材19の断面構造の模式図を図4(b)に示す。
When the aluminum substrate 11 has the silica-based transparent coating 12, the heat treatment can be performed at a low temperature of about 250 to 300 ° C. for fusing the aluminum substrate 11 and the silica fine particles 18 together. However, in order to completely decompose the monomolecular film 17 of the first silane compound covering the surface of the silica fine particles 18, it is necessary to perform a heat treatment at 350 to 400 ° C.
When the first silane compound has a fluorocarbon group, it is necessary to perform heat treatment at about 400 ° C. in order to completely decompose the monomolecular film, but in the case of having a hydrocarbon group, 350 ° C. The monolayer can be completely decomposed to a certain degree. Therefore, when the 1st silane compound containing a hydrocarbon group is used in the process A, even if the aluminum base material 11 is used, since the intensity | strength does not fall, it is preferable.
A schematic view of the cross-sectional structure of the uneven aluminum base material 19 obtained in this way is shown in FIG.

なお、本実施の形態においては、シリカ系透明被膜12が形成されたアルミニウム基材11を用いたが、工程Bを省略してシリカ系透明被膜12を有しないアルミニウム基材11をそのまま用いてもよい。アルミニウム基材11の代わりに、ガラス基材として青板ガラスを用いた場合には、好ましい加熱処理温度は650度程度である。また、処理時間は、650℃の空気中で加熱処理を行った場合には30分である(以上工程E)。 In the present embodiment, the aluminum substrate 11 on which the silica-based transparent coating 12 is formed is used. However, the step B may be omitted and the aluminum substrate 11 that does not have the silica-based transparent coating 12 may be used as it is. Good. When blue plate glass is used as the glass substrate instead of the aluminum substrate 11, a preferable heat treatment temperature is about 650 degrees. The treatment time is 30 minutes when heat treatment is performed in air at 650 ° C. (step E above).

工程Fでは、アルミニウム基材11の表面に融着しなかったシリカ微粒子18を洗浄除去する。洗浄には任意の溶媒を用いることができるが、無害であり廃棄物の処理が容易である水が最も好ましい(以上工程F)。 In step F, the silica fine particles 18 that have not been fused to the surface of the aluminum substrate 11 are removed by washing. Although any solvent can be used for washing, water that is harmless and can easily be disposed of is most preferable (step F).

工程Gでは、融着したシリカ微粒子13を有する凹凸アルミニウム基材19の表面にフッ化炭素基を含む化学吸着単分子膜14を形成し、撥水撥油防汚性反射板10を製造する。 In step G, a chemically adsorbed monomolecular film 14 containing a fluorocarbon group is formed on the surface of an uneven aluminum substrate 19 having fused silica fine particles 13 to manufacture a water / oil / oil / oil / repellency reflecting plate 10.

フッ化炭素基を含む化学吸着単分子膜14の形成に用いる第2の化学吸着液は、フッ化炭素基を含むアルコキシシラン化合物(第2のシラン化合物の一例)と、凹凸アルミニウム基材19の表面の水酸基(反応性基の一例)とアルコキシシリル基との縮合反応を促進するための縮合触媒と、非水系の有機溶媒とを混合することにより調製される。 The second chemisorption liquid used for forming the chemisorption monomolecular film 14 containing a fluorocarbon group is composed of an alkoxysilane compound containing a fluorocarbon group (an example of the second silane compound) and the uneven aluminum substrate 19. It is prepared by mixing a condensation catalyst for promoting a condensation reaction between a hydroxyl group on the surface (an example of a reactive group) and an alkoxysilyl group and a non-aqueous organic solvent.

フッ化炭素基を含むアルコキシシラン化合物としては、前記一般式(化1)で表されるアルコキシシラン化合物が挙げられる。 Examples of the alkoxysilane compound containing a fluorocarbon group include the alkoxysilane compounds represented by the general formula (Formula 1).

第2の化学吸着液に用いることのできる縮合触媒、助触媒の種類およびそれらの組み合わせ、溶媒の種類、アルコキシシラン化合物、縮合触媒、および助触媒の濃度、反応条件ならびに反応時間については第1の化学吸着液と同様であるので、説明を省略する。 Concentrations of the condensation catalyst, cocatalyst and combinations thereof that can be used for the second chemical adsorption solution, solvent type, alkoxysilane compound, condensation catalyst, and cocatalyst concentration, reaction conditions and reaction time are Since it is the same as a chemical adsorption liquid, description is abbreviate | omitted.

フッ化炭素基を有する化学吸着単分子膜14は、融着したシリカ微粒子13の露出した部分およびアルミニウム基材11の表面(シリカ系透明被膜12の表面)のシリカ微粒子13が融着していない部分に共有結合している。 In the chemisorption monomolecular film 14 having a fluorocarbon group, the exposed portion of the fused silica fine particles 13 and the silica fine particles 13 on the surface of the aluminum base 11 (the surface of the silica-based transparent coating 12) are not fused. It is covalently attached to the part.

本実施の形態においては、第2のシラン化合物として、アルコキシシラン化合物を用いた場合について説明したが、フッ化炭素基を有するハロシラン化合物またはイソシアネートシラン化合物を用いてもよい。ハロシラン化合物を用いる場合には、縮合触媒および助触媒が不要であること、アルコール系溶媒が使用できないこと、アルコキシシラン化合物より加水分解を受けやすいので、乾燥溶媒を用い、乾燥空気中(相対湿度30%以下)で反応を行うことを除き、アルコキシシラン化合物と同様に第2の化学吸着液の調製および凹凸アルミニウム基材19との反応を行うことができる。
このようにして得られる撥水撥油防汚性反射板10の断面構造の模式図を図1に示す。なお、図1においては、フッ化炭素基を含む化学吸着単分子膜14の一例として、前記化5で表される構造を有するものを示している(以上工程G)。
Although the case where an alkoxysilane compound is used as the second silane compound has been described in this embodiment, a halosilane compound or an isocyanate silane compound having a fluorocarbon group may be used. When a halosilane compound is used, a condensation catalyst and a cocatalyst are not required, an alcohol solvent cannot be used, and it is more susceptible to hydrolysis than an alkoxysilane compound. %), The second chemical adsorption solution can be prepared and reacted with the concavo-convex aluminum base material 19 in the same manner as the alkoxysilane compound.
FIG. 1 shows a schematic diagram of a cross-sectional structure of the water / oil repellent / antifouling reflective plate 10 obtained in this manner. In addition, in FIG. 1, what has the structure represented by said Chemical formula 5 is shown as an example of the chemical adsorption monomolecular film 14 containing a fluorocarbon group (the above process G).

フッ化炭素基を有する化学吸着単分子膜14の膜厚は、たかだか1nm程度であるため、融着したシリカ微粒子13で表面が覆われたアルミニウム基材の表面に形成された50nm程度の凸凹はほとんど損なわれることがない。また、この凸凹の効果(いわゆる「蓮の葉効果」)により、撥水撥油防汚性反射板10の見かけ上の表面エネルギーを小さくでき、水滴接触角は、130度以上(本実施の形態では150度程度)となり、超撥水が実現できる。 Since the film thickness of the chemical adsorption monomolecular film 14 having a fluorocarbon group is at most about 1 nm, the unevenness of about 50 nm formed on the surface of the aluminum base material covered with the fused silica fine particles 13 is Almost no damage. In addition, due to this unevenness effect (so-called “lotus leaf effect”), the apparent surface energy of the water / oil repellent / antifouling reflector 10 can be reduced, and the water droplet contact angle is 130 degrees or more (this embodiment). Is about 150 degrees), and super water repellency can be realized.

また、撥水撥油防汚性反射板10のアルミニウム基材11の表面には、シリカ系透明被膜12を介してアルミニウムよりも硬度が高いシリカ微粒子13が融着しているので、耐摩耗性も大幅に向上している。
また、撥水撥油防汚性反射板10において、アルミニウム基材11の表面に融着したシリカ微粒子13およびフッ化炭素基を有する化学吸着単分子膜14を含む被膜の厚さは、全体で100nm程度であるため、アルミニウム基材11の透明性が損なわれることもない。
Also, silica fine particles 13 having a hardness higher than that of aluminum are fused to the surface of the aluminum base 11 of the water / oil repellent / antifouling reflective plate 10 via the silica-based transparent coating 12, so that the wear resistance is improved. Has also improved significantly.
Moreover, in the water / oil / oil / repellency antifouling reflector 10, the thickness of the coating including the silica fine particles 13 fused to the surface of the aluminum substrate 11 and the chemical adsorption monomolecular film 14 having a fluorocarbon group is as a whole. Since it is about 100 nm, the transparency of the aluminum base 11 is not impaired.

反応後、生成した撥水撥油防汚性反射板10を溶媒で洗浄せずに空気中に放置すると、表面に残ったアルコキシシラン化合物の一部が空気中の水分により加水分解を受け、生成したシラノール基がアルコキシシリル基と縮合反応を起こす。その結果、撥水撥油防汚性反射板10の表面にポリシロキサンよりなる極薄のポリマー膜が形成される。このポリマー膜は、単分子膜と異なりその全体が撥水撥油防汚性反射板10の表面に共有結合により固定されていることはないが、フッ化炭素基を有しているため撥水撥油防汚性を有している。そのため、多少耐久性に劣る点を除けば、このままの状態でも撥水撥油防汚性反射板10として使用できる。 After the reaction, if the produced water / oil / oil / antifouling reflective plate 10 is left in the air without being washed with a solvent, a part of the alkoxysilane compound remaining on the surface is hydrolyzed by moisture in the air and produced. The resulting silanol group causes a condensation reaction with the alkoxysilyl group. As a result, an ultrathin polymer film made of polysiloxane is formed on the surface of the water / oil repellent / antifouling reflective plate 10. Unlike the monomolecular film, this polymer film is not entirely fixed to the surface of the water / oil repellent / antifouling reflective plate 10 by a covalent bond, but has a fluorocarbon group so that it has water repellent properties. It has oil repellency and antifouling properties. Therefore, it can be used as the water / oil / oil repellent / antifouling reflecting plate 10 in this state as long as the durability is somewhat inferior.

また、工程Gにおいて用いることができるフッ化炭素基を含むアルコキシシラン化合物としては、前記(1)〜(12)に示す化合物が挙げられる。 Moreover, as an alkoxysilane compound containing the fluorocarbon group which can be used in the process G, the compound shown to said (1)-(12) is mentioned.

また、工程Gにおいて用いることができるフッ化炭素基を含むハロシラン化合物およびイソシアネートシラン化合物としては、前記(41)〜(52)に示す化合物が挙げられる。 Examples of the halosilane compound and isocyanate silane compound containing a fluorocarbon group that can be used in Step G include the compounds shown in the above (41) to (52).

異なる体積の水滴(0.02〜0.08ml)を用いた実験より求められた、撥水性表面上における水滴に対する接触角と転落角の関係より、水滴接触角が150度以上のとき、水滴の体積に関係なく転落角は15度以下となることがわかっている。
そのため、撥水撥油防汚性反射板10を、トンネル、道路標識、表示板、看板、乗り物の車体の内部および外部、および建築物の外壁および内壁に用いた場合、照明電力の低減と夜間における視認性を向上できることがわかる。
From the relationship between the contact angle to the water droplet on the water-repellent surface and the falling angle obtained from the experiment using water droplets of different volumes (0.02 to 0.08 ml), when the water droplet contact angle is 150 degrees or more, It is known that the falling angle is 15 degrees or less regardless of the volume.
Therefore, when the water / oil / oil / repellency antifouling reflector 10 is used in tunnels, road signs, display boards, signboards, interiors and exteriors of vehicle bodies, and exterior and interior walls of buildings, illumination power can be reduced and nighttime. It can be seen that the visibility can be improved.

撥水撥油防汚性反射板10は、耐摩耗性および耐候性等の耐久性、水滴離水性(滑水性)、ならびに防汚性に優れており、撥水撥油防汚機能が要求されるトンネル、道路標識、表示板、看板、乗り物、および建築物に用いることができる。
特に、基材をガラス板とした場合には、乗り物や建築物の窓用ガラス板として用いることができる。
この撥水撥油防汚性反射板を用いることのできる乗り物としては、自動車、鉄道車両、船舶等が挙げられ、運転席、客室等の別を問わずあらゆる窓の窓用ガラス板として用いることができる。
また、撥水撥油防汚性反射板を用いることのできる建築物としては、一戸建て住宅、集合住宅、オフィスビル等の任意の建築物が挙げられる。
The water / oil / oil repellent / antifouling reflector 10 is excellent in durability such as abrasion resistance and weather resistance, water droplet separation (sliding), and antifouling, and is required to have a water / oil repellent / antifouling function. Can be used for tunnels, road signs, display boards, signs, vehicles, and buildings.
In particular, when the substrate is a glass plate, it can be used as a glass plate for windows of vehicles and buildings.
Vehicles that can use this water / oil repellent / antifouling reflective plate include automobiles, railway vehicles, ships, etc., and can be used as glass plates for windows in any windows, regardless of driver seats, cabins, etc. Can do.
Moreover, as a building which can use a water repellent and oil repellent antifouling reflecting plate, arbitrary buildings, such as a detached house, an apartment house, an office building, are mentioned.

以下、本発明の効果を確認するために行った実施例について説明するが、本願発明は、これら実施例によって何ら制限されるものではない。 Examples carried out for confirming the effects of the present invention will be described below, but the present invention is not limited to these examples.

(実施例1)
(1)フッ化炭素基を有する単分子膜で覆われたシリカ微粒子の製造
平均粒径100nmのシリカ微粒子を用意し、よく洗浄して乾燥した。
(ヘプタデカフルオロ−1,1,2,2−テトラヒドロデシル)トリメトキシシラン(化6、信越化学工業株式会社製)0.99重量部、およびジブチルスズジアセチルアセトナート(縮合触媒)0.01重量部を秤量し、これを100重量部のヘキサメチルジシロキサン溶媒に溶解し、第1の化学吸着液を調製した。
Example 1
(1) Production of silica fine particles covered with a monomolecular film having a fluorocarbon group Silica fine particles having an average particle diameter of 100 nm were prepared, washed thoroughly and dried.
(Heptadecafluoro-1,1,2,2-tetrahydrodecyl) trimethoxysilane (Chemical 6, Shin-Etsu Chemical Co., Ltd.) 0.99 parts by weight, and dibutyltin diacetylacetonate (condensation catalyst) 0.01 parts by weight Were weighed and dissolved in 100 parts by weight of a hexamethyldisiloxane solvent to prepare a first chemical adsorption solution.

Figure 2008246968
Figure 2008246968

このようにして得られた第1の化学吸着液に乾燥したシリカ微粒子を混入撹拌して空気中(相対湿度45%)で1時間程度反応させた。
その後、クロロホルムで洗浄し、過剰なアルコキシシラン化合物およびジブチルスズジアセチルアセトナートを除去した。
The first chemisorbed liquid thus obtained was mixed and stirred with dried silica fine particles and reacted in air (relative humidity 45%) for about 1 hour.
Thereafter, the mixture was washed with chloroform to remove excess alkoxysilane compound and dibutyltin diacetylacetonate.

(2)アルミニウム基材の表面へのシリカ系透明被膜の形成
鏡面にしたアルミニウム板(ステンレス板も同様)を用意し、よく洗浄して乾燥した。
テトラメトキシシラン(Si(OCH)0.99重量部、およびジブチルスズジアセチルアセトナート(縮合触媒)0.01重量部を秤量し、これを100重量部のヘキサメチルジシロキサン溶媒に溶解し、ゾル溶液を調製した。このようにして得られたゾル溶液をアルミニウム板の表面に塗布し、溶媒を蒸発させると、テトラメトキシシランが加水分解し脱アルコール反応して膜厚500nm程度の多量の水酸基を含むシリカ系透明被膜(シリカ乾燥ゲル膜)が形成された。
(2) Formation of a silica-based transparent coating on the surface of an aluminum base An aluminum plate (same as a stainless steel plate) having a mirror surface was prepared, washed well, and dried.
0.99 parts by weight of tetramethoxysilane (Si (OCH 3 ) 4 ) and 0.01 parts by weight of dibutyltin diacetylacetonate (condensation catalyst) were weighed and dissolved in 100 parts by weight of hexamethyldisiloxane solvent, A sol solution was prepared. When the sol solution thus obtained is applied to the surface of an aluminum plate and the solvent is evaporated, tetramethoxysilane is hydrolyzed and dealcoholized to cause a silica-based transparent film containing a large amount of hydroxyl groups having a film thickness of about 500 nm. (Silica dry gel film) was formed.

(3)アルミニウム基材の表面への微粒子溶液の塗布
(1)で製造した、フッ化炭素基を含む単分子膜で表面が覆われたシリカ微粒子1重量部をキシレン99重量部中に加え、激しく撹拌して微粒子分散液を調製した。
(2)で形成した、シリカ乾燥ゲル膜の透明被膜を有するアルミニウム板の表面に微粒子分散液を塗布後、溶剤を蒸発させ、フッ化炭素基を含む単分子膜で表面が覆われたシリカ微粒子が表面に付着したアルミニウム基材が得られた。
(3) Application of the fine particle solution to the surface of the aluminum substrate (1), 1 part by weight of silica fine particles whose surface was covered with a monomolecular film containing a fluorocarbon group was added to 99 parts by weight of xylene, A fine particle dispersion was prepared by vigorous stirring.
Silica fine particles whose surface is covered with a monomolecular film containing a fluorocarbon group after applying the fine particle dispersion to the surface of the aluminum plate having the transparent coating of the silica dry gel film formed in (2) The aluminum base material which adhered to the surface was obtained.

(4)シリカ微粒子を融着した凹凸アルミニウム基材の製造
フッ化炭素基を含む単分子膜で表面が覆われたシリカ微粒子が表面に付着したアルミニウム基材を、空気中450℃で30分焼成すると、シリカ微粒子の表面を覆っていたフッ化炭素基を含む単分子膜が分解除去されるとともにシリカ微粒子のアルミニウム基材表面の融着が起こった。その後、水で洗浄すると、アルミニウム基材の表面に融着しなかったシリカ微粒子が除去され、単層のシリカ微粒子を融着した凹凸アルミニウム基材が得られた。
(4) Production of concavo-convex aluminum base material fused with silica fine particles An aluminum base material having silica fine particles whose surface is covered with a monomolecular film containing a fluorocarbon group adhered to the surface is baked at 450 ° C. in air for 30 minutes. As a result, the monomolecular film containing the fluorocarbon group covering the surface of the silica fine particles was decomposed and removed, and the silica fine particles were fused to the surface of the aluminum substrate. Thereafter, when washed with water, the silica fine particles that were not fused to the surface of the aluminum base material were removed, and an uneven aluminum base material with the single layer silica fine particles fused was obtained.

ここで、表面粗さが可視光の波長より小さいと、入射光は大部分正反射してしまい乱反射性能が劣化してしまった。
大きさが異なる100〜1μm程度の微粒子を混合して用いると、さらに撥水撥油防汚性能と反射性能に優れた反射板が得られた。反射効率を高めるためには、微粒子の大きさは、可視光波長(380〜700nm)より大きい方がよく、汚れにくくするには小さい方がいいので、好ましくは、粒径が100〜1μm、より好ましくは10〜1μmであった。なお、形状は、球形でも異形でも問題はなかった。
Here, when the surface roughness is smaller than the wavelength of visible light, most of the incident light is regularly reflected, and the irregular reflection performance is deteriorated.
When fine particles of about 100 to 1 μm having different sizes were mixed and used, a reflector plate having further excellent water / oil repellent / antifouling performance and reflection performance was obtained. In order to increase the reflection efficiency, the size of the fine particles is preferably larger than the visible light wavelength (380 to 700 nm), and preferably smaller to prevent contamination, so that the particle size is preferably 100 to 1 μm. Preferably it was 10-1 micrometer. There was no problem whether the shape was spherical or irregular.

また、ここで、焼成温度を250〜350℃で行うと、単なるシリカ系ガラス膜の焼成焼きしめで終わるが、400℃を超えると前述のように単分子膜を完全に分解除去でき、微粒子は融着した。 Further, here, when the baking temperature is 250 to 350 ° C., it ends with calcination of the silica glass film, but when it exceeds 400 ° C., the monomolecular film can be completely decomposed and removed as described above, and the fine particles Fused.

なお、酸素を含む雰囲気中での焼成温度は、250℃以上乃至基材の軟化温度未満であれば高いほど微粒子を強固に基材表面に融着できるが、あまり高すぎるとシリカ系微粒子融着用の被膜中、あるいは基材中にシリカ微粒子がとけ込み埋没してしまった。 As the firing temperature in the atmosphere containing oxygen is higher than 250 ° C. or lower than the softening temperature of the base material, the finer particles can be firmly bonded to the surface of the base material. Silica fine particles were melted and buried in the coating film or substrate.

一方、このとき、微粒子表面のフッ化炭素基を含む化学吸着単分子膜は、シリカ微粒子の表面エネルギーを小さくする作用があり、微粒子液内での凝集を押さえ、分散性を向上できる効果があった。微粒子表面のフッ化炭素基を含む化学吸着単分子膜を形成してない場合でも、大きな支障はなかったが、融着したシリカ微粒子1’膜の欠陥密度はやや大きかった。 On the other hand, at this time, the chemisorption monomolecular film containing fluorocarbon groups on the surface of the fine particles has the effect of reducing the surface energy of the silica fine particles, and has the effect of suppressing aggregation in the fine particle liquid and improving dispersibility. It was. Even when the chemisorption monomolecular film containing the fluorocarbon group on the fine particle surface was not formed, there was no major problem, but the defect density of the fused silica fine particle 1 'film was slightly high.

また、微粒子液の溶媒がキシレンのような有機系溶媒ではなくて、アルコール系あるいは水系の場合には、微粒子表面に撥水撥油防汚性の単分子膜として、例えば、下記式(化7)で示したような親油性ではあるが撥水撥油防汚性の被膜を形成しておいても、同様の機能を発現できた。 Further, when the solvent of the fine particle liquid is not an organic solvent such as xylene but an alcoholic or aqueous solvent, a water / oil repellent / antifouling monomolecular film is formed on the surface of the fine particle, for example, The same function can be achieved even when a water-repellent, oil-repellent and antifouling film as shown in FIG.

Figure 2008246968
Figure 2008246968

さらにまた、あらかじめバインダー層となるシリカ系微粒子融着用の被膜を形成しておかなくとも、加熱温度を基材の軟化温度以上、例えば、基材反射板が市販の青板ガラスで粒子がシリカ微粒子の場合、空気中で655度30分の加熱を行えば、シリカ微粒子を基材表面に融着固定できた。
なお、このときも、シリカ微粒子表面の化学吸着単分子膜は完全に分解除去されたが、シリカ微粒子そのものは、融点が700℃より遙かに高いため、互いに融着することはなかった。
また、シリカ塗布液の調整時、リン酸または硼酸をそれぞれ数パーセント添加しておくとリンシリケートガラス(PSG)や(ボロンシリケートガラスBSG)になるため焼成温度を最低で250℃まで低減できた。250〜350℃程度まで焼結温度を低減できれば、基材として風冷強化ガラスを用いても、強度を損なうことなく同様の表面粗さの反射板を製造できた。
Furthermore, the heating temperature is not less than the softening temperature of the base material, for example, the base reflector is a commercially available blue plate glass, and the particles are silica fine particles, even if a coating film for fusing silica-based fine particles to be a binder layer is not formed in advance. In this case, the silica fine particles could be fused and fixed to the substrate surface by heating at 655 ° C. for 30 minutes in the air.
At this time, the chemically adsorbed monomolecular film on the surface of the silica fine particles was completely decomposed and removed, but the silica fine particles themselves did not fuse with each other because the melting point was much higher than 700 ° C.
Further, when several percent of phosphoric acid or boric acid was added at the time of preparing the silica coating solution, phosphoric acid silicate glass (PSG) or (boron silicate glass BSG) was formed, so that the firing temperature could be reduced to 250 ° C. at the minimum. If the sintering temperature could be reduced to about 250 to 350 ° C., a reflector having the same surface roughness could be produced without impairing the strength even if air-cooled tempered glass was used as the substrate.

最後に、前記凸凹基材表面に前記微粒子の場合と同様のフッ化炭素系の化学吸着液を塗布し2時間程度反応させた後、クロロホルム等の塩素系溶媒で余分な未反応の吸着液を洗浄除去すると、凸凹基材表面全面に亘り、表面と化学結合したフッ化炭素基を含む化学吸着単分子膜を形成でき、融着された撥水撥油防汚性透明微粒子とフッ化炭素基を含む撥水撥油防汚性被膜で覆われた水滴接触角がおよそ140度の超撥水撥油防汚性反射板を製造できた。(図3(c))。 Finally, after applying a fluorocarbon chemical adsorption solution similar to the case of the fine particles to the surface of the uneven substrate and reacting for about 2 hours, an excess unreacted adsorption solution is added with a chlorine-based solvent such as chloroform. When removed by washing, a chemically adsorbed monomolecular film containing fluorocarbon groups chemically bonded to the surface can be formed over the entire surface of the uneven substrate, and the fused water- and oil-repellent antifouling transparent fine particles and fluorocarbon groups A water / oil repellent / antifouling reflective plate having a water droplet contact angle of about 140 ° covered with a water / oil / oil repellent / antifouling coating film containing water can be produced. (FIG. 3C).

なお、ここで、アルミニウム基材表面のシリカ微粒子は、シリカ系ガラス膜を介して反射板表面に融着固定されており、前記融着されシリカ系微粒子の露出した表面およびシリカ系微粒子融着用の被膜の露出した表面は、全面フッ化炭素基を含む撥水撥油防汚性の被膜で被われている。また、表面のシリカ微粒子の大きさは、5μm程度であり、フッ化炭素基を含む化学吸着単分子膜は1nm程度の膜厚であるため、前記凸凹基板の凸凹を損なうことは全くなく、蓮の葉効果により水滴接触角がおよそ140度の超撥水を実現できた。 Here, the silica fine particles on the surface of the aluminum base material are fused and fixed to the reflecting plate surface through a silica glass film, and the fused surface where the silica fine particles are exposed and the silica fine particles are fused. The exposed surface of the coating is entirely covered with a water / oil / oil repellent coating containing fluorocarbon groups. Further, the size of the silica fine particles on the surface is about 5 μm, and the chemisorption monomolecular film containing a fluorocarbon group has a thickness of about 1 nm. Therefore, the unevenness of the uneven substrate is not damaged at all. Due to the leaf effect, super water repellency with a water droplet contact angle of approximately 140 degrees could be realized.

(実施例2)
一方、大きさの異なる微粒子、例えば5μm程度の微粒子と50nmの微粒子を1:10程度に混合して用い、実施例と同様の方法で撥水撥油防汚性反射板を製造すると、表面がフラクタル構造の撥水撥油防汚膜となり、水滴接触角がおよそ155度のより撥水撥油防汚効果の高い反射板を製造できた。
このように、粒径が100〜1μmの微粒子に、500〜10nm程度の微粒子を混合(例えば、1:10〜50の混合比で)して用いておけば、理想的なフラクタル構造の表面粗さを実現でき、撥水撥油防汚性能をより一層向上できた。添加する微粒子の大きさが1000〜10nmの微粒子であれば、形状はどのようなものでも効果があり、さらに撥水撥油防汚性に優れた反射板が得られた。
(Example 2)
On the other hand, when using a mixture of fine particles having different sizes, for example, fine particles of about 5 μm and fine particles of 50 nm in a ratio of about 1:10 to produce a water / oil repellent / antifouling reflective plate in the same manner as in the examples, the surface becomes A fractal water-repellent / oil-repellent antifouling film was obtained, and a reflector having a higher water / oil-repellent / antifouling effect with a water droplet contact angle of about 155 ° could be produced.
In this way, if fine particles having a particle size of 100 to 1 μm are mixed with fine particles of about 500 to 10 nm (for example, at a mixing ratio of 1:10 to 50), the surface roughness of an ideal fractal structure is obtained. And improved water and oil repellent and antifouling performance. As long as the size of the fine particles to be added is 1000 to 10 nm, any shape is effective, and a reflecting plate excellent in water and oil repellency and antifouling properties is obtained.

また、膜形成溶液の溶媒としては、化学吸着剤がアルコキシシラン系、クロロシラン系何れの場合も、水を含まない有機塩素系溶媒、炭化水素系溶媒、あるいはフッ化炭素系溶媒やシリコーン系溶媒、あるいはそれら混合物を用いることが可能であった。なお、洗浄を行わず、溶媒を蒸発させて粒子濃度を上げようとする場合には、溶媒の沸点は50〜250℃程度がよい。 In addition, as a solvent for the film-forming solution, an organic chlorine-based solvent, a hydrocarbon-based solvent, a fluorocarbon-based solvent or a silicone-based solvent that does not contain water, regardless of whether the chemical adsorbent is an alkoxysilane-based or chlorosilane-based solvent, Alternatively, it was possible to use a mixture thereof. In addition, when it is going to raise particle concentration by evaporating a solvent, without wash | cleaning, the boiling point of a solvent is good at about 50-250 degreeC.

したがって、以上の結果から、ケチミン化合物や有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物がシラノール縮合触媒より活性が高いことが明らかとなった。 Therefore, the above results revealed that ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds are more active than silanol condensation catalysts.

さらにまた、ケチミン化合物や有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物の内の1つとシラノール縮合触媒を混合して用いると、さらに活性が高くなることが確認された。 Furthermore, it was confirmed that the activity was further increased when one of a ketimine compound, organic acid, aldimine compound, enamine compound, oxazolidine compound, and aminoalkylalkoxysilane compound was mixed with a silanol condensation catalyst.

また、上記2つの実施例では、シリカ微粒子を例として説明したが、本発明は、表面に活性水素、すなわち水酸基の水素やアミノ基あるいはイミノ基の水素などを含んだ微粒子で有れば、どのような微粒子でも選択可能である。 In the above two embodiments, silica fine particles have been described as an example. However, the present invention is not limited as long as the surface contains active hydrogen, that is, fine particles containing hydroxyl hydrogen, amino group or imino group hydrogen, and the like. Such fine particles can also be selected.

具体的には、基材が紙、布、樹脂であれば、微粒子融着用の被膜に各種低融点樹脂やゾル−ゲル法を用いたシリカ系被膜を用い、微粒子には、前記微粒子融着用の被膜樹脂より融点が高い樹脂微粒子、ガラス微粒子、アルミナ微粒子やジルコニア微粒子、金属微粒子、マイカ微粒子が使用できた。 Specifically, if the substrate is paper, cloth, or resin, various low melting point resins or silica-based coatings using a sol-gel method are used for the fine particle fusion coating, and the fine particle fusion coating is used for fine particles. Resin fine particles, glass fine particles, alumina fine particles, zirconia fine particles, metal fine particles, and mica fine particles having a melting point higher than that of the coating resin could be used.

例えば、表面が親水性の樹脂微粒子であるナイロン微粒子でも、微粒子融着用の被膜としてより融点が低い酢酸ビニル樹脂等を用い、溶剤系に基材や微粒子を溶解しないアルコールを用いれば、同様の撥水撥油防汚性反射板を製造できた。 For example, even for nylon fine particles whose surface is hydrophilic resin fine particles, the same repellent property can be obtained by using a vinyl acetate resin having a lower melting point as a coating for fusing fine particles, and using alcohol that does not dissolve the base material or fine particles in the solvent system. A water / oil repellent antifouling reflector could be manufactured.

また、基材が、ガラス、金属、またはセラミックスであれば、微粒子融着用の被膜に各種低融点樹脂やゾル−ゲル法を用いたシリカ系被膜や釉膜を用い、微粒子には、前記微粒子融着用の被膜樹脂より融点が高い樹脂微粒子、ガラス微粒子、アルミナ微粒子やジルコニア微粒子、金属微粒子、マイカ微粒子が使用できた。
なお、金属微粒子やマイカ微粒子を用いた場合には、それ自身は透明ではないが乱反射性能をより一層向上できた。また、基材がガラスの場合には、さらに裏面に鏡面アルミニウムや鏡面ステンレス板を装着しておけば、さらに反射効率を向上できた。
If the substrate is glass, metal, or ceramic, various low melting point resins or silica-based coatings or capsular films using a sol-gel method are used for the fine particle fusion coating. Resin fine particles, glass fine particles, alumina fine particles, zirconia fine particles, metal fine particles, and mica fine particles having a higher melting point than the coating resin to be worn could be used.
When metal fine particles or mica fine particles were used, the diffuse reflection performance could be further improved even though the particles themselves were not transparent. In addition, when the base material is glass, the reflection efficiency can be further improved by attaching a mirror surface aluminum or a mirror surface stainless steel plate to the back surface.

さらにまた、上述の反射板をポスターや看板や表示板として用いる場合には、基材が紙、布、樹脂であれば、微粒子融着用の被膜に各種低融点樹脂やゾル−ゲル法を用いたシリカ系被膜を用い、さらに染料、顔料、金属微粒子、あるいはマイカ微粒子を混合しておくことで任意のパターンに着色できた。
また、基材がガラス、金属、またはセラミックスであれば、微粒子融着用の被膜にゾル−ゲル法を用いたシリカ系被膜や釉膜を用い、顔料、金属微粒子、あるいはマイカ微粒子を混合しておくことで任意のパターンに着色できた。
Furthermore, when the above reflector is used as a poster, signboard, or display plate, various low-melting point resins or sol-gel methods are used for the fine particle fusion coating if the substrate is paper, cloth, or resin. By using a silica-based coating and further mixing dyes, pigments, metal fine particles, or mica fine particles, an arbitrary pattern could be colored.
If the substrate is glass, metal, or ceramics, a silica-based film or capsular film using a sol-gel method is used as the fine particle fusion film, and pigment, metal fine particles, or mica fine particles are mixed. It was possible to color an arbitrary pattern.

(実施例3)
実施例2で作成した反射板と同条件で作成した水滴接触角が150度程度(水滴接触角が高いほど防汚性は高いが、実用上、水滴接触角が130度以上であれば同様の効果が得られた。)の撥水撥油防汚性反射板を、トンネル内の側壁に装着し、走行実験を試みた。
(Example 3)
The water droplet contact angle prepared under the same conditions as the reflector prepared in Example 2 is about 150 degrees (the higher the water droplet contact angle, the higher the antifouling property, but practically the same if the water droplet contact angle is 130 degrees or more. The water- and oil-repellent and antifouling reflecting plate was mounted on the side wall in the tunnel, and a running experiment was attempted.

初めに、トンネル内照明を点灯した状態で走行してみると、ヘッドランプを点灯していなくとも、中央線と同様に照明光が側壁で反射するため、側壁視認性は大幅に向上できた。
次に、トンネル内照明を半分点灯した状態で走行してみたが、ヘッドランプを点灯していなくとも、中央線と同様に照明光が側壁で反射するため、側壁視認性は十分確保でき、安全運転に支障はなかった。
First, when running with the illumination in the tunnel turned on, the side wall visibility could be greatly improved because the illumination light reflected off the side wall as with the center line even when the headlamp was not turned on.
Next, I tried driving with the lighting in the tunnel half lit, but even if the headlamp was not lit, the illumination light reflected off the side wall in the same way as the center line, so the side wall visibility was sufficiently secured and safe. There was no problem in driving.

さらに、トンネル内照明を消した状態でも、ヘッドランプを点灯していれば、ヘッドランプの照明光が側壁で運転席方向に反射され、道路中央線と同様に側壁視認性は確保でき、安全運転に支障はなかった。 Furthermore, if the headlamps are turned on even when the lighting in the tunnel is turned off, the illumination light from the headlamps will be reflected by the side walls toward the driver's seat, ensuring side wall visibility as well as the road center line, and safe driving. There was no hindrance.

一方、1、3、6ヶ月後の汚れ具合を調べてみたが、本発明の反射板を装着してない白色壁面は、6ヶ月後には多量のススが付着し白色度が大幅に劣化したが、本発明の反射板は、白色度を維持できた。さらに、1年後の結果では、本発明の反射板を装着してない白色壁面は、多量のススが付着し白色度がさらに大幅に劣化したが、本発明の反射板は、白色度をある程度維持できた。
そこで、洗浄のしやすさを評価してみると、従来の白色反射板では、水を吹き付ける程度では、ススを除去できなかったが、本発明の反射板では、容易に洗浄除去できて、反射性能を回復できた。このことは、本発明の反射板の見かけ上の表面エネルギーが非常に小さい(実際に、ジスマンプロットを用いて実測してみると、3mN/m以下であった。)ことによる。
On the other hand, after examining the degree of dirt after 1, 3 and 6 months, the white wall without the reflector of the present invention had a large amount of soot and the whiteness deteriorated significantly after 6 months. The reflector of the present invention was able to maintain whiteness. Furthermore, as a result of one year later, a white wall surface not equipped with the reflector of the present invention deteriorated in whiteness due to a large amount of soot, but the reflector of the present invention has a certain degree of whiteness. I was able to maintain it.
Therefore, when evaluating the ease of cleaning, the conventional white reflector could not remove the soot to the extent that it was sprayed with water, but with the reflector of the present invention, it could be easily washed and removed. The performance was recovered. This is because the apparent surface energy of the reflector of the present invention is very small (actually, it was 3 mN / m or less when actually measured using a Jisman plot).

なお、汚れの原因は、空気中の浮遊油が多少付着して、その被膜とススが混じり合い反射板表面に付着するためである。したがって、従来の反射板では、表面エネルギーが高いため、水圧より汚れの付着強度が大きく、水をはじいて除去できないことが判明した。これに対して、本発明の反射板では、蓮の葉と同様に表面エネルギーが非常に小さく、汚れを水圧で容易に剥離でき、洗浄除去できて反射性能を回復できた。 In addition, the cause of dirt is because the floating oil in the air adheres to some extent, and the film and soot mix and adhere to the reflector surface. Therefore, it has been found that the conventional reflector has a high surface energy, and therefore has a greater dirt adhesion strength than water pressure, and cannot be removed by repelling water. On the other hand, in the reflector of the present invention, the surface energy was very small like the lotus leaf, and the dirt could be easily peeled off by water pressure, washed and removed, and the reflecting performance could be recovered.

(実施例4)
実施例1と同様の方法で製造した反射板を用いて、道路標識や表示板、看板を試作し、道路近傍に設置し、汚れの程度や耐久性を従来のものと比較評価した。
従来の道路標識や表示板、看板では、照明を消すと遠くからほとんど識別できなかったが、本発明の道路標識や表示板、看板では、道路中央線以上に大幅に識別性能を向上できた。
Example 4
Using a reflector manufactured by the same method as in Example 1, a road sign, a display board, and a signboard were prototyped and installed in the vicinity of the road, and the degree of dirt and durability were compared and evaluated.
Conventional road signs, display boards, and signboards could hardly be distinguished from a distance when the lights were turned off, but the road sign, display board, and signboard of the present invention could greatly improve the discrimination performance over the road center line.

また、この場合、使用期間に応じて砂埃や浮遊油脂が表面に付着して汚れてくるが、雨が降るとほぼ完全に洗い流され、実用上不都合は全くなかった。
さらにまた、防汚耐久性も5年以上は保証できることが判明した。
さらに、本発明の反射板を、テールランプ部に装着した自動車を試作し、後方よりヘッドランプを照射した場合、点灯したテールランプと同様に遜色なく識別できた。
Further, in this case, dust and floating oil and fat adhere to the surface and become dirty depending on the period of use, but when it rains, it is almost completely washed away, and there is no practical inconvenience at all.
Furthermore, it has been found that antifouling durability can be guaranteed for more than 5 years.
Further, when a prototype of an automobile in which the reflector of the present invention was mounted on the tail lamp part was prototyped and the head lamp was irradiated from the rear, the same identification as the lit tail lamp could be made.

(実施例5)
実施例2と同様の方法で、反射性能の高い建物内装用クロスを試作し室内に装着して、その省エネ性を従来のクロス貼りと比較評価した。
この場合、照明電力を約70%まで低減しても、従来のクロス貼りの場合とほぼ同様の室内の明るさを維持できた。
(Example 5)
In the same manner as in Example 2, a building interior cloth having high reflection performance was prototyped and mounted in a room, and its energy saving performance was compared with conventional cloth pasting.
In this case, even if the illumination power was reduced to about 70%, the room brightness similar to that in the case of the conventional cloth pasting could be maintained.

また、この場合も、使用期間に応じて埃や浮遊油脂が表面に付着して汚れてくるが、掃除機で吸引するだけでほぼきれいになり、実用上不都合は全くなかった。さらにまた、防汚耐久性も10年以上は保証できることが判明した。
一方、外装板を試作して建物の屋壁に装着してみると、従来の外装版に比べて省エネ効果はほとんどみられなかったが、防汚効果は、格段に向上し、ホースで水を吹き付ける程度では、汚れを除去できた。
In this case as well, dust and floating oil and fat adhere to the surface and become dirty depending on the period of use, but it becomes almost clean just by suction with a vacuum cleaner, and there is no practical inconvenience at all. Furthermore, it has been found that antifouling durability can be guaranteed for more than 10 years.
On the other hand, when the exterior panel was prototyped and mounted on the building wall, the energy-saving effect was hardly seen compared to the conventional exterior plate, but the antifouling effect was significantly improved and water was supplied with a hose. Dirt was removed by spraying.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部または全部を組合せて本発明の撥水撥油防汚性反射板およびその製造方法ならびにそれを用いたトンネル、道路標識、表示板、看板、乗り物、および建築物を構成する場合も本発明の権利範囲に含まれる。 As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above-described embodiment, and the matters described in the claims are not limited. Other embodiments and modifications conceivable within the scope are also included. For example, the water repellent / oil repellent / antifouling reflective plate of the present invention and a manufacturing method thereof, and a tunnel, a road sign, a display plate, and a signboard using the same according to the present invention by combining some or all of the above-described embodiments and modifications In the case of constructing vehicles, vehicles, and buildings, the scope of rights of the present invention is also included.

本発明の一実施の形態に係る撥水撥油防汚性反射板の断面構造を模式的に表した説明図である。It is explanatory drawing which represented typically the cross-sectional structure of the water-repellent | oil-repellent | antifouling | stain_proof anti-reflective board which concerns on one embodiment of this invention. 同撥水撥油防汚性反射板の製造方法において、シリカ微粒子表面にフッ化炭素系単分子膜を形成する工程を説明するために分子レベルまで拡大した概念図であり、(a)は反応前のシリカ微粒子の断面構造、(b)はフッ化炭素基を含む単分子膜が形成されたシリカ微粒子の断面構造をそれぞれ表す。In the manufacturing method of the same water and oil repellent and antifouling reflective plate, a conceptual diagram expanded to the molecular level to explain the process of forming a fluorocarbon monomolecular film on the surface of silica fine particles, (a) is a reaction The cross-sectional structure of the previous silica fine particle, (b) represents the cross-sectional structure of the silica fine particle on which a monomolecular film containing a fluorocarbon group is formed. 同撥水撥油防汚性反射板の製造方法において、シリカ系透明被膜が形成されたアルミニウム基材の断面構造を表す模式図である。It is a schematic diagram showing the cross-sectional structure of the aluminum base material in which the silica type transparent coating film was formed in the manufacturing method of the same water-repellent / oil-repellent antifouling reflector. (a)は工程Dにおいてシリカ系透明被膜が形成されたアルミニウム基材表面にフッ化炭素系単分子膜で被覆されたシリカ微粒子が付着している状態の説明図、(b)は工程Eにおいてシリカ微粒子が融着した状態を模式的に示す説明図である。(A) is explanatory drawing of the state which the silica fine particle coat | covered with the fluorocarbon type | system | group monomolecular film has adhered to the aluminum base material surface in which the silica type transparent film was formed in the process D, (b) is in the process E It is explanatory drawing which shows typically the state which the silica fine particle fuse | melted. 表面がフラクタル構造を有する撥水撥油防汚性反射板の断面状態を模式的に表した説明図である。It is explanatory drawing which represented typically the cross-sectional state of the water-repellent | oil-repellent | antifouling | stain-proof anti-reflective board which has a fractal structure on the surface.

符号の説明Explanation of symbols

10:撥水撥油防汚性反射板、11:アルミニウム基材、12:シリカ系透明皮膜(皮膜)、13:シリカ微粒子(透明微粒子)、14:フッ化炭素基を含む化学吸着単分子膜(撥水撥油防汚性被膜)、15:シリカ微粒子、16:水酸基(反応性基)、17:単分子膜、18:シリカ微粒子、19:凹凸アルミニウム基材(微粒子融着基材)、20:撥水撥油防汚性反射板 10: Water- and oil-repellent antifouling reflecting plate, 11: Aluminum base material, 12: Silica-based transparent film (film), 13: Silica fine particles (transparent fine particles), 14: Chemisorption monomolecular film containing fluorocarbon group (Water / oil repellent antifouling coating), 15: silica fine particles, 16: hydroxyl group (reactive group), 17: monomolecular film, 18: silica fine particles, 19: uneven aluminum substrate (fine particle fusion substrate), 20: Water and oil repellent antifouling reflector

Claims (34)

板状の基材と、前記基材の表面に融着した撥水撥油防汚性の透明微粒子と、前記基材の表面のうち前記透明微粒子が融着していない部分を覆う撥水撥油防汚性被膜とを有することを特徴とする撥水撥油防汚性反射板。 A plate-shaped substrate, water- and oil-repellent and antifouling transparent fine particles fused to the surface of the substrate, and a water-repellent and repellent covering the portion of the surface of the substrate where the transparent fine particles are not fused. A water and oil repellent antifouling reflector having an oil antifouling coating. 請求項1記載の撥水撥油防汚性反射板において、前記透明微粒子は、その表面の一部分が前記基材の表面に融着しており、かつ他の露出した部分が前記撥水撥油防汚性被膜で被われていることを特徴とする撥水撥油防汚性反射板。 2. The water / oil repellent / antifouling reflective plate according to claim 1, wherein a part of the surface of the transparent fine particles is fused to the surface of the substrate, and the other exposed part is the water / oil repellent. A water and oil repellent antifouling reflector characterized by being covered with an antifouling coating. 請求項2記載の撥水撥油防汚性反射板において、前記撥水撥油防汚性被膜が、前記透明微粒子および前記基材の表面に共有結合していることを特徴とする撥水撥油防汚性反射板。 The water / oil repellent / antifouling reflective plate according to claim 2, wherein the water / oil repellent / antifouling coating is covalently bonded to the surface of the transparent fine particles and the substrate. Oil antifouling reflector. 請求項1〜3のいずれか1項に記載の撥水撥油防汚性反射板において、前記透明微粒子として、粒径の異なるものが混合して用いられていることを特徴とする撥水撥油防汚性反射板。 The water / oil repellent / antifouling reflective plate according to any one of claims 1 to 3, wherein the transparent fine particles having different particle diameters are mixed and used. Oil antifouling reflector. 請求項1〜4のいずれか1項に記載の撥水撥油防汚性反射板において、前記撥水撥油防汚性被膜が−CF基を含むことを特徴とする撥水撥油防汚性反射板。 5. The water / oil repellent / antifouling reflective plate according to claim 1, wherein the water / oil repellent / antifouling coating contains —CF 3 groups. Dirty reflector. 請求項1〜5のいずれか1項に記載の撥水撥油防汚性反射板において、前記透明微粒子が透光性であり、かつその軟化温度が前記基材表面の軟化温度よりも高いシリカ、アルミナ、およびジルコニアのいずれかであることを特徴とする撥水撥油防汚性反射板。 The water- and oil-repellent and antifouling reflective plate according to any one of claims 1 to 5, wherein the transparent fine particles are translucent and the softening temperature thereof is higher than the softening temperature of the substrate surface. A water- and oil-repellent antifouling reflecting plate, characterized in that it is any one of alumina, zirconia and zirconia. 請求項1〜6のいずれか1項に記載の撥水撥油防汚性反射板において、前記透明微粒子の粒径が400nm未満であることを特徴とする撥水撥油防汚性反射板。 The water / oil repellent / antifouling reflective plate according to claim 1, wherein the transparent fine particles have a particle size of less than 400 nm. 請求項1〜7のいずれか1項に記載の撥水撥油防汚性反射板において、水に対する接触角が130度以上であることを特徴とする撥水撥油防汚性反射板。 The water / oil repellent / antifouling reflective plate according to claim 1, wherein the water contact angle is 130 degrees or more. 請求項1〜8のいずれか1項に記載の撥水撥油防汚性反射板において、前記透明微粒子は、樹脂膜、シリカ系ガラス膜、および釉膜のいずれか1よりなる被膜を介して前記基材の表面に融着しており、前記撥水撥油防汚性被膜は、前記透明被膜を介して前記透明微粒子が融着していない部分を覆っていることを特徴とする撥水撥油防汚性反射板。 9. The water / oil repellent / antifouling reflective plate according to claim 1, wherein the transparent fine particles are interposed through a coating film made of any one of a resin film, a silica-based glass film, and a capsular film. The water-repellent oil-repellent antifouling film is fused to the surface of the base material and covers a portion where the transparent fine particles are not fused via the transparent film. Oil repellent antifouling reflector. 請求項9記載の撥水撥油防汚性反射板において、前記基材が光反射性のステンレス板、およびアルミニウム板のいずれかであり、前記被膜が透明であることを特徴とする撥水撥油防汚性反射板。 The water / oil repellent / antifouling reflective plate according to claim 9, wherein the base material is one of a light reflective stainless steel plate and an aluminum plate, and the coating is transparent. Oil antifouling reflector. 請求項9記載の撥水撥油防汚性反射板において、前記基材が紙、布、樹脂、ガラス板、金属板、およびセラミックス板のいずれか1であり、前記被膜が染料、顔料、金属微粒子、およびマイカ微粒子のいずれか1または複数を含むことを特徴とする撥水撥油防汚性反射板。 10. The water / oil repellent / antifouling reflective plate according to claim 9, wherein the substrate is any one of paper, cloth, resin, glass plate, metal plate and ceramic plate, and the coating is a dye, pigment, metal. A water / oil repellent / antifouling reflector comprising any one or more of fine particles and mica fine particles. 請求項1〜11のいずれか1項に記載の撥水撥油防汚性反射板を壁面に装着したことを特徴とするトンネル。 A tunnel comprising the water-repellent / oil-repellent / antifouling reflecting plate according to claim 1 mounted on a wall surface. 請求項1〜11のいずれか1項に記載の撥水撥油防汚性反射板を用いたことを特徴とする道路標識。 A road sign using the water / oil repellent / antifouling reflective plate according to claim 1. 請求項1〜11のいずれか1項に記載の撥水撥油防汚性反射板を用いたことを特徴とする表示板。 A display panel comprising the water / oil / oil repellent / antifouling reflector according to claim 1. 請求項1〜11のいずれか1項に記載の撥水撥油防汚性反射板を用いたことを特徴とする看板。 A signboard using the water / oil repellent / antifouling reflecting plate according to claim 1. 請求項1〜11のいずれか1項に記載の撥水撥油防汚性反射板を車体の内部および外部に用いたことを特徴とする乗り物。 A vehicle comprising the water- and oil-repellent and antifouling reflecting plate according to any one of claims 1 to 11 inside and outside a vehicle body. 請求項1〜11のいずれか1項に記載の撥水撥油防汚性反射板を外壁および内壁に用いたことを特徴とする建築物。 A building using the water and oil repellent and antifouling reflecting plate according to any one of claims 1 to 11 for an outer wall and an inner wall. 透明微粒子を分散した微粒子分散液を調製する工程Cと、基材の表面に前記微粒子分散液を塗布し乾燥することにより、前記基材の表面に前記透明微粒子を付着させる工程Dと、前記透明微粒子が表面に付着した前記基材を、前記透明微粒子の軟化温度よりも低い温度で加熱処理し、前記基材の表面に前記透明微粒子を融着させる工程Eと、前記基材の表面に融着しなかった前記透明微粒子を洗浄除去する工程Fと、前記透明微粒子が融着した微粒子融着基材の表面に撥水撥油防汚性被膜を形成する工程Gとを含むことを特徴とする撥水撥油防汚性反射板の製造方法。 A step C of preparing a fine particle dispersion in which transparent fine particles are dispersed; a step D in which the fine particle dispersion is applied to the surface of the substrate and then dried to attach the transparent fine particles to the surface of the substrate; and the transparent The substrate on which the fine particles adhere to the surface is heated at a temperature lower than the softening temperature of the transparent fine particles, and the transparent fine particles are fused to the surface of the substrate. And a step F of washing and removing the transparent fine particles not adhered, and a step G of forming a water- and oil-repellent and antifouling coating on the surface of the fine particle-fused substrate on which the transparent fine particles are fused. A method for producing a water- and oil-repellent antifouling reflector. 請求項18記載の撥水撥油防汚性反射板の製造方法において、前記工程Dの前に、前記基材の表面に、前記微粒子分散液に溶解せず、前記基材よりも低い温度で前記透明微粒子と融着する被膜を形成する工程Bをさらに有することを特徴とする撥水撥油防汚性反射板の製造方法。 The method for producing a water- and oil-repellent and antifouling reflective plate according to claim 18, wherein before the step D, the surface of the base material does not dissolve in the fine particle dispersion and is at a temperature lower than that of the base material. A method for producing a water- and oil-repellent and antifouling reflective plate, further comprising a step B of forming a film fused with the transparent fine particles. 請求項19記載の撥水撥油防汚性反射板の製造方法において、前記基材が光反射性のステンレス板、およびアルミニウム板のいずれかであり、前記被膜が透明であることを特徴とする撥水撥油防汚性反射板の製造方法。 20. The method for producing a water / oil / oil / repellent antifouling reflecting plate according to claim 19, wherein the substrate is one of a light reflecting stainless steel plate and an aluminum plate, and the coating is transparent. A method for producing a water- and oil-repellent antifouling reflector. 請求項19記載の撥水撥油防汚性反射板の製造方法において、前記基材が紙、布、樹脂、ガラス板、金属板、およびセラミックス板のいずれか1であり、前記被膜が染料、顔料、金属微粒子、およびマイカ微粒子のいずれか1または複数を含むことを特徴とする撥水撥油防汚性反射板の製造方法。 The method for producing a water / oil repellent / antifouling reflective plate according to claim 19, wherein the substrate is any one of paper, cloth, resin, glass plate, metal plate, and ceramic plate, and the coating is a dye, A method for producing a water- and oil-repellent and antifouling reflective plate comprising any one or more of a pigment, metal fine particles, and mica fine particles. 請求項19記載の撥水撥油防汚性反射板の製造方法において、前記被膜がゾルゲル法により形成されたシリカ系ガラスであることを特徴とする撥水撥油防汚性反射板の製造方法。 20. The method for producing a water / oil repellent / antifouling reflective plate according to claim 19, wherein the coating is a silica glass formed by a sol-gel method. . 請求項18〜22のいずれか1項に記載の撥水撥油防汚性反射板の製造方法において、前記工程Eにおける加熱処理温度が、前記基材および前記透明微粒子の軟化温度のいずれよりも低いことを特徴とする撥水撥油防汚性反射板の製造方法。 23. The method for producing a water / oil repellent / antifouling reflective plate according to any one of claims 18 to 22, wherein the heat treatment temperature in the step E is higher than any of the softening temperatures of the substrate and the transparent fine particles. A method for producing a water- and oil-repellent antifouling reflective plate characterized by being low. 請求項18〜23のいずれか1項に記載の撥水撥油防汚性反射板の製造方法において、前記工程Cの前に、直鎖状の基を含む第1のシラン化合物と非水系の有機溶媒とを含む第1の化学吸着液中に透明微粒子aを分散し、前記第1のシラン化合物のシリル基と前記透明微粒子aの表面の反応性基との反応により前記第1のシラン化合物の単分子膜で表面が覆われた前記透明微粒子を製造する工程Aを有し、かつ前記工程Eにおける加熱処理は酸素を含む雰囲気中で行われることを特徴とする撥水撥油防汚性反射板の製造方法。 24. In the method for producing a water / oil repellent / antifouling reflective plate according to any one of claims 18 to 23, before the step C, the first silane compound containing a linear group and a non-aqueous system are used. Transparent fine particles a are dispersed in a first chemical adsorption solution containing an organic solvent, and the first silane compound is reacted with a silyl group of the first silane compound and a reactive group on the surface of the transparent fine particles a. A process A for producing the transparent fine particles whose surface is covered with a monomolecular film, and the heat treatment in the process E is performed in an oxygen-containing atmosphere. A manufacturing method of the reflector. 請求項24記載の撥水撥油防汚性反射板の製造方法において、前記微粒子分散液には有機溶媒が用いられ、前記直鎖状の基はフッ化炭素基であることを特徴とする撥水撥油防汚性反射板の製造方法。 25. The method for producing a water- and oil-repellent and antifouling reflective plate according to claim 24, wherein an organic solvent is used for the fine particle dispersion, and the linear group is a fluorocarbon group. A method for producing a water / oil repellent antifouling reflector. 請求項24記載の撥水撥油防汚性反射板の製造方法において、前記微粒子分散液には水およびアルコールのいずれか一方または両者の混合液が用いられ、前記直鎖状の基は炭化水素基であることを特徴とする撥水撥油防汚性反射板の製造方法。 25. The method for producing a water / oil / oil repellent / antifouling reflecting plate according to claim 24, wherein the fine particle dispersion is one or both of water and alcohol, and the linear group is a hydrocarbon. A method for producing a water- and oil-repellent and antifouling reflector, characterized in that it is a base. 請求項24〜26のいずれか1項に記載の撥水撥油防汚性反射板の製造方法において、前記工程Gにおける前記撥水撥油防汚性被膜の形成は、フッ化炭素基を含む第2のシラン化合物と非水系の有機溶媒とを含む第2の化学吸着液を前記微粒子融着ガラス基材に接触させて、前記第2のシラン化合物のシリル基と前記微粒子融着ガラス基材の表面の反応性基との反応により行われることを特徴とする撥水撥油防汚性反射板の製造方法。 27. The method for producing a water / oil repellent / antifouling reflective plate according to any one of claims 24 to 26, wherein the formation of the water / oil repellent / antifouling coating film in the step G includes a fluorocarbon group. A second chemical adsorption liquid containing a second silane compound and a non-aqueous organic solvent is brought into contact with the fine particle fused glass substrate, so that the silyl group of the second silane compound and the fine particle fused glass substrate are brought into contact with each other. A method for producing a water- and oil-repellent and antifouling reflective plate, wherein the method is carried out by reaction with a reactive group on the surface. 請求項27記載の撥水撥油防汚性反射板の製造方法において、前記工程Gにおける前記シリル基と前記反応性基との反応後、未反応の前記第2のシラン化合物を洗浄除去することを特徴とする撥水撥油防汚性反射板の製造方法。 28. The method for producing a water / oil / oil repellent antifouling reflector according to claim 27, wherein after the reaction between the silyl group and the reactive group in the step G, the unreacted second silane compound is washed away. A method for producing a water- and oil-repellent and antifouling reflective plate. 請求項27および28のいずれか1項に記載の撥水撥油防汚性反射板の製造方法において、前記第1および第2の化学吸着液にそれぞれ含まれる前記第1および第2のシラン化合物のいずれか一方または双方がアルコキシシラン化合物であることを特徴とする撥水撥油防汚性反射板の製造方法。 29. The method for producing a water / oil repellent / antifouling reflective plate according to any one of claims 27 and 28, wherein the first and second silane compounds contained in the first and second chemical adsorption liquids, respectively. Any one or both of these are alkoxysilane compounds, A method for producing a water- and oil-repellent and antifouling reflective plate. 請求項27および28のいずれか1項に記載の撥水撥油防汚性反射板の製造方法において、前記第1および第2の化学吸着液にそれぞれ含まれる前記第1および第2のシラン化合物のいずれか一方または双方がハロシラン化合物であることを特徴とする撥水撥油防汚性反射板の製造方法。 29. The method for producing a water / oil repellent / antifouling reflective plate according to any one of claims 27 and 28, wherein the first and second silane compounds contained in the first and second chemical adsorption liquids, respectively. Either or both of these are a halosilane compound. A method for producing a water- and oil-repellent and antifouling reflective plate. 請求項27および28のいずれか1項に記載の撥水撥油防汚性反射板の製造方法において、前記第1および第2の化学吸着液にそれぞれ含まれる前記第1および第2のシラン化合物のいずれか一方または双方がイソシアネートシラン化合物であることを特徴とする撥水撥油防汚性反射板の製造方法。 29. The method for producing a water / oil repellent / antifouling reflective plate according to any one of claims 27 and 28, wherein the first and second silane compounds contained in the first and second chemical adsorption liquids, respectively. Any one or both of them is an isocyanate silane compound. 請求項29記載の撥水撥油防汚性反射板の製造方法において、前記第1および第2の化学吸着液のうち前記アルコキシシラン化合物を含むものは、さらに縮合触媒として、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステル、およびチタン酸エステルキレートからなる群から選択される1または2以上の化合物を含むことを特徴とする撥水撥油防汚性反射板の製造方法。 30. The method for producing a water / oil repellent / antifouling reflective plate according to claim 29, wherein the first and second chemical adsorption liquids containing the alkoxysilane compound further include a metal carboxylate as a condensation catalyst, Water repellent and water repellent characterized by comprising one or more compounds selected from the group consisting of carboxylate metal salts, carboxylate metal salt polymers, carboxylate metal salt chelates, titanate esters, and titanate ester chelates. Manufacturing method of oil-stain-proof reflector. 請求項29記載の撥水撥油防汚性反射板の製造方法において、前記第1および第2の化学吸着液のうち前記アルコキシシラン化合物を含むものは、縮合触媒としてケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、およびアミノアルキルアルコキシシラン化合物からなる群より選択される1または2以上の化合物をさらに含むことを特徴とする撥水撥油防汚性反射板の製造方法。 30. The method for producing a water- and oil-repellent and antifouling reflective plate according to claim 29, wherein the first and second chemical adsorption liquids containing the alkoxysilane compound are ketimine compounds, organic acids, aldimines as condensation catalysts. A method for producing a water / oil repellent / antifouling reflective plate, further comprising one or more compounds selected from the group consisting of a compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound. 請求項32記載の撥水撥油防汚性反射板の製造方法において、さらに助触媒として、ケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、およびアミノアルキルアルコキシシラン化合物からなる群より選択される1または2以上の化合物を含むことを特徴とする撥水撥油防汚性反射板の製造方法。 33. The method for producing a water / oil repellent / antifouling reflective plate according to claim 32, wherein the cocatalyst is further selected from the group consisting of ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds. A method for producing a water- and oil-repellent and antifouling reflector, comprising one or more compounds.
JP2007093667A 2007-03-30 2007-03-30 Water-repellent and oil-repellent anti-staining reflecting plate, its manufacturing method and tunnel, road sign, display plate, signboard, vehicle and building using water-repellent and oil-repellent anti-staining reflecting plate Pending JP2008246968A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007093667A JP2008246968A (en) 2007-03-30 2007-03-30 Water-repellent and oil-repellent anti-staining reflecting plate, its manufacturing method and tunnel, road sign, display plate, signboard, vehicle and building using water-repellent and oil-repellent anti-staining reflecting plate
PCT/JP2008/055955 WO2008120693A1 (en) 2007-03-30 2008-03-27 Water-shedding, oil-shedding, antifouling reflecting plate, process for manufacturing the same, and tunnel, road traffic sign, signboard, trade sign, vehicle and building utilizing the reflecting plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007093667A JP2008246968A (en) 2007-03-30 2007-03-30 Water-repellent and oil-repellent anti-staining reflecting plate, its manufacturing method and tunnel, road sign, display plate, signboard, vehicle and building using water-repellent and oil-repellent anti-staining reflecting plate

Publications (1)

Publication Number Publication Date
JP2008246968A true JP2008246968A (en) 2008-10-16

Family

ID=39808273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007093667A Pending JP2008246968A (en) 2007-03-30 2007-03-30 Water-repellent and oil-repellent anti-staining reflecting plate, its manufacturing method and tunnel, road sign, display plate, signboard, vehicle and building using water-repellent and oil-repellent anti-staining reflecting plate

Country Status (2)

Country Link
JP (1) JP2008246968A (en)
WO (1) WO2008120693A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04239633A (en) * 1991-01-23 1992-08-27 Matsushita Electric Ind Co Ltd Water and repelling film and manufacture thereof
JP2008015167A (en) * 2006-07-05 2008-01-24 Kagawa Univ Water-shedding, oil-shedding and antifouling light reflecting plate, method for manufacturing the same, and tunnel, road sign, display plate, vehicle and building using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10219461A (en) * 1997-02-06 1998-08-18 Matsushita Electric Ind Co Ltd Water-repellent ceramic coating film and its production
JPH11300270A (en) * 1998-04-27 1999-11-02 Matsushita Electric Ind Co Ltd Water-repellent coating film, manufacture thereof and water-repellent coating composition
JP2002326840A (en) * 2001-05-07 2002-11-12 Matsushita Electric Ind Co Ltd Water-repellent coating film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04239633A (en) * 1991-01-23 1992-08-27 Matsushita Electric Ind Co Ltd Water and repelling film and manufacture thereof
JP2008015167A (en) * 2006-07-05 2008-01-24 Kagawa Univ Water-shedding, oil-shedding and antifouling light reflecting plate, method for manufacturing the same, and tunnel, road sign, display plate, vehicle and building using the same

Also Published As

Publication number Publication date
WO2008120693A1 (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP5347124B2 (en) Water and oil repellent and antifouling antireflection film, method for producing the same, lens, glass plate and glass formed therewith, optical device using them, solar energy utilization device, display
JP5487418B2 (en) Water repellent / oil repellent / anti-fouling light reflecting plate, manufacturing method thereof, tunnel, road sign, display board, vehicle, building using the same.
JP4670057B2 (en) Method for producing water and oil repellent antifouling glass plate
JP3136612B2 (en) Antifouling member and antifouling coating composition
JP3882625B2 (en) Sound insulation wall and cleaning method for sound insulation wall
US5755867A (en) Photocatalytic hydrophilic coating compositions
JP4792575B2 (en) Water-repellent glass plate, method for producing the same, and vehicle or glass window using the same
JP5660500B2 (en) Abrasion-resistant super water- and oil-repellent antifouling glass, method for producing the same, glass window using them, solar energy utilization device, optical device and display device
JP5572803B2 (en) Water repellent and oil repellent antifouling glass, method for producing the same, glass window using them, solar energy utilization apparatus and optical instrument
KR100876529B1 (en) Film or building exterior material using self-cleaning coating composition and method for producing same
JPWO2010007956A1 (en) Water-repellent substrate and method for producing the same
JP4654443B2 (en) Manufacturing method of solar energy utilization device
JP5347125B2 (en) Water / oil repellent / antifouling antireflection film and method for producing the same, lens, glass plate, glass, optical device, solar energy utilization device and display
CN104769023A (en) Nanosilica coating for retarding dew formation
JP5347123B2 (en) Water and oil repellent antifouling glass plate, method for producing the same, vehicle and building using the same
JP2008282751A (en) Ice-accretion and snow-accretion preventive insulator and electric wire, antenna, their manufacturing method, and power transmission steel tower using them
JPH1191030A (en) Hydrophilic member with photocatalystic property
WO2016010080A1 (en) Antifouling article, method for producing same, antifouling layer-forming composition and cover glass for solar cells
JP2008246959A (en) Water-repellent and oil-repellent anti-staining reflecting plate, its manufacturing method, and tunnel, road sign, sign board, vehicle and building using the water and oil repellent anti-staining reflecting plate
JP5343271B2 (en) Water repellent and oil repellent antifouling glass plate, production method thereof, automobile and electromagnetic cooker using the same
JP2005350502A (en) Ultra water repellent film-coated article, method for producing the same and coating material for forming ultra water-repellent coated film
JP2008246968A (en) Water-repellent and oil-repellent anti-staining reflecting plate, its manufacturing method and tunnel, road sign, display plate, signboard, vehicle and building using water-repellent and oil-repellent anti-staining reflecting plate
WO2009107191A1 (en) Water repellent, oil repellent antifouling glass plate, process for producing the same, and vehicle and building utilizing the glass plate
JP5343226B2 (en) Water-repellent glass plate, vehicle and building window glass using the same, and method for producing water-repellent glass plate
JP2012219003A (en) Wear-resistant water-ultrarepellent, oil-repellent antifouling glass, method for manufacturing the same, glass window using the same, solar energy utilization device, optical equipment and display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100311

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120816

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130207

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130409