JP5572803B2 - Water repellent and oil repellent antifouling glass, method for producing the same, glass window using them, solar energy utilization apparatus and optical instrument - Google Patents

Water repellent and oil repellent antifouling glass, method for producing the same, glass window using them, solar energy utilization apparatus and optical instrument Download PDF

Info

Publication number
JP5572803B2
JP5572803B2 JP2009072963A JP2009072963A JP5572803B2 JP 5572803 B2 JP5572803 B2 JP 5572803B2 JP 2009072963 A JP2009072963 A JP 2009072963A JP 2009072963 A JP2009072963 A JP 2009072963A JP 5572803 B2 JP5572803 B2 JP 5572803B2
Authority
JP
Japan
Prior art keywords
fine particles
water
repellent
glass
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009072963A
Other languages
Japanese (ja)
Other versions
JP2010222199A (en
Inventor
小川  一文
Original Assignee
国立大学法人 香川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 香川大学 filed Critical 国立大学法人 香川大学
Priority to JP2009072963A priority Critical patent/JP5572803B2/en
Publication of JP2010222199A publication Critical patent/JP2010222199A/en
Application granted granted Critical
Publication of JP5572803B2 publication Critical patent/JP5572803B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Surface Treatment Of Glass (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、撥水撥油防汚性ガラスとその製造方法並びにそれらを用いたガラス窓、太陽エネルギー利用装置及び光学機器に関し、より具体的には高耐久性で且つ撥水撥油防汚性の被膜が表面に形成された撥水撥油防汚性ガラスとその製造方法並びにそれらを用いたガラス窓、太陽エネルギー利用装置及び光学機器に関する。 The present invention relates to a water- and oil-repellent antifouling glass, a method for producing the same, a glass window using the same, a solar energy utilization device, and an optical instrument, and more specifically, a highly durable and water-repellent and oil-repellent antifouling property. The present invention relates to a water- and oil-repellent antifouling glass having a coating film formed thereon, a method for producing the same, a glass window using them, a solar energy utilization device, and an optical instrument.

各種部材の表面に撥水性、撥油性及び防汚性を付与するために、フッ化炭素基含有クロロシラン系の吸着剤と非水系の有機溶媒よりなる溶液を用い、液相で化学吸着して単分子膜状の撥水撥油防汚性の化学吸着膜単分子膜を形成できることが既によく知られている(例えば、特許文献1参照)。 In order to impart water repellency, oil repellency and antifouling properties to the surfaces of various members, a solution comprising a fluorocarbon group-containing chlorosilane-based adsorbent and a non-aqueous organic solvent is used for chemical adsorption in the liquid phase. It is already well known that a molecular film-like water- and oil-repellent antifouling chemical adsorption film monomolecular film can be formed (for example, see Patent Document 1).

このような溶液中での単分子膜の製造原理は、基材表面のヒドロキシル基等の活性水素とクロロシラン系の吸着剤のクロロシリル基との脱塩酸反応を用いて単分子膜を形成することにある。 The manufacturing principle of such a monomolecular film in a solution is to form a monomolecular film by using a dehydrochlorination reaction between active hydrogen such as hydroxyl group on the substrate surface and chlorosilyl group of chlorosilane-based adsorbent. is there.

特開平4−132637号公報JP-A-4-132737

しかしながら、特許文献1記載の化学吸着膜は吸着剤を平坦なガラス基材に適用した場合において、水滴接触角は高々120度程度止まりであり、水滴や汚れが自然に除去されるようにするためには撥水撥油防汚性や離水性が不十分であるという課題があった。また、特許文献1記載の化学吸着膜単分子膜が適用された撥水撥油防汚性ガラスは、耐摩耗性や耐候性等の耐久性も乏しいという課題があった。 However, when the adsorbent is applied to a flat glass substrate, the chemical adsorption film described in Patent Document 1 has a water droplet contact angle of only about 120 degrees, so that water droplets and dirt can be removed naturally. Has the problem of insufficient water and oil repellency, antifouling properties and water separation. Further, the water / oil repellent antifouling glass to which the chemical adsorption film monomolecular film described in Patent Document 1 is applied has a problem of poor durability such as wear resistance and weather resistance.

本発明はかかる事情に鑑みてなされたもので、撥水撥油防汚機能に加え、耐摩耗性や耐候性等の耐久性、水滴離水性(滑水性ともいう)、撥油性、防汚性が向上した撥水撥油防汚性ガラスとその製造方法並びにそれらを用いたガラス窓、太陽エネルギー利用装置及び光学機器を提供することを目的とする。 The present invention has been made in view of such circumstances, in addition to water / oil repellent and antifouling functions, durability such as wear resistance and weather resistance, water droplet separation (also referred to as water slidability), oil repellency and antifouling properties. An object of the present invention is to provide a water- and oil-repellent and antifouling glass having improved water resistance, a method for producing the same, a glass window using them, a solar energy utilization device, and an optical instrument.

前記目的に沿う本発明の第1の態様は、透明なガラス基材の表面の少なくとも一部を覆うように該ガラス基材の表面に結合固定され、前記ガラス基材の軟化温度よりも融点が高い透明な第1の微粒子と、前記第1の微粒子の表面の少なくとも一部を覆うように該第1の微粒子の表面に結合固定された、前記第1の微粒子よりも粒径の小さな透明な第2の微粒子と、前記第1及び第2の微粒子の表面に形成された撥水撥油防汚性薄膜とを有し、前記第1の微粒子の粒径が50nm以上400nm以下であり、前記第2の微粒子の粒径が前記第1の微粒子の粒径の1/100以上1/5以下であり、前記第1の微粒子が、前記基材の表面に結合した該第1の微粒子の表面には結合していないことを特徴とする撥水撥油防汚性ガラスを提供することにより上記課題を解決するものである。
ガラス基材の表面に第1の微粒子を結合固定し、更に第1の微粒子の表面に第2の微粒子を結合固定することにより、複雑な凹凸を有する表面構造を形成できる。そのため、平坦な表面を有する場合によりも撥水撥油防汚性を向上できる。また、少なくとも第1及び第2の微粒子の表面に撥水撥油防汚性薄膜を形成することにより、一般に親水性を有するガラス基材の表面に撥水性、撥油性及び防汚性を付与できる。
The first aspect of the present invention that meets the above-mentioned object is bonded and fixed to the surface of the glass substrate so as to cover at least part of the surface of the transparent glass substrate, and has a melting point higher than the softening temperature of the glass substrate. and high transparent first fine particles, the first surface of the fine particles of coupled fixed to the first surface of the particles so as to cover at least a part, a Do transparent small particle size than the first particulate and second microparticles, have a said first and second water- and oil-repellent formed on the surface antifouling particle film, the particle diameter of the first fine particle is at 50nm or more 400nm or less, wherein The surface of the first fine particles in which the particle size of the second fine particles is 1/100 or more and 1/5 or less of the particle size of the first fine particles, and the first fine particles are bonded to the surface of the substrate. providing water and oil repellency and antifouling glass, characterized in that not bind to It is intended to further solve the above problems.
A surface structure having complex irregularities can be formed by bonding and fixing the first fine particles to the surface of the glass substrate and further bonding and fixing the second fine particles to the surface of the first fine particles. Therefore, the water / oil repellency / antifouling property can be improved as compared with the case of having a flat surface. In addition, by forming a water- and oil-repellent and antifouling thin film on at least the surfaces of the first and second fine particles, it is possible to impart water repellency, oil repellency and antifouling properties to the surface of a generally hydrophilic glass substrate. .

本発明の第1の態様に係る撥水撥油防汚性ガラスにおいて、前記第1の微粒子の粒径が100nm以上5mm以下であり、前記第2の微粒子の粒径が前記第1の微粒子の粒径の1/100以上1/5以下であ
上記のように粒径の異なる2種類の微粒子を用いることにより、いわゆるフラクタル構造の表面構造が得られるため、大幅に撥水撥油防汚性に優れた撥水撥油防汚性ガラスを提供できる。
In the water / oil repellent antifouling glass according to the first aspect of the present invention, the first fine particles have a particle size of 100 nm or more and 5 mm or less, and the second fine particles have a particle size of the first fine particles. the particle size of the 1/100 more than 1/5 Ru der below.
By using two types of fine particles with different particle diameters as described above, a surface structure with a so-called fractal structure can be obtained, so that water- and oil-repellent and antifouling glasses with significantly superior water and oil and oil repellency are provided. it can.

本発明の第1の態様に係る撥水撥油防汚性ガラスにおいて、前記ガラス基材、前記第1及び第2の微粒子がいずれも透明であり、前記第1の微粒子の粒径が400nm以下であ
ガラス基材、第1及び第2の微粒子がいずれも透明であり、第1の微粒子の粒径が可視光の最短波長(400nm)よりも小さく(好ましくは100nm程度)、かつ第2の微粒子の粒径が数nm〜数十nm(好ましくは5〜25nm程度)であるため、入射光の散乱や乱反射が抑制され、透明度及び光学特性に優れた撥水撥油防汚性ガラスを提供できる。
In the water / oil repellent antifouling glass according to the first aspect of the present invention, the glass substrate, the first and second fine particles are all transparent, and the particle size of the first fine particles is 400 nm or less. der Ru.
The glass substrate, the first and second fine particles are both transparent, the particle size of the first fine particles is smaller than the shortest wavelength (400 nm) of visible light (preferably about 100 nm), and the second fine particles Since the particle size is several nm to several tens of nm (preferably about 5 to 25 nm), it is possible to provide a water / oil repellent and antifouling glass excellent in transparency and optical properties, which suppresses scattering and irregular reflection of incident light.

本発明の第1の態様に係る撥水撥油防汚性ガラスにおいて、前記第1の微粒子が前記ガラス基材に融着可能な素材からなり、該ガラス基材の表面に融着していてもよい。
或いは、前記第1の微粒子が、バインダを介して前記ガラス基材の表面に結合固定されていてもよい。
第1の微粒子が融着又はバインダを介してガラス基材の表面に結合固定されているため、撥水撥油防汚性ガラスの表面の耐摩耗性及び耐候性等を向上できる。
In the water / oil repellent antifouling glass according to the first aspect of the present invention, the first fine particles are made of a material that can be fused to the glass substrate, and are fused to the surface of the glass substrate. Also good.
Alternatively, the first fine particles may be bonded and fixed to the surface of the glass substrate via a binder.
Since the first fine particles are bonded and fixed to the surface of the glass substrate through fusing or a binder, the wear resistance and weather resistance of the surface of the water / oil repellent / antifouling glass can be improved.

本発明の第1の態様に係る撥水撥油防汚性ガラスにおいて、前記第2の微粒子が前記第1の微粒子に融着可能な素材からなり、該第1の微粒子の表面に融着していてもよい。
或いは、前記第2の微粒子が、バインダを介して前記第1の微粒子の表面に結合固定されていてもよい。
第2の微粒子が融着又はバインダを介して第1の微粒子の表面に結合固定されているため、撥水撥油防汚性ガラスの表面の耐摩耗性及び耐候性等を向上できる。
In the water / oil repellent / antifouling glass according to the first aspect of the present invention, the second fine particles are made of a material that can be fused to the first fine particles, and are fused to the surface of the first fine particles. It may be.
Alternatively, the second fine particles may be bonded and fixed to the surface of the first fine particles via a binder.
Since the second fine particles are bonded and fixed to the surface of the first fine particles through fusion or a binder, it is possible to improve the wear resistance and weather resistance of the surface of the water / oil repellent / antifouling glass.

本発明の第1の態様に係る撥水撥油防汚性ガラスにおいて、前記第1及び第2の微粒子が、ガラス、シリカ、アルミナ及びジルコニアからなる群より選択される材質からなるものであってもよい。
第1及び第2の微粒子がガラス、シリカ、アルミナ及びジルコニアからなる群より選択される材質からなるため、撥水撥油防汚性ガラスの表面の耐久性を向上できる。
In the water and oil repellent antifouling glass according to the first aspect of the present invention, the first and second fine particles are made of a material selected from the group consisting of glass, silica, alumina and zirconia. Also good.
Since the first and second fine particles are made of a material selected from the group consisting of glass, silica, alumina, and zirconia, the surface durability of the water / oil repellent / antifouling glass can be improved.

本発明の第1の態様に係る撥水撥油防汚性ガラスにおいて、前記撥水撥油防汚性薄膜が単分子膜であることが好ましい。
撥水撥油防汚性薄膜が単分子膜であるため、得られる撥水撥油防汚性ガラスの色調や透明度を損なうことがない。
In the water / oil repellent / antifouling glass according to the first aspect of the present invention, the water / oil repellent / antifouling thin film is preferably a monomolecular film.
Since the water / oil repellent / antifouling thin film is a monomolecular film, the color tone and transparency of the obtained water / oil repellent / antifouling glass are not impaired.

本発明の第1の態様に係る撥水撥油防汚性ガラスにおいて、表面の臨界表面エネルギーは理想的には低いほど良いが、1mN/m以上3mN/m以下であることが好ましい。
表面の臨界表面エネルギーが上記範囲であるため、得られる撥水撥油防汚性ガラスの撥水性、撥油性及び防汚性の全てを向上できる。
In the water / oil repellent antifouling glass according to the first aspect of the present invention, the lower the critical surface energy of the surface, the better, but it is preferably 1 mN / m or more and 3 mN / m or less.
Since the critical surface energy of the surface is in the above range, all of the water repellency, oil repellency and antifouling property of the obtained water / oil repellent / antifouling glass can be improved.

本発明の第2の態様は、溶媒に分散させた第1の微粒子を含む第1の分散液をガラス基材の表面に塗布し、該溶媒を蒸発させた後、前記ガラス基材の表面に前記第1の微粒子を結合固定する工程Aと、溶媒に分散させた、粒径が前記第1の微粒子の粒径の1/100以上1/5以下である第2の微粒子を含む第2の分散液を前記第1の微粒子が結合固定された前記ガラス基材の表面に塗布し、該溶媒を蒸発させた後、前記第1の微粒子が結合固定された前記ガラス基材の表面に前記第2の微粒子を結合固定する工程Bと、前記第1及び第2の微粒子が結合固定された前記ガラス基材の表面に撥水撥油防汚性薄膜を形成する工程Cとを有することを特徴とする撥水撥油防汚性ガラスの製造方法を提供することにより上記課題を解決するものである。
工程A及びBにおいて、ガラス基材の表面に第1及び第2の微粒子を結合固定することにより、ガラス基材の表面に複雑な凹凸を形成できる。そのため、平坦なガラス基材及び第1の微粒子のみが表面に結合固定されたガラス基材よりも撥水性、撥油性及び防汚性を向上できる。また、工程Cにおいて、少なくとも第1及び第2の微粒子の表面に撥水撥油防汚性薄膜を形成することにより、撥水性、撥油性及び防汚性を更に向上できる。
In the second aspect of the present invention, the first dispersion liquid containing the first fine particles dispersed in the solvent is applied to the surface of the glass substrate, and after the solvent is evaporated, Step A for bonding and fixing the first fine particles, and second particles containing second fine particles dispersed in a solvent and having a particle size of 1/100 or more and 1/5 or less of the particle size of the first fine particles . A dispersion is applied to the surface of the glass substrate to which the first fine particles are bonded and fixed, and after the solvent is evaporated, the first fine particles are bonded to the surface of the glass substrate to which the first fine particles are bonded and fixed. And a step B of forming a water- and oil-repellent and antifouling thin film on the surface of the glass substrate on which the first and second fine particles are bonded and fixed. The above-mentioned problems are solved by providing a method for producing a water- and oil-repellent and antifouling glass. .
In steps A and B, complex irregularities can be formed on the surface of the glass substrate by bonding and fixing the first and second fine particles to the surface of the glass substrate. Therefore, the water repellency, oil repellency and antifouling property can be improved as compared with the glass substrate in which only the flat glass substrate and the first fine particles are bonded and fixed to the surface. Further, in Step C, the water and oil repellency and antifouling properties can be further improved by forming a water and oil and oil repellency and antifouling thin film on at least the surfaces of the first and second fine particles.

本発明の第2の態様に係る撥水撥油防汚性ガラスの製造方法において、前記工程Aにおいて、前記ガラス基材の表面に前記第1の微粒子を融着してもよい。
或いは、前記第1の溶液が、溶媒の蒸発及び/又はその後の化学反応によりバインダを生成する第1のバインダ前駆体を含み、前記工程Aにおいて、前記バインダを介して前記ガラス基材の表面に前記第1の微粒子を結合固定してもよい。
融着又はバインダを介してガラス基材の表面に第1の微粒子を結合固定するため、撥水撥油防汚性ガラスの表面の耐摩耗性及び耐候性等を向上できる。
In the method for producing a water- and oil-repellent and antifouling glass according to the second aspect of the present invention, in the step A, the first fine particles may be fused to the surface of the glass substrate.
Alternatively, the first solution includes a first binder precursor that generates a binder by evaporation of a solvent and / or subsequent chemical reaction, and in the step A, the surface of the glass substrate is interposed via the binder. The first fine particles may be bound and fixed.
Since the first fine particles are bonded and fixed to the surface of the glass substrate through fusion or a binder, the wear resistance and weather resistance of the surface of the water / oil repellent / antifouling glass can be improved.

本発明の第2の態様に係る撥水撥油防汚性ガラスの製造方法において、前記工程Bにおいて、前記第1の微粒子が結合固定された前記ガラス基材の表面に前記第2の微粒子を融着してもよい。
或いは、前記第2の溶液が、溶媒の蒸発及び/又はその後の化学反応によりバインダを生成する第2のバインダ前駆体を含み、前記工程Bにおいて、前記第1の微粒子が結合固定された前記ガラス基材の表面にバインダを介して前記第2の微粒子を結合固定してもよい。
融着又はバインダを介して第1の微粒子の表面に第2の微粒子を結合固定するため、撥水撥油防汚性ガラスの表面の耐摩耗性及び耐候性等を向上できる。
In the method for producing a water- and oil-repellent and antifouling glass according to the second aspect of the present invention, in the step B, the second fine particles are attached to the surface of the glass substrate to which the first fine particles are bonded and fixed. It may be fused.
Alternatively, the glass in which the second solution includes a second binder precursor that generates a binder by evaporation of a solvent and / or subsequent chemical reaction, and in which the first fine particles are bonded and fixed in the step B. The second fine particles may be bonded and fixed to the surface of the base material via a binder.
Since the second fine particles are bonded and fixed to the surface of the first fine particles via fusing or a binder, the wear resistance and weather resistance of the surface of the water / oil repellent / antifouling glass can be improved.

工程A及び/又はBにおいてバインダを介して第1及び/又は第2の微粒子を結合固定する本発明の第2の態様に係る撥水撥油防汚性ガラスの製造方法において、前記第1及び/又は第2のバインダ前駆体が、ゾル−ゲル法により透明な金属酸化物を形成する金属ゾル前駆体であってもよい。
ゾル−ゲル法により透明な金属酸化物を形成する金属ゾル前駆体をバインダ前駆体として用いることにより、製造される撥水撥油防汚性ガラスの透明度を損なうことなく第1及び第2の微粒子をそれぞれガラス基材及び第1の微粒子の表面に結合固定できる。
In the method for producing a water- and oil-repellent and antifouling glass according to the second aspect of the present invention, wherein the first and / or second fine particles are bonded and fixed through a binder in the step A and / or B. The second binder precursor may be a metal sol precursor that forms a transparent metal oxide by a sol-gel method.
By using a metal sol precursor that forms a transparent metal oxide by a sol-gel method as a binder precursor, the first and second fine particles are obtained without impairing the transparency of the water / oil repellent / antifouling glass produced. Can be bonded and fixed to the surfaces of the glass substrate and the first fine particles, respectively.

本発明の第2の態様に係る撥水撥油防汚性ガラスの製造方法において、前記工程A及び/又はBの後で、結合固定されなかった前記第1及び/又は第2の微粒子を洗浄除去してもよい。 In the method for producing a water- and oil-repellent and antifouling glass according to the second aspect of the present invention, after the step A and / or B, the first and / or second fine particles not bonded and fixed are washed. It may be removed.

本発明の第2の態様に係る撥水撥油防汚性ガラスの製造方法において、前記工程Cにおいて、前記ガラス基材、前記第1及び第2の微粒子の表面官能基と反応して結合を形成する反応基とフッ化炭素基とを有する化合物を含む反応液を前記第1及び第2の微粒子が結合固定された前記ガラス基材の表面に接触させ、前記表面官能基と前記反応基との反応により形成された結合を介して該表面に結合固定された前記化合物の被膜を形成してもよい。
表面官能基と反応基との反応により形成された結合を介して撥水撥油防汚性薄膜を第1及び第2の微粒子の表面に結合固定することにより、撥水撥油防汚性薄膜の耐久性を向上できる。
In the method for producing a water- and oil-repellent and antifouling glass according to the second aspect of the present invention, in the step C, the glass substrate reacts with the surface functional groups of the first and second fine particles to bond. A reaction liquid containing a compound having a reactive group to be formed and a fluorocarbon group is brought into contact with the surface of the glass substrate to which the first and second fine particles are bonded and fixed, and the surface functional group, the reactive group, You may form the film of the said compound fixed to this surface through the coupling | bonding formed of this reaction.
The water / oil repellent / antifouling thin film is bonded and fixed to the surfaces of the first and second fine particles through a bond formed by the reaction between the surface functional group and the reactive group. The durability of can be improved.

この場合において、前記反応基がアルコキシシリル基であり、前記反応液が、
(1)カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステルおよびチタン酸エステルキレートからなる群から選択される1または2以上の化合物、及び/又は
(2)ケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、およびアミノアルキルアルコキシシラン化合物からなる群より選択される1または2以上の化合物を縮合触媒として含んでいてもよい。
反応基としてアルコキシシリル基を用いることにより、反応時にハロゲン化水素等の有害な副生成物の生成を防ぐことができると共に、反応液が縮合触媒を含んでいるため、撥水撥油防汚性薄膜の形成に必要な処理時間を短縮できる。
In this case, the reactive group is an alkoxysilyl group, and the reaction solution is
(1) one or two or more compounds selected from the group consisting of carboxylic acid metal salts, carboxylic acid ester metal salts, carboxylic acid metal salt polymers, carboxylic acid metal salt chelates, titanate esters and titanate ester chelates, and / or Alternatively, (2) one or more compounds selected from the group consisting of ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds may be included as a condensation catalyst.
By using an alkoxysilyl group as a reactive group, it is possible to prevent the formation of harmful by-products such as hydrogen halide during the reaction, and the reaction solution contains a condensation catalyst. The processing time required for forming the thin film can be shortened.

更に、前記工程Cの後で余分な前記反応液を洗浄除去してもよい。
余分な反応液を洗浄除去することにより、撥水撥油防汚性薄膜を単分子膜とすることができるため、製造される撥水撥油防汚性ガラスの透明度を損なうことがない。
Further, after the step C, the excess reaction solution may be removed by washing.
By washing and removing excess reaction liquid, the water / oil / oil / repellency antifouling thin film can be made into a monomolecular film, so that the transparency of the produced water / oil / oil / repellency / antifouling glass is not impaired.

本発明の第3の態様は、ガラス基材、第1及び第2の微粒子がいずれも透明であり、第1の微粒子の粒径が400nm以下である本発明の第1の態様に係る撥水撥油防汚性ガラスを有するガラス窓を提供することにより上記課題を解決するものである。
撥水性、撥油性及び防汚性に加え、透明度及び耐久性にも優れたガラス窓を提供できる。
The third aspect of the present invention is the water repellency according to the first aspect of the present invention, wherein the glass substrate, the first and second fine particles are both transparent, and the particle size of the first fine particles is 400 nm or less. The above-described problems are solved by providing a glass window having an oil-repellent antifouling glass.
In addition to water repellency, oil repellency and antifouling properties, a glass window having excellent transparency and durability can be provided.

本発明の第4の態様は、ガラス基材、第1及び第2の微粒子がいずれも透明であり、第1の微粒子の粒径が400nm以下である本発明の第1の態様に係る撥水撥油防汚性ガラスを有する太陽エネルギー利用装置を提供することにより上記課題を解決するものである。
撥水性、撥油性及び防汚性に加え、耐久性及び耐候性にも優れ、入射光の散乱や乱反射が抑制されるため光エネルギーの利用効率にも優れた太陽エネルギー利用装置を提供できる。
The fourth aspect of the present invention is the water repellency according to the first aspect of the present invention, wherein the glass substrate, the first and second fine particles are both transparent, and the particle size of the first fine particles is 400 nm or less. The above-described problems are solved by providing a solar energy utilization device having oil-repellent antifouling glass.
In addition to water repellency, oil repellency, and antifouling properties, it is possible to provide a solar energy utilization device that is excellent in durability and weather resistance and that is excellent in light energy utilization efficiency because scattering and diffuse reflection of incident light are suppressed.

本発明の第5の態様は、ガラス基材、第1及び第2の微粒子がいずれも透明であり、第1の微粒子の粒径が400nm以下である本発明の第1の態様に係る撥水撥油防汚性ガラスを有する光学機器を提供することにより上記課題を解決するものである。
撥水性、撥油性及び防汚性に加え、耐久性及び耐候性にも優れ、入射光の散乱や乱反射が抑制されるため透明性や光学特性にも優れた光学装置を提供できる。
The fifth aspect of the present invention is the water repellency according to the first aspect of the present invention, wherein the glass substrate, the first and second fine particles are both transparent, and the particle size of the first fine particles is 400 nm or less. The above-described problems are solved by providing an optical device having an oil-repellent antifouling glass.
In addition to water repellency, oil repellency and antifouling properties, it is excellent in durability and weather resistance, and since scattering and diffuse reflection of incident light are suppressed, an optical device excellent in transparency and optical characteristics can be provided.

本発明によれば、撥水撥油防汚機能に加え、耐摩耗性や耐候性等の耐久性、水滴離水性(滑水性ともいう)、撥油性、防汚性が向上した撥水撥油防汚性ガラスとその製造方法が提供される。また、本発明によれば、撥水性、撥油性及び防汚性に加え、透明度及び耐久性にも優れたガラス窓、撥水性、撥油性及び防汚性に加え、耐候性及び光エネルギーの利用効率にも優れた太陽エネルギー利用装置、及び撥水性、撥油性及び防汚性に加え、耐久性、透明度及び光学特性にも優れた光学機器が提供される。 According to the present invention, in addition to the water / oil repellent / antifouling function, the water / oil repellent has improved durability, such as abrasion resistance and weather resistance, water-drop-off property (also referred to as water slidability), oil repellency and antifouling properties An antifouling glass and a method for producing the same are provided. Further, according to the present invention, in addition to water repellency, oil repellency and antifouling properties, in addition to glass windows excellent in transparency and durability, water repellency, oil repellency and antifouling properties, weather resistance and utilization of light energy A solar energy utilization device having excellent efficiency and an optical device having excellent durability, transparency, and optical characteristics in addition to water repellency, oil repellency and antifouling properties are provided.

本発明の一実施の形態に係る撥水撥油防汚性ガラスの断面構造を模式的に説明した説明図である。It is explanatory drawing which demonstrated typically the cross-section of the water repellent / oil repellent antifouling glass which concerns on one embodiment of this invention. 同撥水撥油防汚性ガラスの製造方法において、ガラス基材の表面に第1の微粒子を融着する工程の説明図である。It is explanatory drawing of the process of fuse | melting 1st microparticles | fine-particles on the surface of a glass base material in the manufacturing method of the said water-repellent | oil-repellent antifouling glass. 同撥水撥油防汚性ガラスの製造方法において、第1の微粒子が融着されたガラス基材の表面にバインダを介して第2の微粒子をする結合固定する工程の説明図である。In the manufacturing method of the said water-repellent | oil-repellent | oil-repellent | antifouling | stain-resistant glass, it is explanatory drawing of the process of carrying out the bond fixation which makes a 2nd microparticles | fine-particles through the binder on the surface of the glass base material on which the 1st microparticles | fusion were melt | fused. 実施例1において製造した撥水撥油防汚性ガラスの表面の走査型電子顕微鏡(SEM)写真である。2 is a scanning electron microscope (SEM) photograph of the surface of the water / oil repellent / antifouling glass produced in Example 1. FIG.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。なお、図1〜3は単なる概略説明図であり、ガラス基材、第1及び第2の微粒子、及び撥水撥油防汚性薄膜を形成する化合物の大きさについては、必ずしも実際の大きさの比率を反映していない。
図1に示すように、本発明の一実施の形態に係る撥水撥油防汚性ガラス10は、ガラス基材11の表面の少なくとも一部を覆うようにその表面に融着(結合固定の一例)した第1の微粒子12aと、ガラス基材(11)の表面に融着した第1の微粒子12aの表面の少なくとも一部を覆うようにその表面に結合固定された、第1の微粒子12aよりも粒径の小さな第2の微粒子13と、第1及び第2の微粒子12a、13の表面に形成された撥水撥油防汚性薄膜15aとを有する。第2の微粒子13は、バインダの一例であるゾル−ゲル法により形成されたシリカ被膜14を介して、ガラス基材(11)の表面に融着した第1の微粒子12aの表面に結合固定されている。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention. 1 to 3 are merely schematic explanatory views, and the size of the compound that forms the glass substrate, the first and second fine particles, and the water / oil repellent / antifouling thin film is not necessarily the actual size. Does not reflect the ratio.
As shown in FIG. 1, a water / oil repellent antifouling glass 10 according to an embodiment of the present invention is fused (bonded and fixed) to a surface of a glass substrate 11 so as to cover at least a part of the surface. For example, the first fine particles 12a bonded and fixed to the surface so as to cover at least a part of the surface of the first fine particles 12a fused to the surface of the glass substrate (11). The second fine particles 13 having a smaller particle diameter and the water and oil repellent and antifouling thin film 15a formed on the surfaces of the first and second fine particles 12a and 13 are included. The second fine particles 13 are bonded and fixed to the surface of the first fine particles 12a fused to the surface of the glass substrate (11) through a silica film 14 formed by a sol-gel method which is an example of a binder. ing.

撥水撥油防汚性ガラス10は、溶媒に分散させた第1の微粒子12を含む第1の分散液をガラス基材11の表面に塗布し、溶媒を蒸発させた後、ガラス基材11の表面に第1の微粒子12を融着(結合固定の一例)する工程A(図2参照)と、溶媒に分散させた第2の微粒子13と、テトラアルコキシシラン(バインダ前駆体の一例)とを含む第2の分散液を第1の微粒子が結合固定されたガラス基材11aの表面に塗布し、溶媒を蒸発させた後、第1の微粒子が結合固定されたガラス基材11aの表面に、ゾル−ゲル法により形成されたシリカ被膜(バインダの一例)14を介して第2の微粒子13を結合固定する工程B(図3参照)と、ガラス基材11、第1及び第2の微粒子12a、13の表面官能基と反応して結合を形成する反応基とフッ化炭素基とを有する化合物15を含む反応液を第1及び第2の微粒子が結合固定されたガラス基材11bの表面に接触させ、第1及び第2の微粒子が結合固定されたガラス基材11bの表面に表面官能基と反応基との反応により形成された結合を介してその表面に結合固定された撥水撥油防汚性薄膜15aを形成する工程C(図1参照)とを有する方法により製造される。
以下、各工程についてより詳細に説明する。
The water / oil repellent / antifouling glass 10 is formed by applying a first dispersion liquid containing the first fine particles 12 dispersed in a solvent to the surface of the glass substrate 11 and evaporating the solvent. Step A (see FIG. 2) for fusing the first fine particles 12 to the surface of the film (see FIG. 2), the second fine particles 13 dispersed in a solvent, tetraalkoxysilane (an example of a binder precursor), Is applied to the surface of the glass substrate 11a to which the first fine particles are bonded and fixed. After the solvent is evaporated, the first dispersion is applied to the surface of the glass substrate 11a to which the first fine particles are bonded and fixed. Step B (see FIG. 3) for bonding and fixing the second fine particles 13 via a silica film (an example of a binder) 14 formed by a sol-gel method, and the glass substrate 11, the first and second fine particles Reactive groups that react with surface functional groups of 12a and 13 to form bonds A reaction liquid containing a compound 15 having a fluorocarbon group is brought into contact with the surface of the glass substrate 11b to which the first and second fine particles are bonded and fixed, and the glass group in which the first and second fine particles are bonded and fixed. Step C (see FIG. 1) of forming a water / oil repellent / antifouling thin film 15a bonded and fixed to the surface of the material 11b through a bond formed by a reaction between a surface functional group and a reactive group. It is manufactured by the method which has.
Hereinafter, each process will be described in more detail.

(1)工程A
工程Aにおいて用いられるガラス基材11の形状については特に制限はなく、レンズ、プリズム等の平板状以外の形状のものを用いることもできる。また、ガラス基材11の大きさについても特に制限はなく、任意の大きさのものを用いることができる。更に、ガラス基材11の材質についても特に制限はなく、ソーダ石灰ガラス、クリスタルガラス、石英ガラス、ホウケイ酸ガラス、ガラスセラミックス等の任意の材質のものを用いることができ、ポリメタクリル酸メチル等からなるアクリルガラス(プレキシガラス)等の有機材料を用いることもできる。
(1) Process A
There is no restriction | limiting in particular about the shape of the glass base material 11 used in the process A, The thing of shapes other than flat form, such as a lens and a prism, can also be used. Moreover, there is no restriction | limiting in particular also about the magnitude | size of the glass base material 11, The thing of arbitrary magnitude | sizes can be used. Furthermore, there is no restriction | limiting in particular also about the material of the glass base material 11, The thing of arbitrary materials, such as soda lime glass, crystal glass, quartz glass, borosilicate glass, glass ceramics, can be used, from polymethyl methacrylate etc. An organic material such as acrylic glass (plexiglass) can also be used.

第1の分散液と接触させる前に、ガラス基材11の表面を洗浄し、表面に付着した汚れを除去しておくことが好ましい。洗浄には、洗浄液中への浸漬(加熱、撹拌及び超音波照射等を併用してもよい。)、エキシマレーザーの照射等の任意の方法を用いることができる。 Before bringing into contact with the first dispersion, it is preferable to clean the surface of the glass substrate 11 and remove the dirt adhering to the surface. For the cleaning, any method such as immersion in a cleaning solution (heating, stirring, ultrasonic irradiation or the like may be used in combination), excimer laser irradiation, or the like can be used.

ガラス基材11と同様、工程Aにおいて用いられる第1の微粒子12の形状について特に制限はないが、球状又は略球状であることが好ましい。第1の微粒子12の大きさは、50nm〜5mm、好ましくは50nm〜400nm、より好ましくは100〜200nmである。特に、ガラス窓、太陽エネルギー利用装置、光学機器等に用いるために透明度が必要とされる撥水撥油防汚性ガラス10の製造のためには、入射光の散乱や乱反射による透明度の低下を抑制するために、第1の微粒子12の大きさは、可視光の波長よりも短い400nm以下である必要がある。第1の微粒子12の材質についても特に制限はなく、ソーダ石灰ガラス、クリスタルガラス、石英ガラス、ホウケイ酸ガラス、ガラスセラミックス、シリカ、アルミナ、ジルコニア等の任意の材質のものを用いることができ、ポリメタクリル酸メチル等からなるアクリルガラス(プレキシガラス)等の有機材料を用いることもできる。特に、シリカ、アルミナ、ジルコニア等の硬質の無機酸化物からなる微粒子を用いる場合には、得られる撥水撥油防汚性ガラス10の表面の硬度及び耐摩耗性を向上できる。 Similar to the glass substrate 11, the shape of the first fine particles 12 used in the step A is not particularly limited, but is preferably spherical or substantially spherical. The size of the first fine particles 12 is 50 nm to 5 mm, preferably 50 nm to 400 nm, and more preferably 100 to 200 nm. In particular, for the production of the water and oil repellent antifouling glass 10 that requires transparency for use in glass windows, solar energy utilization devices, optical instruments, etc., the transparency is reduced due to scattering or irregular reflection of incident light. In order to suppress, the size of the first fine particles 12 needs to be 400 nm or less, which is shorter than the wavelength of visible light. The material of the first fine particles 12 is not particularly limited, and any material such as soda lime glass, crystal glass, quartz glass, borosilicate glass, glass ceramics, silica, alumina, zirconia, etc. can be used. An organic material such as acrylic glass (plexiglass) made of methyl methacrylate or the like can also be used. In particular, when fine particles made of a hard inorganic oxide such as silica, alumina, or zirconia are used, the hardness and wear resistance of the surface of the obtained water / oil repellent / antifouling glass 10 can be improved.

第1の分散液の調製には、第1の微粒子12を均一に分散でき、ガラス基材11及び第1の微粒子12と反応したり、膨潤や変形を起こしたりしない限りにおいて任意の溶媒を用いることができるが、揮発性、安全性、環境負荷及び経済性等の観点から、水、エタノール、イソプロピルアルコール等の低級アルコール系溶媒及びこれらの混合溶媒が好ましい。溶媒の量は、第1の微粒子12の大きさ及び比重等に依存するため一義的に決定することは困難であるが、例えば、第1の微粒子12の重量の4〜200倍(第1の分散液に含まれる第1の微粒子12の濃度が約0.5〜約20重量%)、好ましくは10〜100倍、より好ましくは10〜50倍である。溶媒の量が少なすぎると、得られる第1の分散液がスラリー状になり、第1の微粒子12をガラス基材11の表面に均一に分散することが困難になり、逆に多すぎると作業効率が低下する。 For the preparation of the first dispersion, an arbitrary solvent is used as long as the first fine particles 12 can be uniformly dispersed and do not react with the glass substrate 11 and the first fine particles 12 or cause swelling or deformation. However, from the viewpoints of volatility, safety, environmental load, economy, and the like, lower alcohol solvents such as water, ethanol, isopropyl alcohol, and mixed solvents thereof are preferable. The amount of the solvent depends on the size and specific gravity of the first fine particles 12 and is therefore difficult to determine uniquely. For example, the amount of the solvent is 4 to 200 times the weight of the first fine particles 12 (first The concentration of the first fine particles 12 contained in the dispersion is about 0.5 to about 20% by weight), preferably 10 to 100 times, more preferably 10 to 50 times. If the amount of the solvent is too small, the resulting first dispersion becomes a slurry, making it difficult to uniformly disperse the first fine particles 12 on the surface of the glass substrate 11, and conversely if too much, Efficiency is reduced.

ガラス基材11の表面に第1の分散液を塗布後、溶媒を蒸発させると、ガラス基材11の表面に第1の微粒子12を均一に分散させることができる(図2(B)参照)。第1の分散液の塗布には、ディップコート法、スピンコート法、スプレー法、スクリーン印刷法等の任意の方法を用いることができる。 When the first dispersion liquid is applied to the surface of the glass substrate 11 and then the solvent is evaporated, the first fine particles 12 can be uniformly dispersed on the surface of the glass substrate 11 (see FIG. 2B). . For the application of the first dispersion, any method such as a dip coating method, a spin coating method, a spray method, a screen printing method, or the like can be used.

次いで、ガラス基材11の表面を加熱し、第1の微粒子(12)が表面に融着したガラス基材11aを得る。加熱温度及び加熱時間は、用いられるガラス基材11及び第1の微粒子12の材質等に依存するため一義的に決定することは困難であるが、例えば、ガラス基材11としてソーダ石灰ガラス、第1の微粒子12としてシリカ微粒子を用いる場合には、650℃で30分〜1時間程度加熱することにより、第1の微粒子(12)が表面に融着したガラス基材11aが得られる(図2(C)参照)。なお、図2(C)には、一例としてガラス基材11とその表面に融着した第1の微粒子12aの界面付近が互いに融合した状態を示しているが、両者の間に界面が存在していてもよい。 Next, the surface of the glass substrate 11 is heated to obtain a glass substrate 11a in which the first fine particles (12) are fused to the surface. Although the heating temperature and the heating time depend on the glass substrate 11 and the material of the first fine particles 12 used, it is difficult to determine uniquely. For example, as the glass substrate 11, soda-lime glass, When silica fine particles are used as the first fine particles 12, the glass substrate 11 a in which the first fine particles (12) are fused to the surface is obtained by heating at 650 ° C. for about 30 minutes to 1 hour (FIG. 2). (See (C)). FIG. 2C shows a state in which the vicinity of the interface between the glass substrate 11 and the first fine particles 12a fused to the surface is fused together as an example, but there is an interface between the two. It may be.

(2)工程B
工程Bにおいて用いられる第2の微粒子13の形状について特に制限はないが、球状又は略球状であることが好ましい。第2の微粒子13の大きさは、第1の微粒子12の粒径の1/100以上1/5以下であり、1nm〜50μm、好ましくは5nm〜80nm、より好ましくは5〜50nmである。特に、ガラス窓、太陽エネルギー利用装置、光学機器等に用いるために透明度が必要とされる撥水撥油防汚性ガラス10の製造のためには、入射光の散乱や乱反射による透明度の低下を抑制するために、第2の微粒子13の大きさは、可視光の波長よりも短い400nm以下、かつ第1の微粒子12の粒径の1/100以上1/5以下である必要がある。第2の微粒子13の材質についても特に制限はなく、ソーダ石灰ガラス、クリスタルガラス、石英ガラス、ホウケイ酸ガラス、ガラスセラミックス、シリカ、アルミナ、ジルコニア等の任意の材質のものを用いることができ、ポリメタクリル酸メチル等からなるアクリルガラス(プレキシガラス)等の有機材料を用いることもできる。特に、シリカ、アルミナ、ジルコニア等の硬質の無機酸化物からなる微粒子を用いる場合には、得られる撥水撥油防汚性ガラス10の表面の硬度及び耐摩耗性を向上できる。
(2) Process B
Although there is no restriction | limiting in particular about the shape of the 2nd fine particle 13 used in the process B, It is preferable that it is spherical or substantially spherical. The size of the second fine particles 13 is 1/100 or more and 1/5 or less of the particle size of the first fine particles 12, and is 1 nm to 50 μm, preferably 5 nm to 80 nm, more preferably 5 to 50 nm. In particular, for the production of the water and oil repellent antifouling glass 10 that requires transparency for use in glass windows, solar energy utilization devices, optical instruments, etc., the transparency is reduced due to scattering or irregular reflection of incident light. In order to suppress, the size of the second fine particles 13 needs to be 400 nm or shorter, which is shorter than the wavelength of visible light, and 1/100 or more and 1/5 or less of the particle size of the first fine particles 12. The material of the second fine particles 13 is not particularly limited, and any material such as soda lime glass, crystal glass, quartz glass, borosilicate glass, glass ceramics, silica, alumina, zirconia, and the like can be used. An organic material such as acrylic glass (plexiglass) made of methyl methacrylate or the like can also be used. In particular, when fine particles made of a hard inorganic oxide such as silica, alumina, or zirconia are used, the hardness and wear resistance of the surface of the obtained water / oil repellent / antifouling glass 10 can be improved.

第2の分散液の調製に用いられるバインダ前駆体としては、ゾル−ゲル法により透明な金属酸化物の被膜を形成できる物質、より具体的には、テトラアルコキシシランSi(OR)(Rは、メチル基、エチル基、n−プロピル基、i−プロピル基等の低級アルキル基。以下同じ。)、ホウ酸トリアルコキシドB(OR)、アルミニウムトリアルコキシドAl(OR)、チタンテトラアルコキシドTi(OR)等の金属アルコキシド、及びこれらの混合物が挙げられる。 As the binder precursor used for the preparation of the second dispersion, a substance capable of forming a transparent metal oxide film by a sol-gel method, more specifically, tetraalkoxysilane Si (OR) 4 (R is , Lower alkyl groups such as methyl group, ethyl group, n-propyl group, i-propyl group, etc.), boric acid trialkoxide B (OR) 3 , aluminum trialkoxide Al (OR) 3 , titanium tetraalkoxide Ti (OR) 4 and other metal alkoxides, and mixtures thereof.

第2の分散液の調製には、第2の微粒子13を均一に分散でき、第1の微粒子を融着したガラス基材11a及び第2の微粒子13と反応したり、膨潤や変形を起こしたりしないことに加え、金属アルコキシドを溶解させることができ、かつこれらと反応して分解させない溶媒が用いられる。用いることができる溶媒の具体例としては、メタノール、エタノール、イソプロピルアルコール等の低級アルコール系溶媒及びこれらの混合溶媒が挙げられる。 For the preparation of the second dispersion, the second fine particles 13 can be uniformly dispersed, react with the glass substrate 11a and the second fine particles 13 fused with the first fine particles, or cause swelling or deformation. In addition, a solvent that can dissolve the metal alkoxide and does not decompose by reacting with the metal alkoxide is used. Specific examples of the solvent that can be used include lower alcohol solvents such as methanol, ethanol, and isopropyl alcohol, and mixed solvents thereof.

第2の分散液の調製に用いられる溶媒の量は、第2の微粒子13の大きさ及び比重等に依存するため一義的に決定することは困難であるが、例えば、第2の微粒子13の重量の4〜200倍(第2の分散液に含まれる第2の微粒子13の濃度が約0.5〜約20重量%)、好ましくは10〜100倍、より好ましくは10〜50倍である。溶媒の量が少なすぎると、得られる第2の分散液がスラリー状になり、第1の微粒子12をガラス基材11の表面に均一に分散することが困難になり、逆に多すぎると作業効率が低下する。 The amount of the solvent used for the preparation of the second dispersion is difficult to determine uniquely because it depends on the size and specific gravity of the second fine particles 13. 4 to 200 times the weight (the concentration of the second fine particles 13 contained in the second dispersion is about 0.5 to about 20% by weight), preferably 10 to 100 times, more preferably 10 to 50 times . If the amount of the solvent is too small, the obtained second dispersion becomes a slurry, and it becomes difficult to uniformly disperse the first fine particles 12 on the surface of the glass substrate 11. Efficiency is reduced.

第1の微粒子(12)を融着したガラス基材11aの表面に第2の分散液を塗布後、溶媒を蒸発させると、第1の微粒子を融着したガラス基材11aの表面に、ゾル−ゲル法により形成されたシリカ被膜(以下、「シリカ被膜」と略称する場合もある。)14を介して第2の微粒子13を均一に分散した状態で結合固定できる(図3(B)参照)。第2の分散液の塗布には、ディップコート法、スピンコート法、スプレー法、スクリーン印刷法等の任意の方法を用いることができる。次いで、更に熱処理を行い、シリカ被膜14を焼結させると、より強固に第2の微粒子13を第1の微粒子を融着したガラス基材11aの表面に結合固定できる。焼結温度を高くすると、シリカ被膜14が融解又は軟化し、第2の微粒子13を融着させることもできる。このとき、第2の分散液中に、金属アルコキシドの5%程度のリン酸又はホウ酸を添加しておくと、シリカ被膜14の融点を500℃程度まで低下させることができるので、600℃で30分程度の焼結により、第1の微粒子を融着したガラス基材11aの表面に第2の微粒子13を融着できる。 When the second dispersion is applied to the surface of the glass substrate 11a to which the first fine particles (12) have been fused and then the solvent is evaporated, a sol is formed on the surface of the glass substrate 11a to which the first fine particles have been fused. -The second fine particles 13 can be bonded and fixed in a state of being uniformly dispersed through a silica film (hereinafter sometimes abbreviated as “silica film”) 14 formed by a gel method (see FIG. 3B). ). For the application of the second dispersion, any method such as a dip coating method, a spin coating method, a spray method, a screen printing method, or the like can be used. Next, when the heat treatment is further performed to sinter the silica coating 14, the second fine particles 13 can be more firmly bonded and fixed to the surface of the glass substrate 11a to which the first fine particles are fused. When the sintering temperature is increased, the silica coating 14 is melted or softened, and the second fine particles 13 can be fused. At this time, if phosphoric acid or boric acid of about 5% of the metal alkoxide is added to the second dispersion, the melting point of the silica coating 14 can be lowered to about 500 ° C. By sintering for about 30 minutes, the second fine particles 13 can be fused to the surface of the glass substrate 11a fused with the first fine particles.

本実施の形態では、工程Aにおいてガラス基材11の表面に第1の微粒子12を直接融着させ、工程Bにおいて第1の微粒子を融着したガラス基材11aの表面にシリカ被膜14を介して第2の微粒子13を結合固定させたが、工程A及びBのいずれにおいても、第1及び第2の微粒子12、13の結合固定に両者の方法を用いることができる。また、ガラス基材11、第1及び第2の微粒子12、13のいずれかが有機材料である場合にも、可能であれば融着による結合固定を行うこともできる。但し、有機材料は無機材料よりも融点及び軟化温度が低く、熱分解を起こしやすいため、無機材料の場合よりも加熱温度を低くする必要がある。更に、バインダとして光硬化性樹脂や接着剤(エポキシ系接着剤、シアノアクリレート系接着剤)を用いてもよい。 In the present embodiment, the first fine particles 12 are directly fused on the surface of the glass substrate 11 in the step A, and the silica coating 14 is interposed on the surface of the glass substrate 11a on which the first fine particles are fused in the step B. The second fine particles 13 are bonded and fixed, but both methods can be used for bonding and fixing the first and second fine particles 12 and 13 in both steps A and B. In addition, even when one of the glass substrate 11 and the first and second fine particles 12 and 13 is an organic material, it is possible to perform bonding and fixing by fusion if possible. However, since the organic material has a lower melting point and softening temperature than the inorganic material and easily undergoes thermal decomposition, the heating temperature needs to be lower than that of the inorganic material. Furthermore, a photocurable resin or an adhesive (epoxy adhesive or cyanoacrylate adhesive) may be used as the binder.

また、本実施の形態においては、工程Aにおいてガラス基材11をそのまま第1の微粒子が融着したガラス基材11aの製造に用いたが、工程Aの前にガラス基材11よりも低い温度で第1の微粒子12を融着する被膜をガラス基材11の表面に形成してもよい。被膜としては、透明性を有しガラス基材11よりも低い温度で第1の微粒子12を融着することのできる任意の被膜(透明被膜)を用いることができるが、ゾルゲル法により形成された酸化ケイ素、酸化アルミニウム等の金属酸化物の乾燥ゲル膜が好ましい。 In the present embodiment, the glass substrate 11 is used as it is for the production of the glass substrate 11a in which the first fine particles are fused in the process A, but the temperature is lower than that of the glass substrate 11 before the process A. A film for fusing the first fine particles 12 may be formed on the surface of the glass substrate 11. As the coating, any coating (transparent coating) that has transparency and can fuse the first fine particles 12 at a temperature lower than that of the glass substrate 11 can be used, but it was formed by a sol-gel method. A dry gel film of a metal oxide such as silicon oxide or aluminum oxide is preferred.

縮合触媒(詳細については後述する。)を含む金属アルコキシドの溶液をガラス基材11の表面に塗布後溶媒を蒸発させると、空気中の水分によるアルコキシル基の加水分解により生成するヒドロキシル基とアルコキシル基との間で縮合反応が起こり、ガラス基材11の表面に金属酸化物の透明な乾燥ゲル膜が形成される。未焼結の乾燥ゲル膜の表面および内部には、ガラス基材11よりも多くの遊離のヒドロキシル基が存在するため、ガラス基材11よりも低い温度で第1の微粒子12と融着できる。 When a metal alkoxide solution containing a condensation catalyst (details will be described later) is applied to the surface of the glass substrate 11 and then the solvent is evaporated, hydroxyl groups and alkoxyl groups generated by hydrolysis of the alkoxyl groups by moisture in the air. A condensation reaction takes place between them and a transparent dry gel film of metal oxide is formed on the surface of the glass substrate 11. Since there are more free hydroxyl groups than the glass substrate 11 on the surface and inside of the unsintered dry gel film, it can be fused with the first fine particles 12 at a temperature lower than that of the glass substrate 11.

透明被膜の一例であるシリカの乾燥ゲル膜の形成は、テトラメトキシシラン(Si(OCH)等のテトラアルコキシシラン、縮合触媒および溶媒を混合して得られるゾル溶液をガラス基材11の表面に塗布し、溶媒を蒸発させることにより行うことができる。
用いることのできる縮合触媒、助触媒、溶媒の種類、テトラアルコキシシランの濃度、触媒の添加量については後述する。
The formation of a dry gel film of silica, which is an example of a transparent film, is obtained by mixing a sol solution obtained by mixing a tetraalkoxysilane such as tetramethoxysilane (Si (OCH 3 ) 4 ), a condensation catalyst and a solvent with the glass substrate 11. It can be performed by applying to the surface and evaporating the solvent.
Condensation catalysts, cocatalysts, solvent types, tetraalkoxysilane concentrations, and catalyst addition amounts that can be used will be described later.

ゾル溶液の塗布は、ディップコート法、スピンコート法、スプレー法、スクリーン印刷法等の任意の方法により行うことができる。また、乾燥ゲル膜の膜厚は、撥水撥油防汚性ガラス10の製造に用いる第1の微粒子12の粒径にもよるが、5〜50nmが好ましい。このようにして得られる、シリカの乾燥ゲル膜を表面に有するガラス基材11を用いて撥水撥油防汚性ガラス10の製造を行うと、工程Aにおける加熱処理を300度以下の低温で行うことが可能となる。そのため、予め風冷強化されたガラス基材11を用いた場合にも、高温で加熱することにより強化度を劣化させることなく第1の微粒子が融着したガラス基材11aを製造できる。 The application of the sol solution can be performed by an arbitrary method such as a dip coating method, a spin coating method, a spray method, or a screen printing method. Moreover, although the film thickness of a dry gel film is based also on the particle size of the 1st microparticles | fine-particles 12 used for manufacture of the water repellent / oil repellent antifouling glass 10, 5-50 nm is preferable. When the water-repellent / oil-repellent antifouling glass 10 is produced using the glass substrate 11 having a silica dry gel film on the surface thus obtained, the heat treatment in the step A is performed at a low temperature of 300 ° C. or less. Can be done. Therefore, even when the glass substrate 11 that has been tempered in advance with air cooling is used, it is possible to manufacture the glass substrate 11a in which the first fine particles are fused without deteriorating the strengthening degree by heating at a high temperature.

(3)工程C
第1及び第2の微粒子が結合固定されたガラス基材11bの表面に表面官能基と反応基との反応により形成された結合を介して、その表面に結合固定された撥水撥油防汚性薄膜15aを形成し、撥水撥油防汚性ガラス10を製造するのに用いる反応液は、フッ化炭素基を含むアルコキシシラン化合物(反応基とフッ化炭素基とを有する化合物の一例)と、第1及び第2の微粒子が結合固定されたガラス基材11bの表面のヒドロキシル基(表面官能基の一例)とアルコキシシリル基との縮合反応を促進するための縮合触媒と、非水系の有機溶媒とを混合することにより調製される。
(3) Process C
Water / oil / oil repellent / antifouling bonded and fixed to the surface of the glass substrate 11b to which the first and second fine particles are bonded and fixed through a bond formed by the reaction of the surface functional group and the reactive group. The reaction liquid used for forming the water-soluble thin film 15a and producing the water / oil / oil repellent glass 10 is an alkoxysilane compound containing a fluorocarbon group (an example of a compound having a reactive group and a fluorocarbon group). A condensation catalyst for promoting a condensation reaction between a hydroxyl group (an example of a surface functional group) and an alkoxysilyl group on the surface of the glass substrate 11b to which the first and second fine particles are bonded and fixed, and a non-aqueous system It is prepared by mixing with an organic solvent.

フッ化炭素基を含むアルコキシシラン化合物としては、下記の一般式(I)で表されるアルコキシシラン化合物が挙げられる。 Examples of the alkoxysilane compound containing a fluorocarbon group include alkoxysilane compounds represented by the following general formula (I).

(I)CF(CF−Y−Z−(CH−Si(OR) (I) CF 3 (CF 2 ) n -Y-Z- (CH 2) m -Si (OR) 3

上式において、mは0〜20の整数を、nは0〜9の整数を、Rは炭素数1〜4のアルキル基をそれぞれ表す。
また、Yは、(CH(kは1〜3の整数を表す)および単結合のいずれかを表し、Zは、O(エーテル酸素)、COO、Si(CH、および単結合のいずれかを表す。
In the above formula, m represents an integer of 0 to 20, n represents an integer of 0 to 9, and R represents an alkyl group having 1 to 4 carbon atoms.
Y represents (CH 2 ) k (k represents an integer of 1 to 3) and a single bond, and Z represents O (ether oxygen), COO, Si (CH 3 ) 2 , and a single bond. Represents one of the bonds.

式(I)で表されるフッ化炭素基を含むアルコキシシラン化合物としては、下記(1)〜(12)に示す化合物が挙げられる。 Examples of the alkoxysilane compound containing a fluorocarbon group represented by the formula (I) include compounds shown in the following (1) to (12).

(1)CFCHO(CH15Si(OCH
(2)CF(CHSi(CH(CH15Si(OCH
(3)CF(CF(CHSi(CH(CHSi(OCH
(4)CF(CF(CHSi(CH(CHSi(OCH
(5)CFCOO(CH15Si(OCH
(6)CF(CF(CHSi(OCH
(7)CFCHO(CH15Si(OC
(8)CF(CHSi(CH(CH15Si(OC
(9)CF(CF(CHSi(CH(CHSi(OC
(10)CF(CF(CHSi(CH(CHSi(OC
(11)CFCOO(CH15Si(OC
(12)CF(CF(CHSi(OC
(1) CF 3 CH 2 O (CH 2 ) 15 Si (OCH 3 ) 3
(2) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 Si (OCH 3 ) 3
(3) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(4) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(5) CF 3 COO (CH 2 ) 15 Si (OCH 3 ) 3
(6) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OCH 3 ) 3
(7) CF 3 CH 2 O (CH 2 ) 15 Si (OC 2 H 5 ) 3
(8) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 Si (OC 2 H 5 ) 3
(9) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OC 2 H 5 ) 3
(10) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OC 2 H 5 ) 3
(11) CF 3 COO (CH 2 ) 15 Si (OC 2 H 5 ) 3
(12) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OC 2 H 5 ) 3

縮合触媒としては、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステルおよびチタン酸エステルキレート等の金属塩が利用可能である。
縮合触媒の添加量は、好ましくはアルコキシシラン化合物の0.2〜5質量%であり、より好ましくは0.5〜1質量%である。
As the condensation catalyst, metal salts such as carboxylic acid metal salts, carboxylic acid ester metal salts, carboxylic acid metal salt polymers, carboxylic acid metal salt chelates, titanate esters and titanate ester chelates can be used.
The addition amount of the condensation catalyst is preferably 0.2 to 5% by mass of the alkoxysilane compound, and more preferably 0.5 to 1% by mass.

カルボン酸金属塩の具体例としては、酢酸第1スズ、ジブチルスズジラウレート、ジブチルスズジオクテート、ジブチルスズジアセテート、ジオクチルスズジラウレート、ジオクチルスズジオクテート、ジオクチルスズジアセテート、ジオクタン酸第1スズ、ナフテン酸鉛、ナフテン酸コバルト、2−エチルヘキセン酸鉄が挙げられる。 Specific examples of carboxylic acid metal salts include stannous acetate, dibutyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, dioctyltin dilaurate, dioctyltin dioctate, dioctyltin diacetate, stannous dioctanoate, naphthenic acid Lead, cobalt naphthenate, and iron 2-ethylhexenoate.

カルボン酸エステル金属塩の具体例としては、ジオクチルスズビスオクチリチオグリコール酸エステル塩、ジオクチルスズマレイン酸エステル塩が挙げられる。
カルボン酸金属塩ポリマーの具体例としては、ジブチルスズマレイン酸塩ポリマー、ジメチルスズメルカプトプロピオン酸塩ポリマーが挙げられる。
カルボン酸金属塩キレートの具体例としては、ジブチルスズビスアセチルアセテート、ジオクチルスズビスアセチルラウレートが挙げられる。
Specific examples of the carboxylic acid ester metal salt include dioctyltin bisoctylthioglycolate ester salt and dioctyltin maleate ester salt.
Specific examples of the carboxylic acid metal salt polymer include dibutyltin maleate polymer and dimethyltin mercaptopropionate polymer.
Specific examples of the carboxylic acid metal salt chelate include dibutyltin bisacetylacetate and dioctyltin bisacetyllaurate.

チタン酸エステルの具体例としては、テトラブチルチタネート、テトラノニルチタネートが挙げられる。
チタン酸エステルキレート類の具体例としては、ビス(アセチルアセトニル)ジ−プロピルチタネートが挙げられる。
Specific examples of the titanate ester include tetrabutyl titanate and tetranonyl titanate.
Specific examples of titanate chelates include bis (acetylacetonyl) dipropyl titanate.

反応液を第1及び第2の微粒子が結合固定されたガラス基材11bの表面に塗布し、室温の空気中で反応させると、アルコキシシリル基と第1及び第2の微粒子が結合固定されたガラス基材11bの表面のヒドロキシル基とが縮合反応を起こし、下記の化1で示されるような構造を有するフッ化炭素基を含む撥水撥油防汚性薄膜15aを生成する。なお、酸素原子から延びた3本の単結合は第1及び第2の微粒子が結合固定されたガラス基材11bの表面または隣接するシラン化合物のケイ素(Si)原子と結合しており、そのうち少なくとも1本はガラス基材1の表面のケイ素原子と結合している。 When the reaction solution was applied to the surface of the glass substrate 11b to which the first and second fine particles were bonded and fixed and reacted in air at room temperature, the alkoxysilyl group and the first and second fine particles were bonded and fixed. The hydroxyl group on the surface of the glass substrate 11b undergoes a condensation reaction to produce a water / oil repellent / antifouling thin film 15a containing a fluorocarbon group having a structure as shown in Chemical Formula 1 below. The three single bonds extending from the oxygen atom are bonded to the surface of the glass substrate 11b to which the first and second fine particles are bonded and fixed, or to the silicon (Si) atom of the adjacent silane compound, of which at least One is bonded to a silicon atom on the surface of the glass substrate 1.

Figure 0005572803
Figure 0005572803

アルコキシシリル基は、水分の存在下で分解するので、反応は相対湿度45%以下の空気中で行うことが好ましい。なお、縮合反応は、第1及び第2の微粒子が結合固定されたガラス基材11bの表面に付着した油脂分や水分により阻害されるので、第1及び第2の微粒子が結合固定されたガラス基材11bをよく洗浄して乾燥することにより、これらの不純物を予め除去しておくことが好ましい。
縮合触媒として上述の金属塩のいずれかを用いた場合、縮合反応の完了までに要する時間は2時間程度である。
Since the alkoxysilyl group decomposes in the presence of moisture, the reaction is preferably performed in air with a relative humidity of 45% or less. The condensation reaction is hindered by oils and fats and water adhering to the surface of the glass substrate 11b to which the first and second fine particles are bonded and fixed. Therefore, the glass in which the first and second fine particles are bonded and fixed. It is preferable to remove these impurities in advance by thoroughly washing and drying the substrate 11b.
When any of the above metal salts is used as the condensation catalyst, the time required for completion of the condensation reaction is about 2 hours.

上述の金属塩の代わりに、ケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物からなる群より選択される1または2以上の化合物を縮合触媒として用いた場合、反応時間を1/2〜2/3程度まで短縮できる。 When one or more compounds selected from the group consisting of ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds are used as the condensation catalyst instead of the above metal salts, Time can be shortened to about 1/2 to 2/3.

あるいは、これらの化合物を助触媒として、上述の金属塩と混合(質量比1:9〜9:1の範囲で使用可能だが、1:1前後が好ましい)して用いると、反応時間をさらに短縮できる。 Alternatively, when these compounds are used as a co-catalyst and mixed with the above-described metal salt (mass ratio 1: 9 to 9: 1 can be used, preferably around 1: 1), the reaction time is further shortened. it can.

例えば、縮合触媒として、ジブチルスズオキサイドの代わりにケチミン化合物であるジャパンエポキシレジン社のH3を用い、その他の条件は同一にして処理を行うと、反応時間を1時間程度にまで短縮できる。 For example, when H3 from Japan Epoxy Resin Co., which is a ketimine compound, is used as the condensation catalyst instead of dibutyltin oxide and the other conditions are the same, the reaction time can be reduced to about 1 hour.

さらに、縮合触媒として、ジャパンエポキシレジン社のH3とジブチルスズビスアセチルアセトネートとの混合物(混合比は1:1)を用い、その他の条件は同一にして反応性ガラス基材4の製造を行うと、反応時間を20分程度に短縮できる。 Furthermore, when the reactive glass substrate 4 is produced by using a mixture of H3 and dibutyltin bisacetylacetonate (mixing ratio is 1: 1) of Japan Epoxy Resin Co., Ltd. as the condensation catalyst, and other conditions are the same. The reaction time can be shortened to about 20 minutes.

なお、ここで用いることができるケチミン化合物は特に限定されるものではないが、例えば、2,5,8−トリアザ−1,8−ノナジエン、3,11−ジメチル−4,7,10−トリアザ−3,10−トリデカジエン、2,10−ジメチル−3,6,9−トリアザ−2,9−ウンデカジエン、2,4,12,14−テトラメチル−5,8,11−トリアザ−4,11−ペンタデカジエン、2,4,15,17−テトラメチル−5,8,11,14−テトラアザ−4,14−オクタデカジエン、2,4,20,22−テトラメチル−5,12,19−トリアザ−4,19−トリエイコサジエン等が挙げられる。 The ketimine compound that can be used here is not particularly limited, and examples thereof include 2,5,8-triaza-1,8-nonadiene, 3,11-dimethyl-4,7,10-triaza- 3,10-tridecadiene, 2,10-dimethyl-3,6,9-triaza-2,9-undecadiene, 2,4,12,14-tetramethyl-5,8,11-triaza-4,11-penta Decadiene, 2,4,15,17-tetramethyl-5,8,11,14-tetraaza-4,14-octadecadiene, 2,4,20,22-tetramethyl-5,12,19-triaza -4,19-trieicosadiene and the like.

また、用いることができる有機酸も特に限定されるものではないが、例えば、ギ酸、酢酸、プロピオン酸、酪酸、マロン酸等が挙げられる。 The organic acid that can be used is not particularly limited, and examples thereof include formic acid, acetic acid, propionic acid, butyric acid, and malonic acid.

反応液の調製には、有機塩素系溶媒、炭化水素系溶媒、フッ化炭素系溶媒、シリコーン系溶媒、およびこれらの混合溶媒を用いることができる。アルコキシシラン化合物の加水分解を防止するために、乾燥剤または蒸留により使用する溶媒から水分を除去しておくことが好ましい。また、溶媒の沸点は50〜250℃であることが好ましい。 For the preparation of the reaction solution, an organic chlorine solvent, a hydrocarbon solvent, a fluorocarbon solvent, a silicone solvent, and a mixed solvent thereof can be used. In order to prevent hydrolysis of the alkoxysilane compound, it is preferable to remove water from the desiccant or the solvent used by distillation. Moreover, it is preferable that the boiling point of a solvent is 50-250 degreeC.

具体的に使用可能な溶媒としては、非水系の石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、ノナン、デカン、灯油、ジメチルシリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエーテルシリコーン、ジメチルホルムアミド等を挙げることができる。
さらに、メタノール、エタノール、プロパノール等のアルコール系溶媒、あるいはそれらの混合物を用いることもできる。
Specific usable solvents include non-aqueous petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, isoparaffin, normal paraffin, decalin, industrial gasoline, nonane, decane, kerosene, dimethyl silicone, phenyl silicone, and alkyl-modified silicone. , Polyether silicone, dimethylformamide and the like.
Furthermore, alcohol solvents such as methanol, ethanol, propanol, or a mixture thereof can also be used.

また、用いることができるフッ化炭素系溶媒としては、フロン系溶媒、フロリナート(米国3M社製)、アフルード(旭硝子株式会社製)等がある。なお、これらは1種単独で用いても良いし、良く混ざるものなら2種以上を組み合わせてもよい。さらに、ジクロロメタン、クロロホルム等の有機塩素系溶媒を添加してもよい。 Fluorocarbon solvents that can be used include fluorocarbon solvents, Fluorinert (manufactured by 3M, USA), Afludo (manufactured by Asahi Glass Co., Ltd.), and the like. In addition, these may be used individually by 1 type and may mix 2 or more types as long as it mixes well. Furthermore, an organic chlorine solvent such as dichloromethane or chloroform may be added.

反応液におけるアルコキシシラン化合物の好ましい濃度は、0.5〜3質量%である。 The preferable density | concentration of the alkoxysilane compound in a reaction liquid is 0.5-3 mass%.

反応後、溶媒で洗浄し、未反応物として表面に残った過剰なアルコキシシラン化合物および縮合触媒を除去すると、撥水撥油防汚性薄膜15aで表面が覆われた撥水撥油防汚性ガラス10が得られる。 After the reaction, the substrate is washed with a solvent to remove excess alkoxysilane compound and condensation catalyst remaining on the surface as unreacted materials, and the surface is covered with a water- and oil-repellent and antifouling thin film 15a. Glass 10 is obtained.

洗浄溶媒としては、アルコキシシラン化合物を溶解できる任意の溶媒を用いることができるが、安価であり、溶解性が高く、風乾により容易に除去することのできるジクロロメタン、クロロホルム、N−メチルピロリドン等が好ましい。 As the cleaning solvent, any solvent that can dissolve the alkoxysilane compound can be used, but dichloromethane, chloroform, N-methylpyrrolidone, etc. that are inexpensive, have high solubility, and can be easily removed by air drying are preferable. .

反応後、余分な反応液を溶媒で洗浄除去せずに空気中に放置すると、表面に残ったアルコキシシラン化合物の一部が空気中の水分により加水分解を受け、生成したシラノール基がアルコキシシリル基と縮合反応を起こす。その結果、撥水撥油防汚性ガラス10の表面にポリシロキサンよりなる極薄のポリマー膜が形成される。このポリマー膜は、撥水撥油防汚性ガラス10の表面に共有結合により固定されていないが、フッ化炭素基を有しているため撥水撥油防汚性を有している。そのため、多少耐久性に劣る点を除けば、このままの状態でも撥水撥油防汚性ガラス10として使用できる。 After the reaction, if the excess reaction solution is left in the air without being washed away with a solvent, a part of the alkoxysilane compound remaining on the surface is hydrolyzed by moisture in the air, and the generated silanol group becomes an alkoxysilyl group. Causes a condensation reaction. As a result, an ultrathin polymer film made of polysiloxane is formed on the surface of the water / oil repellent antifouling glass 10. This polymer film is not fixed to the surface of the water / oil / oil / repellency antifouling glass 10 by a covalent bond, but has water / oil / oil repellent / antifouling properties because it has a fluorocarbon group. Therefore, it can be used as the water / oil repellent / antifouling glass 10 in this state as long as the durability is somewhat inferior.

本実施の形態においては、アルコキシシラン化合物を用いた場合について説明したが、フッ化炭素基を有するハロシラン化合物を用いてもよい。ハロシラン化合物を用いる場合には、縮合触媒および助触媒が不要であること、アルコール系溶媒が使用できないこと、アルコキシシラン化合物より加水分解を受けやすいので、乾燥溶媒を用い、乾燥空気中(相対湿度30%以下)で反応を行うことを除き、アルコキシシラン化合物と同様に反応液の調製及び第1の微粒子が融着したガラス基材11aとの反応を行うことができる。 Although the case where an alkoxysilane compound is used has been described in this embodiment mode, a halosilane compound having a fluorocarbon group may be used. When a halosilane compound is used, a condensation catalyst and a cocatalyst are not required, an alcohol solvent cannot be used, and it is more susceptible to hydrolysis than an alkoxysilane compound. %), The reaction solution can be prepared and reacted with the glass substrate 11a to which the first fine particles are fused in the same manner as the alkoxysilane compound.

単分子膜状の撥水撥油防汚性薄膜15aの膜厚は高々1nm程度であるため、第1及び第2の微粒子が融着したガラス基材11bの表面に形成された5〜50nm程度の凸凹はほとんど損なわれることがない。また、この凸凹の効果(いわゆる「蓮の葉効果」)により、撥水撥油防汚性ガラス10の見かけ上の表面エネルギーを小さくでき、水滴接触角は、140°以上(本実施の形態では150°程度)となり、超撥水が実現できる。 Since the film thickness of the monomolecular water-repellent / oil-repellent antifouling thin film 15a is at most about 1 nm, it is about 5 to 50 nm formed on the surface of the glass substrate 11b to which the first and second fine particles are fused. The unevenness of is almost unaffected. In addition, due to the unevenness effect (so-called “lotus leaf effect”), the apparent surface energy of the water / oil repellent / antifouling glass 10 can be reduced, and the water droplet contact angle is 140 ° or more (in this embodiment). About 150 °) and super water-repellent properties can be realized.

また、工程Cにおいて用いることができるフッ化炭素基を含むハロシラン化合物としては、下記(21)〜(26)に示す化合物が挙げられる。また、下記(27)〜(32)に示すイソシアネートシラン化合物を用いることもできる。 Moreover, as a halosilane compound containing the fluorocarbon group which can be used in the process C, the compound shown to following (21)-(26) is mentioned. Moreover, the isocyanate silane compound shown to following (27)-(32) can also be used.

(21)CFCHO(CH15SiCl
(22)CF(CHSi(CH(CH15SiCl
(23)CF(CF(CHSi(CH(CHSiCl
(24)CF(CF(CHSi(CH(CHSiCl
(25)CFCOO(CH15SiCl
(26)CF(CF(CHSiCl
(27)CFCHO(CH15Si(NCO)
(28)CF(CHSi(CH(CH15Si(NCO)
(29)CF(CF(CHSi(CH(CHSi(NCO)
(30)CF(CF(CHSi(CH(CHSi(NCO)
(31)CFCOO(CH15Si(NCO)
(32)CF(CF(CHSi(NCO)
(21) CF 3 CH 2 O (CH 2 ) 15 SiCl 3
(22) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 SiCl 3
(23) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(24) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(25) CF 3 COO (CH 2 ) 15 SiCl 3
(26) CF 3 (CF 2 ) 5 (CH 2 ) 2 SiCl 3
(27) CF 3 CH 2 O (CH 2 ) 15 Si (NCO) 3
(28) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 Si (NCO) 3
(29) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (NCO) 3
(30) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (NCO) 3
(31) CF 3 COO (CH 2 ) 15 Si (NCO) 3
(32) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (NCO) 3

撥水撥油防汚性ガラス10は、150度程度の水滴接触角を有している。種々の体積の水滴(0.02〜0.08ml)を用いた検討結果より、水滴接触角が150度以上のとき、水滴の体積に関係なく転落角は15度以下となることを確認している。そのため、撥水撥油防汚性ガラス10を乗り物や建築物の窓ガラス板として用いた場合、ほとんどの水滴は表面にとどまることができずに転落する。 The water / oil repellent antifouling glass 10 has a water droplet contact angle of about 150 degrees. From the study results using various volumes of water droplets (0.02-0.08 ml), it was confirmed that when the water droplet contact angle is 150 degrees or more, the falling angle is 15 degrees or less regardless of the volume of the water droplets. Yes. Therefore, when the water / oil repellent / antifouling glass 10 is used as a window glass plate for a vehicle or a building, most water droplets cannot fall on the surface and fall down.

撥水撥油防汚性ガラス10は、耐摩耗性および耐候性等の耐久性、水滴離水性(滑水性)、ならびに防汚性に優れており、撥水撥油防汚機能が要求される乗り物や建築物のガラス窓に用いることができる。撥水撥油防汚性ガラス10を用いることのできる乗り物としては、自動車、鉄道車両、船舶等が挙げられ、運転席、客室等の別を問わずあらゆる窓の窓用ガラス板として用いることができる。特に、運転席用のガラス窓に用いた場合には、運転席からの視認性を向上できる効果も有している。また、撥水撥油防汚性ガラス10を用いることのできる建築物としては、一戸建て住宅、集合住宅、オフィスビル等の任意の建築物が挙げられる。 The water / oil repellent / antifouling glass 10 is excellent in durability such as wear resistance and weather resistance, water droplet separation (sliding), and antifouling properties, and is required to have a water / oil repellent / antifouling function. It can be used for glass windows in vehicles and buildings. Vehicles that can use the water- and oil-repellent and antifouling glass 10 include automobiles, railway vehicles, ships, and the like, and can be used as window glass plates for all windows regardless of driver seats, cabins, etc. it can. In particular, when used for a glass window for a driver's seat, it also has an effect of improving visibility from the driver's seat. Moreover, as a building which can use the water-repellent / oil-repellent antifouling glass 10, any building such as a detached house, an apartment house, and an office building can be cited.

また、撥水撥油防汚性ガラス10を太陽エネルギー利用装置に道いると、汚れの付着、入射光の散乱及び乱反射等による太陽光エネルギーの利用効率の低下を抑制できると共に、耐久性及び耐候性に優れ、屋外の過酷な環境下でも長期間にわたって使用可能な太陽エネルギー利用装置が提供される。太陽エネルギー利用装置の具体例としては、太陽熱温水器、太陽電池、温室等が挙げられる。 Further, when the water and oil repellent antifouling glass 10 is passed to a solar energy utilization device, it is possible to suppress a decrease in utilization efficiency of solar energy due to adhesion of dirt, scattering of incident light, irregular reflection, etc., and durability and weather resistance. Provided is a solar energy utilization device that is excellent in performance and can be used for a long time even under harsh outdoor environments. Specific examples of the solar energy utilization device include a solar water heater, a solar battery, and a greenhouse.

また、撥水撥油防汚性ガラス10は、撥水撥油防汚機能が要求される光学機器用の部材にも適用できる。光学機器用の部材としては、カメラ、分光計等のレンズ、プリズム、ミラー、PDP等の表示装置のフェイスプレート等が挙げられ、耐摩耗性および耐候性等の耐久性、水滴離水性(滑水性ともいう)、防汚性に優れた撥水撥油防汚性反射防止膜を形成でき、光学性能に優れた光学装置や、表面反射の少ないPDPディスプレイ等を提供できる。 Further, the water / oil repellent / antifouling glass 10 can also be applied to a member for an optical device that requires a water / oil repellent / antifouling function. Examples of members for optical equipment include lenses for cameras, spectrometers, etc., prisms, mirrors, faceplates of display devices such as PDPs, etc., durability such as wear resistance and weather resistance, water droplet separation (water sliding properties) It is also possible to form a water / oil repellent antifouling antireflection film excellent in antifouling property, and to provide an optical device excellent in optical performance, a PDP display with less surface reflection, and the like.

次に、本発明の作用効果を確認するために行った実施例について説明する。これらの実施例は単なる例示であり、本発明の範囲を限定するものではない。
実施例1:撥水撥油防汚性ガラスの製造(1)
平均粒径が約130nmの第1のシリカ微粒子をエタノールに分散させて第1の分散液を作製した。これを平板状のガラス基材である太陽熱温水器用のガラス板の表面に塗布し、エタノール溶媒を蒸発させた後、630℃で25分加熱して第1のシリカ微粒子をガラス基材の表面に融着した。なお、シリカの融点は2000℃以上であるため、第1のシリカ微粒子同士が互いに融着することはなかった。一方、ガラス基材の表面と接触している第1のシリカ微粒子は、ガラスの軟化と共にガラス基材の表面に陥入し表面に融着された。その後、第1のシリカ微粒子が融着したガラス基材の表面を洗浄し、表面に融着しなかった第1のシリカ微粒子を除去した。
Next, examples carried out for confirming the effects of the present invention will be described. These examples are illustrative only and are not intended to limit the scope of the invention.
Example 1: Production of water and oil repellent antifouling glass (1)
First silica fine particles having an average particle diameter of about 130 nm were dispersed in ethanol to prepare a first dispersion. This is applied to the surface of a glass plate for a solar water heater, which is a flat glass substrate, and after evaporating the ethanol solvent, it is heated at 630 ° C. for 25 minutes to place the first silica fine particles on the surface of the glass substrate. Fused. Since the melting point of silica was 2000 ° C. or higher, the first silica fine particles were not fused together. On the other hand, the first silica fine particles in contact with the surface of the glass base material were intruded into the surface of the glass base material and fused to the surface along with the softening of the glass. Thereafter, the surface of the glass substrate on which the first silica fine particles were fused was washed, and the first silica fine particles not fused on the surface were removed.

次いで、テトラメトキシシランのメタノール溶液に微量の水及びリン酸を加えて作製したゾル−ゲル溶液(シリカ濃度2%)を、第1のシリカ微粒子が融着したガラス基材の表面に塗布後乾燥し、数ナノメートル程度の膜厚を有するシリカ被膜を形成した。平均粒径が約15nm程度の第2のシリカ微粒子をエタノールに分散後、シリカ被膜の全面に塗布後、エタノールを蒸発させ、更に600℃で30分焼結した、その後、表面に融着しなかった第2のシリカ微粒子を洗浄除去した。 Next, a sol-gel solution (silica concentration 2%) prepared by adding a trace amount of water and phosphoric acid to a methanol solution of tetramethoxysilane was applied to the surface of the glass substrate on which the first silica fine particles were fused and then dried. And the silica film which has a film thickness of about several nanometers was formed. After the second silica fine particles having an average particle size of about 15 nm are dispersed in ethanol and applied to the entire surface of the silica coating, the ethanol is evaporated and further sintered at 600 ° C. for 30 minutes, and then not fused to the surface. The second silica fine particles were removed by washing.

このとき、上記のゾル−ゲル溶液にリン酸又はホウ酸を固形分にして5%程度添加しておくと、シリカ被膜の融点を500℃程度まで低減できるので、600℃で30分程度の焼結温度で第2のシリカ微粒子を十分融着できた。また、この加熱条件では、第1のシリカ微粒子に由来する凸凹を損なうことはなかった。 At this time, if phosphoric acid or boric acid is added to the sol-gel solution in a solid content of about 5%, the melting point of the silica coating can be reduced to about 500 ° C. The second silica fine particles were sufficiently fused at the sintering temperature. In addition, the unevenness derived from the first silica fine particles was not impaired under this heating condition.

99重量部のヘプタデカフルオロデシルトリメトキシシランCF(CF(CHSi(OCH、1重量部のジブチルスズジアセチルアセトナート(縮合触媒)をそれぞれ秤量後、ヘキサメチルジシロキサンに溶解し、濃度1重量%程度の反応液を作製した。第1及び第2のシリカ微粒子が融着したガラス基材の表面に反応液を塗布し、室温で反応させた。このとき、第1及び第2のシリカ微粒子並びにシリカ被膜の表面にはヒドロキシル基が多数含まれているので、ヘプタデカフルオロデシルトリメトキシシラン−Si(OCH)基とヒドロキシル基が、縮合触媒の存在下で脱アルコール(この場合は、脱CHOH)反応し、下記化学式(化2)に示したような結合を形成し、フッ化炭素基を含む撥水撥油防汚性薄膜が表面と化学結合した状態で約1ナノメートル程度の膜厚で形成された。 After weighing 99 parts by weight of heptadecafluorodecyltrimethoxysilane CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OCH 3 ) 3 , 1 part by weight of dibutyltin diacetylacetonate (condensation catalyst), A reaction solution having a concentration of about 1% by weight was dissolved in siloxane. The reaction solution was applied to the surface of the glass substrate on which the first and second silica fine particles were fused, and reacted at room temperature. At this time, since the surface of the first and second silica fine particles and the silica coating contains a large number of hydroxyl groups, the heptadecafluorodecyltrimethoxysilane-Si (OCH 3 ) group and the hydroxyl group are converted into the condensation catalyst. It reacts in the presence of alcohol (in this case, de-CH 3 OH) to form a bond as shown in the following chemical formula (Chemical Formula 2), and the water- and oil-repellent and antifouling thin film containing a fluorocarbon group is on the surface. The film was formed with a film thickness of about 1 nanometer in a state of being chemically bonded to the film.

Figure 0005572803
Figure 0005572803

その後、ジクロロメタンで余分な反応液を洗浄除去すると、表面全面に亘り表面と化学結合したフッ化炭素基を含む撥水撥油防汚性薄膜(単分子膜)で被われた、撥水撥油防汚性及び反射防止機能を有する太陽熱温水器用の撥水撥油防汚性ガラスを製造できた。このようにして得られた撥水撥油防汚性ガラスの表面の走査型電子顕微鏡(SEM)写真を図4に示す。第1及び第2のシリカ微粒子がそれぞれガラス基材及び第1のシリカ微粒子の表面に融着したことにより、表面に複雑な凹凸が形成されており、後述するように、平坦なガラス基材の表面に撥水撥油防汚性薄膜を形成した場合よりも撥水性、撥油性及び防汚性が向上していることが確認された。しかし、製造に使用した第1及び第2のシリカ微粒子の大きさがいずれも可視光の波長よりも短かったため、透明度はほとんど劣化しなかった。 After that, the excess reaction solution is washed and removed with dichloromethane, and then the water and oil repellent, covered with a water and oil repellent and antifouling thin film (monomolecular film) containing fluorocarbon groups chemically bonded to the surface over the entire surface. A water and oil repellent antifouling glass for solar water heaters having antifouling and antireflection functions could be produced. FIG. 4 shows a scanning electron microscope (SEM) photograph of the surface of the water / oil / oil repellent antifouling glass thus obtained. As the first and second silica fine particles are fused to the surfaces of the glass substrate and the first silica fine particles, respectively, complex irregularities are formed on the surface. It was confirmed that the water repellency, oil repellency and antifouling property were improved as compared with the case where a water / oil repellent / antifouling thin film was formed on the surface. However, since the sizes of the first and second silica fine particles used for the production were both shorter than the wavelength of visible light, the transparency was hardly deteriorated.

なお、第1及び第2のシリカ微粒子の融着の際の焼成温度は、250℃以上基材の軟化温度未満であれば高いほど微粒子を強固にガラス表面に融着できるが、あまり高すぎるとシリカ被膜中又はガラス基材の内部までシリカ微粒子が埋没してしまった。したがって、加熱温度は、基材の軟化度程度又はそれ以下でなくてはならない。 Note that the firing temperature at the time of fusing the first and second silica fine particles is 250 ° C. or higher and lower than the softening temperature of the base material, so that the fine particles can be firmly fused to the glass surface. Silica fine particles were buried in the silica coating or inside the glass substrate. Therefore, the heating temperature must be about the softening degree of the substrate or less.

一方、このとき、形成された微粒子表面の撥水撥油防汚性薄膜は、シリカ微粒子の表面エネルギーを小さくする作用があり、フラクタル構造を有する凸凹と併せて、基材表面の見かけ上の表面エネルギーを大きく低減できる作用がある。実際に水滴接触角を測定したところ、多少のバラツキは観測されたものの、接触角は150°程度であり、臨界表面エネルギーも1〜3mN/m程度であった。 On the other hand, at this time, the formed water- and oil-repellent and antifouling thin film on the surface of the fine particles has the effect of reducing the surface energy of the silica fine particles, and the apparent surface of the substrate surface along with the unevenness having a fractal structure. It has the effect of greatly reducing energy. When the water droplet contact angle was actually measured, although some variation was observed, the contact angle was about 150 ° and the critical surface energy was about 1 to 3 mN / m.

このようにして得られた撥水撥油防汚性ガラスを太陽熱温水器に装着し実用化試験を行うと、空気中の粉塵や雨水による汚れもほとんど付着せず、普通のガラスを装着した場合に比べて初期値で平均3%程度集熱効率を向上できた。また、普通のガラスの場合、1年も使用すると表面が汚れ、光利用効率が30%程度も低下したが、この太陽熱温水器では、1年後でも汚れによる効率低下は5%以下であった。 When the water- and oil-repellent and antifouling glass obtained in this way is installed in a solar water heater and tested for practical use, dirt in the air and dirt from rainwater hardly adhere to it, and ordinary glass is attached Compared with the initial value, the heat collection efficiency was improved by about 3% on average. In addition, in the case of ordinary glass, the surface becomes dirty and the light utilization efficiency is reduced by about 30% when used for one year. However, in this solar water heater, the efficiency reduction due to the dirt is 5% or less even after one year. .

実施例2:撥水撥油防汚性ガラスの製造(2)
実施例1と同様の方法を用い、太陽電池製造時に光入射面に用いる透明ガラス基板表面に、あらかじめ大きさの異なる微粒子(平均粒径50nmのシリカ微粒子と平均粒径10nmのシリカ微粒子を1:10程度に混合して用いた。)を融着したガラス基板を作成しておき、太陽電池セルを形成した後にフッ化炭素基を含む撥水撥油防汚性薄膜を形成すると、太陽電池の表面近傍断面がフラクタル構造で、撥水撥油効果が高く(水滴接触角で153度)、かつ高い光透過性(500nm近傍の光の透過率が約98%であった。)を有する反射防止機能を有する膜で覆われた太陽電池を製造できた。さらにまた、このセルで実用化試験を行った結果では、半年経過後でも空気中の粉塵や雨水による汚れもほとんど付着せず、普通のガラスを装着した場合に比べて平均3%程度光利用効率を向上できた。また、普通のガラスの場合、1年も使用すると表面が汚れ、光利用効率が30%程度も低下したが、この太陽電池では、1年後でも汚れによる効率低下はほとんどみられなかった。なお、このときの水滴接触角は153°程度であったが、水滴接触角が140°以上であれば、実用上ほぼ同様の効果が得られた。
Example 2: Production of water and oil repellent antifouling glass (2)
Using the same method as in Example 1, fine particles of different sizes (silica fine particles having an average particle diameter of 50 nm and silica fine particles having an average particle diameter of 10 nm were previously added to the surface of the transparent glass substrate used for the light incident surface when manufacturing the solar cell. The glass substrate was fused and used to form a solar cell, and after forming a solar cell, a water- and oil-repellent and antifouling thin film containing a fluorocarbon group was formed. Anti-reflection with a fractal structure in the vicinity of the surface, high water and oil repellency (water contact angle of 153 degrees) and high light transmission (the transmittance of light near 500 nm was about 98%). A solar cell covered with a functional film could be manufactured. Furthermore, as a result of conducting a practical use test with this cell, even after half a year, dirt in the air and dirt due to rainwater hardly adhered, and the average light utilization efficiency is about 3% compared to the case where ordinary glass is attached. I was able to improve. Further, in the case of ordinary glass, the surface becomes dirty and the light utilization efficiency is reduced by about 30% when used for one year. However, in this solar cell, the efficiency is hardly reduced even after one year. Although the water droplet contact angle at this time was about 153 °, practically similar effects were obtained when the water droplet contact angle was 140 ° or more.

実施例3:撥水撥油防汚性ガラスの製造(3)
実施例1と同様の方法を用いて撥水撥油防汚性反射防止膜を形成したレンズを製作し、光学機器に装着しテスト使用してみたが、指紋の付着がほとんど無く、しかも光透過率は反射防止マルチコート膜と同等であり、光学特性に遜色がなく、防汚性に優れたレンズを製作できた。
Example 3: Production of water and oil repellent antifouling glass (3)
Using the same method as in Example 1, a lens having a water / oil repellent / antifouling antireflective coating was fabricated and mounted on an optical device for test use. The rate was the same as that of the anti-reflection multi-coated film, and the optical characteristics were not inferior and lenses with excellent antifouling properties could be produced.

実施例4:撥水撥油防汚性ガラスの製造(4)
実施例1と同様の方法を用いて表面に撥水撥油防汚性反射防止膜を形成したPDP(プラズマディスプレイパネル)のフェイスプレートを製作し、テスト使用してみたが、指紋の付着がほとんど無く、さらに室内の蛍光灯等がフェイスプレート表面へ写り込むのを効率よく低減でき、視認性を大幅に向上できた。
Example 4: Production of water and oil repellent antifouling glass (4)
A PDP (Plasma Display Panel) face plate with a water / oil / oil repellent / anti-fouling anti-reflective coating formed on the surface using the same method as in Example 1 was tested and used. In addition, it was possible to efficiently reduce the reflection of indoor fluorescent lamps and the like onto the face plate surface, and the visibility was greatly improved.

本発明は、撥水性、撥油性及び防汚性に加え、耐久性や耐候性が要求される建物や乗り物のガラス窓、太陽熱温水器、太陽電池及び温室等の太陽エネルギー利用装置の集光部材、及び光学機器及び表示装置の光透過性部材等に好適に適用できる。 The present invention provides a condensing member for solar energy utilization devices such as glass windows, solar water heaters, solar cells, and greenhouses in buildings and vehicles that require durability and weather resistance in addition to water repellency, oil repellency, and antifouling properties. It can be suitably applied to optically transmissive members of optical devices and display devices.

10 撥水撥油防汚性ガラス
11 ガラス基材
11a 第1の微粒子が融着したガラス基材
11b 第1及び第2の微粒子が表面に結合固定されたガラス基材
12 第1の微粒子
12a ガラス基材の表面に融着した第1の微粒子
13 第2の微粒子
14 ゾル−ゲル法により形成されたシリカ被膜
15 反応基とフッ化炭素基とを有する化合物
15a 撥水撥油防汚性薄膜
DESCRIPTION OF SYMBOLS 10 Water repellent / oil repellent antifouling glass 11 Glass substrate 11a Glass substrate 11b in which the first fine particles are fused Glass substrate 12 in which the first and second fine particles are bonded and fixed to the surface 12 First fine particles 12a Glass First fine particles 13 second fine particles 14 fused to the surface of the base material 14 Silica coating 15 formed by the sol-gel method 15a Compound having reactive groups and fluorocarbon groups Water repellent and oil repellent antifouling thin film

Claims (21)

透明なガラス基材の表面の少なくとも一部を覆うように該ガラス基材の表面に結合固定され、前記ガラス基材の軟化温度よりも融点が高い透明な第1の微粒子と、
前記第1の微粒子の表面の少なくとも一部を覆うように該第1の微粒子の表面に結合固定された、前記第1の微粒子よりも粒径の小さな透明な第2の微粒子と、
前記第1及び第2の微粒子の表面に形成された撥水撥油防汚性薄膜とを有し、前記第1の微粒子の粒径が50nm以上400nm以下であり、前記第2の微粒子の粒径が前記第1の微粒子の粒径の1/100以上1/5以下であり、前記第1の微粒子が、前記基材の表面に結合した該第1の微粒子の表面には結合していないことを特徴とする撥水撥油防汚性ガラス。
Transparent first fine particles bonded and fixed to the surface of the glass substrate so as to cover at least a part of the surface of the transparent glass substrate, and having a melting point higher than the softening temperature of the glass substrate ;
Transparent second fine particles having a particle diameter smaller than that of the first fine particles, which are bonded and fixed to the surface of the first fine particles so as to cover at least part of the surface of the first fine particles;
Said first and second possess a water-repellent, oil-repellent antifouling film formed on the surface of fine particles, the particle size of the first particles is at 50nm or more 400nm or less, the second grain particles The diameter is 1/100 or more and 1/5 or less of the particle diameter of the first fine particles, and the first fine particles are not bonded to the surface of the first fine particles bonded to the surface of the substrate. Water repellent and oil repellent antifouling glass.
前記第1の微粒子が前記ガラス基材に融着可能な素材からなり、該ガラス基材の表面に融着していることを特徴とする請求項記載の撥水撥油防汚性ガラス。 Wherein the first particles consist of fusible material on the glass substrate, water-repellent, oil-repellent antifouling glass according to claim 1, characterized in that it fused to the surface of the glass substrate. 前記第1の微粒子が、バインダを介して前記ガラス基材の表面に結合固定されていることを特徴とする請求項記載の撥水撥油防汚性ガラス。 The first fine particles, water-repellent, oil-repellent antifouling glass of claim 1, wherein the through binder are bound and fixed to the surface of the glass substrate. 前記第2の微粒子が前記第1の微粒子に融着可能な素材からなり、該第1の微粒子の表面に融着していることを特徴とする請求項1からのいずれか1項記載の撥水撥油防汚性ガラス。 Said second particles are made of fusible material in the first fine particle, from claim 1, characterized in that it is fused to the surface of the first fine particles 3 of any one of claims Water and oil repellent antifouling glass. 前記第2の微粒子が、バインダを介して前記第1の微粒子の表面に結合固定されていることを特徴とする請求項1からのいずれか1項記載の撥水撥油防汚性ガラス。 The second fine particles, water-repellent, oil-repellent antifouling glass according to any one of claims 1 to 3, characterized in that via a binder which is coupled fixed to the surface of the first particles. 前記第1及び第2の微粒子が、ガラス、シリカ、アルミナ及びジルコニアからなる群より選択される材質からなるものであることを特徴とする請求項1からのいずれか1項記載の撥水撥油防汚性ガラス。 6. The water and water repellency according to any one of claims 1 to 5 , wherein the first and second fine particles are made of a material selected from the group consisting of glass, silica, alumina, and zirconia. Oil antifouling glass. 前記撥水撥油防汚性薄膜が単分子膜であることを特徴とする請求項1からのいずれか1項記載の撥水撥油防汚性ガラス。 The water / oil repellent / antifouling glass according to any one of claims 1 to 6 , wherein the water / oil repellent / antifouling thin film is a monomolecular film. 表面の臨界表面エネルギーが1mN/m以上3mN/m以下であることを特徴とする請求項1からのいずれか1項記載の撥水撥油防汚性ガラス。 The water / oil repellent / antifouling glass according to any one of claims 1 to 7 , wherein the surface has a critical surface energy of 1 mN / m or more and 3 mN / m or less. 溶媒に分散させた第1の微粒子を含む第1の分散液をガラス基材の表面に塗布し、該溶媒を蒸発させた後、前記ガラス基材の表面に前記第1の微粒子を結合固定する工程Aと、
溶媒に分散させた、粒径が前記第1の微粒子の粒径の1/100以上1/5以下である第2の微粒子を含む第2の分散液を前記第1の微粒子が結合固定された前記ガラス基材の表面に塗布し、該溶媒を蒸発させた後、前記第1の微粒子が結合固定された前記ガラス基材の表面に前記第2の微粒子を結合固定する工程Bと、
前記第1及び第2の微粒子が結合固定された前記ガラス基材の表面に撥水撥油防汚性薄膜を形成する工程Cとを有することを特徴とする撥水撥油防汚性ガラスの製造方法。
A first dispersion containing first fine particles dispersed in a solvent is applied to the surface of the glass substrate, and after evaporating the solvent, the first fine particles are bonded and fixed to the surface of the glass substrate. Step A,
The first fine particles are bound and fixed to a second dispersion liquid containing second fine particles dispersed in a solvent and having a particle size of 1/100 or more and 1/5 or less of the particle size of the first fine particles. Applying to the surface of the glass substrate, evaporating the solvent, and then bonding and fixing the second fine particles to the surface of the glass substrate to which the first fine particles are bonded and fixed; and
And a step C of forming a water- and oil-repellent and antifouling thin film on the surface of the glass substrate to which the first and second fine particles are bonded and fixed. Production method.
前記工程Aにおいて、前記ガラス基材の表面に前記第1の微粒子を融着することを特徴とする請求項記載の撥水撥油防汚性ガラスの製造方法。 The method for producing a water / oil repellent / antifouling glass according to claim 9 , wherein in the step A, the first fine particles are fused to the surface of the glass substrate. 前記第1の溶液が、溶媒の蒸発及び/又はその後の化学反応によりバインダを生成する第1のバインダ前駆体を含み、前記工程Aにおいて、前記バインダを介して前記ガラス基材の表面に前記第1の微粒子を結合固定することを特徴とする請求項記載の撥水撥油防汚性ガラスの製造方法。 The first solution includes a first binder precursor that generates a binder by evaporation of a solvent and / or a subsequent chemical reaction. In the step A, the first solution is formed on the surface of the glass substrate via the binder. 10. The method for producing a water- and oil-repellent and antifouling glass according to claim 9, wherein 1 fine particle is bonded and fixed. 前記工程Bにおいて、前記第1の微粒子が結合固定された前記ガラス基材の表面に前記第2の微粒子を融着することを特徴とする請求項から11のいずれか1項記載の撥水撥油防汚性ガラスの製造方法。 The water repellent according to any one of claims 9 to 11 , wherein in the step B, the second fine particles are fused to the surface of the glass substrate to which the first fine particles are bonded and fixed. Manufacturing method of oil-repellent antifouling glass. 前記第2の溶液が、溶媒の蒸発及び/又はその後の化学反応によりバインダを生成する第2のバインダ前駆体を含み、前記工程Bにおいて、前記第1の微粒子が結合固定された前記ガラス基材の表面にバインダを介して前記第2の微粒子を結合固定することを特徴とする請求項から11のいずれか1項記載の撥水撥油防汚性ガラスの製造方法。 The glass substrate on which the second solution includes a second binder precursor that generates a binder by evaporation of a solvent and / or a subsequent chemical reaction, and the first fine particles are bonded and fixed in the step B The method for producing a water / oil repellent / antifouling glass according to any one of claims 9 to 11 , wherein the second fine particles are bonded and fixed to the surface of the glass using a binder. 前記第1及び/又は第2のバインダ前駆体が、ゾル−ゲル法により透明な金属酸化物を形成する金属ゾル前駆体であることを特徴とする請求項11又は13記載の撥水撥油防汚性ガラスの製造方法。 14. The water / oil repellent and oil repellent according to claim 11 or 13, wherein the first and / or second binder precursor is a metal sol precursor that forms a transparent metal oxide by a sol-gel method. A method for producing dirty glass. 前記工程A及び/又はBの後で、結合固定されなかった前記第1及び/又は第2の微粒子を洗浄除去することを特徴とする請求項から14のいずれか1項記載の撥水撥油防汚性ガラスの製造方法。 Wherein after step A and / or B, water repellency of any one of claims 9 14, characterized in that washing removes the that was not coupled fixed first and / or second particulate A method for producing oil-proof antifouling glass. 前記工程Cにおいて、前記ガラス基材、前記第1及び第2の微粒子の表面官能基と反応して結合を形成する反応基とフッ化炭素基とを有する化合物を含む反応液を前記第1及び第2の微粒子が結合固定された前記ガラス基材の表面に接触させ、前記表面官能基と前記反応基との反応により形成された結合を介して該表面に結合固定された前記化合物の被膜を形成することを特徴とする請求項から15のいずれか1項記載の撥水撥油防汚性ガラスの製造方法。 In the step C, a reaction liquid containing a compound having a reactive group that forms a bond by reacting with the surface functional groups of the glass substrate and the first and second fine particles and a fluorocarbon group is added to the first and second A film of the compound bonded to and fixed to the surface via a bond formed by a reaction between the surface functional group and the reactive group is brought into contact with the surface of the glass substrate to which the second fine particles are bonded and fixed. The method for producing a water / oil repellent / antifouling glass according to any one of claims 9 to 15 , wherein the glass is formed. 前記反応基がアルコキシシリル基であり、前記反応液が、
(1)カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステルおよびチタン酸エステルキレートからなる群から選択される1または2以上の化合物、及び/又は
(2)ケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、およびアミノアルキルアルコキシシラン化合物からなる群より選択される1または2以上の化合物を縮合触媒として含むことを特徴とする請求項16記載の撥水撥油防汚性ガラスの製造方法。
The reactive group is an alkoxysilyl group, and the reaction solution is
(1) one or two or more compounds selected from the group consisting of carboxylic acid metal salts, carboxylic acid ester metal salts, carboxylic acid metal salt polymers, carboxylic acid metal salt chelates, titanate esters and titanate ester chelates, and / or Or (2) one or more compounds selected from the group consisting of ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds as a condensation catalyst. 16. A method for producing a water- and oil-repellent antifouling glass according to 16 .
前記工程Cの後で、余分な前記反応液を洗浄除去することを特徴とする請求項16又は17記載の撥水撥油防汚性ガラスの製造方法。 18. The method for producing a water / oil repellent / antifouling glass according to claim 16 or 17, wherein after the step C, the excess reaction solution is washed away. 請求項からのいずれか1項記載の撥水撥油防汚性ガラスを有するガラス窓。 Any one water-repellent, oil-repellent, a glass window having a fouling property glass according to claims 1 to 8. 請求項からのいずれか1項記載の撥水撥油防汚性ガラスを有する太陽エネルギー利用装置。 The solar energy utilization apparatus which has the water repellent and oil repellent antifouling glass of any one of Claim 1 to 8 . 請求項からのいずれか1項記載の撥水撥油防汚性ガラスを有する光学機器。 Optical apparatus having a water-repellent, oil-repellent antifouling glass of any one of claims 1 8.
JP2009072963A 2009-03-25 2009-03-25 Water repellent and oil repellent antifouling glass, method for producing the same, glass window using them, solar energy utilization apparatus and optical instrument Expired - Fee Related JP5572803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009072963A JP5572803B2 (en) 2009-03-25 2009-03-25 Water repellent and oil repellent antifouling glass, method for producing the same, glass window using them, solar energy utilization apparatus and optical instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009072963A JP5572803B2 (en) 2009-03-25 2009-03-25 Water repellent and oil repellent antifouling glass, method for producing the same, glass window using them, solar energy utilization apparatus and optical instrument

Publications (2)

Publication Number Publication Date
JP2010222199A JP2010222199A (en) 2010-10-07
JP5572803B2 true JP5572803B2 (en) 2014-08-20

Family

ID=43039805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009072963A Expired - Fee Related JP5572803B2 (en) 2009-03-25 2009-03-25 Water repellent and oil repellent antifouling glass, method for producing the same, glass window using them, solar energy utilization apparatus and optical instrument

Country Status (1)

Country Link
JP (1) JP5572803B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7973997B2 (en) 2009-08-31 2011-07-05 Korea University Research And Business Foundation Transparent structures
JP5804548B2 (en) * 2011-04-14 2015-11-04 国立大学法人 香川大学 Super water- and oil-repellent antifouling translucent film, production method thereof, glass window using them, solar energy utilization device, optical device, and display device
JP2012219003A (en) * 2011-04-14 2012-11-12 Kagawa Univ Wear-resistant water-ultrarepellent, oil-repellent antifouling glass, method for manufacturing the same, glass window using the same, solar energy utilization device, optical equipment and display device
JP5660500B2 (en) * 2011-04-14 2015-01-28 国立大学法人 香川大学 Abrasion-resistant super water- and oil-repellent antifouling glass, method for producing the same, glass window using them, solar energy utilization device, optical device and display device
US9272947B2 (en) * 2011-05-02 2016-03-01 Corning Incorporated Glass article having antireflective layer and method of making
JP6376607B2 (en) 2012-11-30 2018-08-22 コーニング インコーポレイテッド Anti-reflection glass article and method for producing and using the same
JP6120666B2 (en) * 2013-04-30 2017-04-26 日揮触媒化成株式会社 Substrate with water-repellent transparent coating and method for producing the same
EP3083234B1 (en) * 2013-12-19 2018-11-14 3M Innovative Properties Company Multilayer composite article
WO2017007014A1 (en) * 2015-07-08 2017-01-12 旭硝子株式会社 Functional glass articles and method for producing same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001214156A (en) * 1991-01-23 2001-08-07 Matsushita Electric Ind Co Ltd Article having water- and oil-repellent coated film and its preparation process
JPH09100141A (en) * 1995-08-03 1997-04-15 Nippon Sheet Glass Co Ltd Production of water repellent glass
JPH11171592A (en) * 1997-12-15 1999-06-29 Nippon Sheet Glass Co Ltd Water-repellent article and its manufacture
JP2004136630A (en) * 2001-11-08 2004-05-13 Nippon Sheet Glass Co Ltd Functional film coated article, and its manufacturing method
JP5347123B2 (en) * 2006-12-22 2013-11-20 国立大学法人 香川大学 Water and oil repellent antifouling glass plate, method for producing the same, vehicle and building using the same
JP5347125B2 (en) * 2007-03-30 2013-11-20 国立大学法人 香川大学 Water / oil repellent / antifouling antireflection film and method for producing the same, lens, glass plate, glass, optical device, solar energy utilization device and display

Also Published As

Publication number Publication date
JP2010222199A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
JP5572803B2 (en) Water repellent and oil repellent antifouling glass, method for producing the same, glass window using them, solar energy utilization apparatus and optical instrument
JP5347124B2 (en) Water and oil repellent and antifouling antireflection film, method for producing the same, lens, glass plate and glass formed therewith, optical device using them, solar energy utilization device, display
JP5660500B2 (en) Abrasion-resistant super water- and oil-repellent antifouling glass, method for producing the same, glass window using them, solar energy utilization device, optical device and display device
JP4670057B2 (en) Method for producing water and oil repellent antifouling glass plate
JP3348613B2 (en) Photocatalytic hydrophilic coating composition
JP5157143B2 (en) Base with antireflection film
JPWO2008072707A1 (en) Articles having a water repellent surface
JP2008511071A (en) Antiglare coatings and articles
JP5347125B2 (en) Water / oil repellent / antifouling antireflection film and method for producing the same, lens, glass plate, glass, optical device, solar energy utilization device and display
JPH10231146A (en) Antifogging and antifouling glass article
JP4654443B2 (en) Manufacturing method of solar energy utilization device
JP2003202406A (en) Antireflection film and display device
JP2016001200A (en) Antifouling antireflection film, article and production method thereof
JP5804548B2 (en) Super water- and oil-repellent antifouling translucent film, production method thereof, glass window using them, solar energy utilization device, optical device, and display device
US7422642B2 (en) Method for preparing chemical adsorption film and solution for preparing chemical adsorption film used in the method
JP2010280147A (en) Water-repellent oil-repellent antifouling transparent member and method for producing the same, and article using them
JP2000256040A (en) Glass panel for automobile window
JP5347123B2 (en) Water and oil repellent antifouling glass plate, method for producing the same, vehicle and building using the same
JP2012220898A (en) Wear-resistant, ultra-water-repellent, oil-repellent, antifouling, and light-transmissive film, method for manufacturing the same, and glass window, solar energy utilization device, optical device, and display device using the same
JP2009088388A (en) Solar energy utilization device and its manufacturing method
JP2012219003A (en) Wear-resistant water-ultrarepellent, oil-repellent antifouling glass, method for manufacturing the same, glass window using the same, solar energy utilization device, optical equipment and display device
JP2008246959A (en) Water-repellent and oil-repellent anti-staining reflecting plate, its manufacturing method, and tunnel, road sign, sign board, vehicle and building using the water and oil repellent anti-staining reflecting plate
WO2018051958A1 (en) Antifouling article
WO2018198936A1 (en) Low-reflection-film-coated transparent substrate, photoelectric conversion device, coating liquid for forming low-reflection film for low-reflection-film-coated transparent substrate, and production method for low-reflection-film-coated transparent substrate
WO2009107191A1 (en) Water repellent, oil repellent antifouling glass plate, process for producing the same, and vehicle and building utilizing the glass plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140530

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140620

R150 Certificate of patent or registration of utility model

Ref document number: 5572803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees