JP2008246808A - 高脆性非金属材料製の被加工物の加工方法及びその装置 - Google Patents

高脆性非金属材料製の被加工物の加工方法及びその装置 Download PDF

Info

Publication number
JP2008246808A
JP2008246808A JP2007090043A JP2007090043A JP2008246808A JP 2008246808 A JP2008246808 A JP 2008246808A JP 2007090043 A JP2007090043 A JP 2007090043A JP 2007090043 A JP2007090043 A JP 2007090043A JP 2008246808 A JP2008246808 A JP 2008246808A
Authority
JP
Japan
Prior art keywords
workpiece
scribe
crack
region
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007090043A
Other languages
English (en)
Inventor
Kenichi Omori
賢一 大森
Toshifumi Yoneuchi
敏文 米内
Hiroshi Fujimura
浩 藤村
Katsuhiro Ozawa
勝洋 小澤
Yasuhito Mochizuki
保仁 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Joyo Engineering Co Ltd
Original Assignee
Japan Steel Works Ltd
Joyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Joyo Engineering Co Ltd filed Critical Japan Steel Works Ltd
Priority to JP2007090043A priority Critical patent/JP2008246808A/ja
Publication of JP2008246808A publication Critical patent/JP2008246808A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove

Abstract

【課題】貼り合わされた被加工物をレーザを用いて分断するとき、1枚目のスクライブ、反転、1枚目の割断、2枚目のスクライブ、反転、2枚目の割断といつた複雑な工程が必要になる。
【解決手段】貼り合わされた被加工物1において、第1,第2の被加工物1A,1Bに対し、加熱エネルギーを加熱領域3に照射して、加工予定線2bに沿つて走査する第1の工程と、加熱領域3の後方に位置する冷却領域4aに冷熱エネルギーを照射して、スクライブ線を形成する第2の工程と、冷却領域4aの後方に位置する再加熱領域5aに加熱エネルギーを照射する第3の工程とを順次に与えると共に、第2の被加工物1Bに生成するスクライブ亀裂5bBの深さよりも第1の被加工物1Aに生成するスクライブ亀裂5bAの深さを浅くし、反転させた被加工物1の第2の被加工物1B側から機械力を加えて被加工物1の第1,第2の被加工物1A,1Bを割断し、複数枚の部材を得る。
【選択図】 図5

Description

本発明は、高脆性非金属材料製の被加工物の加工方法及びその装置に関し、特に、熱応力を利用した非金属材料製の被加工物の加工方法及びその装置であつて、レーザー光を被加工物表面に集光照射して形成されるスクライブを利用する加工方法及びその装置に関するものである。
この種の従来の装置として、特許文献1で提案されているものが知られている。
図9に示すものは特許文献1(特表平8−509947号公報)により提案されているものであり、高脆性非金属材料製の被加工物121の加工予定線において表面から内部に至る亀裂を形成して分断するに当たり、加工予定線上にレーザー光等の加熱帯域になる加熱ビーム122を移動させながら照射し、その後、加熱ビーム122によつて照射された加熱領域に対し、加熱ビーム122の後方に位置する冷却ノズルから噴射させた冷却媒体によつて冷却させて冷却帯域123を形成し、V=k×a(b+l)/δ1よつて規定される速度で割断させるものである。
これにより、冷却条件及び割断速度に関係する加熱ビーム122のパラメータの選択によつて与えられた特性の被加工物121に必要な深さの盲亀裂124(以下、「ブラインドクラック」という。)(スクライビング)を形成させることができる。また、この加工法にあつては、被加工物121の表面近傍のみに加熱及び冷熱を与えることで実施可能なので、割断速度の高速化が実現できるとしている。
ここで、V:ビームスポット及び被加工物121の相対的な移動速度
k:被加工物121の材料の熱物理特性及びビームの出力密度
a:被加工物121の材料の表面上の加熱ビームスポットの横方向長さ
b:被加工物121の材料の表面上の加熱ビームスポットの縦方向長さ
l:加熱ビームスポットの後端縁から冷却帯域133の前端縁までの距離(以下、「加熱・冷却間距離」という。)
δ1:ブラインドクラックの深さ
特表平8−509947号公報
特許文献1記載の発明は、ブラインドクラック124の深さを任意かつ正確に変えることが困難である。本発明者等は、例えば同一被加工物121の加工途中でブラインドクラック124の深さを変える場合、移動速度V、加熱ビーム122(加熱帯域)の縦・横方向長さa,b、加熱・冷却間距離l、或いはビームの出力密度kの何れか一つ又は複数のパラメータを変更・制御する必要があることを知得した。この中では移動速度Vの変更が最も簡便であると思われるが、これによつて被加工物121の表面が受ける加熱熱量及び冷却熱量が変動してしまう。従つて、過熱により被加工物121の表面が溶融したり、逆に熱量不足によつて十分な熱応力が発生しなくなる現象や、加熱・冷却間距離lが適正値から外れる等の現象が生じ、ブラインドクラック124自体が形成されなくなる。結果的に、同一被加工物121の加工中に、ブラインドクラック124深さを任意に変更することは困難である。
加えて、ブラインドクラックを被加工物の全厚さに入れることが困難である。従つて、当然であるが、全厚さに渡つてブラインドクラック深さを任意に制御することが困難である等の問題がある。また、ブラインドクラック124の深さが浅いため、その後に完全に割断するためにはブレイク工程が必要となり、2枚が貼り合わされた高脆性非金属材料製の被加工物の上方からの作業による割断の場合、1枚目の被加工物の上方からのブラインドクラック124(スクライブ亀裂)の生成、被加工物の反転、上方からのブレイク力の付与による1枚目の被加工物の割断、2枚目の被加工物の上方からのブラインドクラック124(スクライブ亀裂)の生成、被加工物の反転、上方からのブレイク力の付与による2枚目の被加工物の割断といつた複雑な工程が必要になる。更に、割断のために大きなブレイク力が必要となり、割断面に微小なカレットが発生し易い。
本発明は、上述した課題を解決するためになされたもので、ガラス、セラミック或いは半導体材料等の高脆性非金属材料からなる貼り合わせガラスなどの組合せ体からなる被加工物に複数の加熱エネルギーと冷熱エネルギーとを組み合わせて照射し、被加工物の欠損を生じさせずに該材料中に発生する熱応力によつてスクライブ亀裂を所望する方向に進展させ、かつ、スクライブ亀裂を所定の深さに形成できるフレキシブルで実用的な非金属材料の加工方法及びその装置を提供することを目的としている。その構成は、次の通りである。
請求項1記載の発明は、高脆性非金属材料製の第1の被加工物1Aと高脆性非金属材料製の第2の被加工物1Bとがシール剤1Cを介在して貼り合わされて被加工物1を構成し、該被加工物1の可及的にシール剤1Cが存在しない個所をスクライブ亀裂5bに沿つて割断する高脆性非金属材料製の被加工物の加工方法において、
第1の被加工物1Aに対し、加熱エネルギーを所定の加熱領域3に照射して、加工予定線2bに沿つて走査する第1の工程と、前記第1の工程の加熱領域3の相対的移動方向の後方に位置する所定の冷却領域4aに冷熱エネルギーを照射して、加工予定線2bに沿つて走査し、スクライブ線を形成する第2の工程と、前記第2の工程の冷却領域4aの相対的移動方向の後方に位置する所定の再加熱領域5aに強度が制御された加熱エネルギーを照射して、加工予定線2bに沿つて走査する第3の工程とを順次に与え、第1の被加工物1Aにスクライブ線を成長させたスクライブ亀裂5bAを形成し、次いで、被加工物1を反転させ、
第2の被加工物1Bに対し、加熱エネルギーを所定の加熱領域3に照射して、加工予定線2bに沿つて走査する第1の工程と、前記第1の工程の加熱領域3の相対的移動方向の後方に位置する所定の冷却領域4aに冷熱エネルギーを照射して、加工予定線2bに沿つて走査し、スクライブ線を形成する第2の工程と、前記第2の工程の冷却領域4aの相対的移動方向の後方に位置する所定の再加熱領域5aに強度が制御された加熱エネルギーを照射して、加工予定線2bに沿つて走査する第3の工程とを順次に与え、第2の被加工物1Bにスクライブ線を成長させたスクライブ亀裂5bBを形成し、
スクライブ亀裂5bを所定の深さに形成するために、加熱エネルギーの量を再加熱領域5aの単位面積当たりの加熱エネルギー量Pとして増減調節し、
第2の被加工物1Bに生成するスクライブ亀裂5bBの深さよりも第1の被加工物1Aに生成するスクライブ亀裂5bAの深さを浅くし、上記反転させた被加工物1の第2の被加工物1B側から機械的作用力を加えて被加工物1の第1,第2の被加工物1A,1Bを割断し、複数枚の部材を得ることを特徴とする高脆性非金属材料製の被加工物の加工方法である。
請求項2記載の発明は、高脆性非金属材料製の第1の被加工物1Aと高脆性非金属材料製の第2の被加工物1Bとがシール剤1Cを介在して貼り合わされて被加工物1を構成し、該被加工物1の可及的にシール剤1Cが存在しない個所をスクライブ亀裂5bに沿つて割断する高脆性非金属材料製の被加工物の加工装置において、
第1の被加工物1Aに対し、加熱エネルギーを所定の加熱領域3に照射して、加工予定線2bに沿つて走査する第1の工程と、前記第1の工程の加熱領域3の相対的移動方向の後方に位置する所定の冷却領域4aに冷熱エネルギーを照射して、加工予定線2bに沿つて走査し、スクライブ線を形成する第2の工程と、前記第2の工程の冷却領域4aの相対的移動方向の後方に位置する所定の再加熱領域5aに強度が制御された加熱エネルギーを照射して、加工予定線2bに沿つて走査する第3の工程とを順次に与え、第1の被加工物1Aにスクライブ線を成長させたスクライブ亀裂5bAを形成し、次いで、被加工物1を反転させ、第2の被加工物1Bに対し、加熱エネルギーを所定の加熱領域3に照射して、加工予定線2bに沿つて走査する第1の工程と、前記第1の工程の加熱領域3の相対的移動方向の後方に位置する所定の冷却領域4aに冷熱エネルギーを照射して、加工予定線2bに沿つて走査し、スクライブ線を形成する第2の工程と、前記第2の工程の冷却領域4aの相対的移動方向の後方に位置する所定の再加熱領域5aに強度が制御された加熱エネルギーを照射して、加工予定線2bに沿つて走査する第3の工程とを順次に与え、第2の被加工物1Bにスクライブ線を成長させたスクライブ亀裂5bBを形成し、
スクライブ亀裂5bを所定の深さに形成するために、加熱エネルギーの量を再加熱領域5aの単位面積当たりの加熱エネルギー量Pとして増減調節し、
第2の被加工物1Bに生成するスクライブ亀裂5bBの深さよりも第1の被加工物1Aに生成するスクライブ亀裂5bAの深さを浅くし、上記反転させた被加工物1の第2の被加工物1B側から機械的作用力を加えて被加工物1の第1,第2の被加工物1A,1Bを割断し、複数枚の部材を得ることを特徴とする高脆性非金属材料製の被加工物の加工装置である。
請求項3記載の発明は、前記第1の被加工物1Aに第3の工程でスクライブ亀裂5bAを所定の深さに形成し、かつ、第2の被加工物1Bに第3の工程でスクライブ亀裂5bBを所定の深さに形成するために、
δ:スクライブ亀裂5bの所定深さ、
δ0 :第2の工程の終了後におけるスクライブ線の深さ、
P:第3の工程の再加熱領域5aの単位面積当たりの加熱エネルギー量、
A:被加工物1の形状特性及び熱特性に依存した比例係数、
m:m≧1の実数係数として、
スクライブ亀裂5bの深さ特性式δ=δ0 +A・Pm
を満足するように各第3の工程の再加熱領域5aの単位面積当たりの加熱エネルギー量Pを調整することを特徴とする請求項2の高脆性非金属材料製の被加工物の加工装置である。
独立請求項1,2記載の発明によれば、被加工物を相対移動させながら、一連の工程つまり第1の工程から第3の工程を被加工物の第1,第2の被加工物のそれぞれに順次一体的に作用させるので、第1の工程及び第2の工程の適用によつて加工予定線に沿つて形成した亀裂状のスクライブ線を第3の工程の適用によつて所望する任意の深さに制御しながら、より深いスクライブ面を有するスクライブ亀裂に比較的高速度で進展させる効果が第1,第2の被加工物の両者で得られる。また、スクライブ亀裂を所定の深さに形成するために行う加熱エネルギーの量の調整が、レーザー光による再加熱領域の単位面積当たりの加熱エネルギー量を増減調節し、レーザー発振装置から出射されるレーザー光(再加熱ビーム)のパワーを調整して行われる場合、基本的にビームプロファイルは変わらず全体的なパワーのみが変化することになる。これにより、再加熱領域と冷却領域の相対位置に変化がなく、亀裂状のスクライブ線に作用する引張応力つまり亀裂を開口させる力をレーザー光のパワーのみに依存して変えることが可能となる。従つて、亀裂を開口させる力をレーザー光(再加熱ビーム)のパワーに応じて連続的にコントロールできることになり、第1,第2の被加工物の両者でスクライブ亀裂を所望する所定深さに形成させることが容易になる。
加えて、第1,第2の被加工物の両者で制御された再加熱領域によつてスクライブ亀裂を所望の深さに入れることができるように構成したので、2枚貼り合わされた被加工物の内、1枚目のスクライブ亀裂を比較的浅く、2枚目のスクライブ亀裂を深くすることによつて、従来の装置では必要であつた2回のブレイク工程の内の1回を省略して、第1,第2の被加工物の両者にスクライブ亀裂を所望の深さに入れた後、1枚目となる第1の被加工物に対するブレイク工程の作用で第2の被加工物を含む被加工物の全体を完全に割断することができる。その結果、工程の短縮化、装置設置スペースの縮小化が得られる効果がある。
また、被加工物を蒸散させてスクライビングするのではなく、熱応力によつて安定的に切り開いて行くので、材料欠損による割断環境の悪化(微粉末の飛散等)や割断面強度・断面品位の低下を防ぐことができる。特に、スクライブ亀裂を適正な深さに入れることにより、割断面に微小なカレットが発生することを抑制できる。更に、被加工物の端部を加工する場合、従来の技術では加工予定線に対して実際の加工線が逸脱し湾曲し易いが、本発明によればスクライブ深さを任意に制御することができるので、加工予定線に沿つた加工線の軌道を加工途中でも修正できる効果を奏する。
請求項3記載の発明によれば、被加工物を相対移動させながら、一連の工程つまり第1の工程から第3の工程を被加工物に順次一体的に作用させると共に、第3の工程の加熱エネルギーの量をスクライブ亀裂の深さ特性式に従つて増減調整するので、第1の工程及び第2の工程の適用によつて加工予定線に沿つて形成した亀裂状のスクライブ線を第3の工程の適用によつて所望する任意の深さに制御しながら、より深いスクライブ面を有するスクライブ亀裂に比較的高速度で進展させる効果が得られる。特に、第1の工程の加熱領域に付与する加熱エネルギーの量を同一面積かつ同一量に維持しながら、同一面積に維持した後部の再加熱領域の加熱エネルギーの量をスクライブ亀裂の深さ特性式に従つて増減調整することにより、亀裂状のスクライブ線を任意の深さのスクライブ亀裂に高精度に進展させることが可能になる。
以下、この発明の一実施の形態について図1〜図8を参照して説明する。
図中において符号1は切込み生成つまりスクライビングの加工対象となる脆性材料製の基板状の被加工物であり、ガラスにて代表される非金属材料によつて製作されて貼り合わせガラスのように組合せ体を構成している。すなわち、図8に示すように、高脆性非金属材料製の第1の被加工物1Aと高脆性非金属材料製の第2の被加工物1Bとが軟質のシール剤1Cを介在して貼り合わされて組合せ体を構成し、該被加工物1の間の空間部1Dつまり可及的にシール剤1Cが存在しない個所を後記するスクライブ亀裂(5bA,5bB)に沿つて割断する。通常、被加工物1(脆性非金属材料製の被加工物)は、透明体である。なお、シール剤1Cは、通常、矩形状をなす被加工物1の外縁部に矩形状をなすようにも形成されているから、その場合には被加工物1の外縁部に存在する一部のシール剤1Cの個所を割断することになる。但し、シール剤1Cの厚さは誇張して示してある。
被加工物1の割断までの工程の概略は、図7に示す通りであり、複数の被加工物1を収容するストッカー50から1枚の被加工物1を取り出し、第1のスクライブ装置51Aのステージに搬送すると共に、第1のスクライブ装置51Aでのスクライブ処理が終了した被加工物1を第1のスクライブ装置51Aのステージから取り出し、反転機53に移送する第1のロボット52と、反転機53で表裏を反転させた被加工物1を取り出し、第2のスクライブ装置51Bに搬送すると共に、第2のスクライブ装置51Bでのスクライブ処理が終了した被加工物1を第2のスクライブ装置51Bのステージから取り出し、搬送機55に移送する第2のロボット54と、搬送機55から被加工物1を取り出し、ブレイク装置57に搬送すると共に、ブレイク装置57での割断処理が終了した被加工物1を次工程に送る第3のロボット56とを有する。第1,第2のスクライブ装置51A,51Bを共用すれば、第2のスクライブ装置51B及び第2のロボット54を省略することができるので、以下においては、第1,第2のスクライブ装置51A,51Bをスクライブ装置51として共用するものとして主に説明する。
被加工物1は、図2に示すようにスクライブ装置51のステージ6上に交換可能に載置され、第1の被加工物1A及び第2の被加工物1Bのそれぞれの対応位置に直線状に設定される加工予定線2bに沿つて切断するために、図1,図3に示すように第1の工程として形成する加熱領域3、第2の工程として形成する冷却領域4a及び第3の工程として形成する再加熱領域5aの各中心が加工予定線2b上に間隔を置いて順次に設定され、必要に応じ、被加工物1の第1の被加工物1A及び第2の被加工物1Bの被加工面の少なくともスクライビング開始端部に微小亀裂2aを施す微小亀裂形成工程を第1の被加工物1A及び第2の被加工物1Bのそれぞれに行う。加熱領域3と再加熱領域5aとは間隔を置いて生成され、また、加熱領域3及び再加熱領域5aは、被加工物1の脆性非金属材料の軟化点より低い温度で加熱する。第1の工程ないし第3の工程及び微小亀裂2aを施す微小亀裂形成工程は、第1の被加工物1A及び第2の被加工物1Bに対し、個別に実施するため、第1の被加工物1Aに第3の工程を施した後、反転機53によつて被加工物1の表裏を反転させて、第2の被加工物1Bに第1の工程ないし第3の工程を施す。
ステージ6を有するスクライブ装置51には、微小亀裂2aを施すための亀裂生成手段40、加熱領域3を生成するための加熱手段の要部となる第1のレーザー発振装置10、その後に冷却領域を生成するための冷却手段30及び更にその後に加熱領域を再度生成するための再加熱手段の要部となる専用の第2のレーザー発振装置20が一体的に装備される。すなわち、亀裂生成手段40、第1のレーザー発振装置10、冷却手段30及び第2のレーザー発振装置20が加工系用ステージ(図示せず)に設定され、この加工系用ステージ又は基板戴置用のステージ6の少なくとも一方は駆動装置(図示せず)を備え、それによつて被加工物1及びステージ6と加工系(つまり加熱領域3、冷却領域4a及び再加熱領域5a)が加工予定線2bに沿つて矢印A1方向に連続的相対移動をする。なお、ステージ6は、回転機能を有し、スクライブ亀裂(5bA,5bB)を直交させて生成できるものが望ましいが、回転機能は、第1のロボット52に付与することもできる。
この加工系(加熱領域3、冷却領域4a及び再加熱領域5a)を加工予定線2bに沿つて矢印A1方向に一体的に相対移動させるために、第1のレーザー発振装置10、冷却手段30及び第2のレーザー発振装置20が加工系用ステージ(図示せず)に設置されるのみならず、ビームエキスパンダー12,22、赤外線用ミラー13,23及びシリンドリカルレンズ14,24、更に冷却手段30についても加工系用ステージに設置させ、一体的に保持させる。第1,第2のレーザー発振装置10,20は、別個独立のレーザー発振装置であり、個別にレーザー光のパワー(加熱エネルギー密度(単位面積当たりの加熱エネルギー量))を増減調節することができる。
亀裂生成手段40は、図2に示すよう駆動機構がなく、被加工物1との接触により自由に回転する回転刃を有する。この亀裂生成手段40は、被加工物1への加工系による加工開始前に加工予定線2bの延長線上に沿つて被加工物1の外側から矢印A1方向に相対移動つまり走査させ、被加工物1の第1の被加工物1A及び第2の被加工物1Bの加工予定線2bの少なくともスクライビング開始端部に、微小亀裂2aを形成すればよく、スクライビング開始端部にスクライビングのきつかけとなる初期亀裂を形成させ、亀裂生成後に加工予定線2bから速やかに退避させる。しかして、亀裂生成手段40を用いて必要に応じて行う微小亀裂形成工程は、加熱領域3を形成する第1の工程の前に、第1の被加工物1A及び第2の被加工物1Bの被加工面のスクライビング開始端部(図2上で被加工物1の左端)に、必要に応じて微小亀裂を施す工程として実施される。
第1のレーザー発振装置10は、図2に示すように第1のレーザー光である赤外線レーザー光11を出射する。第1のレーザー発振装置10から出射される赤外線レーザー光11は、赤外線レーザー用エキスパンダー12を通過して長軸ビーム径を調整され、赤外線用ミラー13によつて反射してシリンドリカルレンズ14を透過した後、被加工物1の第1の被加工物1A又は第2の被加工物1Bに照射され、被加工物1が楕円形状に局部的に加熱される加熱領域3を生成する。その際、赤外線レーザー光11の焦点が被加工物1の表層つまり上側の第1の被加工物1A又は第2の被加工物1Bの内部に位置し、かつ、レーザー光11のビームがビームの相対的移動方向(矢印A1方向)の前方から斜めに照射されるように調整する。すなわち、被加工物1に照射される部分の赤外線レーザー光11は、平面視で、加工予定線2b上に位置している。
この被加工物1の第1の被加工物1A又は第2の被加工物1Bに形成される加熱領域3は、赤外線レーザー光11によつて加熱されて圧縮応力を有する領域であり、シリンドリカルレンズ14によつて赤外線レーザー光11のビーム形状を楕円に集光され、長軸を加工予定線2b方向に合致させて照射される。加熱領域3の短軸幅は、シリンドリカルレンズ14で制御するため、長軸幅の調整用としてビームエキスパンダー12を使用する。
加熱領域3を生成する赤外線レーザー光11には、例えば波長10.6μmのCO2 レーザーを使用する。そして、CO2 レーザーの照射によつて被加工物1の軟化点より低い温度で加熱するに当たり、CO2 レーザーを照射する領域の形状が加工予定線2bの接線方向に長い楕円形状とし、かつ、楕円形状の後部に、前部に比較してエネルギー密度を多く分布させることが望ましい。第1の工程は、第1の被加工物1A又は第2の被加工物1Bの所定の領域に加熱エネルギーを照射するように、加工予定線2bに沿つて赤外線レーザー光11を走査して行う。
そして、第1の工程の加熱エネルギーとして用いるCO2 レーザーの出力は、適正に亀裂状のスクライブ線を形成し、第3の工程までの実施によつて、第1の被加工物1A又は第2の被加工物1Bに所望する深さの破断面を有するスクライブ亀裂5bA,5bBを形成するために、30〜300Wの範囲に維持する条件を満たすように第1のレーザー発振装置10に設定する。また、a1は加熱領域3の楕円の短軸長さ、b1は加熱領域3の楕円の長軸長さ、hは被加工物1の第1の被加工物1A又は第2の被加工物1Bの板厚として、
a1=(1〜40)×h、及びb1=(10〜100)×h
の関係を満たすように設定する。
冷却手段30は、水補給槽32から配管31を通じて供給される水と、エアコンプレッサー34から配管33を通じて供給される圧縮空気とを混合して霧状の冷却媒体35となし、この霧状の冷却媒体35をノズルから被加工物1の第1の被加工物1A又は第2の被加工物1Bの加熱領域3の直後に吹出すことで加工予定線2b上の被加工物1が冷却されて引張応力を有する冷却領域4aを生成する。冷却領域4aは、相対的移動方向A1の加熱領域3の後方に局所的に生成されることが望ましく、特に、加熱領域3の短軸長さ程度に相対的移動方向A1に延在させることが望ましい。水、圧縮空気共に、調整弁(図示せず)によつて流量を増減調整できる。液晶パネルなどのデバイスの切断では、水滴の付着が問題となることもあるので水の供給量は少ない方が望ましく、従つてノズル先端は細い方がよい。相対的に移動する冷却領域4aによつて第1の被加工物1A又は第2の被加工物1Bの加工予定線2b上に発生した引張応力が微小亀裂2aを亀裂先端4bの位置に進行させる。この亀裂がスクライブ線になる。第1,第2の被加工物1A,1Bの材料により、微小亀裂2aを省略した場合でも、加熱領域3及び冷却領域4aを順次に形成することにより、微小亀裂2aと同様の亀裂を被加工物1の端部から進展させることも可能な場合がある。
冷熱エネルギーとして水を噴霧した微粒子を含む空気流を放射(放出)するに当たつては、水分量を適正に設定することが望まれる。すなわち、第1の工程の加熱エネルギーの照射によつて昇温した第1の被加工物1A又は第2の被加工物1Bの被加工面を室温程度に十分冷却させるに足る潜熱量を有する水分量を与え、かつ、第2の工程の終了後に被加工物1の被加工面、少なくとも加工予定線2b又はその付近に残存する水の微粒子が第3の工程の加熱エネルギーによつて全て蒸発する程度に抑えた水分量とすることが望ましい。第2の工程は、第1の工程の加熱エネルギーを照射する領域の後方に位置して、冷熱エネルギーを照射・供給して加工予定線2bに沿つて走査する。
熱応力を利用する非金属材料の赤外線レーザーの照射によるスクライビングは、被加工物1の第1の被加工物1A又は第2の被加工物1Bの表面部が圧縮応力場となり、次いで冷却媒体によつて冷却領域を形成して引張応力を誘起し、この応力が材料の引張り強度を超えたときに起こる。
第2のレーザー発振装置20は、赤外線レーザー、例えば波長10.6μmの再加熱用のCO2 レーザーを出射する。第2のレーザー発振装置20から出射される第2のレーザー光であるレーザー光21は、赤外線レーザー用エキスパンダー22を通過して長軸ビーム径を調整され、赤外線用ミラー23によつて反射してシリンドリカルレンズ24を透過した後、第1の被加工物1A又は第2の被加工物1Bに照射され、楕円形状に局部的に加熱される再加熱領域5aを生成する。再加熱領域5aを生成するレーザー光21は、再加熱領域5aに専用のものである。その際、赤外線レーザー光21の焦点が上側の第1の被加工物1A又は第2の被加工物1Bの内部に位置し、かつ、レーザー光21のビームがビームの相対的移動方向(矢印A1方向)の後方から斜めに照射されるように調整する。すなわち、被加工物1に照射される部分の赤外線レーザー光21は、平面視で、加工予定線2b上に位置している。また、再加熱領域5aの前端と冷却領域4aの後端との間には、所定の間隔距離を設けるように調整することが望まれる。この所定の間隔距離は、具体的には0〜10mmの距離とする。
しかして、再加熱領域5aは、赤外線レーザー光21によつて第1,第2の被加工物1A,1Bの軟化点より低い温度で加熱させてスクライブ線の先端である亀裂先端4bを切り開く領域であり、シリンドリカルレンズ24によつて赤外線レーザー光21のビーム形状を楕円に集光され、長軸を加工予定線2bの直角方向に合致させて照射される。再加熱領域5aの短軸幅は、シリンドリカルレンズ24で制御するため、長軸幅の調整用としてビームエキスパンダー22を使用する。この再加熱領域5aを生成する第3の工程は、強度が制御された加熱エネルギーを所定の再加熱領域5aに照射して加工予定線2bに沿つて走査して行う。
第3の工程は、加熱エネルギーとして再加熱用のCO2 レーザーを用い、かつ、再加熱用のCO2 レーザーの照射によつて被加工物1の軟化点より低い温度で加熱するに当たり、冷却領域4aに付与される冷熱エネルギーによるスクライブ線の形成作用を殆ど減殺しないように選択された距離だけ離した位置に照射し、かつ、照射する領域の形状を加工予定線2bの直角方向に長い楕円形状とし、かつ、楕円形状の進行方向前部に、後部に比較してエネルギー密度を多く分布させる。第3の工程の加熱エネルギーは、その全体の量(出力)を増減調節することにより、第1の工程及び第2の工程の実施によつて形成されたスクライブ線を所望する深さに進展させてスクライブ亀裂5b(5bA,5bB)を形成することができる。
そして、第3の工程の再加熱領域5aは、第2の工程の冷却領域4aの相対的移動方向A1の後方に(0〜10)×10-3mの範囲の距離を隔てた位置として形成させ、かつ、加熱エネルギーとして用いる再加熱用のCO2 レーザー(赤外線レーザー光21)のビームの出力が100〜1000Wの範囲に調整・維持する条件を満たすように設定する。また、a2は再加熱領域5aの楕円の短軸長さ、b2は再加熱領域5aの楕円の長軸長さ、hは被加工物1の第1の被加工物1A又は第2の被加工物1Bの板厚として、
a2=(4〜25)×h、及びb2=(10〜60)×h
の関係を満たすように設定する。
冷却領域4aと再加熱領域5aとの位置関係は、実際には、再加熱エネルギー量が最も少ないエネルギー量で所定深さのスクライブ亀裂5bを形成することができる位置関係を実験的に求める。被加工物1の第1,第2の被加工物1A,1Bの板厚によつて後工程で完全切断できるスクライブ亀裂5bの深さひいては冷却領域4aと再加熱領域5aとの位置関係が異なるので、実験的に求めざるを得ない。
また、第2の工程の冷却領域4aはほぼ円形状をなし、冷却領域4aの加工予定線2bの直角方向の幅及び接線方向の幅が、いずれも第1の工程のCO2 レーザーによる加熱領域3の楕円の短軸長さa1より大きく、かつ、第3の工程の再加熱用のCO2 レーザーによる再加熱領域5aの楕円の長軸長さb2より小さく設定する。また、楕円形状をなす再加熱領域5aの長軸長さb2は、加熱領域3の短軸長さよりも大きく、再加熱領域5aの短軸長さは加熱領域3の長軸長さよりも小さい。
なお、赤外線レーザー光11の照射に際しては、第1,第2の被加工物1A,1Bの軟化点を超えるような密度で熱を加えると冷却された後に熱応力が残留してしまい材料のスクライブ亀裂5bの形成を制御不能にしてしまうため、加熱しすぎない配慮が必要である。また、加熱領域3の後方に生成される冷却領域4a及び冷却領域4aの後方に生成される再加熱領域5aは、上述したように第1の工程として形成する加熱領域3、第2の工程として形成する冷却領域4a及び第3の工程として形成する再加熱領域5aの各中心が加工予定線2b上に間隔を置いて反相対的移動方向A1に順次に設定されている状態をいう。
次に作用について説明する。
先ず、第1の被加工物1Aを上側として被加工物1をステージ6上に載置させ、必要に応じて微小亀裂形成工程を行う。すなわち、第1の被加工物1Aの被加工面の加工予定線2bのスクライビング開始端部に微小亀裂を施し、スクライビングを円滑に開始させると共に、円滑に継続させる。また、第1のレーザー発振装置10から赤外線レーザー光11を出射させ、第2のレーザー発振装置20からレーザー光21を出射させ、また、冷却手段30から冷却媒体35を吹き出させる状態にする。
この状態から、右端位置にあるステージ6を反矢印A1の方向に相対移動させ、加工系(加熱領域3、冷却領域4a及び再加熱領域5a)を加工予定線2bに沿つて相対的移動方向(矢印A1方向)に一体的に相対移動させる。これにより、赤外線レーザー光11が第1の被加工物1Aの加工予定線2bの左端から局所的に照射され始め、赤外線レーザー光11が上側から照射された被加工物1の箇所に、被加工物1Aの軟化点より低い所定温度にまで上昇した加熱領域3が生成される。微小亀裂2aが形成されている場合には、微小亀裂2aを含む部分から赤外線レーザー光11が局所的に照射され始める。加熱領域3では、加熱中心に比較的強い圧縮応力が発生し、その外周には緩衝帯を挟んで弱い引張応力が発生する。加熱領域3の大きさは、微調整機構を持つ図示しない支持台を介して加工系用ステージに設置されるシリンドリカルレンズ14により任意に変更することができる。
引き続き、ステージ6の相対移動により、加熱領域3つまりレーザー光11の照射領域の直後に、水と空気が冷却手段30内で混合されて霧状をなす冷却媒体35が第1の被加工物1Aの加工予定線2bの左端(微小亀裂2a)から噴霧され始め、冷却領域4aを作成する。これにより、比較的強い引張応力が発生し、強い応力集中が局所的に生じるため、第1の被加工物1Aの引張強度を超え、端部から生じた亀裂が亀裂先端4bへと進行し始める。この進行する亀裂はスクライブ線である。亀裂状のスクライブ線は、第1の被加工物1Aの表面付近に形成され、第1の被加工物1Aが切断されることはない。微小亀裂2aが形成されている場合には、微小亀裂2aの鋭利な先端箇所に強い引張応力が発生し、微小亀裂2aの先端内部に強い応力集中が生じるため、第1の被加工物1Aの引張強度を容易に超え、微小亀裂2aが亀裂先端4bへと安定的に進行し始め、スクライブ線が生成される。
引き続き、ステージ6の相対移動により、冷却領域4aつまり冷却媒体35の噴霧領域から適当な距離を置いて、赤外線レーザー光21が第1の被加工物1Aの加工予定線2bの左端(微小亀裂2a)から局所的に照射され始め、第1の被加工物1Aの軟化点より低い所定温度にまで上昇した再加熱領域5aが生成される。再加熱領域5aでは、一旦冷却された第1の被加工物1Aを再度加熱することになり、しかも加工予定線2bと直角方向に長い圧縮応力場となるため、亀裂先端4b及びその付近となる第1の被加工物1Aの内部に大きな曲げ応力が生じ、亀裂先端4bが第1の被加工物1Aの内部方向つまり深さ方向に進展し始める。すなわち、スクライブ線が亀裂先端4b位置に進行し更に再加熱領域5aに達することにより、スクライブ線が深さ方向にも進展し、所定のスクライブ深さのスクライブ亀裂5bAが得られる。
第1の工程での赤外線レーザー光11による縦長の加熱ビーム(加工予定線2bに対し接線方向に細長い楕円形状のビーム)の照射により、加工予定線2bの近傍に圧縮応力が生じ、その直後に第2の工程での冷熱エネルギーを照射つまり当てることで加熱領域が冷却領域4aに達して急激に冷却されるため、加工予定線2bの開始端部(必要に応じて入れた微小な亀裂)に大きな引張応力が発生し、加工予定線2bに沿つて安定的にその亀裂が進展し始め、スクライブ線が形成される。その進展し始めた亀裂つまりスクライブ線に対し第3の工程での横長の加熱ビーム(加工予定線2bに対し直交方向に細長い楕円形状のレーザー光21)を照射するとスクライブ線の先端周辺つまり亀裂先端周辺が広い面積に亘つて圧縮応力場となり、亀裂を深さ方向に進展させるに足る曲げモーメントが発生する。この亀裂深さは曲げモーメントの大きさによつて制御することができるので、この横長の加熱ビームのパワーを調整することで所望の深さの亀裂が連続するスクライブ亀裂5b(5bA)が得られる。この加熱ビームのパワーの調整は、照射面積を同一に維持しながら第3の工程として単独で行うことができると共に、1つの第1の被加工物1Aの加工予定線2bに対する加工の途中でも単独で行うことができる。スクライブ亀裂5b(5bA)の深さの変更は、第1の被加工物1Aの端部付近をスクライブする場合に、スクライビングが垂直になされずに湾曲することがあるので、深さを変えて湾曲を抑えたりするために必要がある。
図4は、3種類の板厚(0.7mm,0.5mm,0.3mm)のガラス基板からなる被加工物1について再加熱領域5aを生成する赤外線レーザー光21のパワー(レーザー光21のエネルギー密度)に対するスクライビング深さ(スクライブ亀裂5bの深さ)を求めた試験結果の一例を示す。具体的には、約0.02〜0.22(W/mm2 )の範囲のエネルギー密度のレーザー光21を照射した。これは、第2のレーザー発振装置20のパワーを50Wから200〜250Wの範囲で調節して実現できる。
これにより、ガラス基板の板厚に係わらず赤外線レーザー光21のエネルギー密度を約0.02W/mm2 から約0.09〜0.22W/mm2 に向けて増加させるにつれて、スクライビング深さ(スクライブ亀裂5bの深さ)が連続的に大きくなり、ガラス基板が分断に至るまでの間で、スクライビング深さ(スクライブ亀裂5bの深さ)を任意に変化させることができることが分かる。すなわち、第3の工程での赤外線レーザー光21のパワー(エネルギー密度)の増減変更により、再加熱領域5aの圧縮応力、つまりは亀裂先端4b(スクライブ線の内端部)に作用する曲げ応力を任意に制御できることを意味している。但し、再加熱領域5aを生成するために加熱エネルギーとして用いる再加熱用のCO2 レーザーのビームの出力は、上述したように第2のレーザー発振装置20のパワーを100〜1000Wの範囲に調整・維持すればよい。
実験によれば、第3の工程の赤外線レーザー光21による加熱エネルギー密度P(再加熱領域5aの単位面積当たりの加熱エネルギー量)によつて、スクライブ亀裂5bの深さδは、次式で関係付けられることが見出された。すなわち、δ=δ0 +A・Pm (スクライブ亀裂5bの深さ特性式)
ここで、δ:スクライブ亀裂5bの深さ(所望する所定深さ)、
δ0 :第2の工程の終了後におけるスクライブ線の深さ、
P:第3の工程の加熱エネルギー密度(再加熱領域(5a)の単位面積(mm2 )当たりの加熱エネルギー量)、
A:被加工物(1)の形状特性及び熱特性に依存した比例係数、
m:m≧1の実数係数
このスクライブ亀裂5bの深さ特性式におけるパラメター、すなわち、第2の工程の終了後におけるスクライブ線の深さδ0 、被加工物1の形状特性及び熱特性に依存した比例係数A、並びに実数係数mは、以下の実験的な手順にて決定することができる。なお、被加工物1の形状特性とは、被加工物1の第1,第2の被加工物1A,1Bの厚さ以外にパネル構造の違いによるものを含む。パネル構造になつた貼り合わせガラスからなる被加工物1は、ガラス同士(第1,第2の被加工物1A,1B同士)を接着させるシール剤1Cを有しているが、そのシールのパターンによつてスクライブ亀裂5bの深さが異なつてくる。被加工物1の熱特性とは、比熱の他、熱伝導率、熱膨張率等を含む。但し、再加熱領域5aの大きさ及び形状は、1枚の被加工物1の第1,第2の被加工物1A,1Bの処理において変化させず同じである。
実際には、加工対象である被加工物1に対して、次の手順1〜3を実施する。
予め、第1,第2の被加工物1A,1Bに形成すべきスクライブ亀裂5bの深さδを定める。スクライブ亀裂5bの深さは、完全破断を行うか否か、また、次工程の割断工程(ブレイク装置57)での割断手段やロボット52反転機53、搬送機55による移動中の割れ防止を図る観点から全厚を考慮して定まる。所定の厚さ(全厚)の第1,第2の被加工物1A,1Bに対して、所定の相対移動速度で所定の深さのスクライブ亀裂5b(5bA,5bB)を形成するとき、スクライブ線の深さδ0 を手順1)にて求める。スクライブ線の深さδ0 は、形成すべきスクライブ亀裂5bの深さδからほぼ定まる。
手順1)所望する所定相対移動速度において、第1及び第2の工程の加工条件を実験的に決定し、第2の工程終了後におけるスクライブ線の深さδ0 を求める。ここで、第1の工程の加工条件とは、加熱エネルギー量と加熱領域3の大きさ及び形状で決まる。第2の工程の加工条件とは、冷熱エネルギー量及び加熱領域3と冷却領域4aとの位置関係等をさす。
手順2)次に、当該相対移動速度における手順1で求めた加工条件において、第3の工程の再加熱領域5aの単位面積当たりの加熱エネルギー量P(赤外線レーザ光パワー)を実験的に変化させ、加熱エネルギー密度に換算した適当な代表値(P1 ,P2 ・・・)に対する、スクライブ亀裂5bの深さδ1 ,δ2 ・・・)を求める。再加熱領域5aの単位面積当たりの加熱エネルギー量Pは、加工予定線2bに対して所定位置の走査線上でのものである。
手順3)手順1及び手順2で求めたδ0 (第2の工程の終了後におけるスクライブ線の深さ)、並びに(P1 ,δ1 )、(P2 ,δ2 )・・・をスクライブ亀裂5bの深さ特性式δに当てはめ、最小自乗法により比例係数A及び実数係数mを算出する。
実験によつて得られた図4の3種類の板厚に対して、それぞれスクライブ線の深さδ0 、比例係数A、及び実数係数mを求め、表1にまとめた。表1より、スクライブ亀裂5bの深さδは、3種類の板厚ともに、適合率Rが0.98以上であることから、δ=δ0 +A・Pm の式でほぼ関係付けられることが分かる。これらの特性式から、それぞれ所定の相対移動速度(180mm/sec,310mm/sec,370mm/sec)において第2の工程の終了後における所定のスクライブ線の深さδ0 が得られるとき、第3の工程の赤外線レーザ光(CO2 レーザー)の加熱エネルギー量P(W/mm2 )を適当な値に調整することで、所望するスクライブ亀裂5bの深さδが得られることが分かる。つまり、1枚の被加工物1の第1の被加工物1A又は第2の被加工物1Bに対する処理の途中で加熱エネルギー量Pを変化させて、スクライブ亀裂5bA,5bBの深さδを個別に調整変更することができる。
Figure 2008246808
Figure 2008246808
表2は、2種類のレーザー光11,21のビームパラメータ、及びガラス基板(被加工物)の板厚を変更して、スクライビング方法を試験した結果をNo.1〜21に集約したものである。第1の工程での加熱エネルギーとして用いるCO2 レーザーのパラメターを前方加熱ビームパラメターとし、第3の工程での加熱エネルギーとして用いるCO2 レーザーのパラメターを後方加熱ビームパラメターとし、第2の工程の冷却領域4aの後端縁と第3の工程の再加熱領域5aの前端縁との間の距離を冷熱−後方加熱ビーム間距離とし、被加工物及びステージ6と加工系(つまり加熱領域3、冷却領域4a及び再加熱領域5a)との連続的相対移動速度を走査速度としてある。
これにより、無アルカリガラス製のガラス基板(1)の各板厚(1.1mm,0.7mm,0.63mm,0.5mm,0.3mm,0.2mm及び0.05mm)におけるスクライブ深さ(スクライブ亀裂5bの深さδ)は、楕円形状をなすレーザー光11,21のビーム寸法(a1,b1、a2,b2)、第1,第2のレーザー発振装置10,20のビームパワー(出力)、冷却領域4aと再加熱領域5aとの距離、及びスクライビング速度(走査速度)に影響されるだけでなく、これらのパラメータ間の特定な関係にあることが分かる。
スクライブ装置51においては、図6に示すように上側の第1の被加工物1AにX方向の比較的浅い切断面(スクライブ亀裂5bA)を上側から生成し(図6(b))、次いで被加工物1を相対的に90度回転させて第1の被加工物1AにY方向の比較的浅い切断面(スクライブ亀裂5bA)を上側から生成する(図6(c))。このとき、Y方向の切断面(スクライブ亀裂5bA)は、再加熱領域5aの単位面積当たりの加熱エネルギー量Pを増加させて、X方向の切断面(スクライブ亀裂5bA)よりも深く生成させることができる。第1の被加工物1AにX,Y方向の切断面(スクライブ亀裂5bA)が生成したなら、ロボット52によつて反転機53に被加工物1を送り、被加工物1の表裏を反転させた後に(図6(d))、ロボット52(又は54)によつてスクライブ装置51に被加工物1を送り、スクライブ装置51において同様に第1の工程ないし第3の工程とを順次に与え、上側の第2の被加工物1BにX,Y方向の比較的深い切断面(スクライブ亀裂5bB)を上側から生成する(図6(e),図6(f))。
図6(c)で第1の被加工物1AにY方向の切断面(スクライブ亀裂5b)を生成した後に反転させて第2の被加工物1BにX方向の切断面(スクライブ亀裂5b)を深く生成し、その後に、第2の被加工物1BにY方向の切断面(スクライブ亀裂5b)を更に深く生成すれば、従来、スクライブが直交する箇所に必要であつたクラック生成を必要とせずにスクライブをすることができるので、簡易な構成にすることができる。つまり、図6(f)で浅いスクライブに交差する深いスクライブをY方向に生成する際には、深いスクライブを生成する際の交差個所にクラック生成を必要としない。勿論、第1の被加工物1Aのスクライブ亀裂5bAと第2の被加工物1Bのスクライブ亀裂5bBとは、平面視で同一個所として重なつている。
被加工物1A,1Bの厚さにもよるが、切断面(スクライブ亀裂5b)が各被加工物1A,1Bの裏面にまで伸展すれば、加工予定線2b上に進行方向前側から順次に加熱領域3、冷却領域4a及び再加熱領域5aを生成させながら、加熱領域3、冷却領域4a及び再加熱領域5aと被加工物1とに相対移動を与えることで、被加工物1A,1Bを完全に分断することが可能になる。被加工物1A,1Bが分断されれば、(もし分断する位置にシール剤があれば)薄く軟質のシール剤1Cは容易にちぎれる。図6(f)に示すようにY方向のスクライブ亀裂5bを第1,第2の被加工物1A,1Bに裏面にまで伸展させて生成すれば、格別のブレイク力を作用させることなく、被加工物1をY方向に分断させることが可能である。
切断面(スクライブ亀裂5b)の伸展によつては被加工物1を完全に切断させない場合には、その後、ブレイク装置57に搬送し、次工程として被加工物1にブレイク力を作用させ、被加工物1を切断面(スクライブ亀裂5b)に案内させて切断する(図6(g))。このとき、ブレイク力は、深いスクライブ亀裂5bを生成した第2の被加工物1Bの側つまり上側から作用させる。図5に示す第1の被加工物1Aに1本の比較的浅い切断面(スクライブ亀裂5bA)のみをX方向に生成し、第2の被加工物1Bに1本の比較的深い切断面(スクライブ亀裂5bB)のみを上側からX方向に生成した状態で、X方向に延在する上側からの比較的小さなブレイク力の押圧作用により、下側の第1の被加工物1Aの下側の浅いスクライブ亀裂5bAから亀裂が進展し、第1の被加工物1Aが割断された後、対応する個所に深いスクライブ亀裂5bBを生成した第2の被加工物1Bも割断される。従つて、切断面(スクライブ亀裂5b)の伸展のみによつては被加工物1を完全に切断させない場合には、スクライブ亀裂5bA,5bB上への同方向に延在する上側からの比較的小さなブレイク力の押圧作用により、第1の被加工物1Aを割断させた後、同様に第2の被加工物1Bを割断させることができる。このため、ブレイク力は、少なくとも1方向(X方向)にのみ延在させて作用させればよい。図6(g)は、Y方向は深いスクライブ亀裂5bA,5bBの生成のみで割断し、X方向のみをブレイク力の作用によつて割断する状態を示す。かくして、図6(h)に示すように複数個(図上では4個)の部材を得ることができる。
このように、ステージ6上の被加工物1の第1,第2の被加工物1A,1Bのそれぞれの対応個所に線状の加工予定線2bに沿つてスクライビングし、スクライブ線を成長させたスクライブ亀裂5bを所定の深さに形成するとき、第2の被加工物1Bに生成するスクライブ亀裂5bの深さよりも第1の被加工物1Aに生成するスクライブ亀裂5bの深さを浅くし、第2の被加工物1Bに上側から機械的作用力(ブレイク力)を加えて組合せ体の第1,第2の被加工物1A,1Bを切断し、複数枚の部材を得る。
更に、被加工物1の第1,第2の被加工物1A,1Bを完全に分断させずに、スクライブ亀裂5bの深さを所望する所定の深さで止めるメリットについて説明する。
パネルからなる被加工物1を最後には所定形状の複数のパネル(部材)に細かく分断する際、レーザー光11,21の照射によつて完全に分断してバラバラにするより、スクライブ線を成長させたスクライブ亀裂5bの深さを所望する途中で止めて一部を残して一体化させたままとし、搬送機55及び第3のロボット56で被加工物1を移送し、後工程のブレイク装置57でバラバラにする方がハンドリングしやすい場合がある。しかしながら、スクライブ亀裂5bが深過ぎる場合には、被加工物1の次工程へのロボット52,54,56及び搬送機55による移送途中や反転機53などのハンドリング時にスクライブ亀裂5bが進行し、被加工物1が不用意に分断されることがあり、逆にスクライブ亀裂5bが浅過ぎる場合、後工程のブレイク装置57で分断させ難くなり、一体化させることがかえつて手間になることがある。
その場合、ブレイク装置57での分断工程まで、少なくともX方向に切断されることなく被加工物1が一体化を維持するように、1枚の被加工物1の場所に応じてスクライビング深さ(スクライブ亀裂5b)を変えておけば、最適なハンドリングひいては能率的な処理が可能となる。つまり、ブレイク装置57に送られた第1の被加工物1Aのスクライブ亀裂5bAの深さが均一に生成され、かつ、ブレイク装置57に送られた第2の被加工物1Bのスクライブ亀裂5bBの深さが均一に生成されている状態にあれば、ブレイク装置57において作用させる分断力つまり第2の被加工物1Bの側からの機械的作用力を加えて被加工物1を切断するとき、切断が均一に進行し、第1の被加工物1A及び第2の被加工物1Bの切断面が平滑になる。例えば、1枚の被加工物1において、移送途中でスクライブ亀裂5bA,5bBの深さが進行し分断し易い個所はスクライブ亀裂5bA,5bBを浅く形成しておき、分断しにくい個所はスクライブ亀裂5bA,5bBを深く形成しておき、機械的作用力を加えて被加工物1を切断するときに、第1,第2の被加工物1A,1Bのスクライブ亀裂5bA,5bBの深さが均一に生成されている状態にする。これにより、ハンドリングの容易さと後工程での分断の容易さとが良好に両立する。
このため、第1の被加工物1Aに第3の工程で生成するスクライブ亀裂5bAの深さが、被加工物1を第1のロボット52,反転機53,第2のロボット54及び搬送機55を経てブレイク装置57に送る間に第1の被加工物1Aのスクライブ亀裂5bAが成長する分を考慮して生成され、ブレイク装置57に送られた第1の被加工物1Aのスクライブ亀裂5bAの深さが、均一に生成され、かつ、第2の被加工物1Bに第3の工程で生成するスクライブ亀裂5bBの深さが、被加工物1を第2のロボット54(又は52)及び搬送機55を経てブレイク装置57に送る間にスクライブ亀裂5bBが成長する分を考慮して生成され、ブレイク装置57に送られた第2の被加工物1Bのスクライブ亀裂5bBの深さが、均一に生成されている状態にする。但し、ブレイク装置57に送られた第1の被加工物1Aが完全に割断しているように第3の工程で割断させない状態のスクライブ亀裂5bAを生成し、又は、ブレイク装置57に送られた第2の被加工物1Bが完全に割断しているように第3の工程で割断させない状態のスクライブ亀裂5bBを生成することも可能である。つまり、第1,2の被加工物1A,1Bの少なくとも一方に生成するスクライブ亀裂5bA,5bBを、ブレイク装置57に送る間に成長することで完全に割断するように生成することも可能である。勿論、第1,2の被加工物1A,1Bの両方に生成するスクライブ亀裂5bA,5bBをブレイク装置57に送る間に完全に割断するように生成する場合には、ブレイク装置57が不要になるから、割断させない状態のスクライブ亀裂5bA,5bBを生成した被加工物1が、ブレイク装置57又はブレイク装置57に相当する所定位置に送られる間に第1,2の被加工物1A,1Bの少なくとも一方に生成したスクライブ亀裂5bA,5bBが完全に割断するように生成すれば良い。また、上述したように第1,第2のスクライブ装置51A,51Bを共用すれば、第2のスクライブ装置51B及び第2のロボット54を省略することができる。
被加工物1に機械的作用力を加えた当初は、第1の被加工物1Aに引つ張り力が作用し、第2の被加工物1Bに圧縮力が作用することになるが、浅いスクライブ亀裂5bAの1
枚目が比較的容易に割れるため、その後、2枚目にも引つ張り力が作用し、深いスクライブ亀裂5bBの2枚目もスクライブ亀裂5bBに沿つて割断される。
本発明の1実施の形態に係る高脆性非金属材料製の被加工物の加工方法の原理を示す斜視図。 同じくスクライブ装置の全体を示す斜視図。 同じく加工状態を示す説明図。 同じくレーザーエネルギー密度−スクライビング深さの特性を示す線図。 同じく第1の被加工物に1本の比較的浅いスクライブ亀裂のみをX方向に生成し、第2の被加工物に1本の比較的深いスクライブ亀裂のみを上側からX方向に生成した状態を示す斜視図。 同じく被加工物の加工方法の概略を示し、図6(a)は被加工物を示す斜視図、図6(b)は第1の被加工物にX方向のスクライブ亀裂を生成した状態を示す斜視図、図6(c)は第1の被加工物にY方向のスクライブ亀裂を生成した状態を示す斜視図、図6(d)は被加工物を反転させた状態を示す斜視図、図6(e)は第2の被加工物にX方向のスクライブ亀裂を生成した状態を示す斜視図、図6(f)は第2の被加工物にY方向のスクライブ亀裂を生成した状態を示す斜視図、図6(g)は被加工物を割断した状態を示す斜視図、図6(h)は複数の部材を示す斜視図。 同じく被加工物の加工工程を示す概略図。 同じく被加工物を示す断面図。 従来の加工方法を示す斜視図。
符号の説明
1:被加工物
1A:第1の被加工物
1B:第2の被加工物
1C:シール剤
2b:加工予定線
3:加熱領域
4a:冷却領域
4b:亀裂先端
5a:再加熱領域
5b,5bA,5bB:スクライブ亀裂
6:ステージ
10:第1のレーザー発振装置(加熱手段)
11:赤外線レーザー光(第1のレーザー光)
12:ビームエキスパンダー
13:赤外線用ミラー
14:シリンドリカルレンズ
20:第2のレーザー発振装置(再加熱手段)
21:赤外線レーザー光(第2のレーザー光)
22:ビームエキスパンダー
23:赤外線用ミラー
24:シリンドリカルレンズ
30:冷却手段
35:冷却媒体
52:第1のロボット
53:反転機
54:第2のロボット
55:搬送機
57:ブレイク装置

Claims (3)

  1. 高脆性非金属材料製の第1の被加工物(1A)と高脆性非金属材料製の第2の被加工物(1B)とがシール剤(1C)を介在して貼り合わされて被加工物(1)を構成し、該被加工物(1)の可及的にシール剤(1C)が存在しない個所をスクライブ亀裂(5b)に沿つて割断する高脆性非金属材料製の被加工物の加工方法において、
    第1の被加工物(1A)に対し、加熱エネルギーを所定の加熱領域(3)に照射して、加工予定線(2b)に沿つて走査する第1の工程と、前記第1の工程の加熱領域(3)の相対的移動方向の後方に位置する所定の冷却領域(4a)に冷熱エネルギーを照射して、加工予定線(2b)に沿つて走査し、スクライブ線を形成する第2の工程と、前記第2の工程の冷却領域(4a)の相対的移動方向の後方に位置する所定の再加熱領域(5a)に強度が制御された加熱エネルギーを照射して、加工予定線(2b)に沿つて走査する第3の工程とを順次に与え、第1の被加工物(1A)にスクライブ線を成長させたスクライブ亀裂(5bA)を形成し、次いで、被加工物(1)を反転させ、
    第2の被加工物(1B)に対し、加熱エネルギーを所定の加熱領域(3)に照射して、加工予定線(2b)に沿つて走査する第1の工程と、前記第1の工程の加熱領域(3)の相対的移動方向の後方に位置する所定の冷却領域(4a)に冷熱エネルギーを照射して、加工予定線(2b)に沿つて走査し、スクライブ線を形成する第2の工程と、前記第2の工程の冷却領域(4a)の相対的移動方向の後方に位置する所定の再加熱領域(5a)に強度が制御された加熱エネルギーを照射して、加工予定線(2b)に沿つて走査する第3の工程とを順次に与え、第2の被加工物(1B)にスクライブ線を成長させたスクライブ亀裂(5bB)を形成し、
    スクライブ亀裂(5b)を所定の深さに形成するために、再加熱領域(5a)の加熱エネルギーの量を単位面積当たりの加熱エネルギー量(P)として増減調節し、
    第2の被加工物(1B)に生成するスクライブ亀裂(5bB)の深さよりも第1の被加工物(1A)に生成するスクライブ亀裂(5bA)の深さを浅くし、上記反転させた被加工物(1)の第2の被加工物(1B)側から機械的作用力を加えて被加工物(1)の第1,第2の被加工物(1A,1B)を割断し、複数枚の部材を得ることを特徴とする高脆性非金属材料製の被加工物の加工方法。
  2. 高脆性非金属材料製の第1の被加工物(1A)と高脆性非金属材料製の第2の被加工物(1B)とがシール剤(1C)を介在して貼り合わされて被加工物(1)を構成し、該被加工物(1)の可及的にシール剤(1C)が存在しない個所をスクライブ亀裂(5b)に沿つて割断する高脆性非金属材料製の被加工物の加工装置において、
    第1の被加工物(1A)に対し、加熱エネルギーを所定の加熱領域(3)に照射して、加工予定線(2b)に沿つて走査する第1の工程と、前記第1の工程の加熱領域(3)の相対的移動方向の後方に位置する所定の冷却領域(4a)に冷熱エネルギーを照射して、加工予定線(2b)に沿つて走査し、スクライブ線を形成する第2の工程と、前記第2の工程の冷却領域(4a)の相対的移動方向の後方に位置する所定の再加熱領域(5a)に強度が制御された加熱エネルギーを照射して、加工予定線(2b)に沿つて走査する第3の工程とを順次に与え、第1の被加工物(1A)にスクライブ線を成長させたスクライブ亀裂(5bA)を形成し、次いで、被加工物(1)を反転させ、
    第2の被加工物(1B)に対し、加熱エネルギーを所定の加熱領域(3)に照射して、加工予定線(2b)に沿つて走査する第1の工程と、前記第1の工程の加熱領域(3)の相対的移動方向の後方に位置する所定の冷却領域(4a)に冷熱エネルギーを照射して、加工予定線(2b)に沿つて走査し、スクライブ線を形成する第2の工程と、前記第2の工程の冷却領域(4a)の相対的移動方向の後方に位置する所定の再加熱領域(5a)に強度が制御された加熱エネルギーを照射して、加工予定線(2b)に沿つて走査する第3の工程とを順次に与え、第2の被加工物(1B)にスクライブ線を成長させたスクライブ亀裂(5bB)を形成し、
    スクライブ亀裂(5b)を所定の深さに形成するために、再加熱領域(5a)の加熱エネルギーの量を単位面積当たりの加熱エネルギー量(P)として増減調節し、
    第2の被加工物(1B)に生成するスクライブ亀裂(5bB)の深さよりも第1の被加工物(1A)に生成するスクライブ亀裂(5bA)の深さを浅くし、上記反転させた被加工物(1)の第2の被加工物(1B)側から機械的作用力を加えて被加工物(1)の第1,第2の被加工物(1A,1B)を割断し、複数枚の部材を得ることを特徴とする高脆性非金属材料製の被加工物の加工装置。
  3. 前記第1の被加工物(1A)に第3の工程でスクライブ亀裂(5bA)を所定の深さに形成し、かつ、第2の被加工物(1B)に第3の工程でスクライブ亀裂(5bB)を所定の深さに形成するために、
    δ:スクライブ亀裂(5b)の所定深さ、
    δ0 :第2の工程の終了後におけるスクライブ線の深さ、
    P:第3の工程の再加熱領域(5a)の単位面積当たりの加熱エネルギー量、
    A:被加工物(1)の形状特性及び熱特性に依存した比例係数、
    m:m≧1の実数係数として、
    スクライブ亀裂(5b)の深さ特性式δ=δ0 +A・Pm
    を満足するように各第3の工程の再加熱領域(5a)の単位面積当たりの加熱エネルギー量(P)を調整することを特徴とする請求項2の高脆性非金属材料製の被加工物の加工装置。
JP2007090043A 2007-03-30 2007-03-30 高脆性非金属材料製の被加工物の加工方法及びその装置 Pending JP2008246808A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007090043A JP2008246808A (ja) 2007-03-30 2007-03-30 高脆性非金属材料製の被加工物の加工方法及びその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007090043A JP2008246808A (ja) 2007-03-30 2007-03-30 高脆性非金属材料製の被加工物の加工方法及びその装置

Publications (1)

Publication Number Publication Date
JP2008246808A true JP2008246808A (ja) 2008-10-16

Family

ID=39972340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007090043A Pending JP2008246808A (ja) 2007-03-30 2007-03-30 高脆性非金属材料製の被加工物の加工方法及びその装置

Country Status (1)

Country Link
JP (1) JP2008246808A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010071128A1 (ja) * 2008-12-16 2010-06-24 株式会社レミ 脆性材料の分割装置および割断方法
CN109789511A (zh) * 2016-07-25 2019-05-21 幅度系统公司 通过多光束飞秒激光来切割材料的方法和装置
CN110854042A (zh) * 2019-11-12 2020-02-28 苏州迈为科技股份有限公司 太阳能电池裂片方法和系统

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001130921A (ja) * 1999-10-29 2001-05-15 Mitsuboshi Diamond Industrial Co Ltd 脆性基板の加工方法及び装置
JP2002100590A (ja) * 2000-09-22 2002-04-05 Sony Corp 割断装置及びその方法
JP2002144067A (ja) * 2000-10-21 2002-05-21 Samsung Electronics Co Ltd レーザビームを利用した非メタル基板の切断方法及び装置
JP2002346995A (ja) * 2001-05-23 2002-12-04 Samsung Electronics Co Ltd 基板切断用冷媒、これを利用した基板切断方法及びこれを実施するための装置
WO2003013816A1 (en) * 2001-08-10 2003-02-20 Mitsuboshi Diamond Industrial Co., Ltd. Method and device for scribing brittle material substrate
WO2003026861A1 (fr) * 2001-09-21 2003-04-03 Mitsuboshi Diamond Industrial Co., Ltd. Procede pour ecrire sur un substrat de materiau friable et pointe a tracer
JP2003117921A (ja) * 2001-09-29 2003-04-23 Samsung Electronics Co Ltd 非金属基板切断方法
JP2003321234A (ja) * 2000-12-01 2003-11-11 Lg Electronics Inc ガラス切断方法および装置
JP2004035315A (ja) * 2002-07-02 2004-02-05 Mitsuboshi Diamond Industrial Co Ltd 脆性材料基板の分断方法および脆性材料基板分断装置
US6744009B1 (en) * 2002-04-02 2004-06-01 Seagate Technology Llc Combined laser-scribing and laser-breaking for shaping of brittle substrates
JP2006513121A (ja) * 2003-01-06 2006-04-20 ロルゼ システムズ コーポレーション ガラス板切断装置{glass−platecuttingmachine}
JP2008183599A (ja) * 2007-01-31 2008-08-14 Japan Steel Works Ltd:The 高脆性非金属材料製の被加工物の加工方法及びその装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001130921A (ja) * 1999-10-29 2001-05-15 Mitsuboshi Diamond Industrial Co Ltd 脆性基板の加工方法及び装置
JP2002100590A (ja) * 2000-09-22 2002-04-05 Sony Corp 割断装置及びその方法
JP2002144067A (ja) * 2000-10-21 2002-05-21 Samsung Electronics Co Ltd レーザビームを利用した非メタル基板の切断方法及び装置
JP2003321234A (ja) * 2000-12-01 2003-11-11 Lg Electronics Inc ガラス切断方法および装置
JP2002346995A (ja) * 2001-05-23 2002-12-04 Samsung Electronics Co Ltd 基板切断用冷媒、これを利用した基板切断方法及びこれを実施するための装置
WO2003013816A1 (en) * 2001-08-10 2003-02-20 Mitsuboshi Diamond Industrial Co., Ltd. Method and device for scribing brittle material substrate
WO2003026861A1 (fr) * 2001-09-21 2003-04-03 Mitsuboshi Diamond Industrial Co., Ltd. Procede pour ecrire sur un substrat de materiau friable et pointe a tracer
JP2003117921A (ja) * 2001-09-29 2003-04-23 Samsung Electronics Co Ltd 非金属基板切断方法
US6744009B1 (en) * 2002-04-02 2004-06-01 Seagate Technology Llc Combined laser-scribing and laser-breaking for shaping of brittle substrates
JP2004035315A (ja) * 2002-07-02 2004-02-05 Mitsuboshi Diamond Industrial Co Ltd 脆性材料基板の分断方法および脆性材料基板分断装置
JP2006513121A (ja) * 2003-01-06 2006-04-20 ロルゼ システムズ コーポレーション ガラス板切断装置{glass−platecuttingmachine}
JP2008183599A (ja) * 2007-01-31 2008-08-14 Japan Steel Works Ltd:The 高脆性非金属材料製の被加工物の加工方法及びその装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010071128A1 (ja) * 2008-12-16 2010-06-24 株式会社レミ 脆性材料の分割装置および割断方法
CN102239034A (zh) * 2008-12-16 2011-11-09 镭美科技股份有限公司 脆性材料的分割装置及割断方法
KR101404250B1 (ko) 2008-12-16 2014-06-09 가부시키가이샤 레미 취성 재료의 분할 장치 및 할단 방법
JP5562254B2 (ja) * 2008-12-16 2014-07-30 株式会社レミ 脆性材料の分割装置および割断方法
CN109789511A (zh) * 2016-07-25 2019-05-21 幅度系统公司 通过多光束飞秒激光来切割材料的方法和装置
CN110854042A (zh) * 2019-11-12 2020-02-28 苏州迈为科技股份有限公司 太阳能电池裂片方法和系统

Similar Documents

Publication Publication Date Title
JP5113462B2 (ja) 脆性材料基板の面取り方法
JP3923526B2 (ja) 壊れやすい材料の分断方法および装置
TWI529022B (zh) 雷射劃線及分裂薄玻璃之方法
TWI380963B (zh) Method for processing brittle material substrates
TWI490176B (zh) 分離玻璃板材的製程與設備
JP5060880B2 (ja) 脆性材料基板の分断装置および分断方法
JP5314674B2 (ja) 脆性材料基板の加工方法
JP2011246349A (ja) レーザスコアリングにおける亀裂深さの制御
WO2007119740A1 (ja) スクライブ方法、スクライブ装置、及びこの方法または装置を用いて割断した割断基板
JP2008183599A (ja) 高脆性非金属材料製の被加工物の加工方法及びその装置
JP2011230940A (ja) 脆性材料基板の割断方法
JP2009084089A (ja) ガラス切断装置及び方法
WO2010071128A1 (ja) 脆性材料の分割装置および割断方法
JP2005212364A (ja) 脆性材料の割断加工システム及びその方法
JP2006175487A (ja) レーザ切断方法及びその装置
JP2010138046A (ja) 被割断材の加工方法および加工装置
JP4886620B2 (ja) レーザ割断装置及び基板の製造方法
WO2009128315A1 (ja) 脆性材料基板の加工方法
JP5590642B2 (ja) スクライブ加工装置及びスクライブ加工方法
JPH07328781A (ja) 脆性材料の割断方法
JP2007055000A (ja) 非金属材料製の被加工物の切断方法及びその装置
JP5373856B2 (ja) ガラス基板のスクライブ方法
JP2008246808A (ja) 高脆性非金属材料製の被加工物の加工方法及びその装置
KR102241518B1 (ko) 세라믹 절단방법 및 장치
JP2004035315A (ja) 脆性材料基板の分断方法および脆性材料基板分断装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705