JP2008245454A - Power supply method and system for coping at disaster - Google Patents

Power supply method and system for coping at disaster Download PDF

Info

Publication number
JP2008245454A
JP2008245454A JP2007084257A JP2007084257A JP2008245454A JP 2008245454 A JP2008245454 A JP 2008245454A JP 2007084257 A JP2007084257 A JP 2007084257A JP 2007084257 A JP2007084257 A JP 2007084257A JP 2008245454 A JP2008245454 A JP 2008245454A
Authority
JP
Japan
Prior art keywords
power
disaster
load
power source
natural energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007084257A
Other languages
Japanese (ja)
Other versions
JP4719709B2 (en
Inventor
Yasunori Ono
康則 大野
Koichi Chino
耕一 千野
Tomoyuki Uchiyama
倫行 内山
Teruhiro Takizawa
照広 滝沢
Tomoharu Nakamura
知治 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007084257A priority Critical patent/JP4719709B2/en
Publication of JP2008245454A publication Critical patent/JP2008245454A/en
Application granted granted Critical
Publication of JP4719709B2 publication Critical patent/JP4719709B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce costs for the installation and maintenance of equipment necessary for supplying power by making use of natural energy power sources and portable power supplies to stably supply power to the variable loads of emergency facilities, or the like, in disaster situations. <P>SOLUTION: In normal situations, power is supplied, by associating a natural energy power source 12 installed in a disaster prevention base 2 with an electric power system 4. At a disaster, premise wiring 10 is isolated from the electric power system 4 and a common load 14 and connected to a load 15 for disasters and portable power regulation equipment 6, as shown in disaster prevention bases A to C. A supervision and control system 30 in the power regulation equipment 6 measures the outputs of a critical load 13, the load 15 for disasters and the natural energy power source 12 generates a control command to the storage battery 31 of the power regulation equipment 6 and an engine generator 32, of which the output can be controlled, in matching with the fluctuations in the outputs. This enables the loads and electric power generation to be balanced, thereby maintaining power qualities, such as voltage and frequency. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、災害時における防災拠点への電力供給方法およびシステムに関する。   The present invention relates to a power supply method and system to a disaster prevention base at the time of a disaster.

ユーラシア大陸の東に位置し、プレートが複雑に入り組む、わが国は、台風や地震などの自然災害を受け易い。特に、大地震の場合は、ライフラインが完全に停止し、比較的復旧が早い、電気の供給においても復旧には1〜2週間程度を要するものと推定される。従って、大地震の際に電気をはじめとする、ライフラインをいかに供給するかが重要な課題になっている。   Located in the east of the Eurasian Continent, Japan is prone to natural disasters such as typhoons and earthquakes, where plates are complicated. In particular, in the case of a large earthquake, it is estimated that the lifeline is completely stopped and the recovery is relatively quick, and it takes about 1 to 2 weeks for the recovery in the electricity supply. Therefore, how to supply lifelines such as electricity in the event of a major earthquake is an important issue.

電力系統が分断された状態で、避難所等に電力を供給するためには、比較的容量が小さい分散電源を利用することが考えられる。一般には、軽油等を燃料とした、非常用エンジン発電機などを用いることが考えられる。   In order to supply power to a shelter or the like in a state where the power system is divided, it is conceivable to use a distributed power source having a relatively small capacity. In general, it is conceivable to use an emergency engine generator using light oil or the like as fuel.

また、分散電源として、太陽光発電や風力発電などの自然エネルギー電源を用いることも考えられる。特許文献1では、自然エネルギー電源や蓄電池の充放電を制御して負荷に電力を供給する方法が開示されている。   It is also possible to use a natural energy power source such as solar power generation or wind power generation as a distributed power source. Patent Document 1 discloses a method of supplying power to a load by controlling charging / discharging of a natural energy power source or a storage battery.

一方、特許文献2では、外部系統と連系する分散電源設備において、外部系統の情報と需要家の情報と双方向通信するコントローラを用いて、外部系統事故時にも重要負荷に分散電源から安定に供給する方法が開示されている。   On the other hand, in Patent Document 2, in a distributed power supply facility linked to an external system, a controller that performs two-way communication between external system information and customer information is used to stably stabilize the distributed power source from a distributed power source even in the event of an external system failure. A method of delivery is disclosed.

特開2006−230161号公報JP 2006-230161 A 特開2003−319560号公報JP 2003-319560 A

災害時に避難所等に電力を供給するための分散電源として、非常用エンジン発電機は、負荷容量にあった種々の定格出力のものがあり、大地震の時でも比較的影響を受けにくい液体燃料で稼動できる利点がある。しかし、負荷が大きく変わる場合には追従が困難であり、1〜2週間程度の運転を考えると、頻繁な燃料補給が必要になることが懸念される。   As a distributed power source for supplying power to evacuation shelters in the event of a disaster, emergency engine generators have various rated outputs that match the load capacity, and are liquid fuels that are relatively unaffected by large earthquakes. There is an advantage that can be operated in. However, it is difficult to follow when the load changes greatly, and there is a concern that frequent refueling is necessary when driving for about one to two weeks.

太陽光発電や風力発電などの自然エネルギー電源を用いる場合は、燃料の供給は不要であるが、負荷と発電量をバランスせる手段が必要となり、その手段としては、特許文献1で示されているように、蓄電池が用いられる。しかしながら、昼間発電した電力を蓄電池に蓄え、夜間に使用することを考えると、膨大な蓄電池容量が必要となる。更に、例えば太陽光発電において、雨や曇りが続く場合は、発電量自体が不足することも考えられる。   When a natural energy power source such as solar power generation or wind power generation is used, it is not necessary to supply fuel. However, a means for balancing the load and the amount of power generation is required, which is disclosed in Patent Document 1. Thus, a storage battery is used. However, considering that the electric power generated during the daytime is stored in the storage battery and used at night, a huge storage battery capacity is required. Furthermore, for example, in the case of solar power generation, when rain or cloudiness continues, the power generation amount itself may be insufficient.

これに対し、非常用エンジン発電機、自然エネルギー電源、蓄電池を組合せ、特許文献2で示されている外部系統と需要家の情報を双方向するコントローラを用いて制御することにより、重要負荷に電力を供給することが想定される。しかし、通常時には、非常用エンジン発電機、蓄電池は不用であり、発生する可能性が極めて少ない中で、設備を設置し維持するためには、大きな経済的負担が強いられる。   On the other hand, by combining an emergency engine generator, a natural energy power source, and a storage battery, and controlling the external system and customer information shown in Patent Document 2 using a bidirectional controller, power can be supplied to an important load. Is assumed to be supplied. However, during normal times, emergency engine generators and storage batteries are unnecessary, and there is very little possibility that they will be generated, so that a large economic burden is imposed to install and maintain equipment.

本発明の目的は、自然エネルギー電源を利用することにより、平常時にあっては、環境に優しいエネルギー供給に貢献し、災害時にあっては、電力供給に必要な設備の設置や保守のコストを低く抑え、使用燃料を低減した様態で、避難所等の変動する負荷に安定に電力を供給できる方法及びシステムを提供することである。   The purpose of the present invention is to contribute to environmentally friendly energy supply by using a natural energy power source during normal times, and to reduce the installation and maintenance costs necessary for power supply in the event of a disaster. It is to provide a method and a system capable of stably supplying power to a fluctuating load such as an evacuation site in a state where the fuel used is suppressed.

本発明の方法は、災害時に避難所等の防災拠点に電力を供給する災害時対応電力供給方法において、平常時には、防災拠点に設けた自然エネルギー電源を電力系統と連系して重要負荷を含む負荷に電力を供給し、災害時には、接続部は前記防災拠点の構内系統を電力系統から切り離し、前記構内系統に災害時負荷および可搬形の電力調整設備を接続し、前記電力調整設備内の監視制御システムは、前記災害時負荷及び重要負荷と自然エネルギー電源の出力を計測し、それらの変動に合わせ前記電力調整設備内の可搬形電源への制御指令を生成し、負荷と発電のバランスを取り、電圧・周波数等の電力を維持することを特徴とする。   The method of the present invention is a disaster response power supply method for supplying power to a disaster prevention base such as a refuge at the time of a disaster. In normal times, a natural energy power source provided at the disaster prevention base is linked to a power system and includes an important load. Supply power to the load, and in the event of a disaster, the connection unit disconnects the disaster prevention base's premises system from the power system, connects the disaster system's load and portable power conditioning equipment to the premises system, and monitors the power conditioning equipment The control system measures the load at the time of disaster and the important load and the output of the natural energy power source, generates a control command to the portable power source in the power adjustment facility according to the fluctuations, and balances the load and power generation. It is characterized by maintaining power such as voltage and frequency.

前記可搬形電源は蓄電池と出力制御が可能な発電機(エンジン発電機、燃料電池など)を有していて、前記監視制御システムは電力が不足するときに前記発電機への制御指令を生成し、負荷と発電とのバランス取ることを特徴とする。   The portable power source has a storage battery and a generator (engine generator, fuel cell, etc.) capable of output control, and the monitoring control system generates a control command to the generator when power is insufficient. It is characterized by balancing the load and power generation.

本発明のシステムは、災害時に避難所等の防災拠点に電力を供給する災害時対応電力供給システムにおいて、防災拠点の構内系統に自然エネルギー電源と負荷を接続し、平常時には外部の電力系統と接続する一方、災害時には前記構内系統と可搬形の電力調整設備を接続する接続部と、前記電力調整設備は監視制御システムと可搬形電源を備え、前記監視制御システムは負荷と自然エネルギー電源の出力を計測し、その変動に合わせ前記可搬形電源への制御指令を生成し、負荷と発電のバランスを取り、電圧・周波数等の電力を維持する機能を有することを特徴とする。   The system of the present invention is a disaster response power supply system that supplies power to disaster prevention bases such as evacuation shelters in the event of a disaster, connecting a natural energy power source and a load to the premises system of the disaster prevention base, and connecting to an external power system in normal times On the other hand, in the event of a disaster, the connecting part for connecting the on-site system and the portable power conditioning equipment, the power conditioning equipment comprises a supervisory control system and a portable power source, and the supervisory control system outputs the load and the output of the natural energy power source. It has a function of measuring, generating a control command to the portable power source in accordance with the fluctuation, balancing the load and power generation, and maintaining power such as voltage and frequency.

本発明によれば、平常時において防災拠点に自然エネルギー電源を設け、災害時には、防災拠点の構内系統を電力系統から切り離すとともに、構内系統に災害時負荷と可搬形の電力調整設備を接続する。電力調整設備内の監視制御システムは、各負荷と自然エネルギー電源出力を計測し、その変動に合わせ、電力調整設備の蓄電池および出力制御が可能な発電機への制御指令を生成して、負荷と発電のバランスを取るので、電圧・周波数等の電力品質を維持することができる。   According to the present invention, a natural energy power source is provided at a disaster prevention base during normal times, and in the event of a disaster, the on-site system of the disaster prevention base is disconnected from the power system, and the disaster load and portable power adjustment equipment are connected to the on-site system. The supervisory control system in the power conditioning equipment measures each load and the natural energy power output, and generates a control command for the storage battery of the power conditioning equipment and a generator capable of output control in accordance with the fluctuations. Since power generation is balanced, power quality such as voltage and frequency can be maintained.

また災害時において、防災拠点における変動する負荷に対し安定に電力を供給することができる。自然エネルギー電源による電力供給が多い場合は、出力制御が可能な発電機の稼動に必要な電源用の燃料消費を大幅に抑制できる。天候により、自然エネルギー電源による電力供給が少ない場合でも、出力制御が可能な発電機を用いることにより電力の供給信頼性を確保できる。また、可搬形の電力調整設備は、多数の防災拠点の全てに配置する必要はなく、設備コストを抑制できる。更に、その大半を占める平常時においては、電力系統に連系した様態で、自然エネルギー電源による電力供給を行うことにより、社会全体としてのCO2排出削減に資することができる。   Moreover, at the time of a disaster, electric power can be stably supplied with respect to the load which fluctuates in a disaster prevention base. When there is a large amount of power supplied by a natural energy power source, it is possible to greatly suppress the fuel consumption for the power source necessary for the operation of the generator capable of output control. Even when the power supply by the natural energy power supply is small due to the weather, the power supply reliability can be ensured by using the generator capable of controlling the output. Moreover, it is not necessary to arrange portable power adjustment equipment in all of the many disaster prevention bases, and the equipment cost can be suppressed. Furthermore, during normal times, which occupies most of the power, it is possible to contribute to CO2 emission reduction as a whole society by supplying power from a natural energy power source in a manner linked to the power system.

災害時に電力を供給する防災拠点には、自然エネルギー電源を設置する。災害時には、防災拠点の構内系統を外部系統から切り離すとともに、一般負荷も切り離す。そして、災害時に必要となる負荷を構内系統に接続するとともに、設備拠点から防災拠点に移動した可搬形電力調整設備を構内系統に接続することで、災害時の負荷に追従した安定な電力供給を実現できる。   Install a natural energy power source at the disaster prevention base that supplies power during a disaster. In the event of a disaster, the on-site system of the disaster prevention base is disconnected from the external system, and the general load is also disconnected. In addition to connecting the load required at the time of the disaster to the on-site system and connecting the portable power adjustment equipment that has moved from the facility base to the disaster prevention base to the on-site system, stable power supply that follows the load at the time of the disaster can be provided. realizable.

以下に、本発明の一実施形態について図面を参照しながら詳細に説明する。図1は、災害時対応電力供給設備の全体構成図である。指令センタ1から、防災拠点連絡用通信手段7を経由して各防災拠点2に、設備拠点連絡用通信手段8を経由して設備拠点3にそれぞれ指令が送られる。また、防災拠点2および設備拠点3の情報は、指令センタ1内の監視盤9に表示される。防災拠点連絡用通信手段7、設備拠点連絡用通信手段8は、少なくともその一部が無線通信であっても良い。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is an overall configuration diagram of a disaster response power supply facility. A command is sent from the command center 1 to each disaster prevention base 2 via the disaster prevention base communication means 7 and to the equipment base 3 via the equipment base contact communication means 8. Information on the disaster prevention base 2 and the equipment base 3 is displayed on the monitoring panel 9 in the command center 1. At least a part of the communication means 7 for disaster prevention base communication and the communication means 8 for equipment base contact may be wireless communication.

平常時の防災拠点2は、例えば図1における防災拠点Dのように構成されている。構内配電線10には、自然エネルギー電源12、重要負荷13、一般負荷14が接続されるとともに、構内配電線10は配電線4に接続されている。   The disaster prevention base 2 at normal times is configured as a disaster prevention base D in FIG. A natural energy power source 12, an important load 13, and a general load 14 are connected to the local distribution line 10, and the local distribution line 10 is connected to the distribution line 4.

自然エネルギー電源12は、太陽光発電、風力発電、小水力発電等である。これらの電源は、燃料が不要である利点はあるが、出力の変動が大きく、時には、ほとんど発電を行わないという問題点がある。   The natural energy power source 12 is solar power generation, wind power generation, small hydropower generation, or the like. These power supplies have the advantage that no fuel is required, but there is a problem in that output fluctuations are large and power generation is rarely performed.

重要負荷13は、通信機器や安全確保のための照明等である。一般負荷14は、通常の照明のほか、空調機器、映像・電子機器、動力機器等が含まれる。   The important load 13 is a communication device or lighting for ensuring safety. The general load 14 includes air conditioning equipment, video / electronic equipment, power equipment and the like in addition to normal lighting.

一方、災害時には、防災拠点A〜Cに示されるように、構内配電線10は配電線4から切り離されるとともに、一般負荷14も構内配電線10から切り離される。常時接続されている自然エネルギー電源12、重要負荷13に加えて、可搬形電力調整設備6と災害時負荷15が構内配電線10に接続される。構内通信線11は公衆回線5に接続されている。   On the other hand, at the time of a disaster, as shown in the disaster prevention bases A to C, the on-site distribution line 10 is disconnected from the distribution line 4 and the general load 14 is also disconnected from the on-site distribution line 10. In addition to the natural energy power source 12 and the important load 13 that are always connected, the portable power conditioning facility 6 and the disaster load 15 are connected to the on-site distribution line 10. The local communication line 11 is connected to the public line 5.

可搬形電力調整設備6は、設備拠点3から防災拠点2に搬入される。図1の例では、防災拠点A、Bの可搬形電力調整設備6は設備拠点Aから、防災拠点Cの可搬形電力調整設備6は設備拠点Bから搬送されたものである。可搬形電力調整設備6を陸路で搬送できない場合は、空輸することも可能である。可搬形電力調整設備6を、どの設備拠点からどの防災拠点に搬送するかは、指令センタ1の指令に基づいて行われる。   The portable power adjustment equipment 6 is carried into the disaster prevention base 2 from the equipment base 3. In the example of FIG. 1, the portable power conditioning equipment 6 at the disaster prevention bases A and B is transported from the equipment base A, and the portable power regulation equipment 6 at the disaster prevention base C is transported from the equipment base B. If the portable power conditioning equipment 6 cannot be transported by land, it can be transported by air. Whether the portable power adjustment facility 6 is transported from which facility base to which disaster prevention base is performed based on a command from the command center 1.

図2は、可搬形電力調整設備の構成を示すブロック図である。可搬形電力調整設備6は、高速制御ユニット21、補助電源ユニット22、接続部23から構成される。高速制御ユニット21には、監視制御システム30、蓄電池31、調整設備内電力線24、調整設備内通信線25が含まれる。監視制御システム30は、構内配電線10の電力情報を取得し、蓄電池31およびエンジン発電機32に対し最適な目標値ないし出力指令を送信する。   FIG. 2 is a block diagram showing the configuration of the portable power adjustment facility. The portable power adjustment facility 6 includes a high-speed control unit 21, an auxiliary power supply unit 22, and a connection unit 23. The high-speed control unit 21 includes a monitoring control system 30, a storage battery 31, an adjustment facility power line 24, and an adjustment facility communication line 25. The supervisory control system 30 acquires power information of the local distribution line 10 and transmits an optimal target value or output command to the storage battery 31 and the engine generator 32.

補助電源ユニット22には、エンジン発電機32、燃料タンク33、配管26、調整設備内電力線24、調整設備内通信線25及び接続部23が含まれる。なお、燃料電池など出力制御可能な発電機をエンジン発電機に代えて用いても良い。   The auxiliary power supply unit 22 includes an engine generator 32, a fuel tank 33, a pipe 26, an adjustment facility power line 24, an adjustment facility communication line 25, and a connection portion 23. A generator capable of output control such as a fuel cell may be used instead of the engine generator.

接続部23では、各ユニットの調整設備内電力線24どうし、あるいは、調整設備内電力線24と構内配電線10を接続する。同様に、各ユニットの調整設備内通信線25どうし、あるいは、調整設備内通信線25と構内通信線11を接続する。   In the connection part 23, the power line 24 in the adjustment installation of each unit, or the power line 24 in the adjustment installation and the premise distribution line 10 are connected. Similarly, the communication line 25 in the adjustment facility of each unit or the communication line 25 in the adjustment facility and the local communication line 11 are connected.

高速制御ユニット21、補助電源ユニット22は、分割して搬送が可能である。燃料タンク33には、軽油等の燃料が充填されている。天候等の関係で、補助電源のエンジン発電機32を長時間稼動させる場合は、燃料を補給する必要がある。   The high-speed control unit 21 and the auxiliary power supply unit 22 can be divided and transported. The fuel tank 33 is filled with fuel such as light oil. When the engine generator 32 of the auxiliary power source is operated for a long time due to the weather or the like, it is necessary to supply fuel.

図3は調整に必要な通信設備の構成を示すブロック図である。自然エネルギー電源12、重要負荷13、災害時負荷15には、電力・電圧等を計測し、監視制御システム30に送信する監視端末35が設けられている。また、蓄電池31、エンジン発電機32には、電力・電圧等を計測し、監視制御システム30に送信するとともに、同システムからの指令値を受信する、監視制御端末36が設けられている。   FIG. 3 is a block diagram showing a configuration of communication equipment necessary for adjustment. The natural energy power supply 12, the important load 13, and the disaster load 15 are provided with a monitoring terminal 35 that measures electric power and voltage and transmits them to the monitoring control system 30. In addition, the storage battery 31 and the engine generator 32 are provided with a monitoring control terminal 36 that measures electric power, voltage, and the like and transmits the measured electric power and voltage to the monitoring control system 30 and receives a command value from the system.

図4は監視制御システムのハード構成を示すブロック図である。監視制御システム30は、表示装置51、通信装置52、演算装置53、入力装置55、データベース200から構成される。表示装置51は、負荷および発電装置の運転状態や警報等の表示を行う。同表示画面は、防災拠点内の構内通信に接続されたパーソナルコンピュータ(図示していない)でモニタすることができる。演算装置53は、収集した電力情報から、重要負荷13、災害時負荷15のパターン、自然エネルギー電源12の発電パターンを予測し、蓄電池31の指令値(出力電圧、目標とする構内配電線における周波数)、エンジン発電機の指令値(電圧、出力電力)を送信する。入力装置は、オペレータが入力を行う時に用いられる。データベースは、負荷予測や発電パターン予測に用いられるデータを収集するとともに、各機器の運転状況、メンテナンス情報等を格納する。   FIG. 4 is a block diagram showing a hardware configuration of the monitoring control system. The monitoring control system 30 includes a display device 51, a communication device 52, an arithmetic device 53, an input device 55, and a database 200. The display device 51 displays a load, an operating state of the power generation device, an alarm, and the like. The display screen can be monitored by a personal computer (not shown) connected to the on-site communication in the disaster prevention base. The computing device 53 predicts the pattern of the important load 13, the disaster load 15, and the power generation pattern of the natural energy power supply 12 from the collected power information, and the command value (output voltage, frequency in the target on-site distribution line) of the storage battery 31. ), And sends the engine generator command values (voltage, output power). The input device is used when an operator performs input. The database collects data used for load prediction and power generation pattern prediction, and stores the operating status of each device, maintenance information, and the like.

図5は監視制御システムにおける処理機能を示すブロック図である。監視制御システム30の処理は、入力機能110、制御監視機能120、データベース200、運転スケジューリング機能300、需給制御機能400、出力機能130で行われる。   FIG. 5 is a block diagram showing processing functions in the supervisory control system. The processing of the monitoring control system 30 is performed by the input function 110, the control monitoring function 120, the database 200, the operation scheduling function 300, the supply and demand control function 400, and the output function 130.

入力機能110は、負荷および発電設備における計測値を受信する機能である。監視制御機能120はコンピュータの健全性監視、異常時のデータの保存、計測値のデータベースへの格納などの機能である。運転スケジューリング機能300は、負荷予測310、自然エネルギー電源の発電予測320、最適発電計画330からなり、結果を需給制御機能400に渡す機能である。需給制御機能400は、一定時間周期(例えば、3分)で、実時間での計測値を用いて、前記発電計画を見直し、蓄電池31、エンジン発電機32への指令値を生成する。前記指令値は出力機能130により、蓄電池31、エンジン発電機32に設けられた監視制御端末36に送信される。   The input function 110 is a function that receives measurement values in the load and the power generation facility. The monitoring control function 120 is a function for monitoring the soundness of a computer, saving data in the event of an abnormality, storing measured values in a database, and the like. The operation scheduling function 300 includes a load prediction 310, a natural energy power generation prediction 320, and an optimal power generation plan 330, and is a function for passing the result to the supply and demand control function 400. The supply and demand control function 400 reviews the power generation plan using a measurement value in real time at a constant time period (for example, 3 minutes), and generates a command value for the storage battery 31 and the engine generator 32. The command value is transmitted to the monitoring control terminal 36 provided in the storage battery 31 and the engine generator 32 by the output function 130.

図6に監視制御用データベースに格納される主なデータを示す。運転計画用のデータとしては、気象情報(予報値、計測値)、設備運転制約、負荷予測値、発電(自然エネルギー電源)予測値、運転計画値、燃料備蓄量計画値、メンテナンス計画が含まれる。運転実績データとしては、気象実績値、負荷実績値、自然エネルギー電源の発電実績値、その他の電源の発電実績値、蓄電池の運転実績値、設備状態実績、燃料備蓄量、電力品質実績値、メンテナンス実績が含まれる。近年は、防災拠点においてもパソコンなどの使用により一定の電力品質が要求される。   FIG. 6 shows main data stored in the monitoring control database. The data for the operation plan includes weather information (forecast values, measured values), equipment operation constraints, load prediction values, power generation (natural energy power supply) prediction values, operation plan values, fuel reserve plan values, and maintenance plans. . The actual operation data includes the actual weather value, actual load value, actual power generation value of natural energy power supply, actual power generation value of other power sources, actual operation value of storage battery, actual equipment status, fuel reserve, actual power quality value, and maintenance. Includes achievements. In recent years, certain power quality is required even in disaster prevention bases by using personal computers.

図7は運転スケジューリング機能における処理のフロー図である。運転スケジューリング処理は、1日一回、所定の時刻に起動され、翌日の運転計画を策定するものである。翌日の気象情報の取得(501)、関連実績データの取得(502)を行う。取得したデータに基づき、自然エネルギー電源の翌日発電予測(503)、翌日負荷予測(504)を行う。更に、翌日の設備運転制約の取得(505)、燃料タンクにおける燃料備蓄量の取得(506)を行う。   FIG. 7 is a flowchart of processing in the operation scheduling function. The operation scheduling process is started once a day at a predetermined time and formulates an operation plan for the next day. Next day weather information is acquired (501), and related performance data is acquired (502). Based on the acquired data, the next day power generation prediction (503) and the next day load prediction (504) of the natural energy power source are performed. Further, acquisition of facility operation restrictions on the next day (505) and acquisition of fuel reserve in the fuel tank (506) are performed.

翌日最適運転計画は、蓄電池における残量が所定の範囲にあり、燃料消費が最小になるように計画を作成する(507)。運転計画は、蓄電池の充放電出力およびエンジン発電機出力を30分単位で計画するものである。立案した運転計画の妥当性をチェックする(508)。運転計画に問題がある場合は、エラーメッセージを監視画面に表示する。燃料が不足するかどうかを判断し(509)、不足する場合は、燃料追加の要請(510)を行う。更に、翌日運転計画をデータベースに登録し(511)、運転スケジューリングを終了する。   The next day optimum operation plan is created so that the remaining amount in the storage battery is in a predetermined range and the fuel consumption is minimized (507). The operation plan is for planning the charge / discharge output of the storage battery and the engine generator output in units of 30 minutes. The validity of the planned operation plan is checked (508). If there is a problem with the operation plan, an error message is displayed on the monitoring screen. It is determined whether or not the fuel is insufficient (509). If the fuel is insufficient, a request for adding fuel (510) is made. Further, the next day operation plan is registered in the database (511), and the operation scheduling ends.

図8は需給制御機能における処理のフロー図である。需給制御は連続的におこなわれる。運転計画は1日毎に作成されているため、対象となる日が替わったかどうかを判定(601)し、替わった場合は、該当日の運転計画を取得する(602)。制御は、一定の時間間隔で行われるため、当該時間が制御のタイミングかどうかを判定し(603)、制御のタイミングでなければ一定時間待機する(604)。当該時間が制御のタイミングになれば、各電源の発電電力、蓄電池の充放電電力・残量、負荷電力等の計測データを取得する(605)。各設備状態の異常の有無等を取得する(606)。上述の情報に基づき、運転計画に修正を加え指令値を作成する(607)。   FIG. 8 is a flowchart of processing in the supply and demand control function. Supply and demand control is performed continuously. Since the operation plan is created every day, it is determined whether the target day has changed (601), and if it has changed, the operation plan for that day is acquired (602). Since the control is performed at a constant time interval, it is determined whether or not the time is the control timing (603), and if it is not the control timing, the control waits for a predetermined time (604). When the time is the control timing, measurement data such as the generated power of each power source, the charge / discharge power / remaining power of the storage battery, and the load power is acquired (605). The presence / absence of abnormality of each equipment state is acquired (606). Based on the above information, the operation plan is modified to create a command value (607).

修正にあたっては、供給信頼性を優先する。電力供給において、電力品質の確保すなわち、電圧および周波数を一定に保つことは必須であるが、これを実現するためには、総発電電力と負荷における総消費電力を一致させる必要がある。これは、蓄電池の充放電電力を制御することにより可能となるが、制御の期間を通して蓄電池残量を上下限値の中に維持する必要がある。例えば、計測データを評価し、蓄電池残量が計画値より低下している場合には、調整用電源の出力を増加させるような指令値を作成し、電力供給の信頼性を確保する。   In the correction, priority is given to supply reliability. In power supply, it is essential to ensure power quality, that is, to keep the voltage and frequency constant, but in order to achieve this, it is necessary to match the total generated power and the total power consumption in the load. This becomes possible by controlling the charge / discharge power of the storage battery, but it is necessary to maintain the remaining storage battery level within the upper and lower limits throughout the control period. For example, the measurement data is evaluated, and when the remaining amount of the storage battery is lower than the planned value, a command value that increases the output of the power supply for adjustment is created to ensure the reliability of power supply.

次に、作成した指令値の妥当性をチェックする(608)。指令値に問題がある場合は、エラーメッセージを監視画面に表示するともに、指令値としては前回値を与える。該当設備へ指令値を送信する(609)。終了の入力がなされたかどうかを判定し(610)、入力がない場合は上述の処理を繰り返す。   Next, the validity of the created command value is checked (608). If there is a problem with the command value, an error message is displayed on the monitoring screen and the previous value is given as the command value. A command value is transmitted to the corresponding equipment (609). It is determined whether or not an end input has been made (610). If there is no input, the above processing is repeated.

図9は監視制御システムの監視画面の説明図である。負荷については、負荷電力の合計(701)の現在時刻の計測値(702)と次の制御対象となる時刻の予測値(703)が表示される。自然エネルギー電源については、設置されている発電設備毎に(704)、現在時刻の発電電力(705)と次の制御対象となる時刻の予測発電電力(706)が表示される。電力貯蔵については、蓄電池(707)の現在時刻の充放電電力(708)、次の制御対象となる時刻の目標指令値(709)、現在時刻の電池残量(710)、追加貯蔵可能量(711)が表示される。補助電源については、エンジン発電機(712)の現在時刻の発電電力(713)、次の制御対象となる時刻の発電指令値(714)が表示される。さらに、燃料について、現在時刻の備蓄量(715)、燃料の補給依頼量(716)が要期とともに表示される。発電電力については、そのトレンドグラフ(717)が表示される。電力品質については、電圧のトレンドグラフ(718)、周波数のトレンドグラフ(719)が表示される。そのほか、処理の状態や警報などを表示するメッセージ欄(720)が設けられている。   FIG. 9 is an explanatory diagram of a monitoring screen of the monitoring control system. For the load, the measured value (702) of the current time of the total load power (701) and the predicted value (703) of the next time to be controlled are displayed. As for the natural energy power source, for each installed power generation facility (704), the generated power at the current time (705) and the predicted generated power at the time to be the next control target (706) are displayed. For power storage, the charging / discharging power (708) of the storage battery (707) at the current time, the target command value (709) of the time to be the next control target, the remaining battery level (710) at the current time, the additional storage capacity ( 711) is displayed. For the auxiliary power supply, the generated power (713) at the current time of the engine generator (712) and the power generation command value (714) at the next time to be controlled are displayed. Further, for the fuel, the stock amount (715) at the current time and the fuel replenishment request amount (716) are displayed together with the essential period. A trend graph (717) is displayed for the generated power. For power quality, a voltage trend graph (718) and a frequency trend graph (719) are displayed. In addition, a message field (720) for displaying a processing state, an alarm, and the like is provided.

図10は監視制御システムを適用する場合の動作を示すグラフである。監視制御システムの対象となる電源は、自然エネルギー電源(この例では風力発電機)、蓄電池、エンジン発電機である。同グラフは、負荷と自然エネルギー電源出力、エンジン発電機出力の一日の変化を示している。なお、蓄電池は自然エネルギー電源出力と同様の急峻な変動を示すが、見やすくするため同グラフには示していない。   FIG. 10 is a graph showing the operation when the supervisory control system is applied. The power sources that are the targets of the monitoring control system are natural energy power sources (wind generators in this example), storage batteries, and engine generators. The graph shows the daily changes in load, natural energy power output, and engine generator output. The storage battery shows the same steep fluctuation as the natural energy power supply output, but is not shown in the graph for easy viewing.

朝にやや負荷が高くなる他、夕刻から夜にかけて負荷が高くなる。この例では、自然エネルギー電源による発電が少ない午前中にエンジン発電機が動作している。自然エネルギー電源の利用により、燃料を必要とするエンジンの動作時間や発電出力が抑えられていることがわかる。   In addition to a slightly higher load in the morning, the load increases from evening to night. In this example, the engine generator operates in the morning when there is little power generated by the natural energy power source. It can be seen that the operation time and power generation output of the engine that requires fuel are suppressed by using the natural energy power source.

本発明では災害時の電力供給について述べてきたが、自然エネルギー電源を利用するとともに、可搬形電力調整設備を追加することにより、発電と負荷のバランスを取ることが可能になるため、離島や未電化地域への電力供給などにも適用できる。特に、比較的短期間での電力供給システムの構築、運用が可能になる。   In the present invention, power supply at the time of disaster has been described, but it is possible to balance power generation and load by using a natural energy power source and adding a portable power adjustment facility. It can also be applied to power supply to electrified areas. In particular, it becomes possible to construct and operate a power supply system in a relatively short period of time.

災害時対応電力供給設備の全体構成図。The whole block diagram of the power supply equipment corresponding to a disaster. 可搬形電力調整設備の構成を示すブロック図。The block diagram which shows the structure of portable power adjustment equipment. 調整に必要な通信設備の構成を示すブロック図。The block diagram which shows the structure of the communication equipment required for adjustment. 監視制御システムのハード構成を示すブロック図。The block diagram which shows the hardware constitutions of the monitoring control system. 監視制御システムにおける処理機能を示すブロック図。The block diagram which shows the processing function in a monitoring control system. 監視制御用データベースに格納されるデータ構成図。The data block diagram stored in the database for monitoring control. 運転スケジューリング機能における処理のフロー図。The flowchart of the process in an operation scheduling function. 需給制御機能における処理のフロー図。The flowchart of the process in a supply-and-demand control function. 監視制御システムの監視画面の説明図。Explanatory drawing of the monitoring screen of a monitoring control system. 監視制御システムの適用例を示すグラフ。The graph which shows the example of application of a supervisory control system.

符号の説明Explanation of symbols

1…指令センタ、2…防災拠点、3…設備拠点、4…配電線、5…可搬形電力調整設備、6…可搬形電力調節設備、9…監視センタ、10…構内配電線、11…構内通信線、12…自然エネルギー電源、13…重要負荷、14…一般負荷、15…災害時負荷、21…高速制御ユニット、22…補助電源ユニット、23…接続部、24…調節設備内電力線、25…調節設備内通信線、30…監視制御システム、31…蓄電池、32…エンジン発電機、33…燃料タンク、35…監視端末、36…監視制御端末、51…表示装置、52…通信装置、53…演算処理装置、55…入力装置、110…入力機能、120…制御監視機能、130…出力機能、200…データベース、300…運転スケジューリング機能、400…需給制御機能。   DESCRIPTION OF SYMBOLS 1 ... Command center, 2 ... Disaster prevention base, 3 ... Facility base, 4 ... Distribution line, 5 ... Portable power adjustment equipment, 6 ... Portable power adjustment equipment, 9 ... Monitoring center, 10 ... On-site distribution line, 11 ... On-site Communication line, 12 ... Natural energy power supply, 13 ... Important load, 14 ... General load, 15 ... Disaster load, 21 ... High-speed control unit, 22 ... Auxiliary power supply unit, 23 ... Connection part, 24 ... Power line in regulating equipment, 25 ... communication line in adjusting equipment, 30 ... monitoring control system, 31 ... storage battery, 32 ... engine generator, 33 ... fuel tank, 35 ... monitoring terminal, 36 ... monitoring control terminal, 51 ... display device, 52 ... communication device, 53 ... arithmetic processing unit, 55 ... input device, 110 ... input function, 120 ... control monitoring function, 130 ... output function, 200 ... database, 300 ... operation scheduling function, 400 ... supply-demand control function.

Claims (6)

災害時に避難所等の防災拠点に電力を供給する災害時対応電力供給方法において、
平常時には、防災拠点に設けた自然エネルギー電源を電力系統と連系して重要負荷を含む負荷に電力を供給し、
災害時には、接続部は前記防災拠点の構内系統を電力系統から切り離し、前記構内系統に災害時負荷および可搬形の電力調整設備を接続し、
前記電力調整設備内の監視制御システムは、前記災害時負荷及び重要負荷と自然エネルギー電源の出力を計測し、それらの変動に合わせ前記電力調整設備内の可搬形電源への制御指令を生成し、負荷と発電のバランスを取り、電圧・周波数等の電力を維持することを特徴とする災害時対応電力供給方法。
In the disaster response power supply method of supplying power to disaster prevention bases such as evacuation shelters in the event of a disaster,
During normal times, the natural energy power source installed at the disaster prevention base is connected to the power system to supply power to loads including important loads.
In the event of a disaster, the connecting part disconnects the disaster prevention base campus system from the power system, connects the disaster system load and portable power conditioning equipment to the campus system,
The supervisory control system in the power adjustment facility measures the output of the disaster load and the important load and the natural energy power source, generates a control command to the portable power source in the power adjustment facility in accordance with the fluctuations thereof, A disaster response power supply method that balances load and power generation and maintains power such as voltage and frequency.
請求項1において、前記可搬形電源は蓄電池と出力制御が可能な発電機を有していて、前記監視制御システムは電力が不足するときに前記発電機への制御指令を生成し、負荷と発電とのバランス取ることを特徴とする災害時対応電力供給方法。   2. The portable power source according to claim 1, wherein the portable power source includes a storage battery and a generator capable of output control, and the monitoring control system generates a control command for the generator when power is insufficient, A disaster response power supply method characterized by balancing with 災害時に避難所等の防災拠点に電力を供給する災害時対応電力供給システムにおいて、
防災拠点の構内系統に自然エネルギー電源と負荷を接続し、平常時には外部の電力系統と接続する一方、災害時には前記構内系統と可搬形の電力調整設備を接続する接続部と、
前記電力調整設備は監視制御システムと可搬形電源を備え、前記監視制御システムは負荷と自然エネルギー電源の出力を計測し、その変動に合わせ前記可搬形電源への制御指令を生成し、負荷と発電のバランスを取り、電圧・周波数等の電力を維持する機能を有することを特徴とする災害時対応電力供給システム。
In the disaster response power supply system that supplies power to disaster prevention bases such as evacuation shelters in the event of a disaster,
Connecting a natural energy power source and a load to the on-site system of the disaster prevention base, and connecting to an external power system in normal times, while connecting the on-site system and portable power conditioning equipment in the event of a disaster,
The power conditioning equipment includes a supervisory control system and a portable power source. The supervisory control system measures the output of the load and the natural energy power source, generates a control command to the portable power source according to the fluctuation, and generates the load and the power generation. A disaster response power supply system characterized by having a function of maintaining power of voltage, frequency, etc.
請求項3において、前記可搬形電源は蓄電池と出力制御が可能な発電機を有していることを特徴とする災害時対応電力供給システム。   4. The disaster response power supply system according to claim 3, wherein the portable power source includes a storage battery and a generator capable of output control. 請求項3または4において、前記電力調整設備は設備内通信線を有し、防災拠点の構内通信線と接続して前記計測を可能にすることを特徴とする災害時対応電力供給システム。   5. The disaster response power supply system according to claim 3, wherein the power adjustment facility has an in-facility communication line and is connected to a local communication line of a disaster prevention base to enable the measurement. 請求項3、4または5において、前記可搬形の電力調整設備は災害時に前記防災拠点に搬入可能となるように、所定の設備拠点に配置してあることを特徴とする災害時対応電力供給システム。   6. The disaster-responsive power supply system according to claim 3, 4 or 5, wherein the portable power adjustment facility is arranged at a predetermined facility base so that it can be carried into the disaster prevention base at the time of a disaster. .
JP2007084257A 2007-03-28 2007-03-28 Disaster response power supply method and system Expired - Fee Related JP4719709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007084257A JP4719709B2 (en) 2007-03-28 2007-03-28 Disaster response power supply method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007084257A JP4719709B2 (en) 2007-03-28 2007-03-28 Disaster response power supply method and system

Publications (2)

Publication Number Publication Date
JP2008245454A true JP2008245454A (en) 2008-10-09
JP4719709B2 JP4719709B2 (en) 2011-07-06

Family

ID=39916118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007084257A Expired - Fee Related JP4719709B2 (en) 2007-03-28 2007-03-28 Disaster response power supply method and system

Country Status (1)

Country Link
JP (1) JP4719709B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100954604B1 (en) * 2008-10-14 2010-04-26 이원강 Fire Power Protection Type Emergency Generator
JP2011166891A (en) * 2010-02-05 2011-08-25 Chugoku Electric Power Co Inc:The Method for control of power supply system, and the power supply system
CN102891496A (en) * 2011-07-22 2013-01-23 株式会社东芝 Electrical quantity adjusting apparatus, electrical quantity adjusting method, electrical quantity adjusting program and power supply system
JP2013093938A (en) * 2011-10-24 2013-05-16 Toshiba Corp Power storage system
JP2013118722A (en) * 2011-12-01 2013-06-13 Hitachi Ltd Regional energy management method
WO2016195314A1 (en) * 2015-05-29 2016-12-08 장철호 Dual fire prevention and extinguishment device, and execution method therefor
WO2017158669A1 (en) * 2016-03-14 2017-09-21 シャープ株式会社 Power control apparatus, power source system, output control method, and recording medium
JP2019205273A (en) * 2018-05-23 2019-11-28 日新電機株式会社 Power supply system
WO2021200170A1 (en) * 2020-04-01 2021-10-07 川崎重工業株式会社 Energy supply system
CN117117926A (en) * 2023-10-25 2023-11-24 国网江西省电力有限公司经济技术研究院 Power distribution network energy storage configuration method and system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0937485A (en) * 1995-07-18 1997-02-07 Nissin Electric Co Ltd Hybrid power generation system
JPH10150733A (en) * 1996-11-19 1998-06-02 Meidensha Corp Emergency power supply
JPH1141818A (en) * 1997-07-17 1999-02-12 Hitachi Ltd Distributed power generation system
JPH11225448A (en) * 1998-02-06 1999-08-17 Canon Inc Solar power generation system and operation thereof
JP2006158159A (en) * 2004-12-01 2006-06-15 Nippon Galaxy Engineering:Kk Control device to use emergency generator at normal service operation mode and its control method
JP2006230161A (en) * 2005-02-21 2006-08-31 Ntt Facilities Inc Emergency power supply control system and emergency power supply control method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0937485A (en) * 1995-07-18 1997-02-07 Nissin Electric Co Ltd Hybrid power generation system
JPH10150733A (en) * 1996-11-19 1998-06-02 Meidensha Corp Emergency power supply
JPH1141818A (en) * 1997-07-17 1999-02-12 Hitachi Ltd Distributed power generation system
JPH11225448A (en) * 1998-02-06 1999-08-17 Canon Inc Solar power generation system and operation thereof
JP2006158159A (en) * 2004-12-01 2006-06-15 Nippon Galaxy Engineering:Kk Control device to use emergency generator at normal service operation mode and its control method
JP2006230161A (en) * 2005-02-21 2006-08-31 Ntt Facilities Inc Emergency power supply control system and emergency power supply control method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8890358B2 (en) 2008-10-14 2014-11-18 Won Kang Lee Emergency generator power system with reserved fire protection power
KR100954604B1 (en) * 2008-10-14 2010-04-26 이원강 Fire Power Protection Type Emergency Generator
JP2011166891A (en) * 2010-02-05 2011-08-25 Chugoku Electric Power Co Inc:The Method for control of power supply system, and the power supply system
CN102891496A (en) * 2011-07-22 2013-01-23 株式会社东芝 Electrical quantity adjusting apparatus, electrical quantity adjusting method, electrical quantity adjusting program and power supply system
CN102891496B (en) * 2011-07-22 2016-01-20 株式会社东芝 Electricity adjusting device and method, electricity adjustment programme and electric power supply system
JP2013093938A (en) * 2011-10-24 2013-05-16 Toshiba Corp Power storage system
JP2013118722A (en) * 2011-12-01 2013-06-13 Hitachi Ltd Regional energy management method
WO2016195314A1 (en) * 2015-05-29 2016-12-08 장철호 Dual fire prevention and extinguishment device, and execution method therefor
WO2017158669A1 (en) * 2016-03-14 2017-09-21 シャープ株式会社 Power control apparatus, power source system, output control method, and recording medium
JP2019205273A (en) * 2018-05-23 2019-11-28 日新電機株式会社 Power supply system
JP7115029B2 (en) 2018-05-23 2022-08-09 日新電機株式会社 power system
WO2021200170A1 (en) * 2020-04-01 2021-10-07 川崎重工業株式会社 Energy supply system
JP7422216B2 (en) 2020-04-01 2024-01-25 川崎重工業株式会社 energy supply system
CN117117926A (en) * 2023-10-25 2023-11-24 国网江西省电力有限公司经济技术研究院 Power distribution network energy storage configuration method and system
CN117117926B (en) * 2023-10-25 2024-04-09 国网江西省电力有限公司经济技术研究院 Power distribution network energy storage configuration method and system

Also Published As

Publication number Publication date
JP4719709B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JP4719709B2 (en) Disaster response power supply method and system
US10261536B2 (en) Systems and methods for optimizing microgrid power generation and management with predictive modeling
US9847648B2 (en) Hybrid electric generating power plant that uses a combination of real-time generation facilities and energy storage system
US9880580B2 (en) Systems and methods for microgrid power generation management with selective disconnect
US20130046415A1 (en) Programmable power management controller
US20140042811A1 (en) Control device, power control system, and power control method
US20130076140A1 (en) Systems and methods for microgrid power generation and management
US9293948B2 (en) Renewable uninterrupted power supply for critical node infrastructure support
JP2012147621A (en) Blackout relief system
JP2008210586A (en) Operation guidance device of sodium-sulfur battery
JP4986430B2 (en) Inverter
US11070165B2 (en) Autonomous and movable device for generating, storing and distributing electrical power to dedicated movable batteries
KR20140137545A (en) Smart switchgear having energy storage module
JP2021192570A (en) Electric power regulation system, electric power regulation method, and program
AU2017253053B2 (en) Demand monitoring device, demand monitoring method, and demand monitoring program
Flueck et al. Destination: perfection
WO2022236373A1 (en) Energy provision system and method
JP2006230161A (en) Emergency power supply control system and emergency power supply control method
JP2016173689A (en) Energy management system
JP5780989B2 (en) Equipment controller and distributed power supply system
JP7307008B2 (en) Control system and control method for energy storage equipment
KR102222847B1 (en) Hierarchical type power control system
JP2003052127A (en) Network system of cogeneration apparatuses
WO2024053132A1 (en) Device for managing hydrogen supply system, and method for adjusting hydrogen supply
JP2019057035A (en) Operation plan creating device, control device, operation plan creating method and operation plan creating program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees