WO2017158669A1 - Power control apparatus, power source system, output control method, and recording medium - Google Patents

Power control apparatus, power source system, output control method, and recording medium Download PDF

Info

Publication number
WO2017158669A1
WO2017158669A1 PCT/JP2016/057931 JP2016057931W WO2017158669A1 WO 2017158669 A1 WO2017158669 A1 WO 2017158669A1 JP 2016057931 W JP2016057931 W JP 2016057931W WO 2017158669 A1 WO2017158669 A1 WO 2017158669A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power generation
discharge
energization path
value
Prior art date
Application number
PCT/JP2016/057931
Other languages
French (fr)
Japanese (ja)
Inventor
晃浩 和泉
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2016/057931 priority Critical patent/WO2017158669A1/en
Publication of WO2017158669A1 publication Critical patent/WO2017158669A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator

Definitions

  • the present invention relates to a power control device, a power supply system, an output control method, and a recording medium.
  • the present invention relates to a technique suitable for a power supply system that operates a diesel power generation system and a charge / discharge system having a power storage device in cooperation with each other.
  • an object of the present invention is to provide a technique capable of preventing the power generation system from being overloaded when the power generation device is started.
  • a power control apparatus controls a first power system that includes a first power generation device including an engine and is connected to a power load via a current path.
  • a power supply system includes a first power system having a first power generation device including an engine and connected to a power load via an energization path; It is set as the structure provided with the 2nd electric power system which has an electrical storage apparatus and is connected to an electricity supply path, and said electric power control apparatus which controls a 1st electric power system and a 2nd electric power system.
  • a power control method includes a first power system that includes a first power generation device including an engine and is connected to a power load via an energization path. And a step of controlling a second power system having a power storage device and connected to the energization path, wherein the step of controlling the second power system is performed when the first power generator is started.
  • the power storage device is discharged to output discharge power from the second power system to the energization path.
  • a computer-readable recording medium is configured to store a program that causes a computer to execute the above power control method.
  • FIG. 1 is a block diagram illustrating a first configuration example of the power supply system 100.
  • the power supply system 100 is a power supply system that supplies power to the power load L.
  • the power supply system 100 includes a diesel power generation system DGS, an ammeter Mcs, a charge / discharge system BTS, and a controller 1.
  • the diesel power generation system DGS, the charge / discharge system BTS, and the power load L are electrically connected to each other via a current path P and a distribution board (not shown).
  • the power load L is, for example, household appliances, factory equipment, and the like, and consumes power WL supplied from the power supply system 100.
  • the power WL that is supplied to and consumed by the power load L is referred to as power consumption WL.
  • the diesel power generation system DGS is a power system including a plurality of diesel generators DG1, DG2,..., DGn (n is a positive integer of 2 or more), and is a power generation system that functions as a backbone of the power supply system 100.
  • the power supply system 100 can appropriately maintain and adjust power quality such as frequency and voltage.
  • the individual diesel generators DG1, DG2,..., DGn are collectively referred to without distinction, they are simply referred to as a diesel generator DG.
  • the generated power Wg1, Wg2,..., Wgn output from the individual diesel generators DG are also referred to as generated power Wg.
  • FIG. 1 three diesel generators DG1, DG2, and DGn are illustrated.
  • the present invention is not limited to this example, and there may be two or more diesel generators DG.
  • Each diesel generator DG is a generator that consumes fuel such as light oil and generates generated power Wg, and includes, for example, a generator (not shown) and an engine (not shown) that drives the generator. Composed.
  • a generator not shown
  • an engine not shown
  • the generated power Wg of the diesel generator DG is not too low relative to the rated generated power (that is, the maximum value of the generated power Wg). Therefore, the lower limit allowable generated power is set in the diesel generator DG.
  • the lower limit allowable generated power is a lower power threshold of the generated power Wg that is set within a range that can effectively suppress or prevent the occurrence of an increase in emissions in exhaust gas and the occurrence of engine stall, etc. It is obtained by multiplying by the ratio.
  • the predetermined ratio is not particularly limited, but is, for example, about 40 to 50%.
  • the ammeter Mcs is a detector that detects the current value Is of the electric power Ws output from the diesel power generation system DGS to the energization path P, and outputs detection information indicating the detection result to the controller 1.
  • the ammeter Mcs is provided on the energization path P between the diesel power generation system DGS, the charge / discharge system BTS, and the power load L.
  • power Ws is referred to as total output power Ws.
  • the total output power Ws in FIG. 1 is the sum Ws of each generated power Wg output from the diesel generator DG in operation.
  • the sum total of each lower limit allowable generated power of the diesel generator DG in operation is referred to as a lower limit allowable output power. That is, the lower limit allowable output power is a lower power threshold value of the total output power Ws set within a range in which the occurrence of an increase in emissions in exhaust gas and the occurrence of engine stall can be effectively suppressed or prevented.
  • the charge / discharge system BTS is an electric power system including the power storage device BT and the charge / discharge power conditioner 2.
  • the charge / discharge power conditioner 2 is referred to as a charge / discharge PCS (Power Conditioning System) 2.
  • the power storage device BT is an energy storage device that is charge / discharge controlled by the charge / discharge PCS 2 and has a charge / discharge function capable of repeated charging and discharging.
  • the power storage device BT can charge direct-current power supplied from the charge / discharge PCS2, and can discharge the discharged direct-current power to the charge / discharge PCS2 according to the amount of charge.
  • the configuration of the power storage device BT is not particularly limited.
  • power storage device BT may include a secondary battery such as a lithium secondary battery, a nickel hydrogen battery, a nickel cadmium battery, and a lead battery.
  • the power storage device BT may include an electric double layer capacitor.
  • the number of power storage devices BT is not limited to the example shown in FIG. 1 and may be plural.
  • the charge / discharge PCS2 is a power control device that performs charge / discharge control of the power storage device BT based on the control information transmitted from the controller 1, and is provided between the energization path P and the power storage device BT.
  • the charge / discharge PCS 2 converts at least a part of the power flowing through the energization path P into DC power (so-called forward conversion) and supplies it to the power storage device BT.
  • the charge / discharge PCS 2 converts the DC power discharged from the power storage device BT into power (so-called reverse conversion) and outputs it to the energization path P.
  • the power Wa that is input / output to / from the energization path P by the charge / discharge PCS 2 is referred to as charge / discharge power Wa.
  • the positive value of the charge / discharge power Wa indicates the discharge power output from the charge / discharge PCS2 to the energization path P when the power storage device BT is discharged.
  • the negative value of the charge / discharge power Wa indicates the charge power input to the charge / discharge PCS2 from the energization path P when the power storage device BT is charged.
  • This charge / discharge power Wa is controlled based on a command value Ia, which will be described later, transmitted from the controller 1.
  • the charge / discharge PCS2 includes information related to power control (in particular, power conversion amount, power conversion direction, rated value of charge / discharge power Wa in forward conversion and reverse conversion, and the like), and state notification information transmitted from the power storage device BT.
  • the information (for example, the storage capacity, the storage amount, the state of the charge / discharge operation) related to the power storage device BT based on is transmitted to the controller 1.
  • the controller 1 is a power control device that controls a power system of the power supply system 100 (for example, a diesel power generation system DGS, a charge / discharge system BTS), and manages the power in the power supply system 100.
  • the controller 1 includes a display unit 11, an input unit 12, a communication unit 13, a storage unit 14, and a CPU 15.
  • the display unit 11 displays information about the power supply system 100 on a display (not shown).
  • the input unit 12 receives a user input and outputs input information corresponding to the user input to the CPU 15.
  • the communication unit 13 is a communication interface that performs wireless communication or wired communication with the diesel power generation system DGS (here, each diesel generator DG) and the charge / discharge PCS2.
  • the storage unit 14 is a storage medium that holds stored information non-temporarily without supplying power.
  • the storage unit 14 stores various information used by each component (particularly the CPU 15) of the controller 1 and software programs.
  • the CPU 15 is a computer unit that controls each component of the controller 1 using control information, a program, and the like stored in the storage unit 14.
  • the CPU 15 includes a power detection unit 151, a calculation unit 152, a timer 153, a power generation control unit 154, and a power control unit 155 as functional components.
  • the power detection unit 151 detects power in the power supply system 100 based on information transmitted from the diesel power generation system DGS, the ammeter Mcs, and the charge / discharge PCS2. For example, the power detection unit 151 detects the state of the diesel power generation system DGS (for example, the operating diesel generator DG, the number of the diesel power generators DG, and the rated power generation) based on information transmitted from the diesel power generation system DGS. Further, the power detection unit 151 can detect the total output power Ws based on the detection result of the ammeter Mcs and the Ws-Is characteristic.
  • the electric power detection part 151 detects the charging / discharging state of the electrical storage apparatus BT, charging / discharging electric power Wa of charging / discharging PCS2, etc. based on the information transmitted from charging / discharging PCS2.
  • the power detection unit 151 can also detect the power consumption WL based on, for example, the total output power Ws and the charge / discharge power Wa.
  • a detector (not shown) for detecting the power consumption WL may be provided on the energization path P between the power load L, the diesel power generation system DGS, and the charge / discharge system BTS. In this case, the power detection unit 151 can detect the power consumption WL based on the detection result of the detector.
  • the calculation unit 152 is a value setting unit that sets, calculates, and determines various parameters. For example, the calculation unit 152 determines the maximum generated power of the diesel generator DG that is generating power (including that being started) based on the information transmitted from the diesel power generation system DGS, the detection result of the power detection unit 151, and the like. WMg and the maximum output power WMs of the diesel power generation system DGS are calculated. The maximum generated power WMg is the maximum value WMg of the generated power Wg that is output from the starting diesel generator DG. A method for setting the maximum generated power WMg will be described later in detail (see FIGS. 3A to 3D described later).
  • the maximum output power WMs is the maximum value WMs of the total output power Ws that is output from the diesel power generation system DGS.
  • the sum total of the maximum generated power WMg set in the diesel generator DG during operation is the same value as the maximum output power WMs.
  • the calculation part 152 sets the command value Ia for commanding charging / discharging electric power Wa to charging / discharging system BTS.
  • the timer 153 is a timekeeping unit, which measures the current date and time (that is, the current date and time) or the elapsed time from a predetermined time to the current time.
  • the power generation control unit 154 controls the diesel power generation system DGS (and individual diesel generators DG). For example, the power generation control unit 154 determines a diesel generator DG to be operated (that is, power generation) based on the power consumption WL. Further, when the total output power Ws is equal to or greater than the maximum output power WMs, the power generation control unit 154 determines the diesel generator DG to be started from the stopped diesel generators DG and starts the operation. Note that the diesel generator DG to be started is determined so that the lower limit allowable output power is minimized within a range where the maximum output power WMs does not become less than the power consumption WL.
  • the power generation control unit 154 discharges the power storage device BT from the charge / discharge system BT to the power supply path P when the power generation device (diesel generator DG in FIG. 1) of the diesel power generation system DGS is started. (> 0) is output.
  • the power control unit 155 controls the charge / discharge system BTS. Further, the power control unit 155 adjusts the charge / discharge power Wa based on the command value Ia.
  • the power control unit 155 instructs the charge / discharge PCS2 of the charge / discharge system BTS with the command value Ia [A], discharges the power storage device BT, and based on the command value Ia
  • the charge / discharge power Wa (> 0) is output from the charge / discharge PCS2 to the energization path P.
  • the power generation control unit 154 gradually reduces the charge / discharge power Wa (> 0) after a predetermined period has elapsed (that is, after the started diesel generator DG enters a stable operation state), Power is supplied from the power generation system DGS to the power load L.
  • the power control unit 155 causes the power storage device BT to charge a part of the total generated power Ws when the SOC (State of Charge) of the power storage device BT is equal to or less than a predetermined threshold. This charging is performed so that the individual diesel generators DG are not overloaded.
  • FIG. 2 is a flowchart for explaining an example of the command processing of the command value Ia based on the detection result of the ammeter Mcs.
  • the process of FIG. 2 is started when the power supply system 100 is started, and is ended when the operation of the power supply system 100 is stopped, for example.
  • the command value Ia is set to 0 [A].
  • the power generation control unit 154 detects the operating diesel generator DG (S101).
  • the power detection unit 151 detects the total output power Ws of the diesel power generation system DGS (S102), and determines whether the total output power Ws is less than the maximum output power WMs (S103).
  • the calculation unit 152 adds a predetermined addition value ⁇ I1 to the command value Ia [A] in order to increase the charge / discharge power Wa (S104). Then, the process proceeds to S109 described later.
  • the calculation unit 152 subtracts a predetermined subtraction value ⁇ I2 from the command value Ia in order to decrease the charge / discharge power Wa (S105).
  • a calculation unit 152 command is issued to prevent partial input of the total output power Ws from the current path P to the charge / discharge PCS2 (that is, charging to the power storage device BT).
  • the value Ia is set to 0 [A] (S107). Then, the process proceeds to S108.
  • the communication unit 13 transmits the command value Ia to the charge / discharge PCS2 (S108).
  • the charge / discharge PCS2 performs power control of the charge / discharge power Wa based on the command value Ia. Then, the process returns to S101.
  • the maximum generated power WMg can be set in advance by the value input by the user to the controller 1 based on the actual operation and specifications of the diesel generator DG. Alternatively, the maximum generated power WMg may be set based on the setting information when the controller 1 receives the setting information of the parameters used for determining the maximum generated power WMg from the individual diesel generators DG.
  • FIG. 3A is a graph showing a setting example of the maximum generated power WMg.
  • 3B to 3D are graphs showing other setting examples of the maximum generated power WMg.
  • the maximum generated power WMg gradually increases.
  • the maximum generated power WMg is linearly increased with respect to the operation time t in FIG. 3B.
  • the present invention is not limited to this example, and the maximum generated power WMg may be increased nonlinearly with respect to the operation time t.
  • the maximum generated power WMg is set to a constant value.
  • the maximum generated power WMg gradually increases during a period (t1 ⁇ t ⁇ t4) from the time t1 to the time t4 when the predetermined third time has elapsed.
  • the maximum generated power WMg is linearly increased with respect to the operation time t in FIG. 3C.
  • the present invention is not limited to this example, and the maximum generated power WMg may be increased nonlinearly with respect to the operation time t.
  • the maximum generated power WMg is set to a constant value.
  • the maximum generated power WMg is set to a constant value during a period (t1 ⁇ t ⁇ te) from the time point t1 when the diesel generator DG starts to the time point te when the diesel generator DG stops.
  • FIG. 4 is a flowchart for explaining another example of the command processing of the command value Ia based on the detection result of the ammeter Mcs. Note that the process of FIG. 4 is started when the diesel generator DG is newly started. Further, at the start of the process of FIG. 4, the command value Ia is set to 0 [A]. Further, the controller 1 receives from the diesel generator DG that starts parameter setting information used for determining the maximum generated power WMg. This parameter is, for example, the rated generated power (so-called power generation capacity) in the diesel generator DG to be started and the power generation characteristics at the time of start (such as an increase rate of the generated power Wg).
  • This parameter is, for example, the rated generated power (so-called power generation capacity) in the diesel generator DG to be started and the power generation characteristics at the time of start (such as an increase rate of the generated power Wg).
  • the power generation control unit 154 determines to start a new diesel generator DG based on the total output power Ws and the like (S201).
  • the calculation unit 152 determines the discharge output period Tch of the command value Ia and the charge / discharge power Wa (> 0) based on the setting information (S202).
  • the command value Ia is set to a constant value.
  • the discharge output period Tch is a period in which the charging / discharging PCS2 outputs a constant value of charging / discharging power Wa based on the command value Ia to the energizing path P, starting from the time point t1 when the diesel generator DG starts.
  • the communication unit 13 transmits the command value Ia determined by the calculation unit 152 to the charge / discharge PCS2 (S203). Then, the timer 153 starts measuring time related to the discharge output period Tch (S204).
  • the timer 153 determines whether or not the discharge output period Tch has elapsed since the time measurement in S204 was started (S205). If the discharge output period Tch has not elapsed (NO in S205), the process returns to S201.
  • the power control device 1 includes the first power generation device DG including an engine (not shown) and is connected to the power load L via the current path P.
  • the power control unit 155 includes the first power generation unit 155.
  • the power supply system 100 also includes a first power generation device DG including an engine (not shown) and a first power system DGS that is connected to the power load L via a current path P, and a power storage device BT.
  • the second power system BT connected to the energization path P and the power control apparatus 1 that controls the first power system DGS and the second power system BTS are configured.
  • the power control method includes a step of controlling a first power system DGS having a first power generation device DG including an engine (not shown) and connected to the power load L via the energization path P; And controlling the second power system BTS connected to the energization path P with the BT, and the step of controlling the second power system BTS is performed when the first power generator DG is started.
  • the apparatus BT is discharged to include a step of outputting the discharge power Wa (> 0) from the second power system BTS to the energization path P.
  • the power control apparatus 1 is configured to include a computer-readable recording medium 14 in which a program for causing the computer 15 to execute the above power control method is recorded non-temporarily.
  • the discharge power is discharged from the second power system BT.
  • Wa (> 0) can be output and supplied to the power load L. Therefore, when the first power generator DG is started, the insufficient power can be supplemented with the discharge power Wa, and the first power system DGS can be prevented from being overloaded.
  • the power storage device BT since it is sufficient that the power shortage when starting the first power generation device DG including the engine (not shown) can be discharged from the power storage device BT, the power storage device BT having a relatively small charge capacity can be installed. Therefore, the power storage device BT can be reduced in size.
  • the power generation control unit 154 is configured to determine the first power generation device DG to be generated based on the power consumption WL of the power load L. .
  • the first power generation device DG when the first power generation device DG is started, the first power system (particularly, the first power generation device DG that is already operating) can be prevented from being overloaded.
  • the lower limit allowable output power of the first power system DGS can be lowered with a low cost and simple configuration. That is, the lower limit threshold value of the output power Ws that can be generated within a range that can effectively suppress or prevent the occurrence of problems in the first power generation device DG can be reduced.
  • the power control device 1 sets the maximum value WMg of the generated power Wg output from the first power generation device DG that is generating power, and calculates the sum WMs of the maximum value WMg.
  • the power control unit 155 further includes an output power Ws output from the first power system DGS to the energization path P when the first power generation device DG is started. If the output power Ws is less than the total WMs, the discharge power Wa (> 0) is decreased.
  • the discharge power Wa (> 0) can be adjusted according to the output power Ws of the first power system DGS, and the first configuration can be achieved with a low cost and simple configuration.
  • the load applied to the power system DGS can be adjusted. That is, if the output power Ws is less than the sum WMs of the maximum values WMg, the load on the first power system DGS can be increased by reducing the discharge power Wa (> 0) because there is a margin in the load. Further, if the output power Ws is equal to or greater than the sum WMs of the maximum value WMg, the discharge power Wa (> 0) can be increased to prevent overload, and the load on the first power system DGS can be reduced. Accordingly, it is possible to stabilize the power supply of the first power system DGS by causing the first power generation device DG to generate power within a range in which the occurrence of defects can be effectively suppressed or prevented.
  • the maximum value WMg is set to 0 from the first time point t1 when the first power generator DG is started to the second time point t2 after the first period, and is constant after the second time point t2. (See FIG. 3A). Further, the maximum value WMg is set to 0 from the first time point t1 when the first power generation device DG is started to the second time point t2 after the first period, and increases with time from the second time point t2 (FIG. 3B). Reference). Further, the maximum value WMg may be configured to increase with time from the first time point t1 when the first power generator DG is started (see FIG. 3C). The maximum value WMg may be configured to be a constant value (see FIG. 3D).
  • the maximum value WMg of the generated power Wg can be arbitrarily set according to the actual operating environment of the first power system DGS.
  • the value setting unit 152 further sets the command value Ia for commanding the discharge power Wa (> 0) to the second power system BTS, and the power control unit 155 sets the command value Ia.
  • the discharge power Wa is adjusted based on the above.
  • the discharge power Wa can be adjusted by increasing or decreasing the command value Ia. For example, by reducing the command value Ia, the discharge power Wa (> 0) can be reduced and the load applied to the first power system DGS can be increased. Further, by increasing the command value Ia, the discharge power Wa (> 0) can be increased, and the load applied to the first power system DGS can be reduced.
  • the value setting unit 152 is further configured to set the command value Ia to 0 [A] if the command value Ia is less than 0.
  • the second power system BTS is at least one of the output power Ws.
  • the power storage device BT can be prevented from being charged.
  • the power control unit 155 is configured to output a constant discharge power Wa from the second power system BTS to the energization path P when the first power generation device DG is started.
  • each diesel generator DG is provided with an ammeter Mc.
  • Mc ammeter
  • a configuration different from the first embodiment will be described.
  • symbol is attached
  • FIG. 5 is a block diagram illustrating a second configuration example of the power supply system 100.
  • the diesel power generation system DGS instead of the ammeter Mcs (see FIG. 1) for detecting the current value Is of the total output power Ws, the diesel power generation system DGS has ammeters Mc1, Mc2,. It is provided on each energization path connected to each power generator.
  • ammeters Mc1, Mc2,..., Mcn are respectively provided on the first to nth conduction paths P1 to Pn (n is a positive integer of 2 or more) connected to each diesel generator DG. It has been.
  • the individual ammeters Mc1, Mc2,..., Mcn are collectively referred to without distinction, they are simply referred to as ammeters Mc.
  • Each ammeter Mc is a detector that detects the current Ig of each generated power Wg of each diesel generator DG, and outputs detection information indicating the detection result to the controller 1. That is, the first ammeter Mcs1 detects the current value Ig1 of the generated power Wg1 of the diesel generator DG1 and its flow direction, and the second ammeter Mcs2 detects the current value Ig2 of the generated power Wg2 of the diesel generator DG2 and its flow direction. Is detected. The nth ammeter Mcn detects the current value Ign of the generated power Wgn of the diesel generator DGn.
  • FIG. 6 is a flowchart for explaining an example of command processing of the command value Ia based on the detection result of each ammeter Mc.
  • the process of FIG. 6 is started when the power supply system 100 is started and ended when the operation of the power supply system 100 is stopped, for example.
  • the command value Ia is set to 0 [A].
  • the power generation control unit 154 detects the operating diesel generator DG (S101).
  • the power detection unit 151 detects each generated power Wg of the diesel generator DG that is operating (power generation) (S302), and whether there is a diesel generator DG whose generated power Wg is less than the maximum generated power WMg. Is determined (S303). If there is no diesel generator DG that satisfies Wn ⁇ WMg (NO in S303), the process proceeds to S104 in order to increase the charge / discharge power Wa. On the other hand, if there is a diesel generator DG that satisfies Wn ⁇ WMg (YES in S306), the process proceeds to S105 in order to reduce the charge / discharge power Wa.
  • the processes in S104 to S108 are the same as those in FIG. Therefore, these explanations are omitted.
  • the power control device 1 further includes the value setting unit 152 that sets the maximum value WMg of the generated power Wg output from the first power generation device DG, and the power control unit 155 includes the first
  • the first power generation device DG is started, if there is a first power generation device DG whose generated power Wg is less than the maximum value WMg, the discharge power Wa (> 0) is decreased, and the generated power Wg is less than the maximum value WMg In the absence of the first power generation device DG, the discharge power Wa (> 0) is increased.
  • the discharge power Wa (> 0) is adjusted depending on whether or not there is the first power generation device DG whose generated power Wg is less than the maximum value WMg.
  • the load applied to the first power system DGS can be adjusted with a low cost and simple configuration. That is, if there is the first power generation device DG that satisfies Wg ⁇ WMg, the discharge power Wa (> 0) can be increased in order to prevent overload, and the load on the first power system DGS can be reduced.
  • the load on the first power system DGS can be increased by reducing the discharge power Wa (> 0) because there is a margin in the load. Accordingly, it is possible to stabilize the power supply of the first power system DGS by causing the first power generation device DG to generate power within a range in which the occurrence of defects can be effectively suppressed or prevented.
  • FIG. 7 is a block diagram illustrating a modification of the second configuration example of the power supply system 100.
  • a control panel 3 that drives and controls each diesel generator DG is provided separately from the controller 1.
  • the control panel 3 is a drive control device that drives and controls each diesel generator DG based on control information transmitted from the controller 1.
  • the power generation control unit 154 of the controller 1 controls the diesel power generation system DGS (and individual diesel generators DG) via the control panel 3.
  • the power supply system 100 further includes the drive control device 3 that performs drive control of the first power generation device DG, and the power control device 1 includes the first control device 3 via the drive control device 3. It is set as the structure which controls 1 electric power system DGS.
  • the first power system DGS can be controlled via the drive control device 3.
  • a third embodiment will be described.
  • a power generation system using renewable energy is connected to the power supply system 100.
  • a different structure from 1st or 2nd embodiment is demonstrated.
  • symbol is attached
  • FIG. 8 is a block diagram illustrating a third configuration example of the power supply system 100.
  • the power supply system 100 further includes a photovoltaic power generation system PVS.
  • the solar power generation system PVS can supply, for example, the power Wb output to the energization path P to the power load L together with the total output power Ws.
  • This solar power generation system PVS is connected to the energization path P between the diesel power generation system DGS and the charge / discharge system BTS and the power load L.
  • the photovoltaic power generation system PVS is one in FIG. 8, it is not limited to this illustration, A plurality may be sufficient.
  • the solar power generation system PVS is an example of a power generation system that uses renewable energy, and is a power system that includes the solar cell string PV and the power conditioner 4 for power generation.
  • the power generation power conditioner 4 is referred to as a power generation PCS 4.
  • the solar cell string PV is a power generation device including one or a plurality of solar cell modules connected in series, and is connected to the power generation PCS 4.
  • the solar cell string PV generates power by receiving sunlight, and outputs DC generated power Wp to the power generation PCS 4.
  • the number of solar cell strings PV connected to the power generation PCS 4 is not limited to the example of FIG.
  • the power generation PCS 4 is a power control device that performs power control of the solar power generation system PVS based on the control information transmitted from the controller 1, and is provided between the energization path P and the solar cell string PV.
  • the power generation PCS 4 controls the power generation of the solar cell string PV.
  • the power generation PCS 4 normally controls the operating voltage (operating point) of the solar cell string PV so that the generated power Wp of the solar cell string PV becomes maximum, for example, by MPPT control.
  • the power generation PCS 4 converts the generated power Wp of the solar cell string PV, and outputs the converted power Wb to the energization path P.
  • the power Wb output from the power generation PCS 4 to the energization path P is referred to as converted power Wb.
  • the solar power generation system PVS is connected to the power supply system 100 in which the ammeter Mcs is provided in the energization path P as in the first configuration example in FIG.
  • the present invention is not limited to this example, and is connected to the power supply system 100 (see FIG. 5) in which an ammeter Mc is provided in each of the first to nth conduction paths P1 to Pn, as in the second configuration example. May be.
  • the ammeter Mc may be provided between the energization path P and the charge / discharge PCS2.
  • a power generation device that performs power generation using renewable energy other than sunlight (wind power, hydropower, geothermal, biomass, solar heat, natural energy power generation, waste power generation, etc.) is connected to the power generation PCS 4.
  • renewable energy other than sunlight wind power, hydropower, geothermal, biomass, solar heat, natural energy power generation, waste power generation, etc.
  • a power generation system may be provided.
  • the power supply system 100 having the photovoltaic power generation system PVS is particularly effective when, for example, the generated power Wp of the solar cell string PV suddenly decreases due to shading of sunlight or the like. This is because the decrease in the generated power Wp of the solar cell string PV can be compensated by the increase in the total value of the total output power Ws of the diesel power generation system DGS and the charge / discharge power Wa of the charge / discharge system BTS.
  • the solar cell string PV or the photovoltaic power generation system PVS can be easily added to increase the maximum value of the converted power Wb.
  • the number of operating diesel generators DG is reduced, and the generated power Wg of the operating diesel generator DG is brought close to the lower limit allowable generated power, so that the converted power Wb is given priority from the photovoltaic power generation system PVS to the power load L. Can be supplied to.
  • fuel consumption in the diesel power generation system DGS can be reduced, so that power generation costs in the diesel power generation system DGS can be greatly reduced.
  • the individual diesel generators DG operate at a low load. Can be suppressed or prevented.
  • the photovoltaic power generation system PVS can operate the power load without causing the diesel generator to perform a low load operation.
  • the maximum value of the converted power Wb that can be supplied to L is 80 [kW]. That is, the solar cell string PV or the solar power generation system PVS can be added only within a range where the power generation capacity is 80 [kW] or less.
  • the maximum value of the converted power Wb is set to 120 [kW]. Can be increased up to. That is, the solar cell string PV or the solar power generation system PVS can be added within a power generation capacity of 120 [kW] or less.
  • one diesel generator DG When the converted power Wb of 120 [kW] is preferentially supplied from the photovoltaic power generation system PVS to the power load L, one diesel generator DG is operated with the lower limit allowable generated power (for example, 20 [kW]). The operation of the remaining diesel generator DG may be stopped. In this way, the lower limit allowable output power of the total output power Ws can be minimized without operating the diesel generator DG in a low load state.
  • the power storage device BT may supply the charge / discharge power Wa necessary when starting each individual diesel generator DG. Therefore, the power storage device BT having a relatively small power storage capacity can be installed, and the power storage device BT can be downsized.
  • FIG. 9 is a block diagram showing another third configuration example of the power supply system.
  • the lower limit allowable power generation of the diesel power generation system DGS (that is, the smallest lower limit allowable power generation) is achieved by adopting a configuration in which the power generation PCS 4 has a function of suppressing output and can perform an output suppression instruction by communication.
  • the power generation PCS 4 is instructed to suppress the output, and the output of the first power generator DG is lower than the lower limit.
  • the output of the power generation PCS 4 is suppressed so that the capacity generation power is obtained. Thereby, it becomes possible to add the solar string PV more safely.
  • the power supply system 100 is configured to further include the third power system PVS that has the second power generation device PV and is connected to the power load L via the energization path P. .
  • the third power generation system PVS can be easily added to the power supply system 100, for example, the number of operating first power generation devices DG is reduced and the generated power Wg of the first power generation device DG to be operated is allowed to be a lower limit.
  • the converted power Wb can be preferentially supplied from the third power generation system PVS to the power load L close to the generated power.
  • the lower limit allowable generated power is a lower power threshold value of the generated power Wg that is set within a range in which the occurrence of a malfunction in the first power generator DG can be effectively suppressed or prevented.
  • the second power generation device PV includes the power generation device PV using renewable energy.
  • the third power generation system PVS can perform power generation using renewable energy.
  • a fourth embodiment will be described.
  • a plurality of charge / discharge systems BTS are provided for each diesel generator DG.
  • a configuration different from the first to third embodiments will be described.
  • the same components as those in the first to third embodiments are denoted by the same reference numerals, and the description thereof may be omitted.
  • FIG. 10 is a block diagram illustrating a fourth configuration example of the power supply system 100.
  • each diesel generator DG is provided with charge / discharge systems BTS1, BT2,..., BTSn (n is a positive integer of 2 or more). That is, the diesel generator DG1 is provided with a charge / discharge system BTS1 having a charge / discharge PCS2-1 and a power storage device BT1.
  • the diesel generator DG2 includes a charge / discharge system BTS2 having a charge / discharge PCS2-2 and a power storage device BT2.
  • the diesel generator DG is provided with a charge / discharge system BTSn having a charge / discharge PCS2-n and a power storage device BTn.
  • charge / discharge systems BTS1, BT2,..., BTSn are collectively referred to without distinction, they are simply referred to as charge / discharge systems BTS.
  • the charge / discharge PCS2 and the power storage device BT having specifications suitable for each diesel generator DG can be connected to the diesel generator DG. Furthermore, the diesel generator DG, the charge / discharge PCS2, and the power storage device BT can be sold as a set.
  • the power supply system 100 does not include the solar power generation system PVS in FIG.
  • this invention is not limited to this illustration,
  • the structure provided with one or more photovoltaic power generation systems PVS similar to FIG. 8 or FIG. 9 may be sufficient.
  • a configuration including a power generation system in which a power generation device that generates power using renewable energy other than sunlight (wind power, hydropower, geothermal, biomass, solar power, natural energy power generation, waste power generation, etc.) is connected to the power generation PCS 4 It may be.
  • the charge / discharge system BTS may also be provided in a power generation system (including the solar power generation system PVS) that generates power using renewable energy.
  • the power supply system 100 includes a plurality of second power systems BTS and is provided for each first power generation device DG.
  • the charge / discharge system BTS having specifications suitable for each first power generator DG can be connected to the first power generator DG. Further, the first power generator DG and the charge / discharge system BTS can be sold as a set.
  • a fifth embodiment will be described.
  • a plurality of charge / discharge systems BTS and drive control devices are provided for each diesel generator DG, and are unitized with the diesel generator DG.
  • configurations different from the first to fourth embodiments will be described.
  • the same components as those in the first to fourth embodiments are denoted by the same reference numerals, and the description thereof may be omitted.
  • FIG. 11 is a block diagram illustrating a fifth configuration example of the power supply system 100.
  • the diesel power generation system DGS includes a plurality of diesel power generation units DU1, DU2,..., DUn (n is a positive integer of 2 or more).
  • n is a positive integer of 2 or more.
  • the individual diesel power generation units DU1, DU2,..., DUn are collectively referred to without distinction, they are simply referred to as a diesel power generation unit DU.
  • Each diesel power generation unit DU includes a diesel generator DG, a charge / discharge system BTS, and a control panel 3.
  • Each charge / discharge system BTS includes a power storage device BT and a charge / discharge PCS 2 that performs charge / discharge control of the power storage device BT.
  • Each control panel 3 performs drive control of the diesel generator DG and power control of the charge / discharge PCS2. Further, the power generation control unit 154 of the controller 1 controls the diesel generator DG and the charge / discharge PCS2 via the control panel 3 for each diesel power generation unit DU.
  • the diesel power generation system DGS When the diesel power generation system DGS is configured in this way, if the start command is transmitted to each control panel 3, the generated power Wg and the charge / discharge power Wa (> 0) are output to the current path P during the start of the diesel generator DG. it can. Then, the generated power Wg can be output to the energization path P after the start is completed. Also, such power output switching can be performed automatically. Furthermore, the diesel power generation unit DU can be incorporated into the diesel power generation system DGS on a unit basis, and the same controller 1 can be used before and after the assembly.
  • the power supply system 100 does not include the solar power generation system PVS in FIG.
  • this invention is not limited to this illustration,
  • the structure provided with one or more photovoltaic power generation systems PVS similarly to FIG. 8 or FIG. 9 may be sufficient.
  • a configuration including a power generation system in which a power generation device that generates power using renewable energy other than sunlight (wind power, hydropower, geothermal, biomass, solar power, natural energy power generation, waste power generation, etc.) is connected to the power generation PCS 4 It may be.
  • the charge / discharge system BTS and the drive control device are provided, and these are unitized together with the power generation system. It may be.
  • the power supply system 100 is configured such that the first power generation device DG and the second power system BTS are unitized in each first power generation device DG. Further, in each first power generation device DG, the drive control device 3 that performs drive control of the first power generation device DG is further configured as a unit.
  • the generated power Wg can be output to the energization path P and the second power can be output during the start of the first power generator DG.
  • the electric power Wa (> 0) can be output from the system BTS to the energization path P.
  • the generated power Wg can be output to the energization path P after the start is completed. Also, such power output switching can be automatically performed.
  • the unitized first power generation device DG and second power system BTS (and drive control device 3) can be incorporated into the first power system DGS in units of units, and the same power control device 1 can be installed before and after installation. Can be used.
  • a sixth embodiment will be described.
  • a voltmeter Mvs is provided on the energization path P instead of the ammeter Mcs.
  • configurations different from the first to fifth embodiments will be described.
  • the same components as those in the first to fifth embodiments are denoted by the same reference numerals, and the description thereof may be omitted.
  • FIG. 12 is a block diagram illustrating a sixth configuration example of the power supply system 100.
  • the power system 100 of FIG. 12 includes a voltmeter Mvs in addition to the diesel power generation system DGS, the power storage device BT, the controller 1 and the charge / discharge power conditioner 2.
  • the voltmeter Mvs is a voltage detector that detects the voltage value Vs of the total output power Ws and the voltage frequency fs, and transmits the detection result to the controller 1.
  • the power detection unit 151 detects the voltage value Vs and the voltage frequency fs of the total output power Ws based on the detection result, and further, based on the detection result, the voltage characteristic of the total output power Ws, and the frequency characteristic of the voltage value Vs.
  • the total output power Ws is detected.
  • FIG. 13 is a graph showing an example of the voltage characteristic of the total output power Ws and the frequency characteristic of the voltage. In FIG. 13, the voltage value Vs and the frequency fs of the total output power Ws are larger as the total output voltage Ws is smaller, and are smaller as the total output voltage Ws is larger. Information regarding these characteristics is stored in the storage unit 14, for example.
  • the power generation control unit 154 controls the diesel power generation system DGS using the total output power Ws detected by the power detection unit 151.
  • the power generation control unit 154 may control the diesel power generation system DGS using at least one of the voltage value Vs of the total output power Ws detected by the power detection unit 151 and the frequency fs of the voltage. In this case, if at least one of the actually detected voltage value Vs and the voltage frequency fs is less than the at least one value corresponding to the maximum output power WMs calculated by the calculation unit 152, the power generation control unit 154 Starts a new diesel generator DG and outputs charge / discharge power Wa (> 0) from the charge / discharge system BTS during the start-up.
  • the power control of the diesel power generation system DGS can be performed based on the detection result of the voltmeter Mvs.
  • voltmeter Mvs is provided in the energization path P between the diesel power generation system DGS, the charge / discharge system BTS, and the power load L in FIG.
  • the present invention is not limited to this example, and voltmeters Mv1 to Mvn (n is a positive integer greater than or equal to 2) may be provided in each of the first to nth energization paths P1 to Pn.
  • the power detection unit 151 detects the voltage values Vg1 to Vgn and the voltage frequencies fg1 to fgn of the generated power Wg of the individual diesel generators DG based on the detection results of the voltmeters Mv1 to Mvn, Each generated power Wg is detected based on the detection result and the voltage characteristics and voltage frequency characteristics (not shown) of each generated power Wg.
  • the power supply system 100 does not include the solar power generation system PVS in FIG.
  • the present invention is not limited to this example, and may be one or more configurations including the photovoltaic power generation system PVS as in FIG. 8 or FIG.
  • a configuration including a power generation system in which a power generation device that generates power using renewable energy other than sunlight (wind power, hydropower, geothermal, biomass, solar power, natural energy power generation, waste power generation, etc.) is connected to the power generation PCS 4 It may be.
  • a voltmeter may be provided between the current path P and the power generation system.
  • the power supply system 100 detects the voltage value Vs (or Vg1 to Vgn) or the voltage frequency fs (or fg1 to fgn) of the power Ws (or Wg1 to Wgn) flowing through the energization path P.
  • Voltage controller Mvs (or Mv1 to Mvn) and the power control apparatus 1 includes power Ws (or Wg1 to Wgn) flowing through the energization path P based on the detection result of the voltage detector Mvs (or Mv1 to Mvn). It is set as the structure which detects.
  • the power control of the first power system DGS can be performed based on the detection result of the voltage detector Mvs (or Mv1 to Mvn).
  • the power supply system 100 is provided with a plurality of diesel generators DG, but the present invention is not limited to this example. The present invention is also applicable to the power supply system 100 provided with one diesel generator DG.
  • a watt hour meter may be installed instead of the ammeter Mcs or Mc. In this way, it is possible to directly detect the total output power Ws or each generated power Wg of each diesel generator DG (and the converted power Wb of the photovoltaic power generation system PVS).
  • the functional components 151 to 155 of the CPU 15 are realized by physical components (for example, electric circuits, elements, devices, etc.). May be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

This power source system is provided with: a first power system; a second power system; and a power control apparatus. The first power system has a first power generation apparatus provided with an engine, and is coupled to a power load through a current conducting path. The second power system has a power storage apparatus, and is connected to the current conducting path. The power control apparatus controls the first and second power systems. The power control apparatus has: a power generation control unit that controls the first power system; and a power control unit that controls the second power system. When the first power generation apparatus is to be started, the power control unit causes the second power system to output discharge power to the current conducting path by discharging power from the power storage apparatus.

Description

電力制御装置、電源システム、出力制御方法、及び、記録媒体Power control apparatus, power supply system, output control method, and recording medium
 本発明は、電力制御装置、電源システム、出力制御方法、及び、記録媒体に関する。特に、本発明は、ディーゼル発電システムと蓄電装置を有する充放電システムとを連携して運転する電源システムに好適な技術に関する。 The present invention relates to a power control device, a power supply system, an output control method, and a recording medium. In particular, the present invention relates to a technique suitable for a power supply system that operates a diesel power generation system and a charge / discharge system having a power storage device in cooperation with each other.
 従来、島嶼地域などのオフグリッド地域では、電源システムとして、エンジンなどを駆動して発電するディーゼル発電装置を用いた電源システムが広く導入されている。ディーゼル発電機は、軽負荷で低出力な運転を継続すると、ディーゼル燃料やエンジンオイルが不完全燃焼を起こす。不完全燃焼が起きると、発電効率が低下する。また、燃焼しきれなかった燃料成分は、燃焼機関及び/又は排気機関に残留する。このような状態では、エンジンの運転状態が不安定となって、排ガス中のNOx及び黒煙成分(燃料燃え残り成分)などの排出物が増加したりエンジンが停止(所謂エンジンストール)したりするなどの問題が生じることがある。 Conventionally, in off-grid areas such as island areas, a power supply system using a diesel generator that generates power by driving an engine or the like has been widely introduced as a power supply system. When diesel generators continue to operate at light loads and low output, diesel fuel and engine oil cause incomplete combustion. When incomplete combustion occurs, power generation efficiency decreases. Further, the fuel component that could not be burned remains in the combustion engine and / or the exhaust engine. In such a state, the operating state of the engine becomes unstable, and emissions such as NOx and black smoke component (fuel unburned component) in the exhaust gas increase or the engine stops (so-called engine stall). Such problems may occur.
 このため、たとえば特許文献1の電源システムは、発電機をエンジンで駆動する発電装置と電力負荷との間に消費電力が変更自在な模擬負荷を接続している。そして、発電装置の発電電力を常にエンジンを安定に駆動可能な下限電力閾値以上に維持することにより、エンジン出力が比較的高い状態に発電装置を維持する。これにより、電力負荷での消費電力が少ない場合でも、エンジンの運転状態を安定させて、排ガス中の排出物の増加及びエンジンストールの発生などを抑制している。但し、この電源システムでは、模擬負荷での電力消費により、発電装置が電力負荷での消費電力を越える電力を発電する必要がある。そのため、無駄に燃料を損失してしまう。 For this reason, for example, in the power supply system of Patent Document 1, a simulated load whose power consumption can be freely changed is connected between a power generation device that drives a generator with an engine and a power load. Then, the power generation apparatus is maintained in a relatively high engine output state by constantly maintaining the power generated by the power generation apparatus at or above the lower limit power threshold that can stably drive the engine. As a result, even when the power consumption at the power load is small, the operating state of the engine is stabilized, and an increase in emissions in the exhaust gas and the occurrence of engine stall are suppressed. However, in this power supply system, it is necessary for the power generation device to generate power exceeding the power consumption at the power load due to the power consumption at the simulated load. Therefore, fuel is lost wastefully.
 一方、電源システムに対する負荷が増加してその時点で発電しているディーゼル発電機の発電電力だけでは負荷を賄えなくなった場合、別のディーゼル発電機を始動させる必要がある。 On the other hand, if the load on the power supply system increases and it is not possible to cover the load only with the generated power of the diesel generator that is generating at that time, it is necessary to start another diesel generator.
特開2015-109745号公報JP2015-109745A
 しかしながら、ディーゼル発電機の始動は時間が掛かるため、始動させたディーゼル発電機の発電が安定するまでの間に既に稼働しているディーゼル発電機が過負荷となって出力電圧の低下などにより停止してしまうことがある。このような問題は特許文献1では何ら言及されていない。 However, since it takes time to start the diesel generator, the diesel generator that is already in operation is overloaded until the power generation of the started diesel generator is stabilized, and stops due to a decrease in output voltage. May end up. Such a problem is not mentioned in Patent Document 1.
 本発明は、上記の状況を鑑みて、発電装置の始動が行われる際に発電システムが過負荷となることを防止できる技術を提供することを目的とする。 In view of the above situation, an object of the present invention is to provide a technique capable of preventing the power generation system from being overloaded when the power generation device is started.
 上記目的を達成するために、本発明の一の態様による電力制御装置は、エンジンを備えた第1発電装置を有して電力負荷に通電路を介して接続される第1電力システムを制御する発電制御部と、蓄電装置を有して通電路に接続される第2電力システムを制御する電力制御部と、を備え、電力制御部は、第1発電装置の始動が行われる際、蓄電装置を放電させて第2電力システムから通電路に放電電力を出力させる構成とされる。 In order to achieve the above object, a power control apparatus according to an aspect of the present invention controls a first power system that includes a first power generation device including an engine and is connected to a power load via a current path. A power generation control unit, and a power control unit that controls the second power system that includes the power storage device and is connected to the energization path, the power control unit configured to store the power storage device when the first power generation device is started. And discharging electric power from the second electric power system to the energization path.
 また、上記目的を達成するために、本発明の一の態様による電源システムは、エンジンを備えた第1発電装置を有して電力負荷に通電路を介して接続される第1電力システムと、蓄電装置を有して通電路に接続される第2電力システムと、第1電力システム及び第2電力システムを制御する上記の電力制御装置と、を備える構成とされる。 In order to achieve the above object, a power supply system according to an aspect of the present invention includes a first power system having a first power generation device including an engine and connected to a power load via an energization path; It is set as the structure provided with the 2nd electric power system which has an electrical storage apparatus and is connected to an electricity supply path, and said electric power control apparatus which controls a 1st electric power system and a 2nd electric power system.
 また、上記目的を達成するために、本発明の一の態様による電力制御方法は、エンジンを備えた第1発電装置を有して電力負荷に通電路を介して接続される第1電力システムを制御するステップと、蓄電装置を有して通電路に接続される第2電力システムを制御するステップと、を備え、第2電力システムを制御するステップは、第1発電装置の始動が行われる際、蓄電装置を放電させて第2電力システムから通電路に放電電力を出力させる構成とされる。 In order to achieve the above object, a power control method according to an aspect of the present invention includes a first power system that includes a first power generation device including an engine and is connected to a power load via an energization path. And a step of controlling a second power system having a power storage device and connected to the energization path, wherein the step of controlling the second power system is performed when the first power generator is started. The power storage device is discharged to output discharge power from the second power system to the energization path.
 また、上記目的を達成するために、本発明の一の態様によるコンピュータ読み取り可能な記録媒体は、上記の電力制御方法をコンピュータに実行させるプログラムを非一時的に格納した構成とされる。 In order to achieve the above object, a computer-readable recording medium according to one aspect of the present invention is configured to store a program that causes a computer to execute the above power control method.
 本発明の更なる特徴や利点は、以下に示す実施形態によって一層明らかにされる。 Further features and advantages of the present invention will be further clarified by the embodiments described below.
 本発明によると、発電装置の始動が行われる際に発電システムが過負荷となることを防止できる技術を提供することができる。 According to the present invention, it is possible to provide a technique capable of preventing the power generation system from being overloaded when the power generation device is started.
電源システムの第1構成例を示すブロック図である。It is a block diagram which shows the 1st structural example of a power supply system. 電流計の検出結果に基づく指令値の指令処理の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the command process of the command value based on the detection result of an ammeter. 最大発電電力の設定例を示すグラフである。It is a graph which shows the example of a setting of the maximum generated electric power. 最大発電電力の他の設定例を示すグラフである。It is a graph which shows the other example of a setting of maximum generated electric power. 最大発電電力の他の設定例を示すグラフである。It is a graph which shows the other example of a setting of maximum generated electric power. 最大発電電力の他の設定例を示すグラフである。It is a graph which shows the other example of a setting of maximum generated electric power. 電流計の検出結果に基づく指令値の指令処理の他の一例を説明するためのフローチャートである。It is a flowchart for demonstrating another example of the command process of the command value based on the detection result of an ammeter. 電源システムの第2構成例を示すブロック図である。It is a block diagram which shows the 2nd structural example of a power supply system. 各電流計の検出結果に基づく指令値の指令処理の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the command process of the command value based on the detection result of each ammeter. 電源システムの第2構成例の変形例を示すブロック図である。It is a block diagram which shows the modification of the 2nd structural example of a power supply system. 電源システムの第3構成例を示すブロック図である。It is a block diagram which shows the 3rd structural example of a power supply system. 電源システムの他の第3構成例を示すブロック図である。It is a block diagram which shows the other 3rd structural example of a power supply system. 電源システムの第4構成例を示すブロック図である。It is a block diagram which shows the 4th structural example of a power supply system. 電源システムの第5構成例を示すブロック図である。It is a block diagram which shows the 5th structural example of a power supply system. 電源システムの第6構成例を示すブロック図である。It is a block diagram which shows the 6th structural example of a power supply system. 総出力電力の電圧特性及び電圧の周波数特性の一例を示すグラフである。It is a graph which shows an example of the voltage characteristic of total output electric power, and the frequency characteristic of a voltage.
 以下、本発明の実施形態に係る電力制御装置、電源システム、出力制御方法、及び、記録媒体について、図面を参照しながら詳細に説明する。なお、ブロック図を示す図面において、実線は電力線を示し、破線は信号線を示す。 Hereinafter, a power control device, a power supply system, an output control method, and a recording medium according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that in the drawings showing the block diagrams, a solid line indicates a power line, and a broken line indicates a signal line.
<第1実施形態>
 図1は、電源システム100の第1構成例を示すブロック図である。電源システム100は電力負荷Lに電力を供給する電源システムである。図1に示すように、電源システム100はディーゼル発電システムDGS、電流計Mcs、充放電システムBTS、及びコントローラ1を含んで構成されている。ディーゼル発電システムDGS、充放電システムBTS、及び電力負荷Lは、通電路P及び分電盤(不図示)を介して、互いに電気的に接続されている。なお、電力負荷Lは、たとえば家庭内の電化製品、工場の設備装置などであり、電源システム100から供給される電力WLを消費する。なお、以下では、電力負荷Lに供給されて消費される電力WLを消費電力WLと呼ぶ。
<First Embodiment>
FIG. 1 is a block diagram illustrating a first configuration example of the power supply system 100. The power supply system 100 is a power supply system that supplies power to the power load L. As shown in FIG. 1, the power supply system 100 includes a diesel power generation system DGS, an ammeter Mcs, a charge / discharge system BTS, and a controller 1. The diesel power generation system DGS, the charge / discharge system BTS, and the power load L are electrically connected to each other via a current path P and a distribution board (not shown). Note that the power load L is, for example, household appliances, factory equipment, and the like, and consumes power WL supplied from the power supply system 100. Hereinafter, the power WL that is supplied to and consumed by the power load L is referred to as power consumption WL.
 ディーゼル発電システムDGSは、複数のディーゼル発電機DG1、DG2、・・・、DGn(nは2以上の正の整数)を含む電力システムであり、電源システム100の基幹として機能する発電システムである。ディーゼル発電機DGが基幹として機能することにより、電源システム100は周波数や電圧等の電力品質の維持及び調整を適切に行うことができる。なお、以下では、個々のディーゼル発電機DG1、DG2、・・・、DGnを区別せずに総称する場合、単に、ディーゼル発電機DGと呼ぶ。個々のディーゼル発電機DGから出力される発電電力Wg1、Wg2、・・・、Wgnも同様に発電電力Wgと呼ぶ。また、図1では、3台のディーゼル発電機DG1、DG2、DGnを図示している。しかしながら、本発明はこの例示に限定されず、ディーゼル発電機DGは2台以上であればよい。 The diesel power generation system DGS is a power system including a plurality of diesel generators DG1, DG2,..., DGn (n is a positive integer of 2 or more), and is a power generation system that functions as a backbone of the power supply system 100. When the diesel generator DG functions as a backbone, the power supply system 100 can appropriately maintain and adjust power quality such as frequency and voltage. Hereinafter, when the individual diesel generators DG1, DG2,..., DGn are collectively referred to without distinction, they are simply referred to as a diesel generator DG. The generated power Wg1, Wg2,..., Wgn output from the individual diesel generators DG are also referred to as generated power Wg. In FIG. 1, three diesel generators DG1, DG2, and DGn are illustrated. However, the present invention is not limited to this example, and there may be two or more diesel generators DG.
 個々のディーゼル発電機DGは、軽油などの燃料を消費して発電電力Wgを発電する発電装置であり、たとえば発電機(不図示)と該発電機を駆動するエンジン(不図示)とを含んで構成される。ディーゼル発電機DGは低出力な状態で運転すると未燃焼ガスが発生し易くなる。未燃焼ガスが発生すると、排気管から燃焼しなかったオイルが滴ることや、黒煙が多量に発生することがある。このような事態が生じないように、ディーゼル発電機DGの発電電力Wgは、その定格発電電力(すなわち発電電力Wgの最大値)に対して低くし過ぎないことが好ましい。そのため、ディーゼル発電機DGには、下限許容発電電力が設定される。下限許容発電電力は、排ガス中の排出物の増加及びエンジンストールの発生などの発生を有効に抑制又は防止できる範囲内で設定される発電電力Wgの下限の電力閾値であり、定格発電電力に所定の比率を乗じて得られる。所定の比率は、特に限定される趣旨ではないが、たとえば40~50%程度とされる。 Each diesel generator DG is a generator that consumes fuel such as light oil and generates generated power Wg, and includes, for example, a generator (not shown) and an engine (not shown) that drives the generator. Composed. When the diesel generator DG is operated in a low output state, unburned gas is likely to be generated. When unburned gas is generated, oil that has not been burned from the exhaust pipe may drip or a large amount of black smoke may be generated. In order to prevent such a situation from occurring, it is preferable that the generated power Wg of the diesel generator DG is not too low relative to the rated generated power (that is, the maximum value of the generated power Wg). Therefore, the lower limit allowable generated power is set in the diesel generator DG. The lower limit allowable generated power is a lower power threshold of the generated power Wg that is set within a range that can effectively suppress or prevent the occurrence of an increase in emissions in exhaust gas and the occurrence of engine stall, etc. It is obtained by multiplying by the ratio. The predetermined ratio is not particularly limited, but is, for example, about 40 to 50%.
 電流計Mcsは、ディーゼル発電システムDGSから通電路Pに出力される電力Wsの電流値Isを検出する検出器であり、その検出結果を示す検出情報をコントローラ1に出力する。電流計Mcsは、ディーゼル発電システムDGSと充放電システムBTS及び電力負荷Lとの間における通電路P上に設けられている。なお、以下では、電力Wsを総出力電力Wsと呼ぶ。図1における総出力電力Wsは、運転中のディーゼル発電機DGから出力される各発電電力Wgの総和Wsである。また、以下では、運転中のディーゼル発電機DGの各下限許容発電電力の総和を下限許容出力電力と呼ぶ。すなわち、下限許容出力電力は、排ガス中の排出物の増加及びエンジンストールの発生などの発生を有効に抑制又は防止できる範囲内で設定される総出力電力Wsの下限の電力閾値である。 The ammeter Mcs is a detector that detects the current value Is of the electric power Ws output from the diesel power generation system DGS to the energization path P, and outputs detection information indicating the detection result to the controller 1. The ammeter Mcs is provided on the energization path P between the diesel power generation system DGS, the charge / discharge system BTS, and the power load L. Hereinafter, power Ws is referred to as total output power Ws. The total output power Ws in FIG. 1 is the sum Ws of each generated power Wg output from the diesel generator DG in operation. Moreover, below, the sum total of each lower limit allowable generated power of the diesel generator DG in operation is referred to as a lower limit allowable output power. That is, the lower limit allowable output power is a lower power threshold value of the total output power Ws set within a range in which the occurrence of an increase in emissions in exhaust gas and the occurrence of engine stall can be effectively suppressed or prevented.
 充放電システムBTSは、蓄電装置BT及び充放電パワーコンディショナ2を含んで構成される電力システムである。なお、以下では、充放電パワーコンディショナ2を充放電PCS(Power Conditioning System)2と呼ぶ。 The charge / discharge system BTS is an electric power system including the power storage device BT and the charge / discharge power conditioner 2. Hereinafter, the charge / discharge power conditioner 2 is referred to as a charge / discharge PCS (Power Conditioning System) 2.
 蓄電装置BTは、充放電PCS2により充放電制御されるエネルギー貯蔵装置であり、繰り返しの充電及び放電が可能な充放電機能を有する。たとえば蓄電装置BTは、充放電PCS2から供給される直流の電力を充電でき、その蓄電量に応じて放電した直流の電力を充放電PCS2に放電することもできる。なお、蓄電装置BTの構成は特に限定しない。たとえば、蓄電装置BTはリチウム二次電池、ニッケル水素電池、ニッケルカドミウム電池、及び鉛電池などの二次電池を含んでいてもよい。或いは、蓄電装置BTは電気二重層キャパシタなどを含んでいてもよい。また、蓄電装置BTの数は、図1の例示に限定されず、複数であってもよい。 The power storage device BT is an energy storage device that is charge / discharge controlled by the charge / discharge PCS 2 and has a charge / discharge function capable of repeated charging and discharging. For example, the power storage device BT can charge direct-current power supplied from the charge / discharge PCS2, and can discharge the discharged direct-current power to the charge / discharge PCS2 according to the amount of charge. Note that the configuration of the power storage device BT is not particularly limited. For example, power storage device BT may include a secondary battery such as a lithium secondary battery, a nickel hydrogen battery, a nickel cadmium battery, and a lead battery. Alternatively, the power storage device BT may include an electric double layer capacitor. Further, the number of power storage devices BT is not limited to the example shown in FIG. 1 and may be plural.
 充放電PCS2は、コントローラ1から送信される制御情報に基づいて蓄電装置BTの充放電制御を行う電力制御装置であり、通電路P及び蓄電装置BT間に設けられている。たとえば、充放電PCS2は通電路Pを流れる電力の少なくとも一部の電力を直流電力に電力変換(所謂、順変換)して蓄電装置BTに供給する。また、充放電PCS2は蓄電装置BTから放電された直流電力を電力変換(所謂、逆変換)して通電路Pに出力する。以下では、充放電PCS2が通電路Pに対して入出力される電力Waを充放電電力Waと呼ぶ。また、充放電電力Waの正の値は蓄電装置BTが放電する場合に充放電PCS2から通電路Pに出力される放電電力を示す。充放電電力Waの負の値は蓄電装置BTが充電する場合に通電路Pから充放電PCS2に入力される充電電力を示す。この充放電電力Waはコントローラ1から送信される後述の指令値Iaに基づいて制御される。また、充放電PCS2は、電力制御に関する情報(特に、電力変換量、電力変換方向、順変換及び逆変換での充放電電力Waの定格値など)、及び蓄電装置BTから送信される状態通知情報に基づく蓄電装置BTに関する情報(たとえば蓄電容量、蓄電量、充放電動作の状態)などをコントローラ1に送信する。 The charge / discharge PCS2 is a power control device that performs charge / discharge control of the power storage device BT based on the control information transmitted from the controller 1, and is provided between the energization path P and the power storage device BT. For example, the charge / discharge PCS 2 converts at least a part of the power flowing through the energization path P into DC power (so-called forward conversion) and supplies it to the power storage device BT. Further, the charge / discharge PCS 2 converts the DC power discharged from the power storage device BT into power (so-called reverse conversion) and outputs it to the energization path P. Hereinafter, the power Wa that is input / output to / from the energization path P by the charge / discharge PCS 2 is referred to as charge / discharge power Wa. Further, the positive value of the charge / discharge power Wa indicates the discharge power output from the charge / discharge PCS2 to the energization path P when the power storage device BT is discharged. The negative value of the charge / discharge power Wa indicates the charge power input to the charge / discharge PCS2 from the energization path P when the power storage device BT is charged. This charge / discharge power Wa is controlled based on a command value Ia, which will be described later, transmitted from the controller 1. Further, the charge / discharge PCS2 includes information related to power control (in particular, power conversion amount, power conversion direction, rated value of charge / discharge power Wa in forward conversion and reverse conversion, and the like), and state notification information transmitted from the power storage device BT. The information (for example, the storage capacity, the storage amount, the state of the charge / discharge operation) related to the power storage device BT based on is transmitted to the controller 1.
 次に、コントローラ1は、電源システム100の電力システム(たとえばディーゼル発電システムDGS、充放電システムBTS)を制御する電力制御装置であり、電源システム100内の電力を管理する。コントローラ1は、図1に示すように、表示部11と、入力部12と、通信部13と、記憶部14と、CPU15と、を備えている。 Next, the controller 1 is a power control device that controls a power system of the power supply system 100 (for example, a diesel power generation system DGS, a charge / discharge system BTS), and manages the power in the power supply system 100. As shown in FIG. 1, the controller 1 includes a display unit 11, an input unit 12, a communication unit 13, a storage unit 14, and a CPU 15.
 表示部11はディスプレイ(不図示)に電源システム100に関する情報などを表示する。入力部12は、ユーザ入力を受け付け、該ユーザ入力に応じた入力情報をCPU15に出力する。通信部13はディーゼル発電システムDGS(ここでは各ディーゼル発電機DG)及び充放電PCS2と無線通信又は有線通信する通信インターフェースである。 The display unit 11 displays information about the power supply system 100 on a display (not shown). The input unit 12 receives a user input and outputs input information corresponding to the user input to the CPU 15. The communication unit 13 is a communication interface that performs wireless communication or wired communication with the diesel power generation system DGS (here, each diesel generator DG) and the charge / discharge PCS2.
 記憶部14は、電力を供給しなくても格納された情報を非一時的に保持する記憶媒体である。記憶部14は、コントローラ1の各構成要素(特にCPU15)で用いられる様々な情報及びソフトウェアプログラムなどを格納している。 The storage unit 14 is a storage medium that holds stored information non-temporarily without supplying power. The storage unit 14 stores various information used by each component (particularly the CPU 15) of the controller 1 and software programs.
 CPU15は、記憶部14に格納された制御情報及びプログラムなどを用いて、コントローラ1の各構成要素を制御するコンピュータユニットである。CPU15は、機能的な構成要素として、電力検知部151と、算出部152と、タイマ153と、発電制御部154と、電力制御部155と、を有している。 The CPU 15 is a computer unit that controls each component of the controller 1 using control information, a program, and the like stored in the storage unit 14. The CPU 15 includes a power detection unit 151, a calculation unit 152, a timer 153, a power generation control unit 154, and a power control unit 155 as functional components.
 電力検知部151は、ディーゼル発電システムDGS、電流計Mcs、及び充放電PCS2から送信される情報などに基づいて、電源システム100内の電力を検知する。たとえば、電力検知部151は、ディーゼル発電システムDGSから送信される情報に基づいてディーゼル発電システムDGSの状況(たとえば運転中のディーゼル発電機DG及びその台数及び定格発電電力)を検知する。また、電力検知部151は、電流計Mcsの検出結果及びWs-Is特性に基づいて総出力電力Wsを検知することができる。また、電力検知部151は、充放電PCS2から送信される情報に基づいて蓄電装置BTの充放電状態及び充放電PCS2の充放電電力Waなどを検知する。このほか、電力検知部151は、たとえば総出力電力Ws及び充放電電力Waに基づいて、消費電力WLを検知することもできる。或いは、電力負荷Lとディーゼル発電システムDGS及び充放電システムBTSとの間の通電路P上に消費電力WLを検出する検出器(不図示)が設けられてもよい。この場合、電力検知部151は該検出器の検出結果に基づいて消費電力WLを検知することができる。 The power detection unit 151 detects power in the power supply system 100 based on information transmitted from the diesel power generation system DGS, the ammeter Mcs, and the charge / discharge PCS2. For example, the power detection unit 151 detects the state of the diesel power generation system DGS (for example, the operating diesel generator DG, the number of the diesel power generators DG, and the rated power generation) based on information transmitted from the diesel power generation system DGS. Further, the power detection unit 151 can detect the total output power Ws based on the detection result of the ammeter Mcs and the Ws-Is characteristic. Moreover, the electric power detection part 151 detects the charging / discharging state of the electrical storage apparatus BT, charging / discharging electric power Wa of charging / discharging PCS2, etc. based on the information transmitted from charging / discharging PCS2. In addition, the power detection unit 151 can also detect the power consumption WL based on, for example, the total output power Ws and the charge / discharge power Wa. Alternatively, a detector (not shown) for detecting the power consumption WL may be provided on the energization path P between the power load L, the diesel power generation system DGS, and the charge / discharge system BTS. In this case, the power detection unit 151 can detect the power consumption WL based on the detection result of the detector.
 算出部152は様々なパラメータの設定、算出及び決定を行う値設定部である。たとえば、算出部152は、ディーゼル発電システムDGSから送信される情報、及び電力検知部151の検知結果などに基づいて、発電しているディーゼル発電機DG(始動中のものも含む)の最大発電電力WMg、及びディーゼル発電システムDGSの最大出力電力WMsを算出する。なお、最大発電電力WMgは、始動中のディーゼル発電機DGから出力させる発電電力Wgの最大値WMgである。最大発電電力WMgの設定方法は後に詳述する(後述の図3A~図3D参照)。また、最大出力電力WMsは、ディーゼル発電システムDGSから出力させる総出力電力Wsの最大値WMsである。運転中のディーゼル発電機DGに設定される各最大発電電力WMgの総和は最大出力電力WMsと同じ値となる。また、算出部152は、充放電システムBTSに充放電電力Waを指令するための指令値Iaを設定する。 The calculation unit 152 is a value setting unit that sets, calculates, and determines various parameters. For example, the calculation unit 152 determines the maximum generated power of the diesel generator DG that is generating power (including that being started) based on the information transmitted from the diesel power generation system DGS, the detection result of the power detection unit 151, and the like. WMg and the maximum output power WMs of the diesel power generation system DGS are calculated. The maximum generated power WMg is the maximum value WMg of the generated power Wg that is output from the starting diesel generator DG. A method for setting the maximum generated power WMg will be described later in detail (see FIGS. 3A to 3D described later). The maximum output power WMs is the maximum value WMs of the total output power Ws that is output from the diesel power generation system DGS. The sum total of the maximum generated power WMg set in the diesel generator DG during operation is the same value as the maximum output power WMs. Moreover, the calculation part 152 sets the command value Ia for commanding charging / discharging electric power Wa to charging / discharging system BTS.
 タイマ153は、計時部であり、現在日時(すなわち現時点の日付及び時刻)を計時したり所定の時点から現時点までの経過時間を計時したりする。 The timer 153 is a timekeeping unit, which measures the current date and time (that is, the current date and time) or the elapsed time from a predetermined time to the current time.
 発電制御部154はディーゼル発電システムDGS(及び個々のディーゼル発電機DG)を制御する。たとえば、発電制御部154は、運転(すなわち発電)させるディーゼル発電機DGを消費電力WLに基づいて決定する。また、発電制御部154は、総出力電力Wsが最大出力電力WMs以上である場合、始動させるディーゼル発電機DGを停止中のディーゼル発電機DGのうちから決定して運転を開始させる。なお、始動させるディーゼル発電機DGは、最大出力電力WMsが消費電力WL未満にならない範囲において、下限許容出力電力が最小となるように決定される。また、発電制御部154は、ディーゼル発電システムDGSの発電装置(図1ではディーゼル発電機DG)の始動が行われる際、蓄電装置BTを放電させて充放電システムBTから通電路Pに放電電力Wa(>0)を出力させる。 The power generation control unit 154 controls the diesel power generation system DGS (and individual diesel generators DG). For example, the power generation control unit 154 determines a diesel generator DG to be operated (that is, power generation) based on the power consumption WL. Further, when the total output power Ws is equal to or greater than the maximum output power WMs, the power generation control unit 154 determines the diesel generator DG to be started from the stopped diesel generators DG and starts the operation. Note that the diesel generator DG to be started is determined so that the lower limit allowable output power is minimized within a range where the maximum output power WMs does not become less than the power consumption WL. In addition, the power generation control unit 154 discharges the power storage device BT from the charge / discharge system BT to the power supply path P when the power generation device (diesel generator DG in FIG. 1) of the diesel power generation system DGS is started. (> 0) is output.
 電力制御部155は充放電システムBTSを制御する。また、電力制御部155は、指令値Iaに基づいて充放電電力Waを調整する。電力制御部155は、新たにディーゼル発電機DGの始動が行われる際、充放電システムBTSの充放電PCS2に指令値Ia[A]を指令し、蓄電装置BTを放電させて指令値Iaに基づく充放電電力Wa(>0)を充放電PCS2から通電路Pに出力させる。また、発電制御部154は、所定期間が経過した後(すなわち始動させたディーゼル発電機DGが安定した運転状態になった後)、充放電電力Wa(>0)を徐々に低減させて、ディーゼル発電システムDGSから電力負荷Lに電力を供給させる。このほか、電力制御部155は、蓄電装置BTのSOC(State of Charge:充電率)が所定の閾値以下になると、総発電電力Wsの一部を蓄電装置BTに充電させる。なお、この充電は個々のディーゼル発電機DGが過負荷にならないように実施される。 The power control unit 155 controls the charge / discharge system BTS. Further, the power control unit 155 adjusts the charge / discharge power Wa based on the command value Ia. When the diesel generator DG is newly started, the power control unit 155 instructs the charge / discharge PCS2 of the charge / discharge system BTS with the command value Ia [A], discharges the power storage device BT, and based on the command value Ia The charge / discharge power Wa (> 0) is output from the charge / discharge PCS2 to the energization path P. Further, the power generation control unit 154 gradually reduces the charge / discharge power Wa (> 0) after a predetermined period has elapsed (that is, after the started diesel generator DG enters a stable operation state), Power is supplied from the power generation system DGS to the power load L. In addition, the power control unit 155 causes the power storage device BT to charge a part of the total generated power Ws when the SOC (State of Charge) of the power storage device BT is equal to or less than a predetermined threshold. This charging is performed so that the individual diesel generators DG are not overloaded.
 次に、コントローラ1が指令値Ia[A]を決定して充放電PCS2に指令する処理について説明する。図2は、電流計Mcsの検出結果に基づく指令値Iaの指令処理の一例を説明するためのフローチャートである。図2の処理は、たとえば、電源システム100の起動とともに開始され、電源システム100の運転停止と共に終了される。また、処理開始時において指令値Iaは0[A]とされている。 Next, a process in which the controller 1 determines the command value Ia [A] and commands the charge / discharge PCS 2 will be described. FIG. 2 is a flowchart for explaining an example of the command processing of the command value Ia based on the detection result of the ammeter Mcs. The process of FIG. 2 is started when the power supply system 100 is started, and is ended when the operation of the power supply system 100 is stopped, for example. At the start of processing, the command value Ia is set to 0 [A].
 まず、発電制御部154は、運転しているディーゼル発電機DGを検知する(S101)。電力検知部151は、ディーゼル発電システムDGSの総出力電力Wsを検知し(S102)、総出力電力Wsが最大出力電力WMs未満であるか否かを判定する(S103)。Ws<WMsではない場合(S103でNO)、充放電電力Waを増加させるべく、算出部152は指令値Ia[A]に所定の加算値ΔI1を加算する(S104)。そして、処理は後述するS109に進む。 First, the power generation control unit 154 detects the operating diesel generator DG (S101). The power detection unit 151 detects the total output power Ws of the diesel power generation system DGS (S102), and determines whether the total output power Ws is less than the maximum output power WMs (S103). When Ws <WMs is not satisfied (NO in S103), the calculation unit 152 adds a predetermined addition value ΔI1 to the command value Ia [A] in order to increase the charge / discharge power Wa (S104). Then, the process proceeds to S109 described later.
 Ws<WMsである場合(S103でYES)、充放電電力Waを減少させるべく、算出部152は指令値Iaから所定の減算値ΔI2を減算する(S105)。なお、ΔI2は、ΔI1と同じ値であってもよいし、ΔI1とは異なる値であってもよい。ΔI2=ΔI1であれば、指令値Iaの算出処理を簡易化できる。ΔI2≠ΔI1であれば、指令値Iaを所望の方法で設定できる。そして、算出部152は指令値Iaが0[A]未満であるか否かを判定する(S106)。Ia<0ではない場合(S106でNO)、処理はS108に進む。 When Ws <WMs (YES in S103), the calculation unit 152 subtracts a predetermined subtraction value ΔI2 from the command value Ia in order to decrease the charge / discharge power Wa (S105). Note that ΔI2 may be the same value as ΔI1 or a value different from ΔI1. If ΔI2 = ΔI1, the calculation process of the command value Ia can be simplified. If ΔI2 ≠ ΔI1, the command value Ia can be set by a desired method. Then, the calculation unit 152 determines whether or not the command value Ia is less than 0 [A] (S106). If Ia <0 is not satisfied (NO in S106), the process proceeds to S108.
 また、Ia<0である場合(S106でYES)、通電路Pから充放電PCS2への総出力電力Wsの一部の入力(すなわち蓄電装置BTへの充電)を防止するべく、算出部152指令値Iaを0[A]に設定する(S107)。そして、処理はS108に進む。 Further, when Ia <0 (YES in S106), a calculation unit 152 command is issued to prevent partial input of the total output power Ws from the current path P to the charge / discharge PCS2 (that is, charging to the power storage device BT). The value Ia is set to 0 [A] (S107). Then, the process proceeds to S108.
 次に、通信部13は指令値Iaを充放電PCS2に送信する(S108)。そして、充放電PCS2は指令値Iaに基づいて充放電電力Waの電力制御を行う。そして、処理はS101に戻る。 Next, the communication unit 13 transmits the command value Ia to the charge / discharge PCS2 (S108). The charge / discharge PCS2 performs power control of the charge / discharge power Wa based on the command value Ia. Then, the process returns to S101.
 次に、コントローラ1が新たに始動するディーゼル発電機DGの最大発電電力WMgを設定する方法を例示して説明する。最大発電電力WMgは、ディーゼル発電機DGでの実際の動作及び仕様などに基づいて、ユーザがコントローラ1に入力した値により事前に設定できる。或いは、最大発電電力WMgは、コントローラ1が最大発電電力WMgの決定に用いられるパラメータの設定情報を個々のディーゼル発電機DGから受信することにより、該設定情報に基づいて設定されてもよい。図3Aは、最大発電電力WMgの設定例を示すグラフである。図3B~図3Dは、最大発電電力WMgの他の設定例を示すグラフである。 Next, a method for setting the maximum generated power WMg of the diesel generator DG newly started by the controller 1 will be described as an example. The maximum generated power WMg can be set in advance by the value input by the user to the controller 1 based on the actual operation and specifications of the diesel generator DG. Alternatively, the maximum generated power WMg may be set based on the setting information when the controller 1 receives the setting information of the parameters used for determining the maximum generated power WMg from the individual diesel generators DG. FIG. 3A is a graph showing a setting example of the maximum generated power WMg. 3B to 3D are graphs showing other setting examples of the maximum generated power WMg.
 図3Aの設定例では、ディーゼル発電機DGが始動した時点t1から所定の第1時間が経過した時点t2までの期間(t1≦t<t2)において、最大発電電力WMgは0[kW]に設定される。そして、時点t2からディーゼル発電機DGが停止する時点teまでの期間(t2≦t≦te)において、最大発電電力WMgは一定値に設定される。 In the setting example of FIG. 3A, the maximum generated power WMg is set to 0 [kW] in a period (t1 ≦ t <t2) from the time t1 when the diesel generator DG is started to the time t2 when the predetermined first time has elapsed. Is done. And in the period (t2 <= t <= te) from the time t2 to the time te when the diesel generator DG stops, the maximum generated power WMg is set to a constant value.
 図3Bの設定例では、t1≦t<t2の期間では最大発電電力WMg=0[kW]と設定される。時点t2から所定の第2時間が経過した時点t3までの期間(t2≦t≦t3)において、最大発電電力WMgは徐々に増加する。なお、最大発電電力WMgは、図3Bでは運転時間tに対して線形に増加されている。しかしながら、本発明はこの例示に限定されず、最大発電電力WMgは運転時間tに対して非線形に増加されてもよい。そして、時点t3からディーゼル発電機DGが停止する時点teまでの期間(t3≦t≦te)において、最大発電電力WMgは一定値に設定される。 In the setting example of FIG. 3B, the maximum generated power WMg = 0 [kW] is set in the period of t1 ≦ t <t2. In a period from time t2 to time t3 when a predetermined second time has elapsed (t2 ≦ t ≦ t3), the maximum generated power WMg gradually increases. Note that the maximum generated power WMg is linearly increased with respect to the operation time t in FIG. 3B. However, the present invention is not limited to this example, and the maximum generated power WMg may be increased nonlinearly with respect to the operation time t. And in the period (t3 <= t <= te) from the time t3 to the time te when the diesel generator DG stops, the maximum generated power WMg is set to a constant value.
 図3Cの設定例では、時点t1から所定の第3時間が経過した時点t4までの期間(t1≦t≦t4)において、最大発電電力WMgは徐々に増加する。なお、最大発電電力WMgは、図3Cでは運転時間tに対して線形に増加されている。しかしながら、本発明はこの例示に限定されず、最大発電電力WMgは運転時間tに対して非線形に増加されてもよい。そして、時点t4からディーゼル発電機DGが停止する時点teまでの期間(t4≦t≦te)において、最大発電電力WMgは一定値に設定される。 In the setting example of FIG. 3C, the maximum generated power WMg gradually increases during a period (t1 ≦ t ≦ t4) from the time t1 to the time t4 when the predetermined third time has elapsed. Note that the maximum generated power WMg is linearly increased with respect to the operation time t in FIG. 3C. However, the present invention is not limited to this example, and the maximum generated power WMg may be increased nonlinearly with respect to the operation time t. And in the period (t4 <= t <= te) from the time t4 to the time te when the diesel generator DG stops, the maximum generated power WMg is set to a constant value.
 図3Dの設定例では、ディーゼル発電機DGが始動した時点t1からディーゼル発電機DGが停止する時点teまでの期間(t1≦t≦te)において、最大発電電力WMgは一定値に設定される。 3D, the maximum generated power WMg is set to a constant value during a period (t1 ≦ t ≦ te) from the time point t1 when the diesel generator DG starts to the time point te when the diesel generator DG stops.
<第1実施形態の変形例>
 次に、コントローラ1が指令値Iaを決定して充放電PCS2に指令する処理は図2の例示に限定されない。新たな発電装置(たとえばディーゼル発電機DG)の始動が行われる際、指令値Iaは一定値に設定されてもよい。図4は、電流計Mcsの検出結果に基づく指令値Iaの指令処理の他の一例を説明するためのフローチャートである。なお、図4の処理は、新たにディーゼル発電機DGを始動させる際に開始される。また、図4の処理の開始時において、指令値Iaは0[A]とされている。さらに、コントローラ1は、最大発電電力WMgの決定に用いられるパラメータの設定情報を始動するディーゼル発電機DGから受信している。このパラメータは、たとえば、始動するディーゼル発電機DGでの定格発電電力(所謂、発電容量)及び始動時の発電特性(発電電力Wgの増加速度など)である。
<Modification of First Embodiment>
Next, the process in which the controller 1 determines the command value Ia and commands the charge / discharge PCS 2 is not limited to the example shown in FIG. When a new power generator (for example, a diesel generator DG) is started, the command value Ia may be set to a constant value. FIG. 4 is a flowchart for explaining another example of the command processing of the command value Ia based on the detection result of the ammeter Mcs. Note that the process of FIG. 4 is started when the diesel generator DG is newly started. Further, at the start of the process of FIG. 4, the command value Ia is set to 0 [A]. Further, the controller 1 receives from the diesel generator DG that starts parameter setting information used for determining the maximum generated power WMg. This parameter is, for example, the rated generated power (so-called power generation capacity) in the diesel generator DG to be started and the power generation characteristics at the time of start (such as an increase rate of the generated power Wg).
 まず、発電制御部154は、総出力電力Wsなどに基づいて、新たなディーゼル発電機DGの始動を決定する(S201)。算出部152は、上述の設定情報に基づいて指令値Ia及び充放電電力Wa(>0)の放電出力期間Tchを決定する(S202)。この際、指令値Iaは一定値に設定される。なお、放電出力期間Tchは、ディーゼル発電機DGが始動する時点t1を始点として、充放電PCS2が指令値Iaに基づく一定値の充放電電力Waを通電路Pに出力する期間である。通信部13は算出部152が決定した指令値Iaを充放電PCS2に送信する(S203)。そして、タイマ153は放電出力期間Tchに係る計時を開始する(S204)。 First, the power generation control unit 154 determines to start a new diesel generator DG based on the total output power Ws and the like (S201). The calculation unit 152 determines the discharge output period Tch of the command value Ia and the charge / discharge power Wa (> 0) based on the setting information (S202). At this time, the command value Ia is set to a constant value. The discharge output period Tch is a period in which the charging / discharging PCS2 outputs a constant value of charging / discharging power Wa based on the command value Ia to the energizing path P, starting from the time point t1 when the diesel generator DG starts. The communication unit 13 transmits the command value Ia determined by the calculation unit 152 to the charge / discharge PCS2 (S203). Then, the timer 153 starts measuring time related to the discharge output period Tch (S204).
 次に、タイマ153は、S204での計時を開始した時点から放電出力期間Tchを経過したか否かを判定する(S205)。放電出力期間Tchを経過していない場合(S205でNO)、処理はS201に戻る。放電出力期間Tchを経過している場合(S205でYES)、通信部13は算出部152により設定された指令値Ia=0[A]を充放電PCS2に送信する(S206)。そして、充放電PCS2は通電路Pへの充放電電力Waの出力を指令値Ia=0に基づいて停止し、処理は終了する。 Next, the timer 153 determines whether or not the discharge output period Tch has elapsed since the time measurement in S204 was started (S205). If the discharge output period Tch has not elapsed (NO in S205), the process returns to S201. When the discharge output period Tch has elapsed (YES in S205), the communication unit 13 transmits the command value Ia = 0 [A] set by the calculation unit 152 to the charge / discharge PCS2 (S206). Then, the charge / discharge PCS2 stops the output of the charge / discharge power Wa to the energization path P based on the command value Ia = 0, and the process ends.
 以上に説明した実施形態によれば、電力制御装置1は、エンジン(不図示)を備えた第1発電装置DGを有して電力負荷Lに通電路Pを介して接続される第1電力システムDGSを制御する発電制御部154と、蓄電装置BTを有して通電路Pに接続される第2電力システムBTSを制御する電力制御部155と、を備え、電力制御部155は、第1発電装置DGの始動が行われる際、蓄電装置BTを放電させて第2電力システムBTSから通電路Pに放電電力Wa(>0)を出力させる構成とされる。 According to the embodiment described above, the power control device 1 includes the first power generation device DG including an engine (not shown) and is connected to the power load L via the current path P. A power generation control unit 154 that controls the DGS, and a power control unit 155 that controls the second power system BTS that has the power storage device BT and is connected to the energization path P. The power control unit 155 includes the first power generation unit 155. When the device DG is started, the power storage device BT is discharged, and the discharge power Wa (> 0) is output from the second power system BTS to the conduction path P.
 また、電源システム100は、エンジン(不図示)を備えた第1発電装置DGを有して電力負荷Lに通電路Pを介して接続される第1電力システムDGSと、蓄電装置BTを有して通電路Pに接続される第2電力システムBTと、第1電力システムDGS及び第2電力システムBTSを制御する上記の電力制御装置1と、を備える構成とされる。 The power supply system 100 also includes a first power generation device DG including an engine (not shown) and a first power system DGS that is connected to the power load L via a current path P, and a power storage device BT. The second power system BT connected to the energization path P and the power control apparatus 1 that controls the first power system DGS and the second power system BTS are configured.
 また、電力制御方法は、エンジン(不図示)を備えた第1発電装置DGを有して電力負荷Lに通電路Pを介して接続される第1電力システムDGSを制御するステップと、蓄電装置BTを有して通電路Pに接続される第2電力システムBTSを制御するステップと、を備え、第2電力システムBTSを制御するステップは、第1発電装置DGの始動が行われる際、蓄電装置BTを放電させて第2電力システムBTSから通電路Pに放電電力Wa(>0)を出力させるステップを含む構成とされる。 Further, the power control method includes a step of controlling a first power system DGS having a first power generation device DG including an engine (not shown) and connected to the power load L via the energization path P; And controlling the second power system BTS connected to the energization path P with the BT, and the step of controlling the second power system BTS is performed when the first power generator DG is started. The apparatus BT is discharged to include a step of outputting the discharge power Wa (> 0) from the second power system BTS to the energization path P.
 また、電力制御装置1は、上記の電力制御方法をコンピュータ15に実行させるプログラムを非一時的に記録したコンピュータ読み取り可能な記録媒体14を備える構成とされる。 Further, the power control apparatus 1 is configured to include a computer-readable recording medium 14 in which a program for causing the computer 15 to execute the above power control method is recorded non-temporarily.
 これらの構成によれば、第1電力システムDGSを第2電力システムBTと連携させ、エンジン(不図示)を備えた第1発電装置DGの始動が行われる際、第2電力システムBTから放電電力Wa(>0)を出力させて電力負荷Lに供給できる。そのため、第1発電装置DGの始動が行われる際、不足する電力を放電電力Waで補うことができ、第1電力システムDGSが過負荷となることを防止できる。 According to these configurations, when the first power system DGS is linked with the second power system BT and the first power generation device DG including the engine (not shown) is started, the discharge power is discharged from the second power system BT. Wa (> 0) can be output and supplied to the power load L. Therefore, when the first power generator DG is started, the insufficient power can be supplemented with the discharge power Wa, and the first power system DGS can be prevented from being overloaded.
 さらに、エンジン(不図示)を備えた第1発電装置DGの始動を行う際に不足する電力を蓄電装置BTから放電できればよいので、充電容量が比較的に小さい蓄電装置BTを設置できる。従って、蓄電装置BTを小型化することができる。 Furthermore, since it is sufficient that the power shortage when starting the first power generation device DG including the engine (not shown) can be discharged from the power storage device BT, the power storage device BT having a relatively small charge capacity can be installed. Therefore, the power storage device BT can be reduced in size.
 また、本実施形態によれば、第1発電装置DGは複数であって、発電制御部154は、発電させる第1発電装置DGを電力負荷Lの消費電力WLに基づいて決定する構成とされる。 Further, according to the present embodiment, there are a plurality of first power generation devices DG, and the power generation control unit 154 is configured to determine the first power generation device DG to be generated based on the power consumption WL of the power load L. .
 この構成によれば、第1発電装置DGの始動が行われる際、第1電力システム(特に、既に稼働している第1発電装置DG)が過負荷となることを防止できる。また、複数の第1発電装置DGでの発電を円滑に行うことが可能となり、低コスト且つ簡易な構成で、第1電力システムDGSの下限許容出力電力を低くすることができる。すなわち、第1発電装置DGでの不具合の発生を有効に抑制又は防止できる範囲内で発電できる出力電力Wsの下限閾値を低くできる。 According to this configuration, when the first power generation device DG is started, the first power system (particularly, the first power generation device DG that is already operating) can be prevented from being overloaded. In addition, it is possible to smoothly generate power with the plurality of first power generation devices DG, and the lower limit allowable output power of the first power system DGS can be lowered with a low cost and simple configuration. That is, the lower limit threshold value of the output power Ws that can be generated within a range that can effectively suppress or prevent the occurrence of problems in the first power generation device DG can be reduced.
 また、本実施形態によれば、上記の電力制御装置1は、発電している第1発電装置DGから出力される発電電力Wgの最大値WMgを設定して該最大値WMgの総和WMsを算出する値設定部152をさらに備え、電力制御部155は、第1発電装置DGの始動が行われる際、第1電力システムDGSが通電路Pに出力する出力電力Wsが最大値WMgの総和WMs以上である場合には放電電力Wa(>0)を増加させ、出力電力Wsが総和WMs未満である場合には放電電力Wa(>0)を減少させる構成とされる。 Further, according to the present embodiment, the power control device 1 sets the maximum value WMg of the generated power Wg output from the first power generation device DG that is generating power, and calculates the sum WMs of the maximum value WMg. The power control unit 155 further includes an output power Ws output from the first power system DGS to the energization path P when the first power generation device DG is started. If the output power Ws is less than the total WMs, the discharge power Wa (> 0) is decreased.
 この構成によれば、第1発電装置DGの始動が行われる際、第1電力システムDGSの出力電力Wsに応じて放電電力Wa(>0)を調節でき、低コスト且つ簡易な構成で第1電力システムDGSに掛かる負荷を調整できる。すなわち、出力電力Wsが最大値WMgの総和WMs未満であれば、負荷に余裕があるために放電電力Wa(>0)を減少させて、第1電力システムDGSに掛かる負荷を増やすことができる。また、出力電力Wsが最大値WMgの総和WMs以上であれば、過負荷を防止するために放電電力Wa(>0)を増加させて、第1電力システムDGSに掛かる負荷を軽減できる。従って、不具合の発生を有効に抑制又は防止できる範囲内で第1発電装置DGを発電させて、第1電力システムDGSの電力供給を安定させることができる。 According to this configuration, when the first power generator DG is started, the discharge power Wa (> 0) can be adjusted according to the output power Ws of the first power system DGS, and the first configuration can be achieved with a low cost and simple configuration. The load applied to the power system DGS can be adjusted. That is, if the output power Ws is less than the sum WMs of the maximum values WMg, the load on the first power system DGS can be increased by reducing the discharge power Wa (> 0) because there is a margin in the load. Further, if the output power Ws is equal to or greater than the sum WMs of the maximum value WMg, the discharge power Wa (> 0) can be increased to prevent overload, and the load on the first power system DGS can be reduced. Accordingly, it is possible to stabilize the power supply of the first power system DGS by causing the first power generation device DG to generate power within a range in which the occurrence of defects can be effectively suppressed or prevented.
 また、本実施形態によれば、最大値WMgは、第1発電装置DGが始動した第1時点t1から第1期間後の第2時点t2までは0とされ、第2時点t2以降は一定値とされる構成(図3A参照)にすることができる。また、最大値WMgは、第1発電装置DGが始動した第1時点t1から第1期間後の第2時点t2までは0とされ、第2時点t2から経時的に増加される構成(図3B参照)にしてもよい。また、最大値WMgは第1発電装置DGが始動した第1時点t1から経時的に増加される構成(図3C参照)にしてもよい。また、最大値WMgは一定値とされる構成(図3D参照)にしてもよい。 Further, according to the present embodiment, the maximum value WMg is set to 0 from the first time point t1 when the first power generator DG is started to the second time point t2 after the first period, and is constant after the second time point t2. (See FIG. 3A). Further, the maximum value WMg is set to 0 from the first time point t1 when the first power generation device DG is started to the second time point t2 after the first period, and increases with time from the second time point t2 (FIG. 3B). Reference). Further, the maximum value WMg may be configured to increase with time from the first time point t1 when the first power generator DG is started (see FIG. 3C). The maximum value WMg may be configured to be a constant value (see FIG. 3D).
 これらの構成によれば、第1電力システムDGSの実際の運転環境などに応じて、発電電力Wgの最大値WMgを任意に設定できる。 According to these configurations, the maximum value WMg of the generated power Wg can be arbitrarily set according to the actual operating environment of the first power system DGS.
 また、本実施形態によれば、値設定部152は、第2電力システムBTSに放電電力Wa(>0)を指令するための指令値Iaをさらに設定し、電力制御部155は、指令値Iaに基づいて放電電力Waを調整する構成とされる。 Further, according to the present embodiment, the value setting unit 152 further sets the command value Ia for commanding the discharge power Wa (> 0) to the second power system BTS, and the power control unit 155 sets the command value Ia. The discharge power Wa is adjusted based on the above.
 この構成によれば、指令値Iaの増減により放電電力Waを調整できる。たとえば、指令値Iaを低減することにより、放電電力Wa(>0)を減少させて、第1電力システムDGSに掛かる負荷を増やすことができる。また指令値Iaを増加することにより、放電電力Wa(>0)を増加させて、第1電力システムDGSに掛かる負荷を軽減できる。 According to this configuration, the discharge power Wa can be adjusted by increasing or decreasing the command value Ia. For example, by reducing the command value Ia, the discharge power Wa (> 0) can be reduced and the load applied to the first power system DGS can be increased. Further, by increasing the command value Ia, the discharge power Wa (> 0) can be increased, and the load applied to the first power system DGS can be reduced.
 また、本実施形態によれば、値設定部152はさらに、指令値Iaが0未満であれば、指令値Iaを0[A]に設定する構成とされる。 Further, according to the present embodiment, the value setting unit 152 is further configured to set the command value Ia to 0 [A] if the command value Ia is less than 0.
 この構成によれば、指令値Iaを0未満の値に設定しないことにより、たとえば発電装置(第1発電装置DGなど)の始動が行われる際、第2電力システムBTSが出力電力Wsの少なくとも一部を蓄電装置BTに充電しないようにできる。 According to this configuration, by not setting the command value Ia to a value less than 0, for example, when the power generation device (the first power generation device DG or the like) is started, the second power system BTS is at least one of the output power Ws. The power storage device BT can be prevented from being charged.
 また、本実施形態によれば、電力制御部155は、第1発電装置DGの始動が行われる際、一定の放電電力Waを第2電力システムBTSから通電路Pに出力させる構成とされる。 In addition, according to the present embodiment, the power control unit 155 is configured to output a constant discharge power Wa from the second power system BTS to the energization path P when the first power generation device DG is started.
 この構成によれば、簡易な構成で、第1電力システムDGSに掛かる負荷を調整できる。従って、不具合の発生を有効に抑制又は防止できる範囲内で第1発電装置DGを発電させて、第1電力システムDGSの電力供給を安定させることができる。 According to this configuration, it is possible to adjust the load applied to the first power system DGS with a simple configuration. Accordingly, it is possible to stabilize the power supply of the first power system DGS by causing the first power generation device DG to generate power within a range in which the occurrence of defects can be effectively suppressed or prevented.
<第2実施形態>
 次に、第2実施形態について説明する。第2実施形態では、個々のディーゼル発電機DGに電流計Mcがそれぞれ設けられる。以下では、第1実施形態と異なる構成について説明する。また、第1実施形態と同様の構成部には同じ符号を付し、その説明を省略することがある。
Second Embodiment
Next, a second embodiment will be described. In the second embodiment, each diesel generator DG is provided with an ammeter Mc. Hereinafter, a configuration different from the first embodiment will be described. Moreover, the same code | symbol is attached | subjected to the structure part similar to 1st Embodiment, and the description may be abbreviate | omitted.
 図5は、電源システム100の第2構成例を示すブロック図である。図5の電源システム100では、総出力電力Wsの電流値Isを検出する電流計Mcs(図1参照)に代えて、電流計Mc1、Mc2、・・・、Mcnが、ディーゼル発電システムDGSが有する個々の発電装置に接続された各通電路上に設けられる。図5では、電流計Mc1、Mc2、・・・、Mcnが、各ディーゼル発電機DGに接続された第1~第n通電路P1~Pn(nは2以上の正の整数)上にそれぞれ設けられている。なお、以下では、個々の電流計Mc1、Mc2、・・・、Mcnを区別せずに総称する場合、単に、電流計Mcと呼ぶ。各通電路P1~Pnを流れる電流Ig1、Ig2、・・・、Ignも同様にIgと呼ぶ。各電流計Mcは、個々のディーゼル発電機DGの各発電電力Wgの電流Igを検出する検出器であり、その検出結果を示す検出情報をコントローラ1に出力する。すなわち、第1電流計Mcs1はディーゼル発電機DG1の発電電力Wg1の電流値Ig1及びその流れ方向を検出し、第2電流計Mcs2はディーゼル発電機DG2の発電電力Wg2の電流値Ig2及びその流れ方向を検出する。第n電流計Mcnはディーゼル発電機DGnの発電電力Wgnの電流値Ignを検出する。 FIG. 5 is a block diagram illustrating a second configuration example of the power supply system 100. In the power supply system 100 of FIG. 5, instead of the ammeter Mcs (see FIG. 1) for detecting the current value Is of the total output power Ws, the diesel power generation system DGS has ammeters Mc1, Mc2,. It is provided on each energization path connected to each power generator. In FIG. 5, ammeters Mc1, Mc2,..., Mcn are respectively provided on the first to nth conduction paths P1 to Pn (n is a positive integer of 2 or more) connected to each diesel generator DG. It has been. In the following, when the individual ammeters Mc1, Mc2,..., Mcn are collectively referred to without distinction, they are simply referred to as ammeters Mc. The currents Ig1, Ig2,..., Ign flowing through the current paths P1 to Pn are also called Ig. Each ammeter Mc is a detector that detects the current Ig of each generated power Wg of each diesel generator DG, and outputs detection information indicating the detection result to the controller 1. That is, the first ammeter Mcs1 detects the current value Ig1 of the generated power Wg1 of the diesel generator DG1 and its flow direction, and the second ammeter Mcs2 detects the current value Ig2 of the generated power Wg2 of the diesel generator DG2 and its flow direction. Is detected. The nth ammeter Mcn detects the current value Ign of the generated power Wgn of the diesel generator DGn.
 次に、コントローラ1が指令値Ia[A]を決定して充放電PCS2に指令する処理について説明する。図6は、各電流計Mcの検出結果に基づく指令値Iaの指令処理の一例を説明するためのフローチャートである。図6の処理は、たとえば、電源システム100の起動とともに開始されて電源システム100の運転停止と共に終了される。また、処理開始時において指令値Iaは0[A]とされている。 Next, a process in which the controller 1 determines the command value Ia [A] and commands the charge / discharge PCS 2 will be described. FIG. 6 is a flowchart for explaining an example of command processing of the command value Ia based on the detection result of each ammeter Mc. The process of FIG. 6 is started when the power supply system 100 is started and ended when the operation of the power supply system 100 is stopped, for example. At the start of processing, the command value Ia is set to 0 [A].
 まず、発電制御部154は、運転しているディーゼル発電機DGを検知する(S101)。電力検知部151は、運転(発電)しているディーゼル発電機DGの各発電電力Wgを検知し(S302)、発電電力Wgが最大発電電力WMg未満となっているディーゼル発電機DGがあるか否かを判定する(S303)。Wn<WMgとなるディーゼル発電機DGがない場合(S303でNO)、充放電電力Waを増加させるべく、処理はS104に進む。一方、Wn<WMgとなるディーゼル発電機DGがある場合(S306でYES)、充放電電力Waを減少させるべく、処理はS105に進む。以下、S104~S108の処理は図2と同様である。そのため、これらの説明は割愛する。 First, the power generation control unit 154 detects the operating diesel generator DG (S101). The power detection unit 151 detects each generated power Wg of the diesel generator DG that is operating (power generation) (S302), and whether there is a diesel generator DG whose generated power Wg is less than the maximum generated power WMg. Is determined (S303). If there is no diesel generator DG that satisfies Wn <WMg (NO in S303), the process proceeds to S104 in order to increase the charge / discharge power Wa. On the other hand, if there is a diesel generator DG that satisfies Wn <WMg (YES in S306), the process proceeds to S105 in order to reduce the charge / discharge power Wa. Hereinafter, the processes in S104 to S108 are the same as those in FIG. Therefore, these explanations are omitted.
 以上に説明した実施形態によれば、電力制御装置1は、第1発電装置DGから出力される発電電力Wgの最大値WMgを設定する値設定部152をさらに備え、電力制御部155は、第1発電装置DGの始動が行われる際、発電電力Wgが最大値WMg未満となる第1発電装置DGがある場合には放電電力Wa(>0)を減少させ、発電電力Wgが最大値WMg未満となる第1発電装置DGがない場合には放電電力Wa(>0)を増加させる構成とされる。 According to the embodiment described above, the power control device 1 further includes the value setting unit 152 that sets the maximum value WMg of the generated power Wg output from the first power generation device DG, and the power control unit 155 includes the first When the first power generation device DG is started, if there is a first power generation device DG whose generated power Wg is less than the maximum value WMg, the discharge power Wa (> 0) is decreased, and the generated power Wg is less than the maximum value WMg In the absence of the first power generation device DG, the discharge power Wa (> 0) is increased.
 この構成によれば、第1発電装置DGの始動が行われる際、発電電力Wgが最大値WMg未満となる第1発電装置DGがあるか否かに応じて放電電力Wa(>0)を調節でき、低コスト且つ簡易な構成で第1電力システムDGSに掛かる負荷を調整できる。すなわち、Wg<WMgとなる第1発電装置DGがあれば、過負荷を防止するために放電電力Wa(>0)を増加させて、第1電力システムDGSに掛かる負荷を軽減できる。また、Wg<WMgとなる第1発電装置DGがなければ、負荷に余裕があるために放電電力Wa(>0)を減少させて、第1電力システムDGSに掛かる負荷を増やすことができる。従って、不具合の発生を有効に抑制又は防止できる範囲内で第1発電装置DGを発電させて、第1電力システムDGSの電力供給を安定させることができる。 According to this configuration, when the first power generation device DG is started, the discharge power Wa (> 0) is adjusted depending on whether or not there is the first power generation device DG whose generated power Wg is less than the maximum value WMg. The load applied to the first power system DGS can be adjusted with a low cost and simple configuration. That is, if there is the first power generation device DG that satisfies Wg <WMg, the discharge power Wa (> 0) can be increased in order to prevent overload, and the load on the first power system DGS can be reduced. Further, if there is no first power generation device DG that satisfies Wg <WMg, the load on the first power system DGS can be increased by reducing the discharge power Wa (> 0) because there is a margin in the load. Accordingly, it is possible to stabilize the power supply of the first power system DGS by causing the first power generation device DG to generate power within a range in which the occurrence of defects can be effectively suppressed or prevented.
<第2実施形態の変形例>
 次に、上述の電源システム100(図5参照)において、ディーゼル発電システムDGS(特に、システムDGSが有する個々のディーゼル発電機DG)を直接に駆動制御する駆動制御装置がある場合には、コントローラ1は該駆動制御装置を介してディーゼル発電システムDGSを制御してもよい。図7は、電源システム100の第2構成例の変形例を示すブロック図である。図7の電源システム100には、個々のディーゼル発電機DGを駆動制御するコントロールパネル3がコントローラ1とは別に設けられる。コントロールパネル3は、コントローラ1から送信される制御情報に基づいて個々のディーゼル発電機DGを駆動制御する駆動制御装置である。コントローラ1の発電制御部154はコントロールパネル3を介してディーゼル発電システムDGS(及び個々のディーゼル発電機DG)を制御する。
<Modification of Second Embodiment>
Next, in the above-described power supply system 100 (see FIG. 5), when there is a drive control device that directly drives and controls the diesel power generation system DGS (particularly, each diesel generator DG included in the system DGS), the controller 1 May control the diesel power generation system DGS via the drive control device. FIG. 7 is a block diagram illustrating a modification of the second configuration example of the power supply system 100. In the power supply system 100 of FIG. 7, a control panel 3 that drives and controls each diesel generator DG is provided separately from the controller 1. The control panel 3 is a drive control device that drives and controls each diesel generator DG based on control information transmitted from the controller 1. The power generation control unit 154 of the controller 1 controls the diesel power generation system DGS (and individual diesel generators DG) via the control panel 3.
 以上に説明した実施形態の変形例によれば、電源システム100は、第1発電装置DGの駆動制御を行う駆動制御装置3をさらに備え、電力制御装置1は、駆動制御装置3を介して第1電力システムDGSを制御する構成とされる。 According to the modification of the embodiment described above, the power supply system 100 further includes the drive control device 3 that performs drive control of the first power generation device DG, and the power control device 1 includes the first control device 3 via the drive control device 3. It is set as the structure which controls 1 electric power system DGS.
 この構成によれば、第1発電装置DGに既設の駆動制御装置3があっても、該駆動制御装置3を介して第1電力システムDGSを制御することができる。 According to this configuration, even if the first power generation device DG has the existing drive control device 3, the first power system DGS can be controlled via the drive control device 3.
<第3実施形態>
 次に、第3実施形態について説明する。第3実施形態では、電源システム100に再生可能エネルギーを利用した発電システムが接続される。以下では、第1又は第2実施形態と異なる構成について説明する。また、第1又は第2実施形態と同様の構成部には同じ符号を付し、その説明を省略することがある。
<Third Embodiment>
Next, a third embodiment will be described. In the third embodiment, a power generation system using renewable energy is connected to the power supply system 100. Below, a different structure from 1st or 2nd embodiment is demonstrated. Moreover, the same code | symbol is attached | subjected to the structure part similar to 1st or 2nd embodiment, and the description may be abbreviate | omitted.
 図8は、電源システム100の第3構成例を示すブロック図である。電源システム100は、図8に示すように、太陽光発電システムPVSをさらに含んで構成される。太陽光発電システムPVSは、たとえば、通電路Pに出力する電力Wbを総出力電力Wsとともに電力負荷Lに供給できる。この太陽光発電システムPVSはディーゼル発電システムDGS及び充放電システムBTSと電力負荷Lとの間にて通電路Pに接続される。また、太陽光発電システムPVSは、図8では1つであるが、この例示に限定されず、複数であってもよい。 FIG. 8 is a block diagram illustrating a third configuration example of the power supply system 100. As shown in FIG. 8, the power supply system 100 further includes a photovoltaic power generation system PVS. The solar power generation system PVS can supply, for example, the power Wb output to the energization path P to the power load L together with the total output power Ws. This solar power generation system PVS is connected to the energization path P between the diesel power generation system DGS and the charge / discharge system BTS and the power load L. Moreover, although the photovoltaic power generation system PVS is one in FIG. 8, it is not limited to this illustration, A plurality may be sufficient.
 太陽光発電システムPVSは、再生可能エネルギーを利用した発電システムの一例であり、太陽電池ストリングPV及び発電用パワーコンディショナ4を含んで構成される電力システムである。なお、以下では、発電用パワーコンディショナ4を発電用PCS4と呼ぶ。 The solar power generation system PVS is an example of a power generation system that uses renewable energy, and is a power system that includes the solar cell string PV and the power conditioner 4 for power generation. Hereinafter, the power generation power conditioner 4 is referred to as a power generation PCS 4.
 太陽電池ストリングPVは、1又は直列接続された複数の太陽電池モジュールを含む発電装置であり、発電用PCS4に接続されている。太陽電池ストリングPVは、太陽光を受けて発電し、直流の発電電力Wpを発電用PCS4に出力する。なお、発電用PCS4に接続される太陽電池ストリングPVの数は、図8の例示に限定されず、それぞれ複数であってもよい。 The solar cell string PV is a power generation device including one or a plurality of solar cell modules connected in series, and is connected to the power generation PCS 4. The solar cell string PV generates power by receiving sunlight, and outputs DC generated power Wp to the power generation PCS 4. The number of solar cell strings PV connected to the power generation PCS 4 is not limited to the example of FIG.
 発電用PCS4は、コントローラ1から送信される制御情報に基づいて太陽光発電システムPVSの電力制御を行う電力制御装置であり、通電路P及び太陽電池ストリングPV間に設けられている。発電用PCS4は太陽電池ストリングPVの発電を制御する。すなわち、発電用PCS4は、通常時には、たとえばMPPT制御により、太陽電池ストリングPVの発電電力Wpが最大となるように太陽電池ストリングPVの動作電圧(動作点)を制御する。 The power generation PCS 4 is a power control device that performs power control of the solar power generation system PVS based on the control information transmitted from the controller 1, and is provided between the energization path P and the solar cell string PV. The power generation PCS 4 controls the power generation of the solar cell string PV. In other words, the power generation PCS 4 normally controls the operating voltage (operating point) of the solar cell string PV so that the generated power Wp of the solar cell string PV becomes maximum, for example, by MPPT control.
 また、発電用PCS4は、太陽電池ストリングPVの発電電力Wpを電力変換し、変換した電力Wbを通電路Pに出力する。以下では、発電用PCS4が通電路Pに出力する電力Wbを変換電力Wbと呼ぶ。 Also, the power generation PCS 4 converts the generated power Wp of the solar cell string PV, and outputs the converted power Wb to the energization path P. Hereinafter, the power Wb output from the power generation PCS 4 to the energization path P is referred to as converted power Wb.
 なお、太陽光発電システムPVSは、図8では第1構成例と同様に通電路Pに電流計Mcsが設けられた電源システム100に接続されている。しかしながら、本発明はこの例示に限定されず、第2構成例と同様に、第1~第n通電路P1~Pnのそれぞれに電流計Mcが設けられた電源システム100(図5参照)に接続されてもよい。さらに、電流計Mcは通電路P及び充放電PCS2間にも設けられていてもよい。また、電源システム100には、太陽光以外の再生可能エネルギーを利用した発電(風力、水力、地熱、バイオマス、太陽熱など自然エネルギー発電、廃棄物発電など)を行う発電装置が発電用PCS4に接続された発電システムが設けられていてもよい。 In addition, the solar power generation system PVS is connected to the power supply system 100 in which the ammeter Mcs is provided in the energization path P as in the first configuration example in FIG. However, the present invention is not limited to this example, and is connected to the power supply system 100 (see FIG. 5) in which an ammeter Mc is provided in each of the first to nth conduction paths P1 to Pn, as in the second configuration example. May be. Furthermore, the ammeter Mc may be provided between the energization path P and the charge / discharge PCS2. Further, in the power supply system 100, a power generation device that performs power generation using renewable energy other than sunlight (wind power, hydropower, geothermal, biomass, solar heat, natural energy power generation, waste power generation, etc.) is connected to the power generation PCS 4. A power generation system may be provided.
 図8のように太陽光発電システムPVSを有する電源システム100は、たとえば、太陽光の陰りなどによって太陽電池ストリングPVの発電電力Wpが突然に減少した場合などで特に有効である。なぜなら、太陽電池ストリングPVの発電電力Wpの減少をディーゼル発電システムDGSの総出力電力Wsと充放電システムBTSの充放電電力Waとの合計値の増加により補うことができるためである。 As shown in FIG. 8, the power supply system 100 having the photovoltaic power generation system PVS is particularly effective when, for example, the generated power Wp of the solar cell string PV suddenly decreases due to shading of sunlight or the like. This is because the decrease in the generated power Wp of the solar cell string PV can be compensated by the increase in the total value of the total output power Ws of the diesel power generation system DGS and the charge / discharge power Wa of the charge / discharge system BTS.
 また、図8の電源システム100では、太陽電池ストリングPV又は太陽光発電システムPVSを容易に増設して、変換電力Wbの最大値を増加させることができる。また、たとえば、ディーゼル発電機DGの運転台数を少なくし且つ運転するディーゼル発電機DGの発電電力Wgを下限許容発電電力に近づけて、太陽光発電システムPVSから電力負荷Lに変換電力Wbを優先的に供給することができる。このように運転することによって、ディーゼル発電システムDGSでの燃料消費を低減させることができるので、ディーゼル発電システムDGSでの発電コストを大幅に削減することが可能となる。 Moreover, in the power supply system 100 of FIG. 8, the solar cell string PV or the photovoltaic power generation system PVS can be easily added to increase the maximum value of the converted power Wb. Further, for example, the number of operating diesel generators DG is reduced, and the generated power Wg of the operating diesel generator DG is brought close to the lower limit allowable generated power, so that the converted power Wb is given priority from the photovoltaic power generation system PVS to the power load L. Can be supplied to. By operating in this way, fuel consumption in the diesel power generation system DGS can be reduced, so that power generation costs in the diesel power generation system DGS can be greatly reduced.
 さらに、この際、発電容量が比較的小さいディーゼル発電機DGをディーゼル発電システムDGSに複数台設置することによって、総出力電力Wsを比較的低くした場合でも、個々のディーゼル発電機DGで低負荷運転を抑制又は防止できる。たとえば、仮に、発電容量が比較的大きい1台のディーゼル発電機(たとえば定格発電電力150[kW])から消費電力WL=140[kW]の電力負荷Lに発電電力Wgを供給する場合を考える。この場合、該ディーゼル発電機の下限許容発電電力がその発電容量の40%(60[kW])であれば、該ディーゼル発電機に低負荷運転をさせることなく、太陽光発電システムPVSが電力負荷Lに供給できる変換電力Wbの最大値は80[kW]となる。すなわち、発電容量が80[kW]以下となる範囲内でしか、太陽電池ストリングPV又は太陽光発電システムPVSを増設することができない。一方、図8の電源システム100のように、発電容量が比較的小さいディーゼル発電機DG(たとえば定格発電電力50[kW])を複数台設置すれば、変換電力Wbの最大値を120[kW]まで増加させることができる。すなわち、発電容量が120[kW]以下の範囲内で、太陽電池ストリングPV又は太陽光発電システムPVSを増設することができる。太陽光発電システムPVSから電力負荷Lに120[kW]の変換電力Wbを優先的に供給する際には、1台のディーゼル発電機DGを下限許容発電電力(たとえば20[kW])で運転し、残りのディーゼル発電機DGの運転を停止すればよい。こうすれば、ディーゼル発電機DGを低負荷状態で運転することなく、総出力電力Wsの下限許容出力電力を最小限にすることができる。 Furthermore, at this time, even when the total output power Ws is relatively low by installing a plurality of diesel generators DG having a relatively small power generation capacity in the diesel power generation system DGS, the individual diesel generators DG operate at a low load. Can be suppressed or prevented. For example, let us consider a case where generated power Wg is supplied to a power load L with power consumption WL = 140 [kW] from one diesel generator (for example, rated generated power 150 [kW]) having a relatively large power generation capacity. In this case, if the lower limit allowable power generation of the diesel generator is 40% (60 [kW]) of the power generation capacity, the photovoltaic power generation system PVS can operate the power load without causing the diesel generator to perform a low load operation. The maximum value of the converted power Wb that can be supplied to L is 80 [kW]. That is, the solar cell string PV or the solar power generation system PVS can be added only within a range where the power generation capacity is 80 [kW] or less. On the other hand, when a plurality of diesel generators DG (for example, rated power generation 50 [kW]) having a relatively small power generation capacity are installed as in the power supply system 100 of FIG. 8, the maximum value of the converted power Wb is set to 120 [kW]. Can be increased up to. That is, the solar cell string PV or the solar power generation system PVS can be added within a power generation capacity of 120 [kW] or less. When the converted power Wb of 120 [kW] is preferentially supplied from the photovoltaic power generation system PVS to the power load L, one diesel generator DG is operated with the lower limit allowable generated power (for example, 20 [kW]). The operation of the remaining diesel generator DG may be stopped. In this way, the lower limit allowable output power of the total output power Ws can be minimized without operating the diesel generator DG in a low load state.
 また、充放電電力Wa(>0)及び変換電力Wbを常に一定にしたり平滑化したりするという制御を行う場合は、通常の電源システム(たとえば1台のディーゼル発電機しか設置しない場合)では、蓄電容量が非常に大きい蓄電装置BTを設置する必要がある。一方、図8の電源システム100であれば、蓄電装置BTは、個々のディーゼル発電機DGの始動時に必要な充放電電力Waを供給すればよい。よって、蓄電容量が比較的に小さい蓄電装置BTを設置することが可能であり、蓄電装置BTを小型化することができる。 In addition, when control is performed such that the charge / discharge power Wa (> 0) and the converted power Wb are always constant or smoothed, in a normal power supply system (for example, when only one diesel generator is installed), It is necessary to install a power storage device BT having a very large capacity. On the other hand, in the case of the power supply system 100 of FIG. 8, the power storage device BT may supply the charge / discharge power Wa necessary when starting each individual diesel generator DG. Therefore, the power storage device BT having a relatively small power storage capacity can be installed, and the power storage device BT can be downsized.
 以上の説明では、コントローラ1が発電用PCS4と通信しない構成を例示したが、この例示に限定されず、電源システム100は、発電用PCS4に対してコントローラ1が通信することが可能であってもよい。図9は、電源システムの他の第3構成例を示すブロック図である。図9において、発電用PCS4が出力を抑制する機能を持って通信により出力抑制指示を行うことが可能な構成にすることにより、ディーゼル発電システムDGSの下限許容発電電力(すなわち、もっとも小さな下限許容発電電力を持つ1台の第1発電装置DGの下限許容発電電力)を総出力電力Wsが下回っている場合、発電用PCS4に対して出力抑制指示を行い、その第1発電装置DGの出力が下限容量発電電力となるように、発電用PCS4の出力を抑制する。これにより、より安全に太陽ストリングPVを増設することが可能になる。 In the above description, the configuration in which the controller 1 does not communicate with the power generation PCS 4 is illustrated. However, the configuration is not limited to this example, and the power supply system 100 can communicate with the power generation PCS 4 even if the controller 1 can communicate with the power generation PCS 4. Good. FIG. 9 is a block diagram showing another third configuration example of the power supply system. In FIG. 9, the lower limit allowable power generation of the diesel power generation system DGS (that is, the smallest lower limit allowable power generation) is achieved by adopting a configuration in which the power generation PCS 4 has a function of suppressing output and can perform an output suppression instruction by communication. When the total output power Ws is lower than the lower limit allowable generated power of one first power generator DG having electric power), the power generation PCS 4 is instructed to suppress the output, and the output of the first power generator DG is lower than the lower limit. The output of the power generation PCS 4 is suppressed so that the capacity generation power is obtained. Thereby, it becomes possible to add the solar string PV more safely.
 以上に説明した実施形態によれば、電源システム100は、第2発電装置PVを有して電力負荷Lに前記通電路Pを介して接続される第3電力システムPVSをさらに備える構成とされる。 According to the embodiment described above, the power supply system 100 is configured to further include the third power system PVS that has the second power generation device PV and is connected to the power load L via the energization path P. .
 この構成によれば、電源システム100に第3発電システムPVSを容易に増設して、たとえば、第1発電装置DGの運転台数を少なくし且つ運転する第1発電装置DGの発電電力Wgを下限許容発電電力に近づけて、第3発電システムPVSから電力負荷Lに変換電力Wbを優先的に供給することができる。なお、下限許容発電電力は、第1発電装置DGでの不具合の発生を有効に抑制又は防止できる範囲内で設定される発電電力Wgの下限の電力閾値である。このように運転することによって、第1電力システムDGSでの発電に要するコスト(たとえば燃料消費)を低減させることができる。従って、第1電力システムDGSでの発電コストを大幅に削減することが可能となる。 According to this configuration, the third power generation system PVS can be easily added to the power supply system 100, for example, the number of operating first power generation devices DG is reduced and the generated power Wg of the first power generation device DG to be operated is allowed to be a lower limit. The converted power Wb can be preferentially supplied from the third power generation system PVS to the power load L close to the generated power. The lower limit allowable generated power is a lower power threshold value of the generated power Wg that is set within a range in which the occurrence of a malfunction in the first power generator DG can be effectively suppressed or prevented. By operating in this way, the cost (for example, fuel consumption) required for power generation in the first power system DGS can be reduced. Therefore, it is possible to greatly reduce the power generation cost in the first power system DGS.
 また、本実施形態によれば、電源システム100において、前記第2発電装置PVは再生可能エネルギーを利用した発電装置PVを含む構成とされる。 Further, according to the present embodiment, in the power supply system 100, the second power generation device PV includes the power generation device PV using renewable energy.
 この構成によれば、第3発電システムPVSは再生可能エネルギーを利用した発電を行うことができる。 According to this configuration, the third power generation system PVS can perform power generation using renewable energy.
<第4実施形態>
 次に、第4実施形態について説明する。第4実施形態では、充放電システムBTSは複数であって個々のディーゼル発電機DG毎に設けられる。以下では、第1~第3実施形態と異なる構成について説明する。また、第1~第3実施形態と同様の構成部には同じ符号を付し、その説明を省略することがある。
<Fourth embodiment>
Next, a fourth embodiment will be described. In the fourth embodiment, a plurality of charge / discharge systems BTS are provided for each diesel generator DG. Hereinafter, a configuration different from the first to third embodiments will be described. The same components as those in the first to third embodiments are denoted by the same reference numerals, and the description thereof may be omitted.
 図10は、電源システム100の第4構成例を示すブロック図である。この電源システム100では、個々のディーゼル発電機DGに充放電システムBTS1、BT2、・・・、BTSn(nは2以上の正の整数)が備えられている。すなわち、ディーゼル発電機DG1には、充放電PCS2-1及び蓄電装置BT1を有する充放電システムBTS1が備えられている。ディーゼル発電機DG2には、充放電PCS2-2及び蓄電装置BT2を有する充放電システムBTS2が備えられている。ディーゼル発電機DGには、充放電PCS2-n及び蓄電装置BTnを有する充放電システムBTSnが備えられている。なお、以下では、個々の充放電システムBTS1、BT2、・・・、BTSnを区別せずに総称する場合、単に、充放電システムBTSと呼ぶ。充放電PCS2-1、2-2、・・・、2-n及び蓄電装置BT1、BT2、・・・、BTnも同様に充放電PCS2及び蓄電装置BTと呼ぶ。 FIG. 10 is a block diagram illustrating a fourth configuration example of the power supply system 100. In this power supply system 100, each diesel generator DG is provided with charge / discharge systems BTS1, BT2,..., BTSn (n is a positive integer of 2 or more). That is, the diesel generator DG1 is provided with a charge / discharge system BTS1 having a charge / discharge PCS2-1 and a power storage device BT1. The diesel generator DG2 includes a charge / discharge system BTS2 having a charge / discharge PCS2-2 and a power storage device BT2. The diesel generator DG is provided with a charge / discharge system BTSn having a charge / discharge PCS2-n and a power storage device BTn. Hereinafter, when the individual charge / discharge systems BTS1, BT2,..., BTSn are collectively referred to without distinction, they are simply referred to as charge / discharge systems BTS. The charge / discharge PCS 2-1, 2-2,..., 2-n and the power storage devices BT 1, BT 2,.
 ディーゼル発電システムDGSをこのように構成すると、個々のディーゼル発電機DGに適した仕様の充放電PCS2及び蓄電装置BTを該ディーゼル発電機DGに接続しておくことが可能である。さらに、ディーゼル発電機DG、充放電PCS2、及び蓄電装置BTをセットにして販売することもできる。 If the diesel power generation system DGS is configured in this way, the charge / discharge PCS2 and the power storage device BT having specifications suitable for each diesel generator DG can be connected to the diesel generator DG. Furthermore, the diesel generator DG, the charge / discharge PCS2, and the power storage device BT can be sold as a set.
 なお、電源システム100は、図10では太陽光発電システムPVSを備えていない。しかしながら、本発明はこの例示に限定されず、たとえば図8又は図9と同様の太陽光発電システムPVSを1以上備える構成であってもよい。或いは、太陽光以外の再生可能エネルギーを利用した発電(風力、水力、地熱、バイオマス、太陽熱など自然エネルギー発電、廃棄物発電など)を行う発電装置が発電用PCS4に接続された発電システムを備える構成であってもよい。これらの場合、再生可能エネルギーを利用した発電を行う発電システム(太陽光発電システムPVSを含む)にも、充放電システムBTSが備えられていてもよい。 In addition, the power supply system 100 does not include the solar power generation system PVS in FIG. However, this invention is not limited to this illustration, For example, the structure provided with one or more photovoltaic power generation systems PVS similar to FIG. 8 or FIG. 9 may be sufficient. Alternatively, a configuration including a power generation system in which a power generation device that generates power using renewable energy other than sunlight (wind power, hydropower, geothermal, biomass, solar power, natural energy power generation, waste power generation, etc.) is connected to the power generation PCS 4 It may be. In these cases, the charge / discharge system BTS may also be provided in a power generation system (including the solar power generation system PVS) that generates power using renewable energy.
 以上に説明した実施形態によれば、電源システム100は、第2電力システムBTSは複数であって第1発電装置DG毎に設けられる構成とされる。 According to the embodiment described above, the power supply system 100 includes a plurality of second power systems BTS and is provided for each first power generation device DG.
 この構成によれば、各第1発電装置DGに適した仕様の充放電システムBTSを該第1発電装置DGに接続しておくことが可能である。さらに、第1発電装置DG及び充放電システムBTSをセットにして販売することもできる。 According to this configuration, the charge / discharge system BTS having specifications suitable for each first power generator DG can be connected to the first power generator DG. Further, the first power generator DG and the charge / discharge system BTS can be sold as a set.
<第5実施形態>
 次に、第5実施形態について説明する。第5実施形態では、充放電システムBTS及び駆動制御装置は、複数であって個々のディーゼル発電機DG毎に設けられ、該ディーゼル発電機DGとともにユニット化される。以下では、第1~第4実施形態と異なる構成について説明する。また、第1~第4実施形態と同様の構成部には同じ符号を付し、その説明を省略することがある。
<Fifth Embodiment>
Next, a fifth embodiment will be described. In the fifth embodiment, a plurality of charge / discharge systems BTS and drive control devices are provided for each diesel generator DG, and are unitized with the diesel generator DG. Hereinafter, configurations different from the first to fourth embodiments will be described. The same components as those in the first to fourth embodiments are denoted by the same reference numerals, and the description thereof may be omitted.
 図11は、電源システム100の第5構成例を示すブロック図である。図11の電源システム100では、ディーゼル発電システムDGSが複数のディーゼル発電ユニットDU1、DU2、・・・、DUn(nは2以上の正の整数)を含んで構成される。なお、以下では、個々のディーゼル発電ユニットDU1、DU2、・・・、DUnを区別せずに総称する場合、単に、ディーゼル発電ユニットDUと呼ぶ。 FIG. 11 is a block diagram illustrating a fifth configuration example of the power supply system 100. In the power supply system 100 of FIG. 11, the diesel power generation system DGS includes a plurality of diesel power generation units DU1, DU2,..., DUn (n is a positive integer of 2 or more). In the following, when the individual diesel power generation units DU1, DU2,..., DUn are collectively referred to without distinction, they are simply referred to as a diesel power generation unit DU.
 各ディーゼル発電ユニットDUは、ディーゼル発電機DGと、充放電システムBTSと、コントロールパネル3と、を備えている。各充放電システムBTSは蓄電装置BTと、該蓄電装置BTの充放電制御を行う充放電PCS2と、を有する。また、各コントロールパネル3はディーゼル発電機DGの駆動制御及び充放電PCS2の電力制御を行う。また、コントローラ1の発電制御部154は、各ディーゼル発電ユニットDUに対して、コントロールパネル3を介してディーゼル発電機DG及び充放電PCS2を制御する。 Each diesel power generation unit DU includes a diesel generator DG, a charge / discharge system BTS, and a control panel 3. Each charge / discharge system BTS includes a power storage device BT and a charge / discharge PCS 2 that performs charge / discharge control of the power storage device BT. Each control panel 3 performs drive control of the diesel generator DG and power control of the charge / discharge PCS2. Further, the power generation control unit 154 of the controller 1 controls the diesel generator DG and the charge / discharge PCS2 via the control panel 3 for each diesel power generation unit DU.
 ディーゼル発電システムDGSをこのように構成すると、各コントロールパネル3に始動指令を送信すれば、ディーゼル発電機DGの始動中には発電電力Wg及び充放電電力Wa(>0)を通電路Pに出力できる。そして、始動完了後には発電電力Wgを通電路Pに出力できる。また、このような電力出力の切り替えも自動的に行うことができる。さらに、ディーゼル発電ユニットDUをユニット単位でディーゼル発電システムDGSに組み込むことができ、組み込み前後で同様のコントローラ1を使用することができる。 When the diesel power generation system DGS is configured in this way, if the start command is transmitted to each control panel 3, the generated power Wg and the charge / discharge power Wa (> 0) are output to the current path P during the start of the diesel generator DG. it can. Then, the generated power Wg can be output to the energization path P after the start is completed. Also, such power output switching can be performed automatically. Furthermore, the diesel power generation unit DU can be incorporated into the diesel power generation system DGS on a unit basis, and the same controller 1 can be used before and after the assembly.
 なお、電源システム100は、図11では太陽光発電システムPVSを備えていない。しかしながら、本発明はこの例示に限定されず、たとえば図8又は図9と同様に太陽光発電システムPVSを1以上備える構成であってもよい。或いは、太陽光以外の再生可能エネルギーを利用した発電(風力、水力、地熱、バイオマス、太陽熱など自然エネルギー発電、廃棄物発電など)を行う発電装置が発電用PCS4に接続された発電システムを備える構成であってもよい。これらの場合、再生可能エネルギーを利用した発電を行う発電システム(太陽光発電システムPVSを含む)においても、充放電システムBTS及び駆動制御装置が備えられ、且つ、これらが該発電システムとともにユニット化されていてもよい。 In addition, the power supply system 100 does not include the solar power generation system PVS in FIG. However, this invention is not limited to this illustration, For example, the structure provided with one or more photovoltaic power generation systems PVS similarly to FIG. 8 or FIG. 9 may be sufficient. Alternatively, a configuration including a power generation system in which a power generation device that generates power using renewable energy other than sunlight (wind power, hydropower, geothermal, biomass, solar power, natural energy power generation, waste power generation, etc.) is connected to the power generation PCS 4 It may be. In these cases, even in a power generation system (including the solar power generation system PVS) that generates power using renewable energy, the charge / discharge system BTS and the drive control device are provided, and these are unitized together with the power generation system. It may be.
 以上に説明した第5実施形態によれば、電源システム100は、各々の第1発電装置DGにおいて該第1発電装置DG及び第2電力システムBTSがユニット化される構成とされる。さらに、各々の第1発電装置DGにおいて該第1発電装置DGの駆動制御を行う駆動制御装置3がさらにユニット化される構成とされる。 According to the fifth embodiment described above, the power supply system 100 is configured such that the first power generation device DG and the second power system BTS are unitized in each first power generation device DG. Further, in each first power generation device DG, the drive control device 3 that performs drive control of the first power generation device DG is further configured as a unit.
 これらの構成によれば、各駆動制御装置3に第1発電装置DGの始動指令を送信すれば、第1発電装置DGの始動中には発電電力Wgを通電路Pに出力でき且つ第2電力システムBTSから通電路Pに電力Wa(>0)を出力できる。そして、始動完了後には発電電力Wgを通電路Pに出力できる。また、このような電力出力の切り替えも自動的に行うこともできる。さらに、ユニット化された第1発電装置DG、第2電力システムBTS(、及び駆動制御装置3)をユニット単位で第1電力システムDGSに組み込むことができ、組み込み前後で同様の電力制御装置1を使用することができる。 According to these configurations, if the start command for the first power generator DG is transmitted to each drive control device 3, the generated power Wg can be output to the energization path P and the second power can be output during the start of the first power generator DG. The electric power Wa (> 0) can be output from the system BTS to the energization path P. Then, the generated power Wg can be output to the energization path P after the start is completed. Also, such power output switching can be automatically performed. Further, the unitized first power generation device DG and second power system BTS (and drive control device 3) can be incorporated into the first power system DGS in units of units, and the same power control device 1 can be installed before and after installation. Can be used.
<第6実施形態>
 次に、第6実施形態について説明する。第6実施形態では、電流計Mcsに代えて、電圧計Mvsが通電路P上に設けられる。以下では、第1~第5実施形態と異なる構成について説明する。また、第1~第5実施形態と同様の構成部には同じ符号を付し、その説明を省略することがある。
<Sixth Embodiment>
Next, a sixth embodiment will be described. In the sixth embodiment, a voltmeter Mvs is provided on the energization path P instead of the ammeter Mcs. Hereinafter, configurations different from the first to fifth embodiments will be described. In addition, the same components as those in the first to fifth embodiments are denoted by the same reference numerals, and the description thereof may be omitted.
 図12は、電源システム100の第6構成例を示すブロック図である。図12の電力システム100では、ディーゼル発電システムDGS、蓄電装置BT、コントローラ1、及び充放電パワーコンディショナ2に加えて、電圧計Mvsを含んで構成されている。 FIG. 12 is a block diagram illustrating a sixth configuration example of the power supply system 100. The power system 100 of FIG. 12 includes a voltmeter Mvs in addition to the diesel power generation system DGS, the power storage device BT, the controller 1 and the charge / discharge power conditioner 2.
 電圧計Mvsは、総出力電力Wsの電圧値Vs及び電圧の周波数fsを検出する電圧検出器であり、その検出結果をコントローラ1に送信する。 The voltmeter Mvs is a voltage detector that detects the voltage value Vs of the total output power Ws and the voltage frequency fs, and transmits the detection result to the controller 1.
 電力検知部151は、該検出結果に基づいて総出力電力Wsの電圧値Vs及び電圧の周波数fsを検知し、さらにこの検知結果及び総出力電力Wsの電圧特性及び電圧値Vsの周波数特性に基づいて総出力電力Wsを検知する。図13は、総出力電力Wsの電圧特性及び電圧の周波数特性の一例を示すグラフである。図13では、総出力電力Wsの電圧値Vs及びその周波数fsは、総出力電圧Wsが小さいほど大きく、総出力電圧Wsが大きいほど小さくなる。これらの特性に関する情報はたとえば記憶部14に格納されている。 The power detection unit 151 detects the voltage value Vs and the voltage frequency fs of the total output power Ws based on the detection result, and further, based on the detection result, the voltage characteristic of the total output power Ws, and the frequency characteristic of the voltage value Vs. The total output power Ws is detected. FIG. 13 is a graph showing an example of the voltage characteristic of the total output power Ws and the frequency characteristic of the voltage. In FIG. 13, the voltage value Vs and the frequency fs of the total output power Ws are larger as the total output voltage Ws is smaller, and are smaller as the total output voltage Ws is larger. Information regarding these characteristics is stored in the storage unit 14, for example.
 また、発電制御部154は、電力検知部151により検知された総出力電力Wsを用いて、ディーゼル発電システムDGSを制御する。或いは、発電制御部154は、電力検知部151により検知された総出力電力Wsの電圧値Vs及び電圧の周波数fsの少なくとも一方を用いて、ディーゼル発電システムDGSを制御してもよい。この場合、実際に検知される電圧値Vs及び電圧の周波数fsの少なくとも一方の値が算出部152で算出される最大出力電力WMsに対応する上記少なくとも一方の値未満であれば、発電制御部154は、ディーゼル発電機DGを新たに始動させて、その始動中に充放電システムBTSから充放電電力Wa(>0)を出力させる。 Further, the power generation control unit 154 controls the diesel power generation system DGS using the total output power Ws detected by the power detection unit 151. Alternatively, the power generation control unit 154 may control the diesel power generation system DGS using at least one of the voltage value Vs of the total output power Ws detected by the power detection unit 151 and the frequency fs of the voltage. In this case, if at least one of the actually detected voltage value Vs and the voltage frequency fs is less than the at least one value corresponding to the maximum output power WMs calculated by the calculation unit 152, the power generation control unit 154 Starts a new diesel generator DG and outputs charge / discharge power Wa (> 0) from the charge / discharge system BTS during the start-up.
 こうすれば、電圧計Mvsの検出結果に基づいて、ディーゼル発電システムDGSの電力制御を行うことができる。 In this way, the power control of the diesel power generation system DGS can be performed based on the detection result of the voltmeter Mvs.
 なお、電圧計Mvsは、図12ではディーゼル発電システムDGSと充放電システムBTS及び電力負荷L間において通電路Pに設けられている。しかしながら、本発明はこの例示に限定されず、第1~第n通電路P1~Pnのそれぞれに電圧計Mv1~Mvn(nは2以上の正の整数)が設けられてもよい。この場合、電力検知部151は、各電圧計Mv1~Mvnでの検出結果に基づいて個々のディーゼル発電機DGの発電電力Wgの電圧値Vg1~Vgn及び電圧の周波数fg1~fgnを検知し、さらにこの検知結果及び各発電電力Wgの電圧特性及び電圧の周波数特性(不図示)に基づいて各発電電力Wgを検知する。 Note that the voltmeter Mvs is provided in the energization path P between the diesel power generation system DGS, the charge / discharge system BTS, and the power load L in FIG. However, the present invention is not limited to this example, and voltmeters Mv1 to Mvn (n is a positive integer greater than or equal to 2) may be provided in each of the first to nth energization paths P1 to Pn. In this case, the power detection unit 151 detects the voltage values Vg1 to Vgn and the voltage frequencies fg1 to fgn of the generated power Wg of the individual diesel generators DG based on the detection results of the voltmeters Mv1 to Mvn, Each generated power Wg is detected based on the detection result and the voltage characteristics and voltage frequency characteristics (not shown) of each generated power Wg.
 また、電源システム100は、図12では太陽光発電システムPVSを備えていない。しかしながら、本発明はこの例示に限定されず、たとえば図8又は図9と同様に太陽光発電システムPVSを備える1以上構成であってもよい。或いは、太陽光以外の再生可能エネルギーを利用した発電(風力、水力、地熱、バイオマス、太陽熱など自然エネルギー発電、廃棄物発電など)を行う発電装置が発電用PCS4に接続された発電システムを備える構成であってもよい。さらに、通電路P及び該発電システム間にも電圧計が設けられていてもよい。 Further, the power supply system 100 does not include the solar power generation system PVS in FIG. However, the present invention is not limited to this example, and may be one or more configurations including the photovoltaic power generation system PVS as in FIG. 8 or FIG. Alternatively, a configuration including a power generation system in which a power generation device that generates power using renewable energy other than sunlight (wind power, hydropower, geothermal, biomass, solar power, natural energy power generation, waste power generation, etc.) is connected to the power generation PCS 4 It may be. Furthermore, a voltmeter may be provided between the current path P and the power generation system.
 以上に説明した実施形態によれば、電源システム100は、通電路Pを流れる電力Ws(或いはWg1~Wgn)の電圧値Vs(或いはVg1~Vgn)又は電圧周波数fs(或いはfg1~fgn)を検出する電圧検出器Mvs(或いはMv1~Mvn)をさらに備え、電力制御装置1は、電圧検出器Mvs(或いはMv1~Mvn)の検出結果に基づいて通電路Pを流れる電力Ws(或いはWg1~Wgn)を検知する構成とされる。 According to the embodiment described above, the power supply system 100 detects the voltage value Vs (or Vg1 to Vgn) or the voltage frequency fs (or fg1 to fgn) of the power Ws (or Wg1 to Wgn) flowing through the energization path P. Voltage controller Mvs (or Mv1 to Mvn), and the power control apparatus 1 includes power Ws (or Wg1 to Wgn) flowing through the energization path P based on the detection result of the voltage detector Mvs (or Mv1 to Mvn). It is set as the structure which detects.
 この構成によれば、電圧検出器Mvs(或いはMv1~Mvn)の検出結果に基づいて、第1電力システムDGSの電力制御を行うことができる。 According to this configuration, the power control of the first power system DGS can be performed based on the detection result of the voltage detector Mvs (or Mv1 to Mvn).
<その他>
 以上に示した各実施形態の構成は、本発明の例示にすぎない。各実施形態の構成は、本発明の技術的思想を超えない範囲で適宜変更されて構わない。各実施形態及び実施形態における細かな変形例は可能な範囲で組み合わせて実施することもできる。
<Others>
The configuration of each embodiment described above is merely an example of the present invention. The configuration of each embodiment may be changed as appropriate without departing from the technical idea of the present invention. Each embodiment and the fine modification in embodiment can also be implemented combining in the possible range.
 たとえば、上述の第1~第6実施形態では、電源システム100に複数のディーゼル発電機DGが設けられているが、本発明はこの例示に限定されない。本発明は、1台のディーゼル発電機DGが設けられた電源システム100にも適用可能である。 For example, in the first to sixth embodiments described above, the power supply system 100 is provided with a plurality of diesel generators DG, but the present invention is not limited to this example. The present invention is also applicable to the power supply system 100 provided with one diesel generator DG.
 たとえば、上述の第1~第5実施形態において、電流計Mcs又はMcに代えて電力量計が設置されてもよい。こうすれば、総出力電力Ws、又は、個々のディーゼル発電機DGの各発電電力Wg(及び太陽光発電システムPVSの変換電力Wb)を直接検出することができる。 For example, in the first to fifth embodiments described above, a watt hour meter may be installed instead of the ammeter Mcs or Mc. In this way, it is possible to directly detect the total output power Ws or each generated power Wg of each diesel generator DG (and the converted power Wb of the photovoltaic power generation system PVS).
 また、上述の第1~第6実施形態において、CPU15の機能的な構成要素151~155のうちの少なくとも一部又は全部は、物理的な構成要素(たとえば電気回路、素子、装置など)で実現されていてもよい。 In the first to sixth embodiments described above, at least some or all of the functional components 151 to 155 of the CPU 15 are realized by physical components (for example, electric circuits, elements, devices, etc.). May be.
   100      電源システム
   1         コントローラ
   11         表示部
   12         入力部
   13         通信部
   14         記憶部
   15         CPU
   151         電力検知部
   152         算出部
   153         タイマ
   154         発電制御部
   155         電力制御部
   2、2-1~2-n     充放電パワーコンディショナ
   3、3-1~3-n     コントロールパネル
   4         発電用パワーコンディショナ
   DGS           ディーゼル発電システム
   DG1~DGn、DG     ディーゼル発電機
   DU1~DUn、DU     ディーゼル発電ユニット
   BTS、BTS1~BTSn 充放電システム
   BT、BT1~BTn     蓄電装置
   PVS       太陽光発電システム
   PV         太陽電池ストリング
   Mcs、Mc1~Mcn、Mc   電流計
   Mvs       電圧計
   L         電力負荷
DESCRIPTION OF SYMBOLS 100 Power supply system 1 Controller 11 Display part 12 Input part 13 Communication part 14 Memory | storage part 15 CPU
151 Power detection unit 152 Calculation unit 153 Timer 154 Power generation control unit 155 Power control unit 2, 2-1 to 2-n Charge / discharge power conditioner 3, 3-1 to 3-n Control panel 4 Power conditioner for power generation DGS Diesel Power generation system DG1 to DGn, DG Diesel generator DU1 to DUn, DU Diesel power generation unit BTS, BTS1 to BTSn Charge / discharge system BT, BT1 to BTn Power storage device PVS Photovoltaic power generation system PV PV cell string Mcs, Mc1 to Mcn, Mc Current Meter Mvs Voltmeter L Power load

Claims (21)

  1.  エンジンを備えた第1発電装置を有して電力負荷に通電路を介して接続される第1電力システムを制御する発電制御部と、
     蓄電装置を有して前記通電路に接続される第2電力システムを制御する電力制御部と、
    を備え、
     前記電力制御部は、前記第1発電装置の始動が行われる際、前記蓄電装置を放電させて前記第2電力システムから前記通電路に放電電力を出力させる電力制御装置。
    A power generation control unit that controls a first power system having a first power generation device including an engine and connected to a power load via an energization path;
    A power control unit for controlling a second power system having a power storage device and connected to the energization path;
    With
    The power control unit is a power control device that discharges the power storage device and outputs discharge power from the second power system to the energization path when the first power generation device is started.
  2.  前記第1発電装置は複数であって、
     前記発電制御部は、発電させる前記第1発電装置を前記電力負荷の消費電力に基づいて決定する請求項1に記載の電力制御装置。
    The first power generator is plural,
    The power control device according to claim 1, wherein the power generation control unit determines the first power generation device to generate power based on power consumption of the power load.
  3.  前記第1発電装置から出力される発電電力の最大値を設定して該最大値の総和を算出する値設定部をさらに備え、
     前記電力制御部は、前記第1発電装置の始動が行われる際、前記第1電力システムが前記通電路に出力する出力電力が前記最大値の前記総和以上である場合には前記放電電力を増加させ、前記出力電力が前記総和未満である場合には前記放電電力を減少させる請求項1又は請求項2に記載の電力制御装置。
    A value setting unit configured to set a maximum value of the generated power output from the first power generation device and calculate a sum of the maximum values;
    The power control unit increases the discharge power when output power output from the first power system to the energization path is equal to or greater than the sum of the maximum values when the first power generator is started. The power control apparatus according to claim 1, wherein the discharge power is decreased when the output power is less than the total sum.
  4.  前記第1発電装置から出力される発電電力の最大値を設定する値設定部をさらに備え、
     前記電力制御部は、前記第1発電装置の始動が行われる際、前記発電電力が前記最大値未満となる前記第1発電装置がある場合には前記放電電力を減少させ、前記発電電力が前記最大値未満となる前記第1発電装置がない場合には前記放電電力を増加させる請求項1又は請求項2に記載の電力制御装置。
    A value setting unit for setting a maximum value of the generated power output from the first power generator;
    When the first power generation device is started, the power control unit reduces the discharge power when there is the first power generation device in which the generated power is less than the maximum value. The power control device according to claim 1 or 2, wherein the discharge power is increased when there is no first power generation device that is less than a maximum value.
  5.  前記最大値は、前記第1発電装置が始動した第1時点から第1期間後の第2時点までは0とされ、前記第2時点以降は一定値とされる請求項3又は請求項4に記載の電力制御装置。 The maximum value is 0 from a first time point when the first power generator is started to a second time point after the first period, and is a constant value after the second time point. The power control apparatus described.
  6.  前記最大値は、前記第1発電装置が始動した第1時点から第1期間後の第2時点までは0とされ、前記第2時点から経時的に増加される請求項3又は請求項4に記載の電力制御装置。 The maximum value is set to 0 from a first time point when the first power generator is started to a second time point after the first period, and is increased with time from the second time point. The power control apparatus described.
  7.  前記最大値は前記第1発電装置が始動した第1時点から経時的に増加される請求項3又は請求項4に記載の電力制御装置。 The power control device according to claim 3 or 4, wherein the maximum value is increased with time from a first time point when the first power generator is started.
  8.  前記最大値は一定値とされる請求項3又は請求項4に記載の電力制御装置。 The power control device according to claim 3 or 4, wherein the maximum value is a constant value.
  9.  前記値設定部は、前記第2電力システムに前記放電電力を指令するための指令値をさらに設定し、
     前記電力制御部は、前記指令値に基づいて前記放電電力を調整する請求項1~請求項8のいずれかに記載の電力制御装置。
    The value setting unit further sets a command value for commanding the discharge power to the second power system,
    The power control apparatus according to any one of claims 1 to 8, wherein the power control unit adjusts the discharge power based on the command value.
  10.  前記値設定部はさらに、前記指令値が0未満であれば、前記指令値を0に設定する請求項9に記載の電力制御装置。 The power control device according to claim 9, wherein the value setting unit further sets the command value to 0 if the command value is less than 0.
  11.  前記電力制御部は、前記第1発電装置の始動が行われる際、一定の前記放電電力を前記第2電力システムから前記通電路に出力させる請求項1又は請求項2に記載の電力制御装置。 The power control device according to claim 1 or 2, wherein the power control unit outputs a constant discharge power from the second power system to the energization path when the first power generation device is started.
  12.  エンジンを備えた第1発電装置を有して電力負荷に通電路を介して接続される第1電力システムと、
     蓄電装置を有して前記通電路に接続される第2電力システムと、
     前記第1電力システム及び前記第2電力システムを制御する請求項1~請求項11のいずれかに記載の電力制御装置と、
    を備える電源システム。
    A first power system having a first power generator with an engine and connected to a power load via an energization path;
    A second power system having a power storage device and connected to the energization path;
    The power control apparatus according to any one of claims 1 to 11, which controls the first power system and the second power system;
    Power supply system comprising.
  13.  前記第1発電装置の駆動制御を行う駆動制御装置をさらに備え、
     前記電力制御装置は、前記駆動制御装置を介して前記第1電力システムを制御する請求項12に記載の電源システム。
    A drive control device that performs drive control of the first power generation device;
    The power system according to claim 12, wherein the power control device controls the first power system via the drive control device.
  14.  第2発電装置を有して電力負荷に前記通電路を介して接続される第3電力システムをさらに備える請求項12又は請求項13に記載の電源システム。 The power supply system according to claim 12 or 13, further comprising a third power system having a second power generation device and connected to a power load via the energization path.
  15.  前記第2発電装置は再生可能エネルギーを利用した発電装置を含む請求項14に記載の電力制御装置。 The power control device according to claim 14, wherein the second power generation device includes a power generation device using renewable energy.
  16.  前記第2電力システムは複数であって前記第1発電装置毎に設けられる請求項12~請求項15のいずれかに記載の電源システム。 The power supply system according to any one of claims 12 to 15, wherein a plurality of the second power systems are provided for each of the first power generation devices.
  17.  各々の前記第1発電装置において該第1発電装置及び前記第2電力システムがユニット化される請求項16に記載の電源システム。 The power supply system according to claim 16, wherein the first power generation device and the second power system are unitized in each of the first power generation devices.
  18.  各々の前記第1発電装置において該第1発電装置の駆動制御を行う駆動制御装置がさらにユニット化される請求項17に記載の電源システム。 The power supply system according to claim 17, wherein a drive control device that performs drive control of the first power generation device is further unitized in each of the first power generation devices.
  19.  前記通電路を流れる電力の電圧値又は電圧周波数を検出する電圧検出器をさらに備え、
     前記電力制御装置は、前記電圧検出器の検出結果に基づいて前記通電路を流れる電力を検知する請求項12~請求項18のいずれかに記載の電源システム。
    A voltage detector for detecting a voltage value or a voltage frequency of power flowing through the energization path;
    The power supply system according to any one of claims 12 to 18, wherein the power control device detects power flowing through the energization path based on a detection result of the voltage detector.
  20.  エンジンを備えた第1発電装置を有して電力負荷に通電路を介して接続される第1電力システムを制御するステップと、
     蓄電装置を有して前記通電路に接続される第2電力システムを制御するステップと、
    を備え、
     前記第2電力システムを制御するステップは、前記第1発電装置の始動が行われる際、前記蓄電装置を放電させて前記第2電力システムから前記通電路に放電電力を出力させるステップを含む電力制御方法。
    Controlling a first power system having a first power generator with an engine and connected to a power load via an energization path;
    Controlling a second power system having a power storage device and connected to the energization path;
    With
    The step of controlling the second power system includes a step of discharging the power storage device and outputting discharge power from the second power system to the energization path when the first power generator is started. Method.
  21.  請求項20に記載の電力制御方法をコンピュータに実行させるプログラムを非一時的に格納したコンピュータ読み取り可能な記録媒体。 A computer-readable recording medium in which a program for causing a computer to execute the power control method according to claim 20 is stored non-temporarily.
PCT/JP2016/057931 2016-03-14 2016-03-14 Power control apparatus, power source system, output control method, and recording medium WO2017158669A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/057931 WO2017158669A1 (en) 2016-03-14 2016-03-14 Power control apparatus, power source system, output control method, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/057931 WO2017158669A1 (en) 2016-03-14 2016-03-14 Power control apparatus, power source system, output control method, and recording medium

Publications (1)

Publication Number Publication Date
WO2017158669A1 true WO2017158669A1 (en) 2017-09-21

Family

ID=59850688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057931 WO2017158669A1 (en) 2016-03-14 2016-03-14 Power control apparatus, power source system, output control method, and recording medium

Country Status (1)

Country Link
WO (1) WO2017158669A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001136681A (en) * 1999-11-09 2001-05-18 Nissin Electric Co Ltd Power generation facility
JP2008245454A (en) * 2007-03-28 2008-10-09 Hitachi Ltd Power supply method and system for coping at disaster
JP2011205736A (en) * 2010-03-24 2011-10-13 Tokyo Electric Power Co Inc:The Distributed power supply and distributed power supply control method
JP2014155269A (en) * 2013-02-06 2014-08-25 Ryoju Estate Co Ltd Safety power supply system and control method thereof
WO2016027378A1 (en) * 2014-08-22 2016-02-25 中国電力株式会社 Supply and demand control device, supply and demand control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001136681A (en) * 1999-11-09 2001-05-18 Nissin Electric Co Ltd Power generation facility
JP2008245454A (en) * 2007-03-28 2008-10-09 Hitachi Ltd Power supply method and system for coping at disaster
JP2011205736A (en) * 2010-03-24 2011-10-13 Tokyo Electric Power Co Inc:The Distributed power supply and distributed power supply control method
JP2014155269A (en) * 2013-02-06 2014-08-25 Ryoju Estate Co Ltd Safety power supply system and control method thereof
WO2016027378A1 (en) * 2014-08-22 2016-02-25 中国電力株式会社 Supply and demand control device, supply and demand control method

Similar Documents

Publication Publication Date Title
EP2715904B1 (en) System and method for integrating and managing demand/response between alternative energy sources, grid power, and loads
JP5929258B2 (en) Power supply system and power supply device
JP6082886B2 (en) Power adjustment apparatus and power adjustment method
JP2010051074A (en) Heater power supply method of sodium-sulfur battery
JP2013042627A (en) Dc power supply control device and dc power supply control method
Prasai et al. Minimizing emissions in microgrids while meeting reliability and power quality objectives
JP2017051083A (en) Power generation system, power generation method and program
JP2024009124A (en) Power control device, storage battery system, storage battery charge power control method and program
WO2014112454A1 (en) Control apparatus, method, and program, and natural energy generation apparatus provided with control apparatus, method, and program
JP2012182868A (en) Photovoltaic power generator
KR101737461B1 (en) System for obtaining a driving power source to the power generation of the solar cell and method therefor
KR101492616B1 (en) Inverter of solar power with boosting-battery
WO2017158669A1 (en) Power control apparatus, power source system, output control method, and recording medium
JP2018014775A (en) Integrated controller, integrated control system, integrated control method and integrated control program
KR101259143B1 (en) Apparatus and method for controlling charge of stand alone solar photovoltaic power facilities
JP2011222427A (en) Air secondary battery power storage device
JP2007300728A (en) Power generating device
Krauter et al. New power conditioning unit incorporating charge controller, energy flow monitor, data Logger, DC/AC converter for stand alone and combined PV-Diesel operation
JP2013090460A (en) Power generation control unit of photovoltaic power generation system
EP2869429B1 (en) Battery storage system and controlling method of the same
Ogawa et al. Development of cooperating system capable of parallel connection with photovoltaic power generation system
WO2020034240A1 (en) Renewable energy management system
Nishikawa et al. Design methods and integrated control for microgrid
KR102623434B1 (en) Method of controlling charging and discharging of energy storage device in response to peak power detection and apparatus therefor
WO2017029821A1 (en) Power-source system, output control device, output control method, and storage medium

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894293

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP