JP2008244236A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2008244236A
JP2008244236A JP2007084142A JP2007084142A JP2008244236A JP 2008244236 A JP2008244236 A JP 2008244236A JP 2007084142 A JP2007084142 A JP 2007084142A JP 2007084142 A JP2007084142 A JP 2007084142A JP 2008244236 A JP2008244236 A JP 2008244236A
Authority
JP
Japan
Prior art keywords
region
substrate
electrode region
electrode
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007084142A
Other languages
Japanese (ja)
Inventor
Mamoru Ishikiriyama
衛 石切山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Miyazaki Oki Electric Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Miyazaki Oki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd, Miyazaki Oki Electric Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2007084142A priority Critical patent/JP2008244236A/en
Publication of JP2008244236A publication Critical patent/JP2008244236A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively reduce resistance between a source region and a substrate without increasing an element size in a transistor having substrate connection parts. <P>SOLUTION: A substrate connection part 13A is formed on a portion where a contact 15 selected at a rate of one to N (N is two in the figure) out of a plurality of contacts 15 each of which connects a high density diffusion layer 12 in a source region 10A to a source wire 14 by diffusing an impurity which is conductive similarly to the substrate and has a high concentration so as to reach a substrate body. The substrate connection part 13A is formed like a square pole whose side face has an angle of 45° with respect to a boundary with a gate region 20. Thereby, as compared with the case that the square pole-like substrate connection part is formed in parallel with the boundary, the resistance of the source region held between the substrate connection part 13A and a gate electrode can be reduced. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体装置、特に大電流を流すパワーMOSトランジスタ等において、基板電位の上昇による寄生バイポーラ動作を防止するための基板接続部の構造に関するものである。   The present invention relates to a structure of a substrate connection portion for preventing a parasitic bipolar operation due to an increase in substrate potential in a semiconductor device, particularly, a power MOS transistor that flows a large current.

例えばNチャネルMOSトランジスタ(以下、「NMOS」という)は、p型の半導体基板の表面にチャネル領域を挟んで対向するn型のドレイン領域とソース領域を形成すると共に、チャネル領域上にゲート絶縁膜を介してゲート電極を形成した構成とし、このゲート電極に与える電圧によってドレイン・ソース間の電流を制御するようになっている。この構成は、バイポーラ・トランジスタに対応させた場合、n型のドレインがコレクタに、p型の基板がベースに、n型のソースがエミッタにそれぞれ対応するNPNトランジスタとなる。   For example, an N-channel MOS transistor (hereinafter referred to as “NMOS”) forms an n-type drain region and a source region facing each other across a channel region on the surface of a p-type semiconductor substrate, and a gate insulating film on the channel region. The gate electrode is formed through the gate electrode, and the drain-source current is controlled by the voltage applied to the gate electrode. In this configuration, when the bipolar transistor is used, the n-type drain corresponds to the collector, the p-type substrate corresponds to the base, and the n-type source corresponds to the emitter.

このようなNMOSのゲート電極に電圧を印加してドレイン・ソース間に大電流を流すと、ソース領域と基板との間の抵抗により、基板の電位が上昇する。基板の電位が上昇することは、NPNトランジスタのベース電位が上昇したことになる。このため、ベース電位の上昇がベース・エミッタ間の閾値電圧(例えば、0.7V)を超えると、NMOSのゲート電極の電圧とは無関係に、寄生NPNトランジスタのコレクタ・エミッタ間(即ち、NMOSのドレイン・ソース間)に電流が流れ続けるラッチアップ状態が発生する。また、ドレインに静電気等のサージが入った場合にも、ドレインから基板に電流が流れ、この電流によって基板の電位が上昇して寄生NPNトランジスタがオン状態となり、ドレイン・ソース間に過電流が流れてNMOSが破壊するおそれがある。   When a voltage is applied to such an NMOS gate electrode and a large current flows between the drain and source, the potential of the substrate rises due to the resistance between the source region and the substrate. An increase in the potential of the substrate means an increase in the base potential of the NPN transistor. For this reason, when the increase in the base potential exceeds the threshold voltage between the base and the emitter (for example, 0.7 V), the voltage between the collector and the emitter of the parasitic NPN transistor (that is, the NMOS voltage) is independent of the voltage of the NMOS gate electrode. A latch-up state in which current continues to flow between the drain and the source occurs. In addition, even when a surge such as static electricity enters the drain, a current flows from the drain to the substrate. This current increases the potential of the substrate and turns on the parasitic NPN transistor, causing an overcurrent to flow between the drain and source. The NMOS may be destroyed.

このようなラッチアップや静電破壊対策として、特に大電流を流すパワーMOSトランジスタでは、ソース領域の一部を基板に密接してソースと基板との間の電位差の発生を抑制するための基板接続部を設けることが多い。   As a countermeasure against such latch-up and electrostatic breakdown, especially in a power MOS transistor that conducts a large current, a substrate connection for suppressing the occurrence of a potential difference between the source and the substrate by bringing a part of the source region into close contact with the substrate There are many parts.

図2は、基板接続部を有する従来のNMOSの構成図であり、同図(a)は平面図、同図(b),(c)は、それぞれ同図(a)中のX−X,Y−Yにおける断面を示す断面図である。   2A and 2B are configuration diagrams of a conventional NMOS having a substrate connection portion, where FIG. 2A is a plan view, and FIGS. 2B and 2C are respectively XX and XX in FIG. It is sectional drawing which shows the cross section in YY.

このNMOSは、p型の基板1に設けられた素子分離部2で分離された素子形成領域内に形成されたもので、中央にソース領域10が形成され、このソース領域10の両側にゲート領域20を介してドレイン領域30が形成されている。   The NMOS is formed in an element formation region isolated by an element isolation portion 2 provided on a p-type substrate 1, and a source region 10 is formed in the center, and gate regions are formed on both sides of the source region 10. A drain region 30 is formed via 20.

ソース領域10は、領域全体に低濃度のn−不純物が拡散された電界緩和層11と、この電界緩和層11の内側に高濃度のn+不純物が拡散された高濃度拡散層12を有している。更に、ソース領域10には、図2(b)に示すように、高濃度拡散層12と電界緩和層11の一部に、基板1の表面からp型の基板本体に達するように高濃度のp+不純物が拡散された基板接続部13が形成されている。この基板接続部13は1辺の長さが約2μmの正方形を柱状にした正四角柱で、図2(a)に示すように、その正方形の辺がゲート領域20との境界線に平行に配置されている。   The source region 10 includes an electric field relaxation layer 11 in which low concentration n-impurities are diffused throughout the region, and a high concentration diffusion layer 12 in which high concentration n + impurities are diffused inside the electric field relaxation layer 11. Yes. Further, as shown in FIG. 2B, the source region 10 has a high concentration so as to reach a p-type substrate body from the surface of the substrate 1 to a part of the high concentration diffusion layer 12 and the electric field relaxation layer 11. A substrate connecting portion 13 in which p + impurities are diffused is formed. The substrate connecting portion 13 is a regular quadrangular prism having a square shape with a side length of about 2 μm. The side of the square is arranged in parallel to the boundary line with the gate region 20 as shown in FIG. Has been.

ドレイン領域30は、領域全体に低濃度のn−不純物が拡散された電界緩和層31と、この電界緩和層31の内側に高濃度のn+不純物が拡散された高濃度拡散層32で形成されている。   The drain region 30 is formed by an electric field relaxation layer 31 in which low concentration n-impurities are diffused throughout the region, and a high concentration diffusion layer 32 in which high concentration n + impurities are diffused inside the electric field relaxation layer 31. Yes.

素子分離部2で分離された素子形成領域内の基板表面にはゲート絶縁膜3が形成され、ゲート領域20のゲート絶縁膜3上には、その一部がソース領域とドレイン領域の電界緩和層11,31とオーバーラップするように、ゲート電極21が形成されている。   A gate insulating film 3 is formed on the surface of the substrate in the element formation region isolated by the element isolation portion 2, and part of the gate insulating film 3 in the gate region 20 is an electric field relaxation layer of the source region and the drain region. A gate electrode 21 is formed so as to overlap with 11 and 31.

ゲート電極21が形成された基板1の表面全体は絶縁層4で覆われ、この絶縁層4の上にソース配線14、ドレイン配線33、及び図示しないゲート配線等が設けられている。そして、ソース配線14と高濃度拡散層12及び基板接続部13との間が、絶縁層4を貫通して形成されたコンタクト15で電気的に接続されている。また、ドレイン配線33と高濃度拡散層32との間も、絶縁層4を貫通して形成されたコンタクト34で電気的に接続されている。   The entire surface of the substrate 1 on which the gate electrode 21 is formed is covered with the insulating layer 4, and the source wiring 14, the drain wiring 33, and a gate wiring (not shown) are provided on the insulating layer 4. The source wiring 14 and the high-concentration diffusion layer 12 and the substrate connecting portion 13 are electrically connected by a contact 15 formed through the insulating layer 4. Further, the drain wiring 33 and the high concentration diffusion layer 32 are also electrically connected by a contact 34 formed so as to penetrate the insulating layer 4.

なお、図示していないが、ゲート電極21に対する配線も同様に形成されている。また、素子分離部2の外側のアクティブ領域には、高濃度のp+不純物が拡散された基板電位取り出し部5が形成され、このNMOSが形成された基板1表面は保護膜6で保護されている。   Although not shown, the wiring for the gate electrode 21 is similarly formed. Further, in the active region outside the element isolation portion 2, a substrate potential extraction portion 5 in which high-concentration p + impurities are diffused is formed, and the surface of the substrate 1 on which the NMOS is formed is protected by a protective film 6. .

例えば、電源電圧20Vクラスで大電流を流すNMOSの場合、このような基板接続部13を、ゲート幅方向(ゲート領域20に平行する方向)に10μmおきに設けることにより、ソース領域10と基板1との間の抵抗を低く抑え、基板電位の上昇による寄生バイポーラ動作を防止することができる。   For example, in the case of an NMOS in which a large current flows with a power supply voltage of 20 V class, such a substrate connecting portion 13 is provided at intervals of 10 μm in the gate width direction (direction parallel to the gate region 20). And the parasitic bipolar operation due to the increase in the substrate potential can be prevented.

特開平5−206470号公報JP-A-5-206470 特開平7−161984号公報Japanese Unexamined Patent Publication No. 7-161984 特開平10−4192号公報Japanese Patent Laid-Open No. 10-4192

しかしながら、前記基板接続部13のソース側抵抗は、高濃度拡散層12の抵抗の2倍以上あるので、この基板接続部13に対向したソース領域10には、電流が流れにくい。例えば、ゲート幅が50μmの場合、基板接続部13を4〜5個形成する必要がある。この基板接続部13の形成により、基板接続部13の占める長さはゲート幅方向に10μmとなり、ゲートの実効幅が10〜20%減少する。このため、その減少分だけゲート幅を広く形成する必要があり、素子サイズが大きくなるという課題があった。   However, since the source-side resistance of the substrate connecting portion 13 is more than twice that of the high-concentration diffusion layer 12, current hardly flows through the source region 10 facing the substrate connecting portion 13. For example, when the gate width is 50 μm, it is necessary to form 4 to 5 substrate connecting portions 13. Due to the formation of the substrate connecting portion 13, the length occupied by the substrate connecting portion 13 becomes 10 μm in the gate width direction, and the effective width of the gate is reduced by 10 to 20%. For this reason, it is necessary to increase the gate width by the reduced amount, and there is a problem that the element size increases.

本発明は、素子サイズを大きくせずにソース領域と基板との間の抵抗を低減することが可能な基板接続部を有する半導体装置の提供を目的としている。   An object of the present invention is to provide a semiconductor device having a substrate connection portion that can reduce the resistance between a source region and a substrate without increasing the element size.

本発明は、第1導電型の半導体基板と、前記半導体基板上に第2導電型不純物を拡散して形成された第1電極領域と、前記第1電極領域からゲート領域を隔てて前記半導体基板上に第2導電型不純物を拡散して形成された第2電極領域と、前記半導体基板上に形成された絶縁層と、前記絶縁層と介在させて前記第1電極領域上に形成された電極配線と、前記第1電極領域と前記ゲート領域との境界線に平行して一定の間隔で1列に配置され、前記電極配線から前記絶縁層を貫通して前記第1電極領域の第2導電型不純物拡散領域に接続する複数のコンタクトと、前記複数のコンタクトの内でN個(但し、Nは2以上の整数)に1個の割合で選択されたコンタクトが前記半導体基板の第1電極領域に接続する箇所に、高濃度の第1導電型不純物を該半導体基板本体に達するように拡散して形成された複数の基板接続部とを有する半導体装置において、前記複数の基板接続部を、側面が前記第1電極領域と前記ゲート領域との境界線に対して斜めの角度を有する正四角柱状に形成したことを特徴としている。   The present invention relates to a semiconductor substrate of a first conductivity type, a first electrode region formed by diffusing a second conductivity type impurity on the semiconductor substrate, and a semiconductor substrate with a gate region separated from the first electrode region. A second electrode region formed by diffusing impurities of a second conductivity type thereon; an insulating layer formed on the semiconductor substrate; and an electrode formed on the first electrode region with the insulating layer interposed therebetween A second conductive layer in the first electrode region is arranged in a row at a constant interval parallel to a boundary line between the wiring and the first electrode region and the gate region, and penetrates the insulating layer from the electrode wiring. A plurality of contacts connected to the type impurity diffusion region, and a contact selected at a ratio of N (N is an integer of 2 or more) among the plurality of contacts to the first electrode region of the semiconductor substrate High-concentration first-conductivity-type impurities at locations connected to In a semiconductor device having a plurality of substrate connection portions formed to diffuse so as to reach the semiconductor substrate body, the side surfaces of the plurality of substrate connection portions are border lines between the first electrode region and the gate region. It is characterized in that it is formed in a regular quadrangular prism shape having an oblique angle.

本発明では、第1電極領域を基板に接続するための基板接続部を、側面が第1電極領域とゲート領域との境界線に対して斜めの角度を有する正四角柱状に形成している。これにより、境界線に対して平行に形成された正四角柱状の基板接続部に比べて、電流の流れる範囲が広がり、素子サイズを大きくせずにソース領域と基板との間の抵抗を低減することができるという効果がある。   In the present invention, the substrate connecting portion for connecting the first electrode region to the substrate is formed in a regular quadrangular prism shape whose side surface has an oblique angle with respect to the boundary line between the first electrode region and the gate region. As a result, compared to a regular quadrangular columnar substrate connection portion formed in parallel to the boundary line, the current flowing range is widened, and the resistance between the source region and the substrate is reduced without increasing the element size. There is an effect that can be.

この発明の前記並びにその他の目的と新規な特徴は、次の好ましい実施例の説明を添付図面と照らし合わせて読むと、より完全に明らかになるであろう。但し、図面は、もっぱら解説のためのものであって、この発明の範囲を限定するものではない。   The above and other objects and novel features of the present invention will become more fully apparent when the following description of the preferred embodiment is read in conjunction with the accompanying drawings. However, the drawings are for explanation only, and do not limit the scope of the present invention.

図1は、本発明の実施例1を示すNMOSの構成図であり、同図(a)は平面図、同図(b),(c)は、それぞれ同図(a)中のA−A,B−Bにおける断面を示す断面図である。なお、図1において、図2中の要素と共通の要素には共通の符号が付されている。   FIG. 1 is a configuration diagram of an NMOS showing Embodiment 1 of the present invention, where FIG. 1A is a plan view, and FIGS. 1B and 1C are AA in FIG. 1A, respectively. , BB is a cross-sectional view showing a cross section. In FIG. 1, elements common to the elements in FIG.

このNMOSは、p型半導体の基板1に設けられた素子分離部2で分離された素子形成領域内に形成されたもので、中央にソース領域10Aが形成され、このソース領域10の両側にゲート領域20を介してドレイン領域30が形成されている。   The NMOS is formed in an element formation region isolated by an element isolation portion 2 provided on a p-type semiconductor substrate 1, and a source region 10 A is formed in the center, and gates are formed on both sides of the source region 10. A drain region 30 is formed through the region 20.

ソース領域10Aは、領域全体に低濃度のn−不純物が深さ0.34μm程度拡散された電界緩和層11と、この電界緩和層11の内側に高濃度のn+不純物が深さ0.1μm程度拡散された高濃度拡散層12を有している。更に、ソース領域10Aには、図1(b)に示すように、高濃度拡散層12と電界緩和層11の一部に、基板1の表面からp型の基板本体に達するように高濃度のp+不純物が拡散された基板接続部13Aが、ゲート領域20との境界線に平行して一定の間隔で形成されている。   The source region 10A has an electric field relaxation layer 11 in which low concentration n-impurities are diffused to a depth of about 0.34 μm in the entire region, and a high concentration n + impurity has a depth of about 0.1 μm inside the electric field relaxation layer 11. A diffused high concentration diffusion layer 12 is provided. Further, in the source region 10A, as shown in FIG. 1B, a high concentration diffusion layer 12 and a portion of the electric field relaxation layer 11 are formed so as to reach the p-type substrate body from the surface of the substrate 1. Substrate connecting portions 13A in which p + impurities are diffused are formed at regular intervals in parallel with the boundary line with the gate region 20.

この基板接続部13Aは、1辺の長さが約2μmの正方形の断面を有する正四角柱で、図1(a)に示すように、その正方形の辺がゲート領域20との境界線に対して斜め(この図では45°)の角度を有するように配置されている。   The substrate connecting portion 13A is a regular quadrangular prism having a square cross section with a side length of about 2 μm, and the square side of the board connecting portion 13A is in relation to the boundary line with the gate region 20 as shown in FIG. It arrange | positions so that it may have an angle (45 degrees in this figure).

ドレイン領域30は、領域全体に低濃度のn−不純物が拡散された電界緩和層31と、この電界緩和層31の内側に高濃度のn+不純物が拡散された高濃度拡散層32で形成されている。   The drain region 30 is formed by an electric field relaxation layer 31 in which low concentration n-impurities are diffused throughout the region, and a high concentration diffusion layer 32 in which high concentration n + impurities are diffused inside the electric field relaxation layer 31. Yes.

素子分離部2で分離された素子形成領域内の基板表面にはゲート絶縁膜3が形成され、ゲート領域20のゲート絶縁膜3上には、その一部がソース領域とドレイン領域の電界緩和層11,31とオーバーラップするように、ゲート電極21が形成されている。   A gate insulating film 3 is formed on the surface of the substrate in the element formation region isolated by the element isolation portion 2, and part of the gate insulating film 3 in the gate region 20 is an electric field relaxation layer of the source region and the drain region. A gate electrode 21 is formed so as to overlap with 11 and 31.

ゲート電極21が形成された基板1の表面全体は絶縁層4で覆われ、この絶縁層4の上にソース配線14、ドレイン配線33、及び図示しないゲート配線等が設けられている。そして、ソース配線14と高濃度拡散層12の間と、ソース配線14と基板接続部13Aとの間が、それぞれ絶縁層4を貫通して形成されたコンタクト15で電気的に接続されている。なお、この図1では、高濃度拡散層12に対するコンタクト15と基板接続部13Aに対するコンタクト15が、1個おきに交互に設けられている。   The entire surface of the substrate 1 on which the gate electrode 21 is formed is covered with the insulating layer 4, and the source wiring 14, the drain wiring 33, and a gate wiring (not shown) are provided on the insulating layer 4. The source wiring 14 and the high-concentration diffusion layer 12 and the source wiring 14 and the substrate connecting portion 13A are electrically connected by contacts 15 formed through the insulating layer 4, respectively. In FIG. 1, contacts 15 for the high-concentration diffusion layer 12 and contacts 15 for the substrate connection portion 13A are alternately provided.

また、ドレイン配線33と高濃度拡散層32との間も、絶縁層4を貫通して形成されたコンタクト34で電気的に接続されている。なお、図示していないが、ゲート電極21に対する配線も同様に形成されている。また、素子分離部2の外側のアクティブ領域には、高濃度のp+不純物が拡散された基板電位取り出し部5が形成され、このNMOSが形成された基板1表面は保護膜6で保護されている。   Further, the drain wiring 33 and the high concentration diffusion layer 32 are also electrically connected by a contact 34 formed so as to penetrate the insulating layer 4. Although not shown, the wiring for the gate electrode 21 is similarly formed. Further, in the active region outside the element isolation portion 2, a substrate potential extraction portion 5 in which high-concentration p + impurities are diffused is formed, and the surface of the substrate 1 on which the NMOS is formed is protected by a protective film 6. .

このようなNMOSを、例えば、電源電圧20Vで大電流を流す目的で使用する場合、基板接続部13Aをゲート幅方向(ゲート領域20に平行する方向)に10μmおきに設けることにより、ソース領域10と基板1との間の抵抗を低く抑え、基板電位の上昇による寄生バイポーラ動作を防止することができる。   For example, when such an NMOS is used for the purpose of flowing a large current at a power supply voltage of 20 V, the source region 10 is provided by providing the substrate connecting portions 13A every 10 μm in the gate width direction (direction parallel to the gate region 20). The resistance between the substrate 1 and the substrate 1 can be kept low, and a parasitic bipolar operation due to an increase in substrate potential can be prevented.

図3は、図1と図2のNMOSの動作比較図で、ソース領域に流れる電流の経路を模式的に示したものである。図3において、実線は図1のNMOSの基板接続部13Aと電流を示し、破線は図2のNMOSの基板接続部13と電流を示している。   FIG. 3 is an operation comparison diagram of the NMOS of FIGS. 1 and 2 and schematically shows a path of a current flowing through the source region. In FIG. 3, a solid line indicates the NMOS substrate connection 13A and current of FIG. 1, and a broken line indicates the NMOS substrate connection 13 and current of FIG.

この図3に示すように、図2のNMOSでは正方形の基板接続部13の辺がゲート電極と平行に配置されている。このため、ドレイン領域からゲート領域を介してソース領域のコンタクト15に流れる電流は、ゲート電極と基板接続部13の間の狭い箇所に集中して流れる。   As shown in FIG. 3, in the NMOS shown in FIG. 2, the side of the square substrate connecting portion 13 is arranged in parallel with the gate electrode. For this reason, the current flowing from the drain region to the contact 15 in the source region through the gate region concentrates on a narrow portion between the gate electrode and the substrate connecting portion 13.

これに対して、図1のNMOSでは正方形の基板接続部13Aの辺がゲート電極に対して45°の傾きを有しているので、ドレイン領域からゲート領域を介してソース領域のコンタクト15へ流れる電流は、斜めに広がって流れることができる。   On the other hand, in the NMOS of FIG. 1, the side of the square substrate connecting portion 13A has an inclination of 45 ° with respect to the gate electrode, and therefore flows from the drain region to the source region contact 15 via the gate region. The current can flow diagonally.

以上のように、この実施例1のNMOSは、基板接続部13Aの側面をゲート電極に対して45°の傾きを持たせて形成しているので、この基板接続部13Aとゲート電極に挟まれたソース領域の抵抗を、図2のNMOSに比べて減少させること可能になる。これにより、ゲート幅を広く形成しなくても(素子サイズを大きくしなくても)、ソース領域と基板との間の抵抗を効果的に低減することができるという利点がある。   As described above, the NMOS according to the first embodiment is formed so that the side surface of the substrate connecting portion 13A is inclined at 45 ° with respect to the gate electrode, so that it is sandwiched between the substrate connecting portion 13A and the gate electrode. The resistance of the source region can be reduced compared to the NMOS of FIG. Accordingly, there is an advantage that the resistance between the source region and the substrate can be effectively reduced without forming a wide gate width (without increasing the element size).

図4は、本発明の実施例2を示すNMOSの構成図であり、同図(a)は平面図、同図(b),(c)は、それぞれ同図(a)中のC−C,D−Dにおける断面を示す断面図である。なお、図4において、図1中の要素と共通の要素には共通の符号が付されている。   FIG. 4 is a configuration diagram of an NMOS showing Embodiment 2 of the present invention, where FIG. 4A is a plan view, and FIGS. 4B and C are CC lines in FIG. It is sectional drawing which shows the cross section in DD. In FIG. 4, elements common to the elements in FIG.

このNMOSは、図1のNMOSにおけるソース領域10Aに代えて、構造の異なるソース領域10Bを設けたものである。   This NMOS is provided with a source region 10B having a different structure in place of the source region 10A in the NMOS of FIG.

即ち、このソース領域10Bは、図4(b),(c)に示すように、高濃度のn+不純物が深さ約0.1μmまで拡散された高濃度拡散層12の底面下部領域に、高エネルギーイオン注入技術を用いて高濃度のp+不純物を深さ約0.43μm埋め込んだ、埋め込み基板接続部16を有している。   That is, as shown in FIGS. 4B and 4C, the source region 10B is formed in a region below the bottom surface of the high concentration diffusion layer 12 in which high concentration n + impurities are diffused to a depth of about 0.1 μm. It has an embedded substrate connection portion 16 in which a high-concentration p + impurity is embedded at a depth of about 0.43 μm using an energy ion implantation technique.

また、この埋め込み基板接続部16をソース配線14に接続するための基板接続部13Bは、図4(a),(b)に示すように、ソース領域10の中央部に1箇所だけ設けられている。この基板接続部13Bは、図1中の基板接続部13Aと同様に、1辺の長さが約2μmの正方形で、図4(a)に示すように、その正方形の辺がゲート領域20との境界線に対して45°の角度をなすように配置されている。基板接続部13Bは、高濃度拡散層12に、基板1の表面から埋め込み基板接続部16に達するように、高濃度のp+不純物を深さ0.15μm程度拡散して形成したものである。その他の構成は、図1と同様である。   Further, as shown in FIGS. 4A and 4B, the substrate connection portion 13B for connecting the embedded substrate connection portion 16 to the source wiring 14 is provided only at one position in the center portion of the source region 10. Yes. The substrate connection portion 13B is a square having a side length of about 2 μm, similar to the substrate connection portion 13A in FIG. 1, and the side of the square is connected to the gate region 20 as shown in FIG. It is arranged so as to form an angle of 45 ° with respect to the boundary line. The substrate connection portion 13B is formed by diffusing a high concentration p + impurity in the high concentration diffusion layer 12 so as to reach the embedded substrate connection portion 16 from the surface of the substrate 1 to a depth of about 0.15 μm. Other configurations are the same as those in FIG.

このNMOSでは、ソース領域10Bの高濃度拡散層12の底面下部領域全体に形成された埋め込み基板接続部16が基板1と接続され、この埋め込み基板接続部16の中央に拡散された高濃度のp+不純物による基板接続部13Bを介してソース配線14に接続されている。これにより、ソース電極と基板1はほぼ同電位に保持される。   In this NMOS, the buried substrate connecting portion 16 formed in the entire bottom region of the bottom surface of the high concentration diffusion layer 12 in the source region 10B is connected to the substrate 1, and the high concentration p + diffused in the center of the buried substrate connecting portion 16 is used. It is connected to the source wiring 14 through the substrate connecting portion 13B made of impurities. Thereby, the source electrode and the substrate 1 are held at substantially the same potential.

以上のように、この実施例2のNMOSは、ソース領域10Bの底面下部全体に形成された埋め込み基板接続部16とソース配線14とを1つの基板接続部13Bで接続している。これにより、ソース電極と基板1はほぼ同電位に保持されて基板電位の上昇によるラッチアップや静電破壊を効果的に抑制することができると共に、基板接続部13Bが1箇所のみであるので、ソース領域は基板接続部13Bの影響を殆ど受けなくなり、ソース幅を増加させる必要がなくなり、素子の小型化が可能になるという利点がある。   As described above, in the NMOS according to the second embodiment, the embedded substrate connecting portion 16 and the source wiring 14 formed on the entire bottom portion of the bottom of the source region 10B are connected by one substrate connecting portion 13B. As a result, the source electrode and the substrate 1 are held at substantially the same potential, so that latch-up and electrostatic breakdown due to an increase in substrate potential can be effectively suppressed, and the substrate connecting portion 13B is only at one location. The source region is hardly affected by the substrate connecting portion 13B, and there is an advantage that it is not necessary to increase the source width and the device can be miniaturized.

なお、本発明は、上記実施例に限定されず、種々の変形が可能である。この変形例としては、例えば、次のようなものがある。
(1) NMOSについて説明したが、PチャネルMOSトランジスタに対しても同様に適用することができる。
(2) 用途によっては、ソース領域ではなく、ドレイン領域に基板接続部を設けることも可能である。
(3) 実施例1では、ソース領域10Aのコンタクト2個に対して基板接続部13Aを1個の割合で設けた例を説明したが、基板接続部の寸法や配置数や位置は任意であり、トランジスタの容量等に応じて適切に設定することができる。
(4) 実施例2の基板接続部13Bは1箇所であるが、2箇所以上設けても良い。また、この基板接続部13Bの形状は正四角柱に限定されず、円柱状等でも良い。
(5) ソース領域10A,10Bの両側にゲート領域20を挟んでドレイン領域30が形成されたNMOSを例示したが、ソース領域、ゲート領域及びドレイン領域の数はこれに限定されない。
In addition, this invention is not limited to the said Example, A various deformation | transformation is possible. Examples of this modification include the following.
(1) Although the NMOS has been described, the present invention can be similarly applied to a P-channel MOS transistor.
(2) Depending on the application, it is possible to provide the substrate connection portion in the drain region instead of the source region.
(3) In Example 1, although the example which provided the board | substrate connection part 13A in the ratio of one piece with respect to two contacts of 10 A of source regions was demonstrated, the dimension of the board | substrate connection part, the number of arrangement | positioning, and a position are arbitrary. It can be set appropriately according to the capacity of the transistor.
(4) Although the substrate connection part 13B of Example 2 is one place, you may provide two or more places. Further, the shape of the board connecting portion 13B is not limited to a regular quadrangular prism, and may be a cylindrical shape or the like.
(5) Although the NMOS in which the drain region 30 is formed on both sides of the source regions 10A and 10B with the gate region 20 interposed therebetween is illustrated, the number of source regions, gate regions, and drain regions is not limited to this.

本発明の実施例1を示すNMOSの構成図である。It is a block diagram of NMOS which shows Example 1 of this invention. 従来のNMOSの構成図である。It is a block diagram of a conventional NMOS. 図1と図2のNMOSの動作比較図である。FIG. 3 is an operation comparison diagram of the NMOS of FIGS. 1 and 2. 本発明の実施例2を示すNMOSの構成図である。It is a block diagram of NMOS which shows Example 2 of this invention.

符号の説明Explanation of symbols

1 基板
2 素子分離部
3 ゲート絶縁膜
4 絶縁層
5 基板電位取り出し部
6 保護膜
10A,10B ソース領域
11,31 電界緩和層
12,32 高濃度拡散層
13A,13B 基板接続部
14 ソース配線
15,34 コンタクト
16 埋め込み基板接続部
20 ゲート領域
21 ゲート電極
30 ドレイン領域
33 ドレイン配線
DESCRIPTION OF SYMBOLS 1 Substrate 2 Element isolation part 3 Gate insulating film 4 Insulating layer 5 Substrate potential extraction part 6 Protective film 10A, 10B Source region 11, 31 Electric field relaxation layer 12, 32 High concentration diffusion layer 13A, 13B Substrate connecting part 14 Source wiring 15, 34 Contact 16 Embedded Substrate Connection Portion 20 Gate Region 21 Gate Electrode 30 Drain Region 33 Drain Wiring

Claims (4)

第1導電型の半導体基板と、前記半導体基板上に第2導電型不純物を拡散して形成された第1電極領域と、前記第1電極領域からゲート領域を隔てて前記半導体基板上に第2導電型不純物を拡散して形成された第2電極領域と、前記半導体基板上に形成された絶縁層と、前記絶縁層と介在させて前記第1電極領域上に形成された電極配線と、前記第1電極領域と前記ゲート領域との境界線に平行して一定の間隔で1列に配置され、前記電極配線から前記絶縁層を貫通して前記第1電極領域の第2導電型不純物拡散領域に接続する複数のコンタクトと、前記複数のコンタクトの内でN個(但し、Nは2以上の整数)に1個の割合で選択されたコンタクトが前記半導体基板の第1電極領域に接続する箇所に、高濃度の第1導電型不純物を該半導体基板本体に達するように拡散して形成された複数の基板接続部とを有する半導体装置において、
前記複数の基板接続部は、側面が前記第1電極領域と前記ゲート領域との境界線に対して斜めの角度を有する正四角柱状に形成されたことを特徴とする半導体装置。
A first conductive type semiconductor substrate; a first electrode region formed by diffusing a second conductive type impurity on the semiconductor substrate; and a second region on the semiconductor substrate with a gate region separated from the first electrode region. A second electrode region formed by diffusing conductive impurities, an insulating layer formed on the semiconductor substrate, an electrode wiring formed on the first electrode region with the insulating layer interposed therebetween, A second conductivity type impurity diffusion region of the first electrode region, which is arranged in a row at a constant interval in parallel with a boundary line between the first electrode region and the gate region and penetrates the insulating layer from the electrode wiring. A plurality of contacts that are connected to the first electrode region of the semiconductor substrate, and contacts that are selected at a ratio of N (N is an integer of 2 or more) among the plurality of contacts to the first electrode region of the semiconductor substrate In addition, a high-concentration first conductivity type impurity is added to the semiconductor In a semiconductor device having a plurality of board connecting portion which is formed by diffusing to reach the plate body,
The semiconductor device according to claim 1, wherein the plurality of substrate connection portions are formed in a regular quadrangular prism shape whose side surfaces have an oblique angle with respect to a boundary line between the first electrode region and the gate region.
第1導電型の半導体基板と、
前記半導体基板上に第2導電型不純物を拡散して形成された第1電極領域と、
前記第1電極領域の下側の前記半導体基板に高濃度の第1導電型不純物を注入して形成された埋め込み基板接続部と、
前記第1電極領域からゲート領域を隔てて前記半導体基板上に第2導電型不純物を拡散して形成された第2電極領域と、
前記半導体基板上に形成された絶縁層と、
前記絶縁層と介在させて前記第1電極領域上に形成された電極配線と、
前記電極配線から前記絶縁層を貫通して前記第1電極領域の第2導電型不純物拡散領域に接続する複数のコンタクトと、
前記複数のコンタクトの内の少なくとも1個のコンタクトが前記半導体基板の第1電極領域に接続する箇所に、高濃度の第1導電型不純物を前記埋め込み基板接続部に達するように拡散して形成された基板接続部とを、
備えたことを特徴とする半導体装置。
A first conductivity type semiconductor substrate;
A first electrode region formed by diffusing a second conductivity type impurity on the semiconductor substrate;
A buried substrate connecting portion formed by implanting a high-concentration first conductivity type impurity into the semiconductor substrate below the first electrode region;
A second electrode region formed by diffusing a second conductivity type impurity on the semiconductor substrate across the gate region from the first electrode region;
An insulating layer formed on the semiconductor substrate;
An electrode wiring formed on the first electrode region with the insulating layer interposed therebetween;
A plurality of contacts connecting from the electrode wiring to the second conductivity type impurity diffusion region of the first electrode region through the insulating layer;
At least one contact of the plurality of contacts is formed by diffusing high-concentration first conductivity type impurities so as to reach the buried substrate connecting portion at a position where the contact is connected to the first electrode region of the semiconductor substrate. Board connection part
A semiconductor device comprising the semiconductor device.
前記基板接続部は、側面が前記第1電極領域と前記ゲート領域との境界線に対して45度の角度を有する正四角柱状に形成されたことを特徴とする請求項1または2記載の半導体装置。   3. The semiconductor according to claim 1, wherein the substrate connecting portion is formed in a regular quadrangular prism shape having a side surface having an angle of 45 degrees with respect to a boundary line between the first electrode region and the gate region. apparatus. 前記第1電極領域と前記第2電極領域は、それぞれ周辺部に低濃度、中央部に高濃度の第2導電型不純物を拡散して形成され、
前記コンタクトは、前記第1電極領域の高濃度の第2導電型不純物が拡散された領域に接続するように配置されたことを特徴とする請求項1〜3の内のいずれか1項に記載の半導体装置。
The first electrode region and the second electrode region are formed by diffusing a low concentration second conductivity type impurity in the peripheral portion and a high concentration in the central portion, respectively.
4. The device according to claim 1, wherein the contact is disposed so as to be connected to a region where the high-concentration second conductivity type impurity in the first electrode region is diffused. 5. Semiconductor device.
JP2007084142A 2007-03-28 2007-03-28 Semiconductor device Pending JP2008244236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007084142A JP2008244236A (en) 2007-03-28 2007-03-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007084142A JP2008244236A (en) 2007-03-28 2007-03-28 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2008244236A true JP2008244236A (en) 2008-10-09

Family

ID=39915189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007084142A Pending JP2008244236A (en) 2007-03-28 2007-03-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2008244236A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069759A (en) * 2010-09-24 2012-04-05 Renesas Electronics Corp Semiconductor device
WO2020105321A1 (en) * 2018-11-23 2020-05-28 株式会社デンソー Semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11330451A (en) * 1998-05-07 1999-11-30 Fuji Electric Co Ltd Semiconductor device
JP2002141502A (en) * 2000-11-02 2002-05-17 Rohm Co Ltd Semiconductor device and its manufacturing method
JP2004039773A (en) * 2002-07-02 2004-02-05 Sanyo Electric Co Ltd Semiconductor device and its manufacturing method
US20040217418A1 (en) * 2003-05-01 2004-11-04 Semiconductor Components Industries, Llc. Method of forming a transistor and structure therefor
JP2005236252A (en) * 2003-10-22 2005-09-02 Marvell World Trade Ltd Efficient transistor structure
JP2005243772A (en) * 2004-02-25 2005-09-08 Victor Co Of Japan Ltd Semiconductor integrated circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11330451A (en) * 1998-05-07 1999-11-30 Fuji Electric Co Ltd Semiconductor device
JP2002141502A (en) * 2000-11-02 2002-05-17 Rohm Co Ltd Semiconductor device and its manufacturing method
JP2004039773A (en) * 2002-07-02 2004-02-05 Sanyo Electric Co Ltd Semiconductor device and its manufacturing method
US20040217418A1 (en) * 2003-05-01 2004-11-04 Semiconductor Components Industries, Llc. Method of forming a transistor and structure therefor
JP2005236252A (en) * 2003-10-22 2005-09-02 Marvell World Trade Ltd Efficient transistor structure
JP2005243772A (en) * 2004-02-25 2005-09-08 Victor Co Of Japan Ltd Semiconductor integrated circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069759A (en) * 2010-09-24 2012-04-05 Renesas Electronics Corp Semiconductor device
WO2020105321A1 (en) * 2018-11-23 2020-05-28 株式会社デンソー Semiconductor device

Similar Documents

Publication Publication Date Title
US11127734B2 (en) Vertical nanowire transistor for input/output structure
JP4772843B2 (en) Semiconductor device and manufacturing method thereof
US8063444B2 (en) Lateral diffused metal oxide semiconductor (LDMOS) devices with electrostatic discharge (ESD) protection capability in integrated circuit
US7244975B2 (en) High-voltage device structure
US9190535B2 (en) Bootstrap MOS for high voltage applications
US7385253B2 (en) Device for electrostatic discharge protection and circuit thereof
US20150194420A1 (en) Semiconductor Device
JP2016508671A5 (en)
JP2008218564A (en) Semiconductor device
US20090072314A1 (en) Depletion Mode Field Effect Transistor for ESD Protection
US9960235B2 (en) Semiconductor device
JP2008078361A (en) Semiconductor integrated circuit device
US8421153B2 (en) Semiconductor device
CN106960841B (en) High voltage transistor
US10700053B2 (en) Electrostatic protection element
JP2009071173A (en) Semiconductor device
KR100335527B1 (en) Semiconductor element formed as an electrostatic protection circuit
JP2008244236A (en) Semiconductor device
US20080042207A1 (en) Contact array layout for improving ESD capability of CMOS transistors
CN110690211B (en) Electrostatic discharge protection structure and electrostatic discharge robust semiconductor device
JP2005108980A (en) Semiconductor device
JP2013191767A (en) Esd protective transistor element
JP2012195326A (en) Semiconductor device
JP2002176347A (en) Overcurrent limiting semiconductor device
JP2008004783A (en) High withstand voltage semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080926

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705