JP2008241227A - Pressure-bonded heat pipe - Google Patents

Pressure-bonded heat pipe Download PDF

Info

Publication number
JP2008241227A
JP2008241227A JP2007086743A JP2007086743A JP2008241227A JP 2008241227 A JP2008241227 A JP 2008241227A JP 2007086743 A JP2007086743 A JP 2007086743A JP 2007086743 A JP2007086743 A JP 2007086743A JP 2008241227 A JP2008241227 A JP 2008241227A
Authority
JP
Japan
Prior art keywords
outer peripheral
container
container material
heat pipe
pressure welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007086743A
Other languages
Japanese (ja)
Inventor
Takahiro Shimura
隆広 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2007086743A priority Critical patent/JP2008241227A/en
Publication of JP2008241227A publication Critical patent/JP2008241227A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/08Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes pressed; stamped; deep-drawn

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pressure-bonded heat pipe of excellent heat radiating performance capable of maintaining the surface flatness of a plate-like member mounted with a cooled element without increasing the number of members in the heat pipe formed to pressure-bond the outer peripheral part of the plate-like member. <P>SOLUTION: The pressure-bonded heat pipe comprises: a container formed by arranging one container material; and the other container material to face each other and pressure-bonding the outer peripheral parts and having a sealed cavity part, a wick material arranged in the cavity part, and an operating fluid. The one container material comprises: an approximately flat outer peripheral part of flange shape; an approximately flat center part with a level difference from the outer peripheral part; and a sidewall part connecting the outer peripheral part to the center part, while the other container material comprises: an approximately flat outer peripheral part of flange shape; an approximately flat center part with a level difference from the outer peripheral part; a sidewall part connecting the outer peripheral part to the center part; and a plurality of recesses depressed from the center part toward the center part of the one container material and having the end of curved surface shape. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、電気・電子部品、例えば半導体チップ等の高発熱量の被冷却素子等を冷却するのに適した圧接接合式ヒートパイプに関する。   The present invention relates to a pressure welding type heat pipe suitable for cooling an element to be cooled, such as a semiconductor chip or the like, which has a high calorific value.

パソコンのCPU、レーザ発光ダイオード、パワートランジスタ等の電気・電子機器に搭載されている半導体素子等の電子部品は、その使用によって発熱が生じ、その冷却が必要になっている。冷却を要する半導体素子等の電子部品を冷却する方法として、例えば機器にファンを取り付けて、機器筐体内の空気の温度を下げる方法や、被冷却素子に冷却体を取り付けることによって、その被冷却素子を直接的に冷却する方法等が知られている。被冷却素子に取り付ける冷却体として、例えば銅材やアルミニウム材などの伝熱性に優れた材料の板材や、或いは板型ヒートパイプ等が適用されることが多い。   Electronic parts such as semiconductor elements mounted on electric / electronic devices such as personal computer CPUs, laser light-emitting diodes, and power transistors generate heat due to their use and need to be cooled. As a method for cooling an electronic component such as a semiconductor element that requires cooling, for example, a method for lowering the temperature of air in a device casing by attaching a fan to the device, or by attaching a cooling body to the element to be cooled, A method for directly cooling the battery is known. As a cooling body attached to the element to be cooled, for example, a plate material made of a material having excellent heat conductivity such as a copper material or an aluminum material, or a plate heat pipe is often used.

ヒートパイプの内部には作動流体の流路となる空間が設けられ、その空間に収容された作動流体が、蒸発、凝縮等の相変化や移動をすることによって、熱の移動が行われる。即ち、ヒートパイプの吸熱側において、ヒートパイプを構成する容器の材質中を熱伝導して伝わってきた被冷却部品が発する熱により、作動流体が蒸発し、その蒸気がヒートパイプの放熱側に移動する。放熱側においては、作動流体の蒸気は冷却され再び液相状態に戻る。このように液相状態に戻った作動流体は再び吸熱側に移動(還流)する。このような作動流体の相変態や移動によって熱の移動が行われる。冷却効率を高めるためには、被冷却素子が取り付けられる面の平坦性が維持されることが必要である。   A space serving as a flow path for the working fluid is provided inside the heat pipe, and the working fluid accommodated in the space undergoes a phase change or movement such as evaporation or condensation, thereby transferring heat. That is, on the heat absorption side of the heat pipe, the working fluid evaporates due to the heat generated by the parts to be cooled that are conducted through the material of the container constituting the heat pipe, and the vapor moves to the heat radiation side of the heat pipe. To do. On the heat radiating side, the working fluid vapor is cooled and returned to the liquid phase again. The working fluid that has returned to the liquid phase in this way moves (refluxs) again to the heat absorption side. Heat is transferred by such phase transformation and movement of the working fluid. In order to increase the cooling efficiency, it is necessary to maintain the flatness of the surface to which the element to be cooled is attached.

板型ヒートパイプのコンテナの形成は、プレス等によって成形した2枚の板状部材をロウ付け等で接合する方法(例えば特開平10−38484号公報)、常温下で機械的に変形させる圧接接合方法(特開2002−310581号公報)が知られている。   The plate-type heat pipe container is formed by a method in which two plate-shaped members formed by pressing or the like are joined by brazing (for example, Japanese Patent Laid-Open No. 10-38484), pressure welding that is mechanically deformed at room temperature. A method (Japanese Patent Laid-Open No. 2002-310581) is known.

周囲を圧接にて接合するヒートパイプは、ロウ付けなどで接合するヒートパイプと異なり接合部材を用いないですむ。また、常温での接合が可能なので作動液を内部に保持した状態で圧接することができ、ロウ付けでは不可能であったコンテナ形成と作動液封入の各工程を同一工程にすることができる。つまり、省部材化、省工程化の点で低コストのヒートパイプが実現でき、圧接接合は特に板型ヒートパイプの作製方法として注目されている。   Unlike heat pipes that are joined by brazing, the heat pipe that joins the periphery by pressure welding does not require the use of joining members. Further, since bonding at normal temperature is possible, it is possible to press-contact with the hydraulic fluid held inside, and the container forming and hydraulic fluid filling steps, which were impossible with brazing, can be made the same step. That is, a low-cost heat pipe can be realized in terms of member saving and process saving, and pressure welding is particularly attracting attention as a method for producing a plate heat pipe.

コンテナを圧接接合しようとした場合、圧接接合部の伸びがコンテナの中央部を変形させる。特に、コンテナを内部空間の方向に凹ませることが知られている。
なお、支持部材がない状態で圧接した場合、コンテナ内が大気圧と同じ場合でも圧接時にコンテナが同様に凹む。従って、良く知られているコンテナ内外の圧力差からヒートパイプが潰れることを防ぐことを目的とする補強構造と、ここで述べる支持構造は本質的に異なり、圧接接合方式特有の構造である。
When the container is to be pressure welded, the elongation of the pressure welded joint deforms the center of the container. In particular, it is known that the container is recessed in the direction of the internal space.
In addition, when it press-contacts in the state without a supporting member, even when the inside of a container is the same as atmospheric pressure, a container is similarly dented at the time of press-contact. Therefore, the well-known reinforcement structure for preventing the heat pipe from being crushed from the pressure difference between the inside and outside of the container and the support structure described here are essentially different, and are structures unique to the pressure welding system.

コンテナの変形を防止するために、柱状部材をコンテナ内部に配置する方法が開示されている(特開2006−313033号公報)。即ち、図7に示すように、上板材102と対応する下板材103を対向配置し、形成される空洞部内に柱状部材104、105を配置し、外周部を圧接するときにコンテナの平らな面が変形しないようにしている。更に、コンテナの代わりにエンボス加工を施す方法もある。即ち、図8に拡大して示すように上板材102に対向する下板材103にエンボス加工106を施している。
特開平10−38484号公報 特開2002−310581号公報 特開2006−313033号公報
In order to prevent deformation of the container, a method of disposing a columnar member inside the container is disclosed (Japanese Patent Laid-Open No. 2006-313033). That is, as shown in FIG. 7, when the upper plate material 102 and the lower plate material 103 corresponding to each other are arranged to face each other, the columnar members 104 and 105 are arranged in the formed cavity, and the outer surface is pressed against the flat surface of the container. Is not deformed. There is also a method of embossing instead of the container. That is, as shown in an enlarged view in FIG. 8, the embossing 106 is applied to the lower plate material 103 that faces the upper plate material 102.
JP 10-38484 A Japanese Patent Laid-Open No. 2002-310581 JP 2006-313033 A

図7を参照して説明したように支持部材を用いる場合、部材数が増える、支持部材をコンテナ内で位置決めする手段を更に設ける必要があるなど、コストが高くなるという問題点があった。
図8を参照して説明したように片側のコンテナにエンボス加工を施す場合、対向するコンテナに届くまで深く絞る必要があるが、深く絞りすぎると先端107や付け根108でコンテナが破断するため、絞る量に限界がある。結果として、ヒートパイプ内の空間を低くせざるを得ず、ヒートパイプの性能が低下するという問題があった。
When using a support member as described with reference to FIG. 7, there are problems that the number of members increases and that it is necessary to further provide a means for positioning the support member in the container.
As described with reference to FIG. 8, when embossing a container on one side, it is necessary to squeeze deeply until it reaches the opposite container. There is a limit to the amount. As a result, there was a problem that the space in the heat pipe had to be lowered, and the performance of the heat pipe was lowered.

図9に示すように、両方のコンテナにエンボス加工106を施して、窪みの先端の面を接触させれば、片側のみを絞る場合と比べてヒートパイプ内の空間を厚くすることができるが、ヒートパイプにフィン109を付けて冷却する場合では、図9(b)に示すように、フィン109とエンボス部106の間に空洞ができてしまい、ヒートパイプ101からフィン109への熱伝達の効率が落ちるという問題があった。   As shown in FIG. 9, if embossing 106 is applied to both containers and the surface at the tip of the dent is brought into contact, the space in the heat pipe can be made thicker than when only one side is squeezed, In the case of cooling by attaching the fin 109 to the heat pipe, as shown in FIG. 9B, a cavity is formed between the fin 109 and the embossed portion 106, and the efficiency of heat transfer from the heat pipe 101 to the fin 109. There was a problem of falling.

従って、この発明の目的は、板状部材の外周部を圧接接合するヒートパイプにおいて、部材数を増やすことなく、被冷却素子が取り付けられる板状部材の面の平坦性を維持することができる、放熱性能に優れた圧接接合式ヒートパイプを提供することにある。   Therefore, the object of the present invention is to maintain the flatness of the surface of the plate-like member to which the element to be cooled is attached without increasing the number of members in the heat pipe that press-joins the outer peripheral portion of the plate-like member. An object of the present invention is to provide a pressure welding heat pipe excellent in heat dissipation performance.

発明者は従来の問題点を解決するため、鋭意研究を重ねた。その結果、対向配置される一方のコンテナ材に、中央部から他方のコンテナ材の中央部の方向に押し下げられ、かつ、先端が曲面状の複数の窪み部を備えていると、2つのコンテナ材が対向配置され、外周部を圧接により接合しても、中央部に変形が生じないことが判明した。   The inventor conducted extensive research to solve the conventional problems. As a result, when one container material arranged oppositely is pushed down from the central portion toward the central portion of the other container material and has a plurality of hollow portions with curved ends, the two container materials It was found that even if the outer peripheral portions are joined by pressure welding, no deformation occurs in the central portion.

特に、上述した先端が曲面状の窪み部がコンテナの側壁部の近傍に設けられ、外周面の接合面よりも対向するコンテナ材に向かって深く形成されていると、より効果的であることが判明した。この発明は上述した研究結果に基づいてなされたものである。   In particular, it is more effective when the above-mentioned concave portion having a curved tip is provided in the vicinity of the side wall portion of the container and is formed deeper toward the container material facing the joint surface of the outer peripheral surface. found. The present invention has been made based on the research results described above.

この発明の圧接接合式ヒートパイプの第1の態様は、フランジ形状の略平坦な外周部と、前記外周部と段差を有する略平坦な中央部と、前記外周部と前記中央部を連結する側壁部とを備えた一方のコンテナ材と、
フランジ形状の略平坦な外周部と、前記外周部と段差を有する略平坦な中央部と、前記外周部と前記中央部を連結する側壁部と、前記中央部から前記一方のコンテナ材の前記中央部の方向に押し下げられ、かつ、先端が曲面状の複数の窪み部を備えた他方のコンテナ材とを対向配置し、前記外周部を圧接により接合させて形成された密閉空洞部を備えたコンテナと、
前記空洞部内に配置されたウイック材と作動液とを備えた圧接接合式ヒートパイプである。
A first aspect of the pressure welding heat pipe according to the present invention includes a substantially flat outer peripheral portion having a flange shape, a substantially flat central portion having a step with the outer peripheral portion, and a side wall connecting the outer peripheral portion and the central portion. One container material provided with a section,
A flange-shaped substantially flat outer peripheral portion, a substantially flat central portion having a step with the outer peripheral portion, a side wall portion connecting the outer peripheral portion and the central portion, and the center of the one container material from the central portion A container having a sealed cavity formed by pressing the outer peripheral portion together by press-contacting the other container material provided with a plurality of hollow portions with curved ends at the front end When,
It is a pressure welding type heat pipe provided with the wick material and hydraulic fluid which are arranged in the hollow part.

この発明の圧接接合式ヒートパイプの第2の態様は、前記窪み部が、前記一方のコンテナ材の外周部と前記他方のコンテナ材の外周部を圧接したときに、前記一方のコンテナ材および/または前記他方のコンテナ材の前記中央部の変形を防止することができる、前記側壁部の近傍の所定位置に設けられている圧接接合式ヒートパイプである。   According to a second aspect of the pressure welding type heat pipe of the present invention, when the hollow portion presses the outer peripheral portion of the one container material and the outer peripheral portion of the other container material, the one container material and / or Or it is a pressure welding type heat pipe provided in the predetermined position of the vicinity of the said side wall part which can prevent the deformation | transformation of the said center part of said other container material.

この発明の圧接接合式ヒートパイプの第3の態様は、前記他方のコンテナ材に形成された前記窪み部は、前記外周部の接合面よりも前記一方のコンテナ材に向かって深く形成されている圧接接合式ヒートパイプである。   According to a third aspect of the pressure welding type heat pipe of the present invention, the hollow portion formed in the other container material is formed deeper toward the one container material than the joining surface of the outer peripheral portion. It is a pressure welding type heat pipe.

この発明の圧接接合式ヒートパイプの第4の態様は、前記窪み部の側面に、窪みの先端が根元よりも細くなるようにテーパーが設けられている圧接接合式ヒートパイプである。   A fourth aspect of the pressure welding heat pipe according to the present invention is a pressure welding heat pipe in which a taper is provided on a side surface of the depression so that a tip of the depression is thinner than a base.

この発明の圧接接合式ヒートパイプの第5の態様は、前記窪み部の先端が、対向するコンテナ材の内面に配置されたウイック材と接触している圧接接合式ヒートパイプである。   A fifth aspect of the pressure welding type heat pipe of the present invention is a pressure welding type heat pipe in which the tip of the recess is in contact with a wick material arranged on the inner surface of the opposing container material.

この発明の圧接接合式ヒートパイプの第6の態様は、前記窪み部の先端が回転対称な曲面である圧接接合式ヒートパイプである。   A sixth aspect of the pressure welding type heat pipe of the present invention is a pressure welding type heat pipe in which the tip of the recess is a rotationally symmetric curved surface.

この発明の圧接接合式ヒートパイプの第7の態様は、前記窪み部を有する他方のコンテナ材と対向する側の一方のコンテナ材に放熱フィンが設けられている圧接接合式ヒートパイプである。   A seventh aspect of the pressure welding type heat pipe of the present invention is a pressure welding type heat pipe in which heat radiation fins are provided in one container material on the side facing the other container material having the hollow portion.

この発明の圧接接合式ヒートパイプによると、部材数を増やすことなく、被冷却素子が取り付けられる板状部材の面の平坦性を維持することができる、放熱性能に優れた圧接接合式ヒートパイプが得られる。
即ち、対向配置される一方のコンテナ材に、中央部から他方のコンテナ材の中央部の方向に押し下げられ、かつ、先端が曲面状の複数の窪み部を備えているので、2つのコンテナ材が対向配置され、外周部を圧接により接合しても、中央部に変形が生じないので平坦性が維持できる。
According to the pressure welding type heat pipe of the present invention, the pressure welding type heat pipe excellent in heat dissipation performance can maintain the flatness of the surface of the plate-like member to which the element to be cooled is attached without increasing the number of members. can get.
That is, since one container material arranged oppositely is pushed down from the central portion toward the central portion of the other container material and has a plurality of hollow portions with curved ends, the two container materials Even when the outer peripheral portions are arranged so as to face each other and are joined by pressure welding, the flatness can be maintained because the central portion is not deformed.

更に、上述した先端が曲面状の窪み部がコンテナの側壁部の近傍に設けられ、外周面の接合面よりも対向するコンテナ材に向かって深く形成されていると、中央部の変形がより効果的に防止することができ、被冷却素子が取り付けられる板状部材の面の平坦性を維持することができ、放熱性能に優れている。   Furthermore, if the above-mentioned concave portion having a curved tip is provided in the vicinity of the side wall portion of the container and is formed deeper toward the container material opposed to the joint surface of the outer peripheral surface, the deformation of the central portion is more effective. Therefore, the flatness of the surface of the plate member to which the element to be cooled is attached can be maintained, and the heat radiation performance is excellent.

この発明の圧接接合式ヒートパイプを、図面を参照しながら説明する。
この発明の圧接接合式ヒートパイプの1つの態様は、フランジ形状の略平坦な外周部と、外周部と段差を有する略平坦な中央部と、外周部と中央部を連結する側壁部とを備えた一方のコンテナ材と、フランジ形状の略平坦な外周部と、外周部と段差を有する略平坦な中央部と、外周部と中央部を連結する側壁部と、中央部から一方のコンテナ材の中央部の方向に押し下げられ、かつ、先端が曲面状の複数の窪み部を備えた他方のコンテナ材とを対向配置し、外周部を圧接により接合させて形成された密閉空洞部を備えたコンテナと、空洞部内に配置されたウイック材と作動液とを備えた圧接接合式ヒートパイプである。
A pressure welding heat pipe according to the present invention will be described with reference to the drawings.
One aspect of the pressure welding heat pipe of the present invention includes a substantially flat outer peripheral portion having a flange shape, a substantially flat central portion having a step difference from the outer peripheral portion, and a side wall portion connecting the outer peripheral portion and the central portion. One container material, a flange-shaped substantially flat outer peripheral part, a substantially flat central part having a step with the outer peripheral part, a side wall part connecting the outer peripheral part and the central part, and one container material from the central part. A container provided with a sealed cavity formed by pressing down toward the center part and opposingly arranging the other container material provided with a plurality of hollow parts with curved ends at the tip, and joining the outer peripheral part by pressure welding And a pressure welding type heat pipe provided with a wick material and a working fluid disposed in the cavity.

図1(a)は、この発明の圧接接合式ヒートパイプの1つの態様を説明する、窪み部が形成されたコンテナ材側から見た平面図である。図1(b)は図1(a)のA−A断面の部分拡大図である。図1(a)に示すように、フランジ形状の略平坦な外周部4、略平坦な中央部8、および外周部4と中央部8を連結する側壁部5を備えた2つのコンテナ材2、3が内部に密閉空洞部を有するように対向配置され、外周部4が圧接接合されている。一方のコンテナ材2には、側壁部5の近傍に先端7が曲面状の複数の窪み部6を備えている。窪み部6は他方のコンテナ材3の中央部の方向に押し下げられている。   Fig.1 (a) is the top view seen from the container material side in which the hollow part was formed explaining the one aspect | mode of the pressure welding type heat pipe of this invention. FIG.1 (b) is the elements on larger scale of the AA cross section of Fig.1 (a). As shown in FIG. 1 (a), two container members 2 each having a flange-shaped substantially flat outer peripheral portion 4, a substantially flat central portion 8, and a side wall portion 5 connecting the outer peripheral portion 4 and the central portion 8. 3 is disposed so as to have a sealed cavity inside, and the outer peripheral portion 4 is press-welded. One container material 2 includes a plurality of depressions 6 having a curved tip 7 near the side wall 5. The depression 6 is pushed down toward the center of the other container material 3.

図1(b)は図1(a)のA−A断面の部分拡大図である。図1(b)に示すように、一方のコンテナ材2の側壁部5の近傍に窪み部6が形成される。窪み部6は先端7を曲面、好ましくは回転対称な曲面になるように形成し、エンボス加工時にコンテナ面にかかる応力を分散させるようにする。その結果、先端での破断を防止することができる。更に、窪み部は、従来技術で説明したような先端部と根元部とが概ね同じ大きさではなく、先端部を根元部よりも細くなるように形成することが好ましく、これによって、根元部の変形量(角度)を小さくすることができ、根元部での破断を防止することができる。   FIG.1 (b) is the elements on larger scale of the AA cross section of Fig.1 (a). As shown in FIG. 1B, a recess 6 is formed in the vicinity of the side wall 5 of one container material 2. The recess 6 is formed so that the tip 7 is a curved surface, preferably a rotationally symmetric curved surface, so that stress applied to the container surface during embossing is dispersed. As a result, breakage at the tip can be prevented. Furthermore, it is preferable that the hollow portion is formed so that the tip portion and the root portion are not substantially the same size as described in the prior art, and the tip portion is narrower than the root portion. The amount of deformation (angle) can be reduced, and breakage at the root portion can be prevented.

窪み部の曲面の形状は窪みの形成時に応力が一部に集中しないように意図されていれば特に限定されるものではない。例えば、大半が曲面で構成されているものの一部に平坦部が残るような形状も含む。また、窪み部にかかる応力を均等に分散させるため、また成形の容易さを考慮すると、回転対称な形状、より好ましくは、球面がよい。   The shape of the curved surface of the dent is not particularly limited as long as it is intended that stress is not concentrated on a part when the dent is formed. For example, it includes a shape in which a flat portion remains in a part of what is mostly composed of a curved surface. Further, in order to evenly distribute the stress applied to the depressions and considering the ease of molding, a rotationally symmetric shape, more preferably a spherical surface, is preferable.

更に、図1(b)に示すように、一方のコンテナ材2に形成された窪み部6は、外周部の接合面よりも他方のコンテナ材に向かって深く形成されている。即ち、他方のコンテナ材に向かって形成された窪み部の曲面の先端部は、他方のコンテナ材の中央部に接触することなく、外周部の接合面よりも深く押し下げられて形成されている。   Furthermore, as shown in FIG.1 (b), the hollow part 6 formed in one container material 2 is deeply formed toward the other container material rather than the joining surface of an outer peripheral part. That is, the tip of the curved surface of the recess formed toward the other container material is formed so as to be pressed deeper than the joint surface of the outer peripheral portion without contacting the central portion of the other container material.

図2は、別の態様のヒートパイプの図1(a)で示すA−A断面の部分拡大図である。この態様では、窪み部6の先端部7の側面にテーパー部9を設けている。即ち、先端部7は球面、側面部はテーパー部(やや緩やかな斜面)9からなっており、このように側面部にテーパー部を設けることによって、先端部を根元部よりも細くすることができ、更に、根元部の曲げを90度以下にすることができ、根元部にかかる応力を緩和することができる。   FIG. 2 is a partially enlarged view of the AA cross section shown in FIG. 1A of the heat pipe of another embodiment. In this embodiment, a tapered portion 9 is provided on the side surface of the tip portion 7 of the recessed portion 6. In other words, the tip 7 is a spherical surface and the side is a tapered portion (slightly sloped surface) 9. By providing the tapered portion on the side as described above, the tip can be made thinner than the root. Furthermore, the bending of the root portion can be made 90 degrees or less, and the stress applied to the root portion can be relaxed.

この態様によると、根元部、先端部にかかる応力を緩和して、より深い窪み部を成形することができる。先端部の側面のテーパー部は、図1を参照して説明した窪み部と比較するとより理解が容易である。図1に示す窪み部では根元部分の角度が90度に近くかなり大きくなっている。これに対して、図2に示す窪み部は根元部分の角度が概ね45度に近くやや小さくなっている。   According to this aspect, it is possible to relieve stress applied to the root portion and the tip portion, and to form a deeper depression. The tapered portion on the side surface of the distal end portion is easier to understand than the recessed portion described with reference to FIG. In the hollow portion shown in FIG. 1, the angle of the root portion is close to 90 degrees and is considerably large. On the other hand, in the hollow portion shown in FIG. 2, the angle of the root portion is approximately 45 degrees and slightly smaller.

例えば、厚さ0.5mmのC1100製の板材を1.8mm絞ってフランジ部、中央部、側壁部を形成し、先端が半径(R)2mmの球面を有するオス型と、開口部がΦ6の径を有するメス型で挟んで中央部をプレスすることによって、深さ2.6mmのフランジ部よりも深い窪み部をコンテナ材を破断させることなく成形することができる。   For example, a C1100 plate with a thickness of 0.5 mm is squeezed 1.8 mm to form a flange portion, a central portion, and a side wall portion, and the tip has a spherical surface with a radius (R) of 2 mm, and the opening is Φ6 By pressing the central portion with a female die having a diameter, a hollow portion deeper than the flange portion having a depth of 2.6 mm can be formed without breaking the container material.

図3は、真空圧接後の窪み部を含むコンテナの部分断面図である。図3に示すように、対向配置される2つのコンテナ材2、3の一方のコンテナ材2に、中央部8から他方のコンテナ材3の中央部の方向に押し下げられ、かつ、先端が曲面状の複数の窪み部6を備え、2つのコンテナ材2、3の外周部5を圧接により接合する。2つのコンテナ材によって形成される密閉空洞部の他方のコンテナ材の中央部の内壁に沿ってメッシュ等のウイック材が配置される。   FIG. 3 is a partial cross-sectional view of a container including a recess after vacuum pressure welding. As shown in FIG. 3, one container material 2 of the two container materials 2, 3 arranged to face each other is pushed down from the central portion 8 toward the central portion of the other container material 3, and the tip is curved. The outer peripheral part 5 of the two container materials 2 and 3 is joined by pressure welding. A wick material such as a mesh is arranged along the inner wall of the central portion of the other container material of the sealed cavity formed by the two container materials.

窪み部の先端と対向するコンテナ材の内壁との間隔をウイック材の厚さと概ね同一にすることによって、コンテナ内壁へのウイック材の固定を容易にする。なお、このように対向するコンテナ内壁と先端部に間隔を設けるように窪み部を形成することによって、ウイック材が垂れ下がって流路を塞ぐのを妨げるのでヒートパイプ内の空間を十分に確保することができる。また、圧接時にはウイックを介して対抗するコンテナ材と窪み部の間に摩擦が生じるので、対向するコンテナ材が窪みの上で滑りにくくなる。従って、ウイック材を入れることで、コンテナ中央部に応力がかかるのをより効果的に防ぎ、コンテナの変形防止効果をさらに増すこともできる。
図3に示すように、窪み部の曲面の先端部でメッシュを保持するので、平らな面でメッシュを保持するのに比べて、メッシュが遮られる面積が少なくなり有利である。
Fixing the wick material to the container inner wall is facilitated by making the distance between the tip of the recess and the inner wall of the container material facing the pit material substantially the same as the thickness of the wick material. In addition, by forming a recess so as to provide a space between the opposing container inner wall and the tip, it is possible to prevent the wick material from hanging down and block the flow path, so that sufficient space in the heat pipe is secured. Can do. Moreover, since friction arises between the container material which opposes via a wick at the time of pressure welding, and a hollow part, the container material which opposes becomes difficult to slide on a hollow. Therefore, by putting a wick material, it is possible to more effectively prevent stress from being applied to the central portion of the container and further increase the effect of preventing deformation of the container.
As shown in FIG. 3, since the mesh is held at the tip of the curved surface of the depression, the area where the mesh is blocked is reduced compared to holding the mesh on a flat surface, which is advantageous.

図4は、コンテナにフィン部を熱的に接続した状態を説明する部分断面図である。図4に示すように、窪み部が形成されない方のコンテナ材の表面にフィン部を接合している。窪み部が形成されない方のコンテナ材はその表面が概ね平坦であるので、コンテナ材とフィン部との間に空洞が生じることは無く、効率的に熱を移動することができる。   FIG. 4 is a partial cross-sectional view illustrating a state where the fin portion is thermally connected to the container. As shown in FIG. 4, the fin part is joined to the surface of the container material in which the hollow part is not formed. Since the surface of the container material on which the hollow portion is not formed is substantially flat, no cavity is generated between the container material and the fin portion, and heat can be efficiently transferred.

図5は、コンテナの内部に伝熱ブロックを備え、2つのコンテナ材のそれぞれの内壁にウイック材を配置した状態を説明する部分断面図である。図5に示すように、2つのコンテナ材2、3を対向配置して形成される空洞部の概ね中央に、両方のコンテナ材2、3に熱的に接続されて発熱素子13の熱をフィン部11が接合されるコンテナ材3に直接移動する伝熱ブロック12が配置されている。   FIG. 5 is a partial cross-sectional view illustrating a state in which a heat transfer block is provided inside the container and a wick material is disposed on each inner wall of the two container materials. As shown in FIG. 5, the heat of the heating element 13 is finned by being thermally connected to both the container materials 2, 3 at the approximate center of the cavity formed by arranging the two container materials 2, 3 to face each other. A heat transfer block 12 that moves directly to the container material 3 to which the part 11 is joined is disposed.

伝熱ブロックは、好ましくは、発熱素子と同じか、または、発熱素子の断面積よりも少し広い面積をカバーするように配置する。伝熱ブロックは、例えば、C1020材を使用して、圧接前に高温の還元雰囲気中で焼きなましておくと、外周部を圧接するときに、対向配置される2つのコンテナ材の内壁面によって強く挟まれて、コンテナ材の中央部を変形させることなく、伝熱ブロック自体がわずかに変形してコンテナ材の内壁と密着する。   The heat transfer block is preferably arranged so as to cover the same area as the heat generating element or a slightly larger area than the cross-sectional area of the heat generating element. For example, if the heat transfer block is made of C1020 material and annealed in a high-temperature reducing atmosphere before pressure welding, it is strongly sandwiched between the inner wall surfaces of the two container materials facing each other when the outer periphery is pressure-welded. Thus, the heat transfer block itself is slightly deformed and closely contacts the inner wall of the container material without deforming the central portion of the container material.

図6は、対向配置された2つのコンテナ材のそれぞれの内壁面にウイック材が配置され、ウイック材を固定するウイック保持部材が配置されている状態を説明する部分断面図である。図6に示すように、2つのコンテナ材2、3を対向配置して形成される空洞部の概ね中央に、両方のコンテナ材2、3に熱的に接続されて発熱素子13の熱をフィン部11が接合されるコンテナ材3に直接移動する伝熱ブロック12が配置されている。   FIG. 6 is a partial cross-sectional view for explaining a state in which a wick material is arranged on each inner wall surface of two container materials arranged to face each other and a wick holding member for fixing the wick material is arranged. As shown in FIG. 6, the heat of the heating element 13 is finned by being thermally connected to both the container materials 2 and 3 at the approximate center of the cavity formed by arranging the two container materials 2 and 3 to face each other. A heat transfer block 12 that moves directly to the container material 3 to which the part 11 is joined is disposed.

コンテナ材2の内壁面およびコンテナ材3の内壁面に沿ってそれぞれウイック材10が配置されている。コンテナ材3の内壁面に沿って配置されたウイック材10は、窪み部6の先端部によって固定されている。更に、コンテナ材2の内壁面およびコンテナ材3の内壁面に沿ってそれぞれ配置されたウイック材10は、ウイック保持部材14によって固定されている。ウイック保持部材14は、例えば銅製のメッシュを折り曲げて形成し、コンテナの内部の空洞部における蒸気の流れを完全に妨げないものが好ましい。   A wick material 10 is disposed along the inner wall surface of the container material 2 and the inner wall surface of the container material 3. The wick material 10 arranged along the inner wall surface of the container material 3 is fixed by the tip of the hollow portion 6. Furthermore, the wick material 10 disposed along the inner wall surface of the container material 2 and the inner wall surface of the container material 3 is fixed by a wick holding member 14. The wick holding member 14 is preferably formed, for example, by bending a copper mesh and does not completely obstruct the flow of steam in the cavity inside the container.

このように、ウイック保持部材を配置することによって、ウイック材が安定してコンテナの内壁面に保持され、コンテナ内壁面とウイック部材との間での毛管力が活用できるようになる。毛管力が増すことによって、トップヒートモードにおいても、より安定して作動するヒートパイプが得られる。   Thus, by arranging the wick holding member, the wick material is stably held on the inner wall surface of the container, and the capillary force between the container inner wall surface and the wick member can be utilized. By increasing the capillary force, a heat pipe that operates more stably even in the top heat mode can be obtained.

上述したように、この発明の圧接接合式ヒートパイプは、対向配置される一方のコンテナ材に、中央部から他方のコンテナ材の中央部の方向に押し下げられ、かつ、先端が曲面状の複数の窪み部を備えているので、2つのコンテナ材が対向配置され、外周部を圧接により接合しても、中央部に変形が生じない。更に、上述した先端が曲面状の窪み部がコンテナの側壁部の近傍に設けられ、外周面の接合面よりも対向するコンテナ材に向かって深く形成されていると、変形の防止がより効果的に行われる。 As described above, the pressure welding type heat pipe of the present invention is pushed down by one container material opposed to the central portion of the other container material from the center portion, and has a plurality of curved ends. Since the hollow portion is provided, the two container materials are arranged to face each other, and even if the outer peripheral portion is joined by pressure welding, the central portion is not deformed. Furthermore, when the above-mentioned concave portion having a curved tip is provided in the vicinity of the side wall portion of the container and is formed deeper toward the container material facing the joint surface of the outer peripheral surface, the prevention of deformation is more effective. To be done.

図1(a)は、この発明の圧接接合式ヒートパイプの1つの態様を説明する、窪み部が形成されたコンテナ材側から見た平面図である。図1(b)は図1(a)のA−A断面の部分拡大図である。Fig.1 (a) is the top view seen from the container material side in which the hollow part was formed explaining the one aspect | mode of the pressure welding type heat pipe of this invention. FIG.1 (b) is the elements on larger scale of the AA cross section of Fig.1 (a). 図2は、別の態様のヒートパイプの図1(a)で示すA−A断面の部分拡大図である。FIG. 2 is a partially enlarged view of the AA cross section shown in FIG. 1A of the heat pipe of another embodiment. 図3は、真空圧接後の窪み部を含むコンテナの部分断面図である。FIG. 3 is a partial cross-sectional view of a container including a recess after vacuum pressure welding. 図4は、コンテナにフィン部を熱的に接続した状態を説明する部分断面図である。FIG. 4 is a partial cross-sectional view illustrating a state where the fin portion is thermally connected to the container. 図5は、コンテナの内部に伝熱ブロックを備え、2つのコンテナ材のそれぞれの内壁にウイック材を配置した状態を説明する部分断面図である。FIG. 5 is a partial cross-sectional view illustrating a state in which a heat transfer block is provided inside the container and a wick material is disposed on each inner wall of the two container materials. 図6は、対向配置された2つのコンテナ材のそれぞれの内壁面にウイック材が配置され、ウイック材を固定するウイック保持部材が配置されている状態を説明する部分断面図である。FIG. 6 is a partial cross-sectional view for explaining a state in which a wick material is arranged on each inner wall surface of two container materials arranged to face each other and a wick holding member for fixing the wick material is arranged. 図7は、上板材と下板材との間に柱状部材を配置した従来のヒートパイプを説明する断面図である。FIG. 7 is a cross-sectional view illustrating a conventional heat pipe in which a columnar member is disposed between an upper plate material and a lower plate material. 図8は、従来のエンボス加工を施したヒートパイプを説明する部分拡大断面図である。FIG. 8 is a partially enlarged cross-sectional view for explaining a conventional heat pipe subjected to embossing. 図9はエンボス加工を施したコンテナにフィン部を取り付けた状態を説明する断面図である。FIG. 9 is a cross-sectional view illustrating a state where the fin portion is attached to the embossed container.

符号の説明Explanation of symbols

1 圧接接合式ヒートシンク
2 コンテナ材
3 コンテナ材
4 外周部
5 側壁部
6 窪み部
7 先端部
8 コンテナ材の中央部
9 窪み部の側面(テーパー部)
10 ウイック部材
11 フィン部
12 伝熱ブロック
13 発熱素子
14 ウイック保持部材
DESCRIPTION OF SYMBOLS 1 Pressure welding type heat sink 2 Container material 3 Container material 4 Outer peripheral part 5 Side wall part 6 Depression part 7 Tip part 8 Center part 9 of container material Side surface (taper part) of a depression part
10 Wick Member 11 Fin 12 Heat Transfer Block 13 Heating Element 14 Wick Holding Member

Claims (7)

フランジ形状の略平坦な外周部と、前記外周部と段差を有する略平坦な中央部と、前記外周部と前記中央部を連結する側壁部とを備えた一方のコンテナ材と、
フランジ形状の略平坦な外周部と、前記外周部と段差を有する略平坦な中央部と、前記外周部と前記中央部を連結する側壁部と、前記中央部から前記一方のコンテナ材の前記中央部の方向に押し下げられ、かつ、先端が曲面状の複数の窪み部を備えた他方のコンテナ材とを対向配置し、前記外周部を圧接により接合させて形成された密閉空洞部を備えたコンテナと、
前記空洞部内に配置されたウイック材と作動液とを備えた圧接接合式ヒートパイプ。
One container material comprising a flange-shaped substantially flat outer peripheral portion, a substantially flat central portion having a step with the outer peripheral portion, and a side wall portion connecting the outer peripheral portion and the central portion,
A flange-shaped substantially flat outer peripheral portion, a substantially flat central portion having a step with the outer peripheral portion, a side wall portion connecting the outer peripheral portion and the central portion, and the center of the one container material from the central portion A container having a sealed cavity formed by pressing the outer peripheral portion together by press-contacting the other container material provided with a plurality of hollow portions with curved ends at the front end When,
A pressure welding heat pipe comprising a wick material and a working fluid disposed in the cavity.
前記窪み部が、前記一方のコンテナ材の外周部と前記他方のコンテナ材の外周部を圧接したときに、前記一方のコンテナ材および/または前記他方のコンテナ材の前記中央部の変形を防止することができる、前記側壁部の近傍の所定位置に設けられている、請求項1に記載の圧接接合式ヒートパイプ。   When the said recessed part press-contacts the outer peripheral part of said one container material, and the outer peripheral part of said other container material, a deformation | transformation of the said center part of said one container material and / or said other container material is prevented. The pressure welding type heat pipe according to claim 1, which is provided at a predetermined position in the vicinity of the side wall portion. 前記他方のコンテナ材に形成された前記窪み部は、前記外周部の接合面よりも前記一方のコンテナ材に向かって深く形成されている、請求項1または2に記載の圧接接合式ヒートパイプ。   The pressure welding type heat pipe according to claim 1 or 2, wherein the hollow portion formed in the other container material is formed deeper toward the one container material than a joining surface of the outer peripheral portion. 前記窪み部の側面に、窪みの先端が根元よりも細くなるようにテーパーが設けられている、請求項1から3の何れか1項に記載の圧接接合式ヒートパイプ。   The pressure welding type heat pipe according to any one of claims 1 to 3, wherein a taper is provided on a side surface of the recess so that a tip of the recess is thinner than a base. 前記窪み部の先端が、対向するコンテナ材の内面に配置されたウイック材と接触している、請求項1から4の何れか1項に記載の圧接接合式ヒートパイプ。   The pressure welding type heat pipe of any one of Claim 1 to 4 with which the front-end | tip of the said hollow part is contacting the wick material arrange | positioned at the inner surface of the container material which opposes. 前記窪み部の先端が回転対称な曲面である、請求項1から5の何れか1項に記載の圧接接合式ヒートパイプ。   The pressure welding type heat pipe according to any one of claims 1 to 5, wherein a tip of the recess is a rotationally symmetric curved surface. 前記窪み部を有する他方のコンテナ材と対向する側の一方のコンテナ材に放熱フィンが設けられている、請求項1から6の何れか1項に記載の圧接接合式ヒートパイプ。

The pressure welding type heat pipe according to any one of claims 1 to 6, wherein heat radiation fins are provided in one container material on the side facing the other container material having the hollow portion.

JP2007086743A 2007-03-29 2007-03-29 Pressure-bonded heat pipe Pending JP2008241227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007086743A JP2008241227A (en) 2007-03-29 2007-03-29 Pressure-bonded heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007086743A JP2008241227A (en) 2007-03-29 2007-03-29 Pressure-bonded heat pipe

Publications (1)

Publication Number Publication Date
JP2008241227A true JP2008241227A (en) 2008-10-09

Family

ID=39912791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007086743A Pending JP2008241227A (en) 2007-03-29 2007-03-29 Pressure-bonded heat pipe

Country Status (1)

Country Link
JP (1) JP2008241227A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102422436A (en) * 2009-04-21 2012-04-18 优纳T&E株式会社 Photovoltaic module with cooling device and manufacturing method of cooling device
JP2015021627A (en) * 2013-07-16 2015-02-02 株式会社Uacj Ice tray and manufacturing method of the same
JP2016042582A (en) * 2012-07-30 2016-03-31 株式会社村田製作所 Electronic apparatus
WO2021090840A1 (en) * 2019-11-06 2021-05-14 古河電気工業株式会社 Vapor chamber
KR20210056739A (en) * 2019-11-11 2021-05-20 주식회사 아모그린텍 Sheet type heat pipe and manufacturing method thereof
JP2021076355A (en) * 2019-11-06 2021-05-20 古河電気工業株式会社 Vapor chamber
KR20210056735A (en) * 2019-11-11 2021-05-20 주식회사 아모그린텍 Sheet type heat pipe and manufacturing method thereof
KR20210056736A (en) * 2019-11-11 2021-05-20 주식회사 아모그린텍 Sheet type heat pipe and manufacturing method thereof
JP7420631B2 (en) 2020-04-15 2024-01-23 古河電気工業株式会社 Heat sink and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11183070A (en) * 1997-12-18 1999-07-06 Fujikura Ltd Method for production of flat heat pipe
JP2002022380A (en) * 2000-07-07 2002-01-23 Fujikura Ltd Flat plate shaped heat pipe equipped with emboss wick
JP2007064523A (en) * 2005-08-30 2007-03-15 Furukawa Electric Co Ltd:The Pressure-welded flat heat pipe, manufacturing equipment, and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11183070A (en) * 1997-12-18 1999-07-06 Fujikura Ltd Method for production of flat heat pipe
JP2002022380A (en) * 2000-07-07 2002-01-23 Fujikura Ltd Flat plate shaped heat pipe equipped with emboss wick
JP2007064523A (en) * 2005-08-30 2007-03-15 Furukawa Electric Co Ltd:The Pressure-welded flat heat pipe, manufacturing equipment, and its manufacturing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102422436A (en) * 2009-04-21 2012-04-18 优纳T&E株式会社 Photovoltaic module with cooling device and manufacturing method of cooling device
JP2012524998A (en) * 2009-04-21 2012-10-18 ユナ ティーアンドイー カンパニーリミテッド Solar module with cooling device and method of manufacturing the same
JP2016042582A (en) * 2012-07-30 2016-03-31 株式会社村田製作所 Electronic apparatus
JP2015021627A (en) * 2013-07-16 2015-02-02 株式会社Uacj Ice tray and manufacturing method of the same
JP2021076355A (en) * 2019-11-06 2021-05-20 古河電気工業株式会社 Vapor chamber
WO2021090840A1 (en) * 2019-11-06 2021-05-14 古河電気工業株式会社 Vapor chamber
KR20210056739A (en) * 2019-11-11 2021-05-20 주식회사 아모그린텍 Sheet type heat pipe and manufacturing method thereof
KR20210056735A (en) * 2019-11-11 2021-05-20 주식회사 아모그린텍 Sheet type heat pipe and manufacturing method thereof
KR20210056736A (en) * 2019-11-11 2021-05-20 주식회사 아모그린텍 Sheet type heat pipe and manufacturing method thereof
KR102447783B1 (en) * 2019-11-11 2022-09-27 주식회사 아모그린텍 Sheet type heat pipe and manufacturing method thereof
KR102447779B1 (en) * 2019-11-11 2022-09-27 주식회사 아모그린텍 Sheet type heat pipe and manufacturing method thereof
KR102488227B1 (en) * 2019-11-11 2023-01-13 주식회사 아모그린텍 Sheet type heat pipe and manufacturing method thereof
JP7420631B2 (en) 2020-04-15 2024-01-23 古河電気工業株式会社 Heat sink and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2008241227A (en) Pressure-bonded heat pipe
JP3146158U (en) Heat dissipation module
JP2007003164A (en) Tabular heat pipe or vapor chamber, and its forming method
JP3170757U (en) Heat dissipation device
WO2010060342A1 (en) Heat pipe with micro-pore tubes array and making method thereof and heat exchanging system
JP2000124374A (en) Plate type heat pipe and cooling structure using the same
JP2011154929A (en) Heat exhausting device
TWI296039B (en) Heat dissipation module and heat column thereof
CN110567303A (en) Temperature-equalizing plate structure with convex part and manufacturing method thereof
JP2008171936A (en) Cooling structure
JPH10267571A (en) Plate type heat pipe and cooling structure using the same
JP2005175163A (en) Cooling structure of semiconductor module
JP5144285B2 (en) Pressure welding heat pipe
JP2009088417A (en) Heat sink having heat-dissipation fin, and method of manufacturing the same
TWI305132B (en)
JP2005121345A (en) Plate type heat pipe and method for producing it
JP4558258B2 (en) Plate heat pipe and manufacturing method thereof
JP2011169506A (en) Connecting section of heat pipe heat receiving section and method of connecting heat pipe heat receiving section
JP6734594B2 (en) Heat sink, method for manufacturing the heat sink, and electronic component package using the heat sink
US20070277962A1 (en) Two-phase cooling system for cooling power electronic components
JP2008172192A (en) Heat dissipating device and method of manufacturing heat dissipating base
JP2007107870A (en) Pressure welding junction type heat pipe and its manufacturing method
JPH10288481A (en) Planar heat pipe and cooling structure employing it
JP2014053442A (en) Plate laminated type cooling device
JP2018031549A (en) Heat radiator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120127