JP2008241061A - 排煙処理設備 - Google Patents
排煙処理設備 Download PDFInfo
- Publication number
- JP2008241061A JP2008241061A JP2007078355A JP2007078355A JP2008241061A JP 2008241061 A JP2008241061 A JP 2008241061A JP 2007078355 A JP2007078355 A JP 2007078355A JP 2007078355 A JP2007078355 A JP 2007078355A JP 2008241061 A JP2008241061 A JP 2008241061A
- Authority
- JP
- Japan
- Prior art keywords
- flue
- exhaust gas
- flue gas
- dust collector
- denitration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Chimneys And Flues (AREA)
- Treating Waste Gases (AREA)
Abstract
【課題】脱硝触媒の性能を阻害する排ガス中の鉄(Fe)分を効果的に除去する排煙処理設備を提案すること。
【解決手段】石炭の燃焼装置1の出口と排煙脱硝装置3の間の排ガスが鉛直方向上方に上昇する煙道2(350〜500℃)にサイクロン集塵機4を設け、サイクロン集塵機4の前流側の煙道2内に還元剤(アンモニア, アンモニア水, 尿素水等)の注入ノズル5を設け、該サイクロン集塵機4でボイラ排ガス中の鉄(Fe)成分の含有量の多い灰及び塊状のポップコーンアッシュなどの比較的重い灰が粗取り可能となり、脱硝装置3内の脱硝触媒上への鉄(Fe)、硫酸鉄(FeSO4)の付着による経時的な性能低下、脱硝触媒の摩耗及び圧力損失の上昇を著しく抑制できる。
【選択図】図1
【解決手段】石炭の燃焼装置1の出口と排煙脱硝装置3の間の排ガスが鉛直方向上方に上昇する煙道2(350〜500℃)にサイクロン集塵機4を設け、サイクロン集塵機4の前流側の煙道2内に還元剤(アンモニア, アンモニア水, 尿素水等)の注入ノズル5を設け、該サイクロン集塵機4でボイラ排ガス中の鉄(Fe)成分の含有量の多い灰及び塊状のポップコーンアッシュなどの比較的重い灰が粗取り可能となり、脱硝装置3内の脱硝触媒上への鉄(Fe)、硫酸鉄(FeSO4)の付着による経時的な性能低下、脱硝触媒の摩耗及び圧力損失の上昇を著しく抑制できる。
【選択図】図1
Description
本発明は、火力発電所用のボイラなどの石炭の燃焼設備の排ガスを処理する排煙脱硝装置を有した排煙処理設備に関するものである。
石炭を使用するボイラ等の燃焼設備からの排出ガス中には、光化学スモッグや酸性雨の原因物質である窒素酸化物(NOx)や硫黄酸化物(SOx)が含まれている。
排ガス処理システムには、図5に示す高ダスト方式のシステムがあり、ボイラ1からの高ダスト含有排ガスを先ず排煙脱硝装置3に導入して脱硝触媒で窒素酸化物を除去し、さらに空気予熱器8でボイラ燃焼用空気を予熱する代わりに排ガスを低温化し、次いで低温電気集塵機4’で煤塵を除去し、さらに排ガス中の硫黄酸化物を脱硫装置9で取り除き、煙突10から排出する方式である。
排ガス処理システムには、図5に示す高ダスト方式のシステムがあり、ボイラ1からの高ダスト含有排ガスを先ず排煙脱硝装置3に導入して脱硝触媒で窒素酸化物を除去し、さらに空気予熱器8でボイラ燃焼用空気を予熱する代わりに排ガスを低温化し、次いで低温電気集塵機4’で煤塵を除去し、さらに排ガス中の硫黄酸化物を脱硫装置9で取り除き、煙突10から排出する方式である。
また、図6には低ダスト方式の排ガス処理システムを示し、ボイラ排ガスを先ず高温電気集塵機4に導入して煤塵を除去して排ガスを低ダスト化し、次いで排煙脱硝装置3で脱硝触媒により窒素酸化物を除去し、さらに空気予熱器8でボイラ燃焼用空気を予熱しながら排ガスを低温化し、次いで低温化された排ガス中の硫黄酸化物を脱硫装置9で取り除き、煙突10から排出する方式である。
上記図5,図6に示す排煙脱硝装置3で行われるNOxの効果的な除去方法としては、アンモニア(NH3)等を還元剤とした選択的接触還元による排煙脱硝法が火力発電所を中心に幅広く用いられている。
選択的接触還元用の触媒には、バナジウム(V)、モリブデン(Mo)又はタングステン(W)を活性成分として酸化チタン(TiO2)を担体としたものが主に使用されており、特に活性成分の1つとしてバナジウムを含むものは活性が高いだけでなく、排ガス中に含まれている不純物による劣化が小さいこと及びより低温から使用できることなどから現在の脱硝触媒の主流になっている。石炭燃焼排ガスの排煙脱硝装置の場合には排ガス中に含有されるダストによる詰りを防止するために触媒は特にハニカム状、板状に成形されて用いられ各種製造法が提案されてきた。
近年、燃料事情により石炭を主体とする発電設備が増加しているが、発電コストの低減対策により低廉・低質炭を使用する場合が多い。このような炭種は、ボイラ等の燃焼設備に悪影響を及ぼすだけでなく、排ガス処理システムにも影響を及ぼす。
前記低廉・低質炭の成分上、鉄(Fe)含有量の多い灰が排ガス中に含まれていることが多い。
主に採用されている高ダスト方式の排ガス処理システム(図5)の場合、ボイラ後流に設置されている排煙脱硝装置内の脱硝触媒がボイラ起動停止時に吸湿することによって、灰中に含まれる鉄(Fe)が脱硝触媒に付着することが分かっている。鉄(Fe)は酸化活性を有しているため、脱硝触媒に付着した鉄(Fe)がアンモニア(NH3)を酸化することによって脱硝性能を低下させる(特開2005−137984号公報)。
主に採用されている高ダスト方式の排ガス処理システム(図5)の場合、ボイラ後流に設置されている排煙脱硝装置内の脱硝触媒がボイラ起動停止時に吸湿することによって、灰中に含まれる鉄(Fe)が脱硝触媒に付着することが分かっている。鉄(Fe)は酸化活性を有しているため、脱硝触媒に付着した鉄(Fe)がアンモニア(NH3)を酸化することによって脱硝性能を低下させる(特開2005−137984号公報)。
さらに、排ガス中の二酸化硫黄(SO2)が酸化されて三酸化硫黄(SO3)が生成し、リークアンモニア(リークNH3)と反応して酸性硫安を生じる。生じた酸性硫安は、後流機器である空気予熱器(A/H)のエレメントに付着し閉塞問題を引き起こす。また、脱硝触媒上に付着した鉄(Fe)は、排ガス中又は触媒に吸着した硫黄(S)と反応してFeSO4の形態となり、体積膨張することによって、脱硝触媒の細孔を閉塞させ、脱硝触媒内のガス拡散を抑制する。その結果、脱硝触媒の性能が低下するという悪影響も引き起こす。
その対策として排煙脱硝装置の前流に吸収剤を設置し、触媒毒成分を除去する方法も提案されている(特開昭63−6593号公報)が、根本的な解決には至っていない。
一方、低ダスト方式の排ガス処理システム(図6)の場合、排煙脱硝装置の前流に高温電気集塵機(EP)が設置されているため排煙脱硝装置の前流で多くの灰が除去され、脱硝触媒への鉄(Fe)の付着は殆ど起こらず、また触媒の摩耗が低減されるという利点を有している。しかし、後流機器の運用についてみると、前流側の高温電気集塵機(EP)で灰が除去されるため、排ガス中の三酸化硫黄(SO3)による後流機器の腐食が起こり易いことや、排煙脱硝装置からのリークNH3とともに酸性硫安を生じ、空気予熱器(A/H)での閉塞を引き起こすなどの不都合がある。
上記いずれの方式の排ガス処理システムにおいても、図3に示すように排煙脱硝装置3の前流側に設けた還元剤注入ノズル5から排ガス中に還元剤が注入されるが、還元剤を均一に分散させる目的で還元剤注入ノズル5の後流に混合器(スタティックミキサー)7が設置される。
また、図4の排ガス処理システムに示すように、排煙脱硝装置3の前流の鉛直上昇煙道2に還元剤注入ノズル5を設けて、該還元剤注入ノズル5から還元剤(アンモニア、アンモニア水または尿素水)を事前に気化せずに直接排ガス中に噴霧する方法(直接噴霧法)の場合、噴霧した液体の還元剤を気化する目的及び還元剤を均一に分散させる目的で排煙脱硝装置3の前流の鉛直上昇煙道2に注入ノズル5を設けて滞留時間を稼ぐとともに、注入ノズル5の後流側に混合器7が設置される。
図3と図4の排ガス処理システムに示すように、還元剤注入ノズル5の後流側に混合器7を設けると、排ガスの圧力損失が大きくなり、排ガスを煙突から外部に排出するための誘引通風機(IDF)の容量が大きくなるという不都合がある。
また、石炭の性質やボイラ1の運転条件によりポップコーンアッシュ(塊状灰;径数mm〜数十mm)が形成されることが多い。形成されたポップコーンアッシュが脱硝触媒に詰まることによって圧損が上昇してしまう。脱硝触媒内でのポップコーンアッシュの詰まりを起点として、その他の細かな灰が堆積することによって全体が詰まっていく。この対策として排煙脱硝装置上流側に金網などを設けてトラップするなどの対策が検討されているが十分ではない。
また、燃焼排ガス中のダストの中で、未燃分の多い、すなわち粒径の大きい(外表面積の小さな)フライアッシュが排煙脱硝装置の前流側の排ガス流路に設置したサイクロンで捕集され、ボイラに再循環ラインから戻され、一方、排ガス中のダストの中で未燃分の少ない、すなわち粒径の小さい(外表面積の大きな)フライアッシュはサイクロンで捕集されないで排煙脱硝装置の後流側の排ガス流路に設置した電気集塵機で捕集される構成が特開昭62−204830号公報の第2図に開示されている。そしてこの排ガス処理装置は外表面積の大きい粒径の小さいフライアッシュに脱硝触媒の活性を阻害する揮発性金属化合物(Hg,Pb,As,Cd等)を吸着させて除去する装置である。
また、特開2002−257480号公報には、高炉、転炉からの鉄(Fe)分の多い排ガス中のCO2を低減させるために、反応器2で鉄(Fe)分とCO2を反応させて酸化鉄とした後に、サイクロンで鉄粉と酸化鉄を分離した後の排ガスを排ガス処理装置4で処理する方法が開示されている.
特開2005−137984号公報
特開昭62−204830号公報
特開2002−257480号公報
特開昭62−204830号公報の図2には排煙脱硝装置の後流側に設けた電気集塵機などで捕集したフライアッシュ(外表面積の小さい未燃分の多いフライアッシュと外表面積の大きな未燃分の少ないフライアッシュの混合物からなる)を排煙脱硝装置の前流側に設けた噴霧ノズルから排ガス中に噴霧して外表面積の小さな、未燃分の多いフライアッシュをサイクロンで分離してボイラに再循環して再燃焼させ、また、外表面積の大きな未燃分の少ないフライアッシュ(揮発性金属化合物(Hg,Pb,As,Cd等)を比較的多く吸着している)はサイクロンで捕捉されないので電気集塵機で捕集する方法が開示されている。
この方法では脱硝触媒の活性を阻害する揮発性金属化合物(Hg,Pb,As,Cd等)は、外表面積の小さな(粒径の大きな)未燃分の多いフライアッシュには吸着され難く、外表面積の大きな(粒径の小さな)、未燃分の少ないフライアッシュに吸着され易いと記載されている。ところが前記特許文献2記載の発明では、電気集塵機は排煙脱硝装置の後流側に配置されているので、揮発性金属化合物を多く吸着した外表面積の大きな(粒径の小さな)未燃分の少ないフライアッシュが排煙脱硝装置を通過するので、排煙脱硝装置の触媒活性が低下するおそれがある。また、この発明には鉄分の除去についての記載は皆無である。
また、特開2002−257480号公報に開示されているのは、高炉、転炉からの排ガス中の特別高濃度の鉄(Fe)分を利用して排ガス中のCO2を低減させる方法であり、排ガスの脱硝などの処理時における鉄(Fe)分の影響についての記載は皆無である。
本発明の課題は、脱硝触媒の性能を阻害する排ガス中の鉄(Fe)分を効果的に除去する排煙処理設備を提案することである。
本発明の上記課題は次の解決手段により解決される。
請求項1記載の発明は、石炭の燃焼装置の排ガス中の窒素酸化物を除去する排煙脱硝装置を有する排煙処理設備において、燃焼装置出口と排煙脱硝装置の間の煙道2にサイクロン集塵機を設けた排煙処理設備である。
請求項2記載の発明は、サイクロン集塵機を燃焼装置出口と排煙脱硝装置の間の煙道2の中で、排ガスが鉛直方向上方に上昇する煙道の最下部(温度域350〜500℃)に設けた請求項1記載の排煙処理設備である。
請求項1記載の発明は、石炭の燃焼装置の排ガス中の窒素酸化物を除去する排煙脱硝装置を有する排煙処理設備において、燃焼装置出口と排煙脱硝装置の間の煙道2にサイクロン集塵機を設けた排煙処理設備である。
請求項2記載の発明は、サイクロン集塵機を燃焼装置出口と排煙脱硝装置の間の煙道2の中で、排ガスが鉛直方向上方に上昇する煙道の最下部(温度域350〜500℃)に設けた請求項1記載の排煙処理設備である。
請求項3記載の発明は、サイクロン集塵機の前流側の煙道内に排煙脱硝に使用する還元剤(アンモニア, アンモニア水, 尿素水等)の注入ノズルを設けた請求項1または2記載の排煙処理設備である。
請求項4記載の発明は、サイクロン集塵機及び還元剤注入ノズルの後流側の煙道に整流板を設けた請求項1〜3のいずれかに記載の排煙処理設備である。
請求項4記載の発明は、サイクロン集塵機及び還元剤注入ノズルの後流側の煙道に整流板を設けた請求項1〜3のいずれかに記載の排煙処理設備である。
なお、本発明で使用する脱硝触媒は前述したアンモニア(NH3)等を還元剤として用いるバナジウム(V)、モリブデン(Mo)又はタングステン(W)を活性成分として酸化チタン(TiO2)を担体とした脱硝触媒である。
(作用)
本発明では、図1に示す通り石炭燃焼装置としてボイラ1の節炭器出口とボイラ排ガス煙道2内に配置される排煙脱硝装置3の間の、望ましくは温度域が350〜500℃となる煙道2にサイクロン集塵機4を設置することによって、ボイラ排ガス中の鉄(Fe)成分の含有量の多い灰及び塊状のポップコーンアッシュなどの比較的重い灰が粗取り可能となる。
本発明では、図1に示す通り石炭燃焼装置としてボイラ1の節炭器出口とボイラ排ガス煙道2内に配置される排煙脱硝装置3の間の、望ましくは温度域が350〜500℃となる煙道2にサイクロン集塵機4を設置することによって、ボイラ排ガス中の鉄(Fe)成分の含有量の多い灰及び塊状のポップコーンアッシュなどの比較的重い灰が粗取り可能となる。
これによって、排煙脱硝装置3内の脱硝触媒上への鉄(Fe)、硫酸鉄(FeSO4)の付着による経時的な性能低下、脱硝触媒の摩耗及び圧力損失の上昇を著しく抑制できる。またこの場合、図6に示す低ダスト方式の排ガス処理システムにおける排煙脱硝装置3の前流側に配置した高温電気集塵機(EP)4で殆どの灰を除去する方式とは異なり、比較的重く粒径の大きい灰だけをサイクロン集塵機4で粗取りするため、比較的粒径が小さく軽い灰は排煙脱硝装置9などの後流機器へ流入することになる。したがって、脱硝触媒の空隙率(触媒ピッチ)を通常よりも小さくでき、触媒性能が向上する、あるいは触媒量を少なくできるという利点や、SO3による後流機器の腐食・酸性硫安による空気予熱器(A/H)の閉塞を抑制できるという利点を有する。
なお、本発明と特開昭62−204830号公報の第2図に示されている発明との相違点は次の通りである。
本発明ではボイラ排ガス中の比較的重く粒径の大きい灰だけがサイクロン集塵機4で粗取りされる過程で、比較的重く粒径の大きい灰に多く含まれる鉄(Fe)成分がサイクロン集塵機4に回収される。一方、特開昭62−204830号公報の図2に示されている発明は排煙脱硝装置の後流側に設けた電気集塵機などで捕集したフライアッシュの中の外表面積が大きく、未燃分の少ないフライアッシュが揮発性金属化合物(Hg,Pb,As,Cd等)を比較的多く吸着する性質があることを利用する方法であり、このフライアッシュはサイクロンで捕捉されないので排煙脱硝装置の後流側に設けた電気集塵機で捕集されるものであり、本発明のサイクロン集塵機4で比較的重く粒径の大きい灰だけを捕集する方法とは異なり、また、揮発性金属化合物を多く吸着した外表面積の大きな未燃分の少ないフライアッシュに排ガス中の鉄分が吸着されることは触れられていない。
本発明ではボイラ排ガス中の比較的重く粒径の大きい灰だけがサイクロン集塵機4で粗取りされる過程で、比較的重く粒径の大きい灰に多く含まれる鉄(Fe)成分がサイクロン集塵機4に回収される。一方、特開昭62−204830号公報の図2に示されている発明は排煙脱硝装置の後流側に設けた電気集塵機などで捕集したフライアッシュの中の外表面積が大きく、未燃分の少ないフライアッシュが揮発性金属化合物(Hg,Pb,As,Cd等)を比較的多く吸着する性質があることを利用する方法であり、このフライアッシュはサイクロンで捕捉されないので排煙脱硝装置の後流側に設けた電気集塵機で捕集されるものであり、本発明のサイクロン集塵機4で比較的重く粒径の大きい灰だけを捕集する方法とは異なり、また、揮発性金属化合物を多く吸着した外表面積の大きな未燃分の少ないフライアッシュに排ガス中の鉄分が吸着されることは触れられていない。
逆に本発明によって、我々は初めてボイラ排ガス中の灰の中で比較的重く、粒径の大きい灰に大部分の鉄成分が含有されることを見出した。したがって、該鉄成分を含む灰を排煙脱硝装置3の後流側煙道に配置されるサイクロン集塵機4から回収して特許文献2(図2)の排ガス処理システムのように排煙脱硝装置3の前流側煙道に供給すると、排煙脱硝装置3を通過する際に灰中の鉄成分により脱硝触媒が劣化するのを防ぐことができない。
また、本発明では、還元剤注入ノズルをサイクロン集塵機の前流に設置することによって、還元剤と排ガスがサイクロン集塵機内で十分に混合されるため、後流側に図3、図4で説明した混合器(スタティックミキサー)7を設置する必要がない。これによって、従来に比べて圧力損失が小さくなり誘引通風機(IDF)の容量を小さくすることが可能となる。
また、サイクロン集塵機4での旋回流によってガス流速の分布が大きくなる場合には、図2に示すとおり、サイクロン集塵機4の後流側の排ガス煙道2に整流板6を設置することによって排ガス流れが整流化される。
サイクロン集塵機4を設置する場合、ボイラ節炭器の出口煙道2(サイクロン集塵機4の入口)のガス流速を通常よりも速くする必要があるが、これは、前記出口煙道2を細くすることによって可能となるだけでなく排煙処理設備のコンパクト化に繋がり有益である。
上述したようにサイクロン集塵機4を排煙脱硝装置3の前流側煙道2内に設置することによって脱硝触媒の劣化防止効果が得られるが、特にボイラ節炭器出口から排煙脱硝装置3に繋がる鉛直上昇煙道2の最下部にサイクロン集塵機4を設置することによって、捕集した灰の取出し、処理が容易となるだけでなく、ボイラ節炭器出口と排煙脱硝装置間の煙道2を細くすることができ、省スペース化が可能となる。
請求項1記載の発明によれば、石炭焚き燃焼装置の排ガス中に含まれるFe含有量の多い灰を脱硝触媒の前流側の煙道に設置されるサイクロン集塵機で除去し、サイクロン集塵機より後流側の煙道に設置される機器への悪影響を抑えつつ脱硝触媒への悪影響を抑制することによって、脱硝触媒の長寿命化及びポップコーンアッシュの脱硝触媒中での詰まりによる圧力損失上昇を抑制するのに効果的であり、その後排ガス中のNOxを排煙脱硝装置で効率よく処理することができる。
請求項2記載の発明によれば、請求項1記載の発明の効果に加えて、排ガス中に含まれるFe含有量の多い比較的重い灰を温度域が350〜500℃となる煙道中のサイクロン集塵機で回収することで効果的に比較的重い灰を粗取り可能となる。
請求項3記載の発明によれば、請求項1または2記載の発明の効果に加えて、サイクロン集塵機の前流に還元剤(アンモニア、アンモニア水、尿素水等)の注入ノズルを設けたことによって、還元剤と排ガスがサイクロン集塵機内で十分に混合されるため、後流側に混合器を設置する必要がなく、混合器を設置する従来技術に比べて圧力損失が小さくなり誘引通風機(IDF)の容量を小さくすることが可能となる
請求項4記載の発明によれば、請求項1ないし3のいずれかに記載の発明の効果に加えて、還元剤注入ノズルの後流側の煙道に整流板を設けたので、サイクロン集塵機での旋回流によってガス流速の分布が大きくなっても、整流板により排ガス流れが整流化され、脱硝反応が効果的に行われる。
請求項4記載の発明によれば、請求項1ないし3のいずれかに記載の発明の効果に加えて、還元剤注入ノズルの後流側の煙道に整流板を設けたので、サイクロン集塵機での旋回流によってガス流速の分布が大きくなっても、整流板により排ガス流れが整流化され、脱硝反応が効果的に行われる。
本発明を実施するための最良の形態について以下に説明する。
以下に本発明の実施例1について図1を用いて説明する。
燃料である石炭種として東部瀝青炭を用い、その燃焼排ガス中のばいじんは、15,000mg/m3Nであり、その内の20wt%がポップコーンアッシュ、灰中の鉄(Fe)含有量は40wt%である。
燃料である石炭種として東部瀝青炭を用い、その燃焼排ガス中のばいじんは、15,000mg/m3Nであり、その内の20wt%がポップコーンアッシュ、灰中の鉄(Fe)含有量は40wt%である。
また、ボイラ1の節炭器出口と排煙脱硝装置3の間にある鉛直方向に排ガスが上昇する流路を有する煙道2の最下部にサイクロン集塵機4を設置する。ボイラ節炭器出口から排出された排ガス中の灰のうち、Fe含有量の多い粒径の大きな重い灰及び殆ど全てのポップコーンアッシュからなる灰(全体の約50wt%の灰)がサイクロン集塵機4で除去される。サイクロン集塵機4の前流側の煙道2に設置された還元剤注入ノズル5から前記還元剤が注入され、混合ガスにより排煙脱硝装置3で排ガス中のNOxがN2とH2Oに還元される。
排煙脱硝装置3内の脱硝触媒の空隙率は0.82であり、比較的軽く粒径の小さいボイラ排ガス中の灰はサイクロン集塵機4で捕集されないで、かつ排煙脱硝装置3内を通過して後流側に設置した電気集塵機(図示せず)で捕集される。
以下に本発明の実施例2について図2を用いて説明する。
ボイラ1の節炭器出口と排煙脱硝装置3の間にある鉛直上昇煙道2の最下部にサイクロン集塵機4を設置する。ボイラ節炭器出口から排出された排ガス中の灰のうち、Fe含有量の多い粒径の大きな重い灰及び殆ど全てのポップコーンアッシュの合計で50wt%の灰がサイクロン集塵機4で除去される。サイクロン集塵機4の前流側の煙道2に設置された還元剤注入ノズル5から前記還元剤が注入され、混合ガスにより排煙脱硝装置3で排ガス中のNOxがN2とH2Oに還元される。
ボイラ1の節炭器出口と排煙脱硝装置3の間にある鉛直上昇煙道2の最下部にサイクロン集塵機4を設置する。ボイラ節炭器出口から排出された排ガス中の灰のうち、Fe含有量の多い粒径の大きな重い灰及び殆ど全てのポップコーンアッシュの合計で50wt%の灰がサイクロン集塵機4で除去される。サイクロン集塵機4の前流側の煙道2に設置された還元剤注入ノズル5から前記還元剤が注入され、混合ガスにより排煙脱硝装置3で排ガス中のNOxがN2とH2Oに還元される。
このとき煙道中での排ガスの偏流が大きく、排煙脱硝装置3での脱硝性能に影響を及ぼす場合に備えてサイクロン集塵機4の後流側の煙道2に多孔板6を設置している。該多孔板6により煙道2中での排ガスの偏流を無くして排煙脱硝装置3での脱硝性能にばらつきが無いようにする。
以下に本発明の比較例として従来の排ガス処理システムについて図3を用いて説明する。
ボイラ1の節炭器出口の灰を多く含む排ガスに排煙脱硝装置3の前流側の煙道2内で還元剤注入ノズル5から還元剤が注入され、排ガスと還元剤の混合ガスが排煙脱硝装置3内でガスのNOxがN2とH2Oに還元される。本比較例の排煙脱硝装置3内の脱硝触媒の空隙率は0.86である。
ボイラ1の節炭器出口の灰を多く含む排ガスに排煙脱硝装置3の前流側の煙道2内で還元剤注入ノズル5から還元剤が注入され、排ガスと還元剤の混合ガスが排煙脱硝装置3内でガスのNOxがN2とH2Oに還元される。本比較例の排煙脱硝装置3内の脱硝触媒の空隙率は0.86である。
上記実施例1、実施例2と比較例における各項目の比較を表1に示す。本発明を適用することにより、経時的な脱硝触媒の脱硝性能劣化、SO2酸化率上昇、及び排煙脱硝装置3での圧力損失の上昇を抑制することが可能となる。
本発明は鉄分を多く含む石炭を燃料とする燃焼装置の排ガス処理システムに利用可能である。
1 ボイラ 2煙道
3 排煙脱硝装置 4 サイクロン集塵機
5 還元剤注入ノズル 6 整流板
7 混合器(スタティックミキサー) 8 空気予熱器
9 脱硫装置 10 煙突
3 排煙脱硝装置 4 サイクロン集塵機
5 還元剤注入ノズル 6 整流板
7 混合器(スタティックミキサー) 8 空気予熱器
9 脱硫装置 10 煙突
Claims (4)
- 石炭の燃焼装置から排出する排ガス中の窒素酸化物を除去する排煙脱硝装置を有する排煙処理設備において、
燃焼装置出口と排煙脱硝装置の間の煙道にサイクロン集塵機を設けたことを特徴とする排煙処理設備。 - サイクロン集塵機を燃焼装置出口と排煙脱硝装置の間の煙道の中で、排ガスが鉛直方向上方に上昇する煙道の最下部に設けたことを特徴とする請求項1記載の排煙処理設備。
- サイクロン集塵機の前流側の煙道内に排煙脱硝に使用する還元剤の注入ノズルを設けたことを特徴とする請求項1または2記載の排煙処理設備。
- サイクロン集塵機及び還元剤注入ノズルの後流側の煙道に整流板を設けたことを特徴とする請求項1〜3のいずれかに記載の排煙処理設備。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007078355A JP2008241061A (ja) | 2007-03-26 | 2007-03-26 | 排煙処理設備 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007078355A JP2008241061A (ja) | 2007-03-26 | 2007-03-26 | 排煙処理設備 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008241061A true JP2008241061A (ja) | 2008-10-09 |
Family
ID=39912633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007078355A Withdrawn JP2008241061A (ja) | 2007-03-26 | 2007-03-26 | 排煙処理設備 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008241061A (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101236782B1 (ko) * | 2011-12-19 | 2013-02-28 | 에스코 주식회사 | 매연탈질장치 |
JP2013174569A (ja) * | 2012-02-27 | 2013-09-05 | Mitsubishi Heavy Ind Ltd | NOxコンバータ、水分測定装置、NOx還元方法及び水分測定方法 |
CN103604903A (zh) * | 2013-12-06 | 2014-02-26 | 中国烟草总公司郑州烟草研究院 | 一种模拟卷烟燃烧生成氨的实验测定方法 |
WO2015033679A1 (ja) | 2013-09-04 | 2015-03-12 | 三菱日立パワーシステムズ株式会社 | ダクト壁面構造 |
KR20160088176A (ko) * | 2015-01-15 | 2016-07-25 | 두산중공업 주식회사 | 연소시스템의 분진집적 방지용 덕트 구조 |
JP2017150790A (ja) * | 2016-02-26 | 2017-08-31 | 三菱日立パワーシステムズ株式会社 | 排気ダクト及びボイラ並びに固体粒子の除去方法 |
CN107970772A (zh) * | 2017-12-27 | 2018-05-01 | 福建龙净环保股份有限公司 | 一种scr烟气脱硝装置 |
JP2018200139A (ja) * | 2017-05-26 | 2018-12-20 | 三菱日立パワーシステムズ株式会社 | ホッパ構造物、排気ダクト、及びボイラ |
US10190771B2 (en) | 2013-12-25 | 2019-01-29 | Mitsubishi Heavy Industries, Ltd. | Exhaust duct and boiler |
CN111282419A (zh) * | 2020-03-24 | 2020-06-16 | 安徽威达环保科技股份有限公司 | 一种焚烧炉烟道气多污染物干式净化工艺及装置 |
CN111514742A (zh) * | 2020-03-26 | 2020-08-11 | 中材节能股份有限公司 | 一种锅炉脱硝一体化系统 |
CN114225672A (zh) * | 2021-11-29 | 2022-03-25 | 北京航化节能环保技术有限公司 | 一种用于危废焚烧烟气的低温脱硝装置 |
-
2007
- 2007-03-26 JP JP2007078355A patent/JP2008241061A/ja not_active Withdrawn
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013094938A1 (ko) * | 2011-12-19 | 2013-06-27 | 에스코 주식회사 | 매연탈질장치 |
KR101236782B1 (ko) * | 2011-12-19 | 2013-02-28 | 에스코 주식회사 | 매연탈질장치 |
JP2013174569A (ja) * | 2012-02-27 | 2013-09-05 | Mitsubishi Heavy Ind Ltd | NOxコンバータ、水分測定装置、NOx還元方法及び水分測定方法 |
US10488040B2 (en) | 2013-09-04 | 2019-11-26 | Mitsubishi Hitachi Power Systems, Ltd. | Duct wall surface structure |
WO2015033679A1 (ja) | 2013-09-04 | 2015-03-12 | 三菱日立パワーシステムズ株式会社 | ダクト壁面構造 |
CN103604903A (zh) * | 2013-12-06 | 2014-02-26 | 中国烟草总公司郑州烟草研究院 | 一种模拟卷烟燃烧生成氨的实验测定方法 |
US10190771B2 (en) | 2013-12-25 | 2019-01-29 | Mitsubishi Heavy Industries, Ltd. | Exhaust duct and boiler |
KR20160088176A (ko) * | 2015-01-15 | 2016-07-25 | 두산중공업 주식회사 | 연소시스템의 분진집적 방지용 덕트 구조 |
KR101659403B1 (ko) * | 2015-01-15 | 2016-09-23 | 두산중공업 주식회사 | 연소시스템의 분진집적 방지용 덕트 구조 |
JP2017150790A (ja) * | 2016-02-26 | 2017-08-31 | 三菱日立パワーシステムズ株式会社 | 排気ダクト及びボイラ並びに固体粒子の除去方法 |
JP2018200139A (ja) * | 2017-05-26 | 2018-12-20 | 三菱日立パワーシステムズ株式会社 | ホッパ構造物、排気ダクト、及びボイラ |
CN107970772A (zh) * | 2017-12-27 | 2018-05-01 | 福建龙净环保股份有限公司 | 一种scr烟气脱硝装置 |
CN107970772B (zh) * | 2017-12-27 | 2024-03-08 | 福建龙净环保股份有限公司 | 一种scr烟气脱硝装置 |
CN111282419A (zh) * | 2020-03-24 | 2020-06-16 | 安徽威达环保科技股份有限公司 | 一种焚烧炉烟道气多污染物干式净化工艺及装置 |
CN111514742A (zh) * | 2020-03-26 | 2020-08-11 | 中材节能股份有限公司 | 一种锅炉脱硝一体化系统 |
CN114225672A (zh) * | 2021-11-29 | 2022-03-25 | 北京航化节能环保技术有限公司 | 一种用于危废焚烧烟气的低温脱硝装置 |
CN114225672B (zh) * | 2021-11-29 | 2022-11-11 | 北京航化节能环保技术有限公司 | 一种用于危废焚烧烟气的低温脱硝装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008241061A (ja) | 排煙処理設備 | |
TWI412400B (zh) | Removal device of trace and harmful substances in exhaust gas and its operation method | |
EP2959959B1 (en) | Exhaust gas treatment system | |
KR101298305B1 (ko) | 배기가스 중 미량 유해물질의 제거장치 및 그 운전방법 | |
US8475573B2 (en) | System and method for protection of SCR catalyst | |
JP5748895B1 (ja) | 排ガス処理システム及び処理方法 | |
JP5284722B2 (ja) | 排煙脱硝装置 | |
US20110311424A1 (en) | BIOMASS BOILER SCR NOx AND CO REDUCTION SYSTEM | |
JP2009166012A (ja) | 石炭焚ボイラの排ガス処理システム及びその運転方法 | |
JPS5824174B2 (ja) | 排ガス処理法 | |
JP6077190B1 (ja) | 火力発電システム | |
JPH01184311A (ja) | 脱硝装置を有する石炭焚きボイラ装置 | |
CN106582233A (zh) | 一种催化裂化再生烟气的干式脱硫脱硝除尘系统 | |
JP2008030017A (ja) | 排ガス中微量有害物質の除去装置及びその運転方法 | |
JP6400379B2 (ja) | 燃焼排ガスの脱硝方法 | |
JPH01288338A (ja) | 窒素酸化物の接触還元用触媒 | |
CN206473999U (zh) | 一种催化裂化再生烟气的干式脱硫脱硝除尘系统 | |
JPS6022988Y2 (ja) | ガス処理装置 | |
Dvořák et al. | Efficiency increase of secondary DeNOx systems for cleaning of flue gas produced in combustion processes | |
JPH0194925A (ja) | 排ガス中の窒素酸化物除去装置 | |
WO2020161874A1 (ja) | 燃焼システム | |
JPH0729028B2 (ja) | 脱硝処理方法 | |
JPS5976542A (ja) | 脱硝触媒の再生方法 | |
JPS6211617B2 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20100601 |