JP2008238132A - Adsorption apparatus and method - Google Patents

Adsorption apparatus and method Download PDF

Info

Publication number
JP2008238132A
JP2008238132A JP2007086229A JP2007086229A JP2008238132A JP 2008238132 A JP2008238132 A JP 2008238132A JP 2007086229 A JP2007086229 A JP 2007086229A JP 2007086229 A JP2007086229 A JP 2007086229A JP 2008238132 A JP2008238132 A JP 2008238132A
Authority
JP
Japan
Prior art keywords
adsorbent
adsorption
water
fibril
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007086229A
Other languages
Japanese (ja)
Inventor
Tadashi Shimizu
正 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2007086229A priority Critical patent/JP2008238132A/en
Publication of JP2008238132A publication Critical patent/JP2008238132A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adsorption apparatus and a method by which ions in water are removed and recovered and treatment can be carried out with small occupied volume even when a large amount water containing ions of small ionic character such as a phosphate ion is treated. <P>SOLUTION: In a moving bed type adsorption apparatus charged with an adsorbent, the adsorbent comprises an organic polymer resin and an inorganic ion adsorbent and has an communicative hole opened to an outer surface. The adsorbent has a void inside a fibril forming the communicative hole and at least a part of the void opens at a fibril surface and the inorganic ion adsorbent is carried on an outer surface of the fibril and on an inside void surface. Further the treating method using the adsorption apparatus is also provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、吸着剤により水中のイオンを除去回収する吸着装置および処理方法に関する。   The present invention relates to an adsorption apparatus and a treatment method for removing and collecting ions in water with an adsorbent.

水中のイオンを除去回収する装置として、吸着剤が充填された移動床式吸着装置が知られている。従来の吸着装置は、吸着剤としてイオン交換樹脂やキレート樹脂が使用され、河川水や地下水からの脱イオン等に用いられている。装置がコンパクトでシンプルであるという特長を有している。脱イオンのようにナトリウムイオンやカルシウムイオンなどのイオン性の高いイオンを除去する場合であれば、通常のイオン交換樹脂等を使用するだけで充分な性能が発揮されるが、リン酸イオン等のようなイオン性の低いイオンを除去する場合は吸着速度が遅いため移動床式の利点を発揮することができなかった。
A.A.Zagorodni著, Ion Exchange Materials Properties and Applications, Elsevier出版(2007)
As an apparatus for removing and collecting ions in water, a moving bed type adsorption apparatus filled with an adsorbent is known. Conventional adsorption devices use an ion exchange resin or a chelate resin as an adsorbent, and are used for deionization from river water or groundwater. It has the feature that the device is compact and simple. When removing highly ionic ions such as sodium ions and calcium ions, such as deionization, sufficient performance can be achieved just by using a normal ion exchange resin, etc. When removing ions with such low ionicity, the adsorption rate was slow, so the advantage of the moving bed type could not be demonstrated.
AAZagorodni, Ion Exchange Materials Properties and Applications, Elsevier Publishing (2007)

本発明は、水中のイオンを除去回収する吸着装置および処理方法であって、リン酸イオン等のようなイオン性の小さなイオンを含む大量の水を処理する場合でも、少ない占有体積で処理できる吸着装置および方法を提供することを目的とする。   The present invention relates to an adsorption apparatus and a treatment method for removing and recovering ions in water, and an adsorption capable of treating with a small occupied volume even when treating a large amount of water containing small ionic ions such as phosphate ions. An object is to provide an apparatus and method.

本発明者は、前記課題を解決するため新たに吸着剤が充填された移動床式吸着装置および方法を見出し、本発明をなすに至った。すなわち、本発明は(1)吸着剤が充填された移動床式吸着装置において、該吸着剤が有機高分子樹脂及び無機イオン吸着体を含んでなる、外表面に開口する連通孔を有する吸着剤であって、連通孔を形成するフィブリルの内部に空隙を有し、かつ、該空隙の少なくとも一部はフィブリルの表面で開孔しており、該フィブリルの外表面及び内部の空隙表面に無機イオン吸着体が担持されている吸着剤である吸着装置、および(2)吸着剤が充填された移動床式吸着装置を用いた処理方法において、該吸着剤が有機高分子樹脂及び無機イオン吸着体を含んでなる、外表面に開口する連通孔を有する吸着剤であって、連通孔を形成するフィブリルの内部に空隙を有し、かつ、該空隙の少なくとも一部はフィブリルの表面で開孔しており、該フィブリルの外表面及び内部の空隙表面に無機イオン吸着体が担持されている吸着剤である処理方法である。   In order to solve the above-mentioned problems, the present inventor has found a moving bed type adsorption apparatus and method newly filled with an adsorbent, and has made the present invention. That is, the present invention relates to (1) a moving bed type adsorber filled with an adsorbent, wherein the adsorbent comprises an organic polymer resin and an inorganic ion adsorbent, and has an open hole on the outer surface. The fibrils forming communication holes have voids inside, and at least a part of the voids are opened on the surface of the fibrils, and inorganic ions are present on the outer surface of the fibrils and on the surface of the voids inside. In an adsorption apparatus that is an adsorbent carrying an adsorbent, and (2) a treatment method using a moving bed adsorber filled with an adsorbent, the adsorbent is an organic polymer resin and an inorganic ion adsorbent. An adsorbent having a communication hole that opens to the outer surface, comprising a void inside the fibril that forms the communication hole, and at least a part of the void is open on the surface of the fibril The fib Inorganic ion adsorbent to the outer surface and inside of the air gap surface of Le is a processing method which is adsorbent is carried.

本発明の吸着装置および処理方法は、水中のイオンを除去回収する吸着装置および処理方法であって、大量の水を少ない占有体積で処理できるという効果を有する。   The adsorption device and the treatment method of the present invention are an adsorption device and a treatment method for removing and recovering ions in water, and have an effect that a large amount of water can be treated with a small occupied volume.

本発明について、以下具体的に説明する。   The present invention will be specifically described below.

本発明は、吸着剤が充填された移動床式吸着装置において、該吸着剤が有機高分子樹脂及び無機イオン吸着体を含んでなる、外表面に開口する連通孔を有する吸着剤であって、連通孔を形成するフィブリルの内部に空隙を有し、かつ、該空隙の少なくとも一部はフィブリルの表面で開孔しており、該フィブリルの外表面及び内部の空隙表面に無機イオン吸着体が担持されている吸着剤である吸着装置および処理方法に関する。   The present invention relates to a moving bed type adsorption apparatus filled with an adsorbent, wherein the adsorbent comprises an organic polymer resin and an inorganic ion adsorbent, and has an open hole on the outer surface, There is a void inside the fibril forming the communication hole, and at least a part of the void is opened on the surface of the fibril, and the inorganic ion adsorbent is supported on the outer surface of the fibril and the inner void surface. The present invention relates to an adsorbing apparatus and a processing method which are adsorbents.

本発明の吸着剤について以下に詳細に説明する。   The adsorbent of the present invention will be described in detail below.

まず、本発明の吸着剤の構造について説明する。   First, the structure of the adsorbent of the present invention will be described.

本発明の吸着剤は、連通孔を有し多孔質な構造を有する。さらに、外表面にはスキン層が無く、表面の開口性に優れる。さらに、連通孔を形成するフィブリル内部にも空隙を有し、その空隙の少なくとも一部はフィブリル表面で開孔している。   The adsorbent of the present invention has communication holes and a porous structure. Furthermore, there is no skin layer on the outer surface, and the surface has excellent opening properties. Further, there is a void inside the fibril forming the communication hole, and at least a part of the void is opened on the fibril surface.

本発明の吸着剤の外表面開口率は、走査型電子顕微鏡で表面を観察した視野の面積中に占める全ての孔の開口面積の和の割合をいう。本発明では10,000倍で吸着剤の表面を観察し外表面開口率を実測した。好ましい表面開口率の範囲は、10〜90%であり、特に15〜80%が好ましい。10%未満では、リン等の吸着対象物質の吸着剤内部への拡散速度が遅くなり、一方90%を超えると吸着剤の強度が不足し、カ学的強度に優れた吸着剤の実現が困難である。本発明の吸着剤の外表面開口径は、走査型電子顕微鏡で表面を観察して求める。孔が円形の場合はその直径、円形以外の場合は、同一面積を有する円の円相当直径を用いる。好ましい表面開口径の範囲は、O.005μm〜100μmであり、特にO.01μm〜50μmが好ましい。O.005μm未満では、リン等の吸着対象物質の吸着剤内部への拡散速度が遅くなりやすく、一方、100μmを超えると吸着剤の強度が不足しやすい。   The outer surface opening ratio of the adsorbent of the present invention refers to the ratio of the sum of the opening areas of all the holes in the area of the field of view when the surface is observed with a scanning electron microscope. In the present invention, the surface of the adsorbent was observed at a magnification of 10,000 to actually measure the outer surface opening ratio. The range of the surface opening ratio is preferably 10 to 90%, and particularly preferably 15 to 80%. If it is less than 10%, the diffusion rate of the substance to be adsorbed, such as phosphorus, into the adsorbent becomes slow. On the other hand, if it exceeds 90%, the adsorbent has insufficient strength and it is difficult to realize an adsorbent with excellent chemical strength. It is. The outer surface opening diameter of the adsorbent of the present invention is determined by observing the surface with a scanning electron microscope. When the hole is circular, the diameter is used. When the hole is not circular, the equivalent circle diameter of a circle having the same area is used. A preferable range of the surface opening diameter is O.005 μm to 100 μm, and particularly preferably O.01 μm to 50 μm. If it is less than O.005 μm, the diffusion rate of the adsorption target substance such as phosphorus into the adsorbent tends to be slow, whereas if it exceeds 100 μm, the adsorbent strength tends to be insufficient.

本発明の吸着剤は、連通孔を形成するフィブリル内部にも空隙を有し、かつ、その空隙の少なくとも一部はフィブリルの表面で開孔している。無機イオン吸着体は、このフィブリルの外表面及びフィブリル内部の空隙表面に担持されている。フィブリル自体も多孔質であるため、内部に埋め込まれた吸着基質である無機イオン吸着体も、リンと言った吸着対象物質と接触することができ、有効に吸着剤として機能することができる。本発明の吸着剤は、このように吸着基質が担持されている部分も多孔質であるため、吸着基質とバインダを練り込んでつくる従来の方法の欠点であった、吸着基質の微細な吸着サイトがバインダで塞がれるといったことが少なく、吸着基質を有効に利用することができる。ここで、フィブリルとは有機高分子樹脂からなり、吸着剤の外表面及び内部に三次元的に連続した網目構造を形成する繊維状の構造体を意味する。フィブリル内部の空隙及びフィブリル表面の開孔は、走査型電子顕微鏡で吸着剤の割断面を観察して判定する。フィブリルの断面には空隙があり、フィブリルの表面は開孔していることが観察される。さらに、無機イオン吸着体粉末は、フィブリルの外表面及び内部の空隙表面に担持されている様子が観察される。フィブリルの太さは、O.01μm〜50μmが好ましい。フィブリル表面の開孔径は、O.001μm〜5μmが好ましい。   The adsorbent of the present invention has voids in the fibrils forming the communication holes, and at least a part of the voids are opened on the surface of the fibrils. The inorganic ion adsorbent is supported on the outer surface of the fibril and the void surface inside the fibril. Since the fibril itself is also porous, an inorganic ion adsorbent that is an adsorption substrate embedded inside can also come into contact with an adsorption target substance called phosphorus, and can effectively function as an adsorbent. Since the adsorbent of the present invention is porous even in such a portion where the adsorption substrate is supported, the fine adsorption site of the adsorption substrate, which was a drawback of the conventional method of kneading the adsorption substrate and the binder, However, the adsorption substrate can be used effectively. Here, the fibril means a fibrous structure made of an organic polymer resin and forming a three-dimensional continuous network structure on the outer surface and inside of the adsorbent. The voids inside the fibril and the openings on the fibril surface are determined by observing the cut section of the adsorbent with a scanning electron microscope. It is observed that there are voids in the cross-section of the fibril and that the surface of the fibril is open. Furthermore, it is observed that the inorganic ion adsorbent powder is supported on the outer surface of the fibril and the inner void surface. The thickness of the fibril is preferably O.01 μm to 50 μm. The pore diameter on the fibril surface is preferably O.001 μm to 5 μm.

本発明の吸着剤は、連通孔が、吸着剤表面付近に最大孔径層を有することが好ましい。ここで、最大孔径層とは、吸着剤の表面から内部に至る連通孔の孔径分布中で最大の部分をいう。ボイドと呼ばれる円形又はだ円形(指状)の大きな空隙がある場合には、ボイドが存在する層を最大孔径層という。表面付近とは、外表面から中心部へ向かって、吸着剤の割断径の25%まで内側を意味する。最大孔径層が吸着剤表面付近にあることによって、吸着対象物質の内部への拡散を速める効果を有する。よって、リンといった吸着対象物質を素早く吸着剤内部に取り込み、処理水中から除去することができる。最大孔径及び最大孔径層の位置は、吸着剤の表面及び割断面を走査型電子顕微鏡で観察して求める。孔径は、孔が円形の場合はその直径、円形以外の場合は、同一面積を有する円の円相当直径を用いる。吸着剤の形態は、粒子状、糸状、シート状、中空糸状、円柱状、中空円柱状等の任意の形態をとることができる。なかでも、吸着剤を水処理分野において吸着剤として使用する場合には、カラム等に充填して通水する際の圧力損失、接触面積の有効性の点、取り扱い易さの点から粒子状が好ましく、特に球状粒子(真球状のみならず、楕円球状であってもよい)が好ましい。   In the adsorbent of the present invention, the communicating holes preferably have a maximum pore diameter layer in the vicinity of the adsorbent surface. Here, the maximum pore diameter layer refers to the largest portion in the pore diameter distribution of the communication holes extending from the surface of the adsorbent to the inside. In the case where there is a large circular or oval (finger-like) void called a void, the layer in which the void exists is called the maximum pore diameter layer. The vicinity of the surface means the inner side up to 25% of the cleaving diameter of the adsorbent from the outer surface toward the center. By having the maximum pore diameter layer in the vicinity of the adsorbent surface, it has the effect of accelerating the diffusion of the substance to be adsorbed into the interior. Therefore, an adsorption target substance such as phosphorus can be quickly taken into the adsorbent and removed from the treated water. The position of the maximum pore diameter and the maximum pore diameter layer is obtained by observing the surface and the fractured surface of the adsorbent with a scanning electron microscope. As the hole diameter, when the hole is circular, the diameter thereof is used. When the hole is not circular, the equivalent circle diameter of a circle having the same area is used. The form of the adsorbent can take any form such as a particulate form, a thread form, a sheet form, a hollow fiber form, a cylindrical form, and a hollow cylindrical form. In particular, when the adsorbent is used as an adsorbent in the field of water treatment, the particle shape is reduced from the point of view of pressure loss, effectiveness of contact area, and ease of handling when packed in a column or the like. Spherical particles (not only true spheres but also oval spheres) are particularly preferable.

本発明の球状吸着剤の平均粒子径は、該粒子を球状とみなして、レーザー光による回折の散乱光強度の角度分布から求めた球相当径のモード径(最頻度粒子径)である。好ましい平均粒子径の範囲は、100〜2500μmであり、特に200〜2000μmが好ましい。平均粒径が100μmより小さければカラムやタンクになどへ充填した際に圧カ損失が大きくなりやすく、また、平均粒径が2500μmより大きければ、カラムやタンクに充填したときの表面積が小さくなり、処理効率が低下しやすい。   The average particle diameter of the spherical adsorbent of the present invention is the mode diameter (most frequent particle diameter) of the sphere equivalent diameter obtained from the angle distribution of the scattered light intensity of diffraction by laser light, assuming that the particles are spherical. A preferable range of the average particle diameter is 100 to 2500 μm, particularly 200 to 2000 μm. If the average particle size is smaller than 100 μm, the pressure loss tends to increase when the column or tank is filled, and if the average particle size is larger than 2500 μm, the surface area when packed in the column or tank is reduced. Processing efficiency tends to decrease.

本発明の吸着剤の空孔率Pr(%)とは、吸着剤の含水時の重量W1(g)、乾燥後の重量W0(g)、及び吸着剤の比重をρとするとき、次式で表される値をいう:Pr=(W1-WO)/(W1-WO+W0/ρ)×100。含水時の重量は、十分に水に濡いた吸着剤を、乾いたろ紙上に拡げ、余分な水分をとってから含水時の重量を測定すればよい。乾燥は、水分をとばすために、室温下で真空乾燥を行えばよい。吸着剤の比重は、比重瓶を用いて簡便に測定することができる。好ましい空孔率Pr(%)の範囲は、50%〜90%であり、特に60〜85%が好ましい。50%未満ではリン等の吸着対象物質と吸着基質である無機イオン吸着体との接触頻度が不十分となりやすい。90%を超えると、吸着剤の強度が不足しやすい。   The porosity Pr (%) of the adsorbent of the present invention is the weight W1 (g) when the adsorbent is wet, the weight W0 (g) after drying, and the specific gravity of the adsorbent as ρ, A value represented by: Pr = (W1-WO) / (W1-WO + W0 / ρ) × 100. The weight when water is contained may be determined by spreading an adsorbent sufficiently wet with water on dry filter paper and taking excess water before measuring the weight when containing water. Drying may be performed under vacuum at room temperature in order to eliminate moisture. The specific gravity of the adsorbent can be easily measured using a specific gravity bottle. A preferable range of the porosity Pr (%) is 50% to 90%, and particularly preferably 60 to 85%. If it is less than 50%, the contact frequency between the adsorption target substance such as phosphorus and the inorganic ion adsorbent as the adsorption substrate tends to be insufficient. If it exceeds 90%, the adsorbent strength tends to be insufficient.

本発明の吸着剤の無機イオン吸着体の担持量は、吸着剤の乾燥時の重量Wd(g)、灰分の重量Wa(g)とするとき次式で表される値をいう:担持量(%)=Wa/Wd×100、ここで、灰分は本発明の吸着剤を800℃で2時間焼成したときの残分をいう。好ましい担持量の範囲は、30〜95%であり、さらに好ましくは、40〜90%であり、特に65〜90%が好ましい。30%未満だと、リン等の吸着対象物質と吸着基質である無機イオン吸着体との接触頻度が不十分となりやすく、95%を超えると、吸着剤の強度が不足しやすい。本発明の方法によると、従来技術の添着法とは異なり、吸着基質と有機高分子樹脂を練り込んで成形するため、担持量を多く保ちかつ強度の強い吸着剤を得ることができる。   The supported amount of the inorganic ion adsorbent of the adsorbent of the present invention means the value represented by the following formula when the adsorbent weight Wd (g) and the ash weight Wa (g) are expressed: %) = Wa / Wd × 100, where the ash content is the residue when the adsorbent of the present invention is calcined at 800 ° C. for 2 hours. A preferable loading range is 30 to 95%, more preferably 40 to 90%, and particularly preferably 65 to 90%. If it is less than 30%, the contact frequency between the adsorption target substance such as phosphorus and the inorganic ion adsorbent as the adsorption substrate tends to be insufficient, and if it exceeds 95%, the strength of the adsorbent tends to be insufficient. According to the method of the present invention, unlike the conventional adhering method, the adsorbing substrate and the organic polymer resin are kneaded and molded, so that an adsorbent having a high supported amount and strong strength can be obtained.

本発明の吸着剤の比表面積は、次式で定義される:比表面積(m2/cm3)=SBET×かさ比重(g/cm3)、ここで、SBETは、吸着剤の単位重量あたりの比表面積(m2/g)である。比表面積の測定方法は、吸着剤を室温で真空乾燥した後、BET法を用いて測定する。かさ比重の測定方法は、粒子状、円柱状、中空円柱状等の形状が短いものは、湿潤状態の吸着剤を、メスシリンダー等を用いて、みかけの体積を測定する。その後、室温で真空乾燥して重量を求める。糸状、中空糸状、シート状の形状が長いものについては、湿潤時の断面積と長さを測定して、両者の積から体積を算出する。その後、室温で真空乾燥して重量を求める。好ましい比表面積の範囲は、5m/cm〜500m/cmである。5m/cm未満だと、吸着基質の担持量及び吸着性能が不十分となりやすい500m/cmを超えると、吸着剤の強度が不足しやすい。一般的に、吸着基質である無機イオン吸着体の吸着性能(吸着容量)は、比表面積に比例する場合が多い。単位体積あたりの表面積が小さいと、カラムやタンクに充填したときの吸着容量、吸着性能が小さく、高速処理を達成しにくい。本発明の吸着剤は、多孔質でありフィブリルが複雑に絡み合った三次元網目構造をとる。さらに、フィブリル自体も空隙を有するため、表面積が大きいという特徴を有する。これに、更に大きい比表面積をもつ吸着基質(無機イオン吸着体)を担持させるので、単位体積あたりの表面積も大きくなるのが特徴である。 The specific surface area of the adsorbent of the present invention is defined by the following formula: specific surface area (m 2 / cm 3 ) = S BET × bulk specific gravity (g / cm 3 ), where S BET is a unit of adsorbent Specific surface area per weight (m 2 / g). The specific surface area is measured using the BET method after the adsorbent is vacuum dried at room temperature. The bulk specific gravity is measured by measuring the apparent volume using a wet adsorbent and a graduated cylinder or the like for those having a short shape such as a particle, column, or hollow cylinder. Then, it vacuum-drys at room temperature and calculates | requires a weight. For a long fiber-like, hollow fiber-like, or sheet-like shape, the cross-sectional area and length when wet are measured, and the volume is calculated from the product of both. Then, it vacuum-drys at room temperature and calculates | requires a weight. The preferred range of the specific surface area is 5m 2 / cm 3 ~500m 2 / cm 3. If it is less than 5 m 2 / cm 3 , the amount of adsorbing substrate supported and the adsorption performance tend to be insufficient. If it exceeds 500 m 2 / cm 3 , the adsorbent strength tends to be insufficient. In general, the adsorption performance (adsorption capacity) of an inorganic ion adsorbent that is an adsorption substrate is often proportional to the specific surface area. If the surface area per unit volume is small, the adsorption capacity and adsorption performance when packed in a column or tank are small, making it difficult to achieve high-speed processing. The adsorbent of the present invention has a three-dimensional network structure that is porous and intricately intertwined with fibrils. Furthermore, since the fibril itself has voids, it has a feature that the surface area is large. Since this has an adsorption substrate (inorganic ion adsorbent) having a larger specific surface area, the surface area per unit volume is also increased.

次に本発明の吸着剤の製造方法について説明する。   Next, a method for producing the adsorbent of the present invention will be described.

本発明の吸着剤の製造方法は、有機高分子樹脂とその良溶媒と無機イオン吸着体と水溶性高分子とを混合した後、成形し、貧溶媒中で凝固させることを特徴とする。   The method for producing an adsorbent of the present invention is characterized in that an organic polymer resin, a good solvent thereof, an inorganic ion adsorbent, and a water-soluble polymer are mixed and then molded and coagulated in a poor solvent.

本発明で用いる有機高分子樹脂は、特に限定されないが、湿式相分離による多孔化手法が可能なものが好ましい。たとえば、ポリスルホン系ポリマー、ポリフッ化ビニリデン系ポリマー、ポリ塩化ビニリデン系ポリマー、アクリロニトリル系ポリマー、ポリメタクリル酸メチル系ポリマー、ポリアミド系ポリマー、ポリイミド系ポリマー、セルロース系ポリマー、エチレンビニルアルコール共重合体系ポリマー等、多種類が挙げられる。特に、水中での非膨潤性と耐生分解性、さらに製造の容易さから、エチレンビニルアルコール共重合体(EVOH)、ポリアクリロニトリル(PAN)、ポリスルホン(PS)、ポリフッ化ビニリデン(PVDF)が好ましく、さらに親水性と耐薬品性を兼ね備えている点で、エチレンビニルアルコール共重合体(EVOH)が好ましい。また、本発明に用いる良溶媒は有機高分子樹脂及び水溶性高分子を共に溶解するものであればいずれでもよい。例えば、ジメチルスルホキシド(DMSO)、N−メチル−2ピロリドン(NMP)、ジメチルアセトアミド(DMAC)、ジメチルホルムアミド(DMF)等である。これらの良溶媒は1種又は混合溶媒としてもよい。有機高分子樹脂の良溶媒中の含有率に特に限定はないが、好ましくは5〜40重量%であり、さらに好ましくは、7〜30重量%である。5重量%未満では、強度のある吸着剤が得られにくい。40重量%を超えると、空孔率の高い吸着剤が得られにくい。本発明に用いる水溶性高分子は有機高分子樹脂と相溶性のあるものであれば特に限定されない。天然高分子では、グアーガム、ローカストビーンガム、カラーギナン、アラビアゴム、トラガント、ペクチン、デンプン、デキストリン、ゼラチン、カゼイン、コラーゲン等が挙げられる。また、半合成高分子では、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルデンプン、メチルデンプン等が挙げられる。さらに、合成高分子では、ポリビニルアルコール、ポリビニルピロリドン、ポリビニルメチルエーテル、カルボキシビニルポリマー、ポリアクリル酸ナトリウム、さらに、テトラエチレングリコール、トリエチレングリコール等のポリエチレングリコール類が挙げられる。これらの水溶性高分子の中でも、耐生分解性を有する点で合成高分子が好ましい。
特に、本発明の吸着剤のように、連通孔を形成するフィブリル内部にも空隙を有する構造を発現する効果が高い点で、水溶性高分子としてポリビニルピロリドンを用いるのが特に好ましい。ポリビニルピロリドンの重量平均分子量は、2,000〜2,000,000の範囲が好ましく、2,000〜1,000,000の範囲がより好ましく、2,000〜100,000の範囲がさらに好ましい。重量平均分子量が2,000より小さいと、フィブリル内部に空隙を有する構造を発現させる効果が低くなる傾向があり、2,000,000を超えると、成形する時の粘度が上昇して、成形が難しくなる傾向がある。
The organic polymer resin used in the present invention is not particularly limited, but is preferably one that can be made porous by wet phase separation. For example, polysulfone polymer, polyvinylidene fluoride polymer, polyvinylidene chloride polymer, acrylonitrile polymer, polymethyl methacrylate polymer, polyamide polymer, polyimide polymer, cellulose polymer, ethylene vinyl alcohol copolymer polymer, etc. There are many types. In particular, ethylene vinyl alcohol copolymer (EVOH), polyacrylonitrile (PAN), polysulfone (PS), and polyvinylidene fluoride (PVDF) are preferable from the viewpoint of non-swelling property and biodegradability in water and ease of production. Furthermore, an ethylene vinyl alcohol copolymer (EVOH) is preferable because it has both hydrophilicity and chemical resistance. In addition, the good solvent used in the present invention may be any as long as it dissolves both the organic polymer resin and the water-soluble polymer. For example, dimethyl sulfoxide (DMSO), N-methyl-2-pyrrolidone (NMP), dimethylacetamide (DMAC), dimethylformamide (DMF) and the like. These good solvents may be used alone or as a mixed solvent. The content of the organic polymer resin in the good solvent is not particularly limited, but is preferably 5 to 40% by weight, and more preferably 7 to 30% by weight. If it is less than 5% by weight, it is difficult to obtain a strong adsorbent. If it exceeds 40% by weight, it is difficult to obtain an adsorbent with a high porosity. The water-soluble polymer used in the present invention is not particularly limited as long as it is compatible with the organic polymer resin. Examples of natural polymers include guar gum, locust bean gum, carrageenan, gum arabic, tragacanth, pectin, starch, dextrin, gelatin, casein, collagen and the like. Examples of the semisynthetic polymer include methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl starch, and methyl starch. Furthermore, examples of the synthetic polymer include polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl methyl ether, carboxyvinyl polymer, sodium polyacrylate, and polyethylene glycols such as tetraethylene glycol and triethylene glycol. Among these water-soluble polymers, a synthetic polymer is preferable in that it has biodegradability resistance.
In particular, it is particularly preferable to use polyvinyl pyrrolidone as the water-soluble polymer because it has a high effect of developing a structure having voids inside the fibrils forming the communicating holes as in the adsorbent of the present invention. The weight average molecular weight of polyvinylpyrrolidone is preferably in the range of 2,000 to 2,000,000, more preferably in the range of 2,000 to 1,000,000, and still more preferably in the range of 2,000 to 100,000. If the weight average molecular weight is less than 2,000, the effect of developing a structure having voids inside the fibril tends to be low. If the weight average molecular weight exceeds 2,000,000, the viscosity at the time of molding increases, and molding is difficult. It tends to be difficult.

本発明の吸着剤の水溶性高分子の含有量は、吸着剤の乾燥時の重量をWd(g)、吸着剤から抽出した水溶性高分子の重量をWs(g)とするとき次式で表わされる値をいう:含有量(%)=Ws/Wd ×100。水溶性高分子の含有量は、水溶性高分子の種類、分子量に左右されるが、0.001〜10%が好ましく、より好ましくは、0.01〜1%である。0.001%未満では、吸着剤の表面を開口させるのに効果が必ずしも十分でなく、10%を超えると相対的にポリマー濃度が薄くなり、強度が十分でない場合がある。ここで、吸着剤中の水溶性高分子の重量Wsは、次のようにして測定する。まず、乾燥した吸着剤を乳鉢等で粉砕した後、該粉砕物から水溶性高分子の良溶媒を用いて水溶性高分子を抽出し、次いで該抽出液を蒸発乾固して、抽出した水溶性高分子の重量を求める。さらに、抽出した蒸発乾固物の同定と、フィブリル中に残存して抽出されなかった水溶性高分子の有無の確認は、赤外吸収スペクトル(IR)等で測定できる。さらに、フィブリル中に残存して抽出されなかった水溶性高分子がある場合は、本発明の吸着剤を、有機高分子樹脂と水溶性高分子の両方の良溶媒で溶解後、無機イオン吸着体をろ過して除いた液を作成し、次いで、該液体をGPC等を用いて分析して水溶性高分子の含有量を定量することができる。水溶性高分子の含有量は、水溶性高分子の分子量、有機高分子樹脂とその良溶媒の組み合わせで適宜調整が可能である。例えば、分子量の高い水溶性高分子を使用すると、有機高分子樹脂との分子鎖の絡み合いが強固になり、成型時に貧溶媒側に移行しにくくなり、含有量を高くすることができる。   The content of the water-soluble polymer in the adsorbent of the present invention is expressed by the following equation when the weight when the adsorbent is dried is Wd (g) and the weight of the water-soluble polymer extracted from the adsorbent is Ws (g). The value expressed is: content (%) = Ws / Wd × 100. The content of the water-soluble polymer depends on the type and molecular weight of the water-soluble polymer, but is preferably 0.001 to 10%, and more preferably 0.01 to 1%. If it is less than 0.001%, the effect is not necessarily sufficient to open the surface of the adsorbent, and if it exceeds 10%, the polymer concentration becomes relatively thin and the strength may not be sufficient. Here, the weight Ws of the water-soluble polymer in the adsorbent is measured as follows. First, after the dried adsorbent is pulverized in a mortar or the like, the water-soluble polymer is extracted from the pulverized product using a good solvent for the water-soluble polymer, and then the extract is evaporated to dryness, The weight of the conducting polymer is determined. Furthermore, identification of the extracted evaporated and dried product and confirmation of the presence or absence of the water-soluble polymer remaining in the fibril and not extracted can be measured by infrared absorption spectrum (IR) or the like. Furthermore, when there is a water-soluble polymer that remains in the fibrils and is not extracted, the adsorbent of the present invention is dissolved in a good solvent for both the organic polymer resin and the water-soluble polymer, and then the inorganic ion adsorbent A solution obtained by filtering the solution is prepared, and then the liquid is analyzed using GPC or the like to quantify the content of the water-soluble polymer. The content of the water-soluble polymer can be appropriately adjusted depending on the molecular weight of the water-soluble polymer and the combination of the organic polymer resin and the good solvent. For example, when a water-soluble polymer having a high molecular weight is used, the entanglement of the molecular chain with the organic polymer resin becomes strong, and it becomes difficult to move to the poor solvent side during molding, and the content can be increased.

本発明で用いられる無機イオン吸着体とは、イオン吸着現象を示す無機物質をいう。例えば、天然物ではゼオライトやモンモリロナイト、各種の鉱物性物質があり、合成物系では金属酸化物、不溶性の含水酸化物などがある。前者はアルミノケイ酸塩で単一層格子をもつカオリン鉱物、2層格子構造の白雲母、海緑石、鹿沼土、パイロフィライト、タルク、3次元骨組み構造の長石、ゼオライトなどで代表される。後者は、複合金属水酸化物、金属酸化物、金属の含水酸化物、多価金属の酸性塩、不溶性のヘテロポリ酸塩、不溶性ヘキサシアノ鉄酸塩などが主要なものである。   The inorganic ion adsorbent used in the present invention refers to an inorganic substance exhibiting an ion adsorption phenomenon. For example, natural products include zeolite, montmorillonite, and various mineral substances, and synthetic products include metal oxides and insoluble hydrated oxides. The former is represented by aluminosilicate kaolin mineral with a single layer lattice, bilayer latticed muscovite, sea chlorite, kanuma earth, pyrophyllite, talc, three-dimensional framework feldspar, zeolite and the like. The latter mainly includes composite metal hydroxides, metal oxides, metal hydrated oxides, polyvalent metal acid salts, insoluble heteropolyacid salts, insoluble hexacyanoferrates, and the like.

複合金属水酸化物としては、下記式(III)のハイドロタルサイト系化合物が挙げられる。   Examples of the composite metal hydroxide include hydrotalcite compounds represented by the following formula (III).

2+ (1−X)3+ x(OH-(2+x-y)(An−)y/n
(III)
〔式中、M2+はMg2+、Ni2+、Zn2+、Fe2+、Ca
2+及びCu2+からなる群から選
ばれる少なくとも1種の二価の金属イオンを示し、M3+はAl3+及びFe3+からなる群から選ばれる少なくとも1種の三価の金属イオンを示し、An-はn価のアニオンを示し、0.1≦x≦
0.5であり、0.1≦y≦0.5であり、nは1または2である。〕
金属酸化物としては、活性アルミナ、FeO,Fe2O3,Fe3O4等の酸化鉄、シリカゲル等が挙げられる。
M 2+ (1-X) M 3+ x (OH ) (2 + xy) (A n− ) y / n
(III)
[In the formula, M 2+ is Mg 2+ , Ni 2+ , Zn 2+ , Fe 2+ , Ca
And at least one divalent metal ion selected from the group consisting of 2+ and Cu 2+ , and M 3+ represents at least one trivalent metal ion selected from the group consisting of Al 3+ and Fe 3+. A n− represents an n-valent anion, and 0.1 ≦ x ≦
0.5, 0.1 ≦ y ≦ 0.5, and n is 1 or 2. ]
Examples of the metal oxide include activated alumina, iron oxide such as FeO, Fe 2 O 3 , and Fe 3 O 4 , silica gel, and the like.

金属の含水酸化物とは、式(I)又は、式(II)で表せる。また、(I)式、(II)式のいかなる組み合わせの混合物でもよい。   The metal hydrous oxide can be represented by the formula (I) or the formula (II). A mixture of any combination of the formulas (I) and (II) may be used.

MO・mHO (I)
M・Fe・mHO+xFe・nHO (II)
式中、nは1〜4、mは0.5〜6、xは0〜3である。
(I)式は、水和酸化物の一般式であり、式(II)は含水亜鉄酸塩と鉄の水和酸化物の混合物である。式中Mは、Ti、Zr、Sn、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Cr、Co、Ga、Fe、Mn、Ni、V、Ge、Nb及びTaからなる群から選ばれる少なくとも一種の金属である。また、式(II)において+は混合物であることを表す。特に、吸着能カと、酸やアルカリに対する耐溶解性の点で、Ti、Zr、Sn、Ceが好ましい。
MO n · mH 2 O (I)
M · Fe 2 O 4 · mH 2 O + xFe 3 O 4 · nH 2 O (II)
In the formula, n is 1 to 4, m is 0.5 to 6, and x is 0 to 3.
The formula (I) is a general formula of hydrated oxide, and the formula (II) is a mixture of hydrous ferrite and hydrated oxide of iron. In the formula, M is Ti, Zr, Sn, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Al, Cr, Co, Ga. Fe, Mn, Ni, V, Ge, Nb and at least one metal selected from the group consisting of Ta. In formula (II), + represents a mixture. In particular, Ti, Zr, Sn, and Ce are preferable in terms of adsorption capacity and resistance to dissolution in acids and alkalis.

さらには、経済性を加味すると(II)式の含水亜鉄酸塩と鉄の水和酸化物の混合物が好ましい。さらに好ましくは、(II)式の含水亜鉄酸塩の金属MがZrであることが好ましい。   Furthermore, in consideration of economy, a mixture of the hydrated ferrite of formula (II) and iron hydrated oxide is preferable. More preferably, the metal M of the hydrous ferrite of the formula (II) is Zr.

式(I)で表される水和酸化物の具体例としては、下記のものが挙げられる。   Specific examples of the hydrated oxide represented by the formula (I) include the following.

チタンの水和酸化物としては一般式
TiO2・nH2
(式中、nは0.5〜2.0の数である。)で表されるもの。
ジルコニウムの水和酸化物としては一般式
ZrO2・nH2
(式中、nは0.5〜2.0の数である。)で表されるもの。
スズの水和物としては、一般式
SnO2・nH2
(式中、nは0.5〜2.0の数である。)で表されるもの。
セリウムの水和酸化物としては、一般式
CeO2・nH2
(式中、nは0.5〜2.0の数である。)で表されるもの。
式(II)で表される含水亜鉄酸塩と鉄の水和酸化物の混合物の具体例としては、下記のものが挙げられる。
As a hydrated oxide of titanium, the general formula TiO 2 · nH 2 O
(Wherein n is a number from 0.5 to 2.0).
As a hydrated oxide of zirconium, the general formula ZrO 2 · nH 2 O
(Wherein n is a number from 0.5 to 2.0).
As the hydrate of tin, the general formula SnO 2 · nH 2 O
(Wherein n is a number from 0.5 to 2.0).
As hydrated oxide of cerium, the general formula CeO 2 · nH 2 O
(Wherein n is a number from 0.5 to 2.0).
Specific examples of the mixture of the hydrous ferrite and the hydrated oxide of iron represented by the formula (II) include the following.

チタンの含水亜鉄酸塩と鉄の水和酸化物の混合物としては、一般式
Ti・Fe・mHO+xFe・nH
(式中、nは1〜4、mは0.5〜6、xは0〜3の数である)で表されるもの。
ジルコニウムの含水亜鉄酸塩と鉄の水和酸化物の混合物としては、一般式
Zr・Fe・mHO+xFe・nH
(式中、nは1〜4、mは0.5〜6、xは0〜3の数である)で表されるもの。
スズの含水亜鉄酸塩と鉄の水和酸化物の混合物としては、一般式
Sn・Fe・mHO+xFe・nH
(式中、nは1〜4、mは0.5〜6、xは0〜3の数である)で表されるもの。
セリウムの含水亜鉄酸塩と鉄の水和酸化物の混合物としては、一般式
Ce・Fe・mHO+xFe・nH
(式中、nは1〜4、mは0.5〜6、xは0〜3の数である)で表されるもの。
As a mixture of titanium hydrous ferrite and hydrated oxide of iron, the general formula Ti · Fe 2 O 4 · mH 2 O + xFe 3 O 4 · nH 2 O
(Wherein n is 1 to 4, m is 0.5 to 6, and x is a number from 0 to 3).
As a mixture of the hydrous ferrite of zirconium and the hydrated oxide of iron, the general formula Zr.Fe 2 O 4 .mH 2 O + xFe 3 O 4 .nH 2 O
(Wherein n is 1 to 4, m is 0.5 to 6, and x is a number from 0 to 3).
The mixture of the tin hydrous ferrite and the iron hydrated oxide has the general formula Sn.Fe 2 O 4 .mH 2 O + xFe 3 O 4 .nH 2 O
(Wherein n is 1 to 4, m is 0.5 to 6, and x is a number from 0 to 3).
The mixture of cerium hydrous ferrite and hydrated iron oxide is represented by the general formula Ce.Fe 2 O 4 .mH 2 O + xFe 3 O 4 .nH 2 O
(Wherein n is 1 to 4, m is 0.5 to 6, and x is a number from 0 to 3).

(I)式で表される水和酸化物の製造方法は特に限定されないが、例えば、次のような方法により製造される。該金属塩酸塩、硫酸塩、硝酸塩等の塩類水溶液中にアルカリ溶液を添加して得られた沈殿物をろ過、洗浄した後乾燥する。乾燥は風乾するかもしくは約150℃以下、好ましくは約90℃以下で約1〜20時間程度乾燥する。   Although the manufacturing method of the hydrated oxide represented by the formula (I) is not particularly limited, for example, it is manufactured by the following method. A precipitate obtained by adding an alkaline solution to an aqueous salt solution of metal hydrochloride, sulfate, nitrate or the like is filtered, washed and dried. The drying is performed by air drying or at about 150 ° C. or less, preferably about 90 ° C. or less for about 1 to 20 hours.

(II)式で表される水和酸化物は、含水亜鉄酸塩と鉄の水和酸化物の混合物である。該化合物の製造方法は特に限定されないが、例えば次のような方法により製造される。該金属塩を溶解して調製した金属イオンを含有する溶液に、この溶液中に含まれる金属イオンに対して、約O.2〜11倍モルに相当する第1鉄塩を加えた後、アルカリを加え、液のpHを約6以上、好ましくは約7〜12に保持する。この後、必要ならば溶液の温度を約30〜100℃にした後、たとえば空気、酸素ガス又はオゾンなどの酸化性ガスを吹き込むか、あるいは過酸化水素水などの酸化剤を加え、含水亜鉄酸塩の沈澱を生成させる。生じた沈澱を濾別し、水洗した後乾燥する。乾燥は風乾する、又は約150℃以下、好ましくは約90℃以下で約1〜20時間程度乾燥する。乾燥後の含水率は、約6〜30重量%の範囲内に入ることが好ましい。ここで鉄の水和酸化物とは、たとえばFeO、FeO、FeOなどの鉄の酸化物の水和物(一水塩、二水塩、三水塩、四水塩など)をいう。含水亜鉄酸塩と鉄の水和酸化物との割合は、含水亜鉄酸塩含量が24〜100重量%、好ましくは50〜99重量%となる量である。
前述の製造法において用いられるチタン、ジルコニウム、スズ又はセリウムの金属塩としては、たとえば四塩化チタン(TiC14)、硫酸チタン(Ti(SO4)2)、硫酸チタニル(TiO(SO4))、オキシ塩化ジルコニウム(ZrOC12)、四塩化ジルコニウム(ZrC14)、硝酸ジルコニウム(Zr(NO3)4)、硫酸ジルコニウム(Zr(SO4)2)、酢酸ジルコニウム(Zr(CH3COO)4)、四塩化スズ(SnC14)、硝酸スズ(Sn(NO3)4)、硫酸スズ(Sn(SO4)2)、四塩化セリウム(CeCl4)、硝酸セリウム(Ce(NO3)4)、硫酸セリウム(Ce(SO4)2)などが挙げられる。これらは例えばZr(SO4)2・4H2Oなどのように含水塩であってもよい。これらの金属塩は通常、1リットル中に約0.05〜2.Oモルの溶液状で用いられる。第一鉄塩としては、たとえば硫酸第一鉄(FeSO4)、硝酸第一鉄(Fe(NO3)2)、塩化第一鉄(FeC12)などが挙げられる。これらもFeSO4・7H2Oなどの含水塩であってもよい。
The hydrated oxide represented by the formula (II) is a mixture of hydrated ferrite and iron hydrated oxide. Although the manufacturing method of this compound is not specifically limited, For example, it manufactures with the following methods. To a solution containing metal ions prepared by dissolving the metal salt, a ferrous salt corresponding to about 0.2 to 11 times moles of metal ions contained in the solution is added, and then an alkali is added. To maintain the pH of the solution at about 6 or higher, preferably about 7-12. Thereafter, if necessary, the temperature of the solution is set to about 30 to 100 ° C., and then an oxidizing gas such as air, oxygen gas or ozone is blown in, or an oxidizing agent such as hydrogen peroxide is added, An acid salt precipitate is formed. The resulting precipitate is filtered off, washed with water and dried. The drying is performed by air drying or at about 150 ° C. or less, preferably about 90 ° C. or less for about 1 to 20 hours. The moisture content after drying is preferably in the range of about 6 to 30% by weight. Here, the hydrated oxide of iron is a hydrate of an oxide of iron such as FeO, Fe 2 O 3 , Fe 3 O 4 (monohydrate, dihydrate, trihydrate, tetrahydrate, etc.) ). The ratio of the hydrous ferrite to the hydrated iron oxide is such that the hydrous ferrite content is 24 to 100% by weight, preferably 50 to 99% by weight.
Examples of the metal salt of titanium, zirconium, tin or cerium used in the above-described production method include titanium tetrachloride (TiC1 4 ), titanium sulfate (Ti (SO 4 ) 2 ), titanyl sulfate (TiO (SO 4 )), Zirconium oxychloride (ZrOC1 2 ), zirconium tetrachloride (ZrC1 4 ), zirconium nitrate (Zr (NO 3 ) 4 ), zirconium sulfate (Zr (SO 4 ) 2 ), zirconium acetate (Zr (CH 3 COO) 4 ), Tin tetrachloride (SnC1 4 ), tin nitrate (Sn (NO 3 ) 4 ), tin sulfate (Sn (SO 4 ) 2 ), cerium tetrachloride (CeCl 4 ), cerium nitrate (Ce (NO 3 ) 4 ), sulfuric acid And cerium (Ce (SO 4 ) 2 ). These may be hydrated salts such as Zr (SO 4 ) 2 .4H 2 O. These metal salts are usually used in the form of a solution of about 0.05 to 2.O moles per liter. Examples of the ferrous salt include ferrous sulfate (FeSO 4 ), ferrous nitrate (Fe (NO 3 ) 2 ), and ferrous chloride (FeC1 2 ). These may also be hydrated salts such as FeSO 4 .7H 2 O.

これらの第一鉄塩は通常、固形物で加えられるが、溶液状で加えてもよい。アルカリとしては、たとえば水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニア、炭酸ナトリウムなどが挙げられる。これらは、好ましくは約5〜20重量%の水溶液で用いられる。酸化性ガスを吹き込む場合、その時間は、酸化性ガスの種類などによって異なるが、通常約1〜10時間程度である。酸化剤としては、たとえば過酸化水素、次亜塩素酸ナトリウム、次亜塩素酸カリウムなどが用いられる。   These ferrous salts are usually added as solids, but may be added in the form of a solution. Examples of the alkali include sodium hydroxide, potassium hydroxide, calcium hydroxide, ammonia, sodium carbonate and the like. These are preferably used in an aqueous solution of about 5-20% by weight. When the oxidizing gas is blown, the time varies depending on the kind of the oxidizing gas, but is usually about 1 to 10 hours. As the oxidizing agent, for example, hydrogen peroxide, sodium hypochlorite, potassium hypochlorite and the like are used.

本発明の吸着剤に担持させる無機イオン吸着体としては、リン等の吸着性能に優れている点から、チタン、ジルコニウム、スズの水和酸化物;チタン、ジルコニウム、スズの含水亜鉄酸塩;含水酸化セリウム;含水酸化ランタン;活性アルミナ;硫酸アルミニウム添着活性アルミナ;及び硫酸アルミニウム添着活性炭からなる群から選ばれる少なくとも一種が好ましい。   As the inorganic ion adsorbent to be supported on the adsorbent of the present invention, titanium, zirconium, tin hydrated oxide; titanium, zirconium, tin hydrous ferrite, because of its excellent adsorption performance such as phosphorus; Preferred is at least one selected from the group consisting of hydrous cerium oxide; hydrous lanthanum oxide; activated alumina; activated alumina loaded with aluminum sulfate; and activated carbon loaded with aluminum sulfate.

本発明の無機イオン吸着体は、可能な限り微粒子であることが好ましく、その粒子径はO.01μm〜100μm、好ましくは、O.01μm〜50μm、さらに好ましくはO.01μm〜30μmの範囲である。   The inorganic ion adsorbent of the present invention is preferably as fine as possible, and its particle size is in the range of 0.01 to 100 μm, preferably 0.01 to 50 μm, more preferably 0.01 to 30 μm. .

粒子径が0.01μmより小さいと、製造時のスラリー粘度が上昇し、成形しにくい傾向があり、100μmより大きいと、比表面積が小さくなるため、吸着性能が低下する傾向にある。   If the particle size is smaller than 0.01 μm, the viscosity of the slurry at the time of production tends to increase and it tends to be difficult to mold. If it exceeds 100 μm, the specific surface area tends to be small, and the adsorption performance tends to be lowered.

ここでいう粒子径とは、一次粒子と、一次粒子が凝集した二次粒子の両方又は混合物の粒子径をいう。本発明の無機イオン吸着体の粒子径は、レーザー光による回折の散乱光強度の角度分布から求めた球相当径のモード径(最頻度粒子径)である。   The particle diameter here refers to the particle diameter of both the primary particles and the secondary particles in which the primary particles are aggregated or a mixture. The particle diameter of the inorganic ion adsorbent of the present invention is a sphere equivalent diameter (most frequent particle diameter) obtained from the angular distribution of scattered light intensity of diffraction by laser light.

本発明の方法の貧溶媒としては、例えば、水や、メタノール、エタノール等のアルコール類、工一テル類、n−ヘキサン、n−ヘプタン等の脂肪族炭化水素類などの有機高分子樹脂を溶解しない液体が用いられるが、水を用いることが好ましい。また、貧溶媒中に有機高分子樹脂の良溶媒を若干添加することにより凝固速度をコントロールすることも可能である。好ましい高分子樹脂の良溶媒と水の混合比はO〜40%であり、0〜30%がより好ましい。混合比が40%を超えると、凝固速度が遅くなるため、液滴等に成形したポリマー溶液が、貧溶媒中への突入する時及び貧溶媒中を移動中に、貧溶媒と吸着剤の間で摩擦低抗の影響を受けて、形状が歪になる傾向がある。   As the poor solvent of the method of the present invention, for example, water, alcohols such as methanol, ethanol, organic polymer resins such as industrial hydrocarbons, aliphatic hydrocarbons such as n-hexane and n-heptane are dissolved. Liquid is used, but water is preferred. It is also possible to control the coagulation rate by adding a little good solvent of the organic polymer resin in the poor solvent. The mixing ratio of the good solvent of the polymer resin and water is preferably O to 40%, and more preferably 0 to 30%. When the mixing ratio exceeds 40%, the coagulation rate becomes slow, so the polymer solution formed into droplets or the like is between the poor solvent and the adsorbent when entering the poor solvent and while moving in the poor solvent. The shape tends to be distorted by the influence of friction resistance.

貧溶媒の温度は、特に限定されるものではないが、好ましくは−30℃〜90℃、より好ましくはO℃〜90℃、さらに好ましくは0℃〜80℃である。貧溶媒の温度が90℃を超えたり、又は−30℃未満であると、貧溶媒中の吸着剤の状態が安定しにくい。   The temperature of the poor solvent is not particularly limited, but is preferably −30 ° C. to 90 ° C., more preferably O ° C. to 90 ° C., and further preferably 0 ° C. to 80 ° C. When the temperature of the poor solvent exceeds 90 ° C. or less than −30 ° C., the state of the adsorbent in the poor solvent is difficult to stabilize.

本発明の吸着剤は、液体と接触させて水中のイオンを除去回収するものである。   The adsorbent of the present invention removes and collects ions in water by contacting with a liquid.

本発明の吸着剤が吸着の対象とするイオンは、陰イオン、陽イオンと特に限定されない。例えば、陰イオンでは、リン(リン酸イオン)、フッ素(フッ化物イオン)、ヒ素(ヒ酸イオン、亜ヒ酸イオン)、ホウ素(ホウ酸イオン)、ヨウ素イオン、塩素イオン、硫酸イオン、硝酸イオン、亜硝酸イオン、及び酢酸等の各種有機酸のイオンが挙げられる。また、陽イオンでは、ナトリウム、カリウム、カルシウム、カドミウム、鉛、クロム、コバルト、ストロンチウム、及びセシウム等が挙げられる。   The ions to be adsorbed by the adsorbent of the present invention are not particularly limited to anions and cations. For example, with anions, phosphorus (phosphate ions), fluorine (fluoride ions), arsenic (arsenate ions, arsenite ions), boron (borate ions), iodine ions, chlorine ions, sulfate ions, nitrate ions , Nitrite ions, and ions of various organic acids such as acetic acid. Examples of the cation include sodium, potassium, calcium, cadmium, lead, chromium, cobalt, strontium, and cesium.

特に、無機イオン吸着体は、ある特定のイオンに対して特異的な選択性を示す特徴を有することから、下水や産業排水のように雑多なイオンが共存する中から、リンなどのイオンを除去するのに適している。   In particular, inorganic ion adsorbents have the characteristic of specific selectivity for certain ions, so that ions such as phosphorus are removed from the presence of miscellaneous ions such as sewage and industrial wastewater. Suitable for doing.

具体的には、リンイオンの除去には、無機イオン吸着体に、チタン、ジルコニウム、スズの水和酸化物;チタン、ジルコニウム、スズの含水亜鉄酸塩;含水酸化セリウム;含水酸化ランタン;活性アルミナ;硫酸アルミニウム添着活性アルミナ;及び硫酸アルミニウム添着活性炭からなる群から選ばれる少なくとも一種を選択するのが好ましい。   Specifically, to remove phosphorus ions, an inorganic ion adsorbent is coated with titanium, zirconium, tin hydrated oxide; titanium, zirconium, tin hydrous ferrite; hydrated cerium; hydrated lanthanum; activated alumina. It is preferable to select at least one selected from the group consisting of activated alumina loaded with aluminum sulfate and activated carbon loaded with aluminum sulfate.

本発明の移動床式吸着装置について説明する。   The moving bed type adsorption apparatus of the present invention will be described.

本発明の吸着装置は通常の移動床式吸着装置を用いることができ、特に限定されない。   The adsorbing apparatus of the present invention can use a normal moving bed type adsorbing apparatus, and is not particularly limited.

本発明の吸着装置は、例えば、ループ状に連結された吸着部、洗浄部、脱着部および活性化部から構成されている。吸着剤はこのループの中に充填されて一方向に流動し、原水、洗浄水、脱着液、活性化液などは吸着剤と対向して流動する。   The adsorbing device of the present invention includes, for example, an adsorbing unit, a cleaning unit, a desorbing unit, and an activating unit connected in a loop shape. The adsorbent is filled in this loop and flows in one direction, and raw water, washing water, desorption liquid, activation liquid and the like flow opposite to the adsorbent.

ループの材質は、特に限定されるものではないが、ステンレス、FRP(ガラス繊維入り強化プラスチック)、ガラス、各種プラスチックが挙げられる。耐酸性を考慮して、内面をゴムやフッ素樹脂ライニングとすることもできる。   The material of the loop is not particularly limited, and examples include stainless steel, FRP (reinforced plastic with glass fiber), glass, and various plastics. In consideration of acid resistance, the inner surface may be made of rubber or fluororesin lining.

吸着装置で処理される原水が大量の懸濁物質を含む場合、その前処理として原水中の縣濁物質を固液分離する手段を設けることが好ましい。あらかじめ水中の縣濁物質を除去することで、吸着剤の表面の閉塞を防ぐことができ、本発明の吸着剤の吸着性能を十分発揮することができる。好ましい固液分離手段としては、凝集沈殿、沈降分離、砂ろ過、膜分離が挙げられる。特に、設置面積が少なくて、清澄なろ過水が得られる膜分離技術が好ましい。好ましい膜分離技術は、逆浸透膜(RO)、限外ろ過膜(UF)、精密ろ過膜(MF)等が挙げられる。膜の形態は、平膜、中空糸、プリーツ、スパイラル、チューブ等、限定されない。   When the raw water to be treated by the adsorption device contains a large amount of suspended substances, it is preferable to provide means for solid-liquid separation of suspended substances in the raw water as a pretreatment. By removing suspended substances in water in advance, the surface of the adsorbent can be prevented from being blocked, and the adsorption performance of the adsorbent of the present invention can be fully exhibited. Preferable solid-liquid separation means includes coagulation sedimentation, sedimentation separation, sand filtration, and membrane separation. In particular, a membrane separation technique that has a small installation area and that provides clear filtrate water is preferable. Preferred membrane separation techniques include reverse osmosis membrane (RO), ultrafiltration membrane (UF), microfiltration membrane (MF) and the like. The form of the membrane is not limited to flat membranes, hollow fibers, pleats, spirals, tubes and the like.

吸着部では、原水中のイオンは吸着剤により除去回収される。原水のpHを吸着対象とするイオンと該無機イオン吸着体の組み合わせにより好適pHに調整したのち、吸着対象イオンを吸着することが好ましい。例えば、液体中のリンを吸着対象とした場合、無機イオン吸着体にジルコニウムの含水亜鉄酸塩を用いた場合のpH調整範囲は、pH1.5〜10の範囲であり、さらに好ましくは、pH2〜7である。   In the adsorption unit, ions in the raw water are removed and collected by the adsorbent. It is preferable to adsorb the ions to be adsorbed after adjusting the pH of the raw water to a suitable pH by a combination of the ions to be adsorbed and the inorganic ion adsorbent. For example, when phosphorus in a liquid is an object to be adsorbed, the pH adjustment range when zirconium hydrous ferrite is used as the inorganic ion adsorbent is in the range of pH 1.5 to 10, more preferably pH 2 ~ 7.

洗浄部では、吸着剤に付着した懸濁物質は洗浄水で逆洗される。脱離した懸濁物質は洗浄廃水として排出される。   In the washing section, the suspended matter adhering to the adsorbent is backwashed with washing water. The detached suspended matter is discharged as washing wastewater.

脱着部では、アルカリ性水溶液と接触することで、吸着した陰イオンを脱離させる。アルカリ性水溶液のpHの範囲は、pH10以上であれば陰イオンを脱離させることができるが、好ましくはpH12以上、より好ましくはpH13以上である。アルカリ濃度は、O.1wt%〜30wt%の範囲であり、さらに好ましくは0.5〜20wt%の範囲である。O.1wt%より薄いと脱着効率が低くなり、30wt%より濃いと、アルカリの薬剤コストが増えてしまう傾向にある。アルカリ性水溶液の通液速度は、特に制限はないが、通常SV0.5〜15(hr−1)の範囲が好ましい。SVO.5より低いと、脱着時間が長時間になり非効率になる傾向があり、SV15より大きいと、吸着剤とアルカリ水溶液の接触時間が短くなり、脱着効率が低下する傾向がある。アルカリ性水溶液の種類は、特に制限はないが、通常、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化アンモニウム等の無機アルカリ、及び有機アミン類などが用いられる。なかでも、水酸化ナトリウム、水酸化カリウムは、脱着効率が高く特に好ましい。 In the desorption part, the adsorbed anion is desorbed by contacting with the alkaline aqueous solution. An anion can be eliminated when the pH of the alkaline aqueous solution is at least pH 10, but is preferably at least pH 12, more preferably at least pH 13. The alkali concentration is in the range of O.1 wt% to 30 wt%, more preferably in the range of 0.5 to 20 wt%. If it is thinner than O.1 wt%, the desorption efficiency is lowered, and if it is higher than 30 wt%, the chemical cost of alkali tends to increase. The flow rate of the alkaline aqueous solution is not particularly limited, but is usually preferably in the range of SV0.5 to 15 (hr −1 ). If it is lower than SVO.5, the desorption time tends to be long and tends to be inefficient, and if it is larger than SV15, the contact time between the adsorbent and the alkaline aqueous solution tends to be short, and the desorption efficiency tends to decrease. The type of the alkaline aqueous solution is not particularly limited, but usually, an inorganic alkali such as a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, or ammonium hydroxide, and organic amines are used. Of these, sodium hydroxide and potassium hydroxide are particularly preferred because of their high desorption efficiency.

活性化部では、この吸着剤を酸性水溶液で処理することにより、再び陰イオンを吸着することができる。本発明の吸着剤は、耐久性に優れるため、繰り返し使用に適している。脱着が終了した吸着剤は、アルカリ性であり、このままでは、再び原水中のイオンを吸着する能力は低い。そこで、酸性水溶液を用いて、カラム内のpHを所定値に戻す操作、すなわち活性化処理を行う。酸性水溶液は、特に限定されないが、硫酸、塩酸等の水溶液が用いられる。濃度は、O.001〜10wt%程度であればよい。O.001wt%より薄いと、活性化終了までに大量の水ボリュームが必要になり、10wt%より濃いと、酸性水溶液の取り扱い上の危険性等の点で問題が生じるおそれがある。通液速度は、特に制限はないが、通常SV0.5〜30(hr-1)の範囲が好ましい。SV0.5より低いと、活性化時間が長時間になり非効率になる傾向があり、SV30より大きいと、吸着剤と酸性水溶液の接触時間が短くなり、活性化効率が低下する傾向がある。活性化方法においてさらに好ましい方法は、活性化部とpH調整槽の間で活性液を循環させて行うことである。この構成をとることにより、脱着操作でアルカリ側にシフトしたカラム中の吸着剤のpHを、無機イオン吸着体の耐酸性を考慮して、ゆるやかに所定のpHに戻すことができる。例えば、酸化鉄はpH3以下では酸による溶解が著しいことが知られている。このような酸化鉄を吸着剤に担持した場合、従来の活性化方法は、先の鉄の溶解という問題があるため、pH3以上という薄い酸で処理するしか方法がなかった。しかし、この方法では、大量の水ボリュームが必要となるため、経済的に許されるものではなかった。このような従来技術に対して、本発明の活性化方法は、活性化部とpH調整槽を設けて、活性化液を循環するため、酸によって溶解するpH範囲を避けて活性化でき、さらに、活性化に用いる水のボリュームを少なくすることができ、装置をコンパクトにできる。この時の通液速度は、通常SV1〜200(hr-1)の範囲で選ばれる。さらに好ましくは、SV1O〜100の範囲である。SV1より低いと、活性化時間が長時間になり非効率になる傾向があり、SV200より大きいと、大きなポンプ動カが必要であり非効率になる傾向がある。本発明の吸着剤は、耐薬品性、強度に優れているため、この再生処理を数十回から数百回以上繰り返してもイオンの吸着性能はほとんど低下しない。 In the activation part, the anion can be adsorbed again by treating the adsorbent with an acidic aqueous solution. Since the adsorbent of the present invention is excellent in durability, it is suitable for repeated use. The adsorbent that has been desorbed is alkaline, and its ability to adsorb ions in the raw water again is low. Therefore, an operation of returning the pH in the column to a predetermined value using an acidic aqueous solution, that is, an activation treatment is performed. The acidic aqueous solution is not particularly limited, but an aqueous solution such as sulfuric acid and hydrochloric acid is used. The concentration may be about O.001 to 10 wt%. If it is thinner than O.001 wt%, a large amount of water volume is required by the end of activation, and if it is thicker than 10 wt%, there is a possibility that a problem may occur in terms of danger in handling an acidic aqueous solution. The liquid passing speed is not particularly limited, but is usually preferably in the range of SV 0.5 to 30 (hr −1 ). If it is lower than SV0.5, the activation time tends to be long and inefficient, and if it is larger than SV30, the contact time between the adsorbent and the acidic aqueous solution becomes short, and the activation efficiency tends to decrease. A more preferable method for the activation method is to circulate the active liquid between the activation unit and the pH adjusting tank. By adopting this configuration, the pH of the adsorbent in the column shifted to the alkali side by the desorption operation can be gently returned to a predetermined pH in consideration of the acid resistance of the inorganic ion adsorbent. For example, it is known that iron oxide is remarkably dissolved by acid at pH 3 or lower. When such an iron oxide is supported on an adsorbent, the conventional activation method has a problem of dissolution of iron, and therefore, there is only a method of treating with a thin acid having a pH of 3 or more. However, this method requires a large volume of water and is not economically acceptable. In contrast to such a conventional technique, the activation method of the present invention is provided with an activation part and a pH adjustment tank, and circulates the activation liquid. The volume of water used for activation can be reduced, and the apparatus can be made compact. The liquid passing speed at this time is usually selected in the range of SV1 to 200 (hr −1 ). More preferably, it is in the range of SV1O-100. If it is lower than SV1, the activation time tends to be long and tends to be inefficient, and if it is larger than SV200, a large pump movement is required and tends to be inefficient. Since the adsorbent of the present invention is excellent in chemical resistance and strength, even if this regeneration treatment is repeated several tens to several hundreds of times, the ion adsorption performance hardly decreases.

脱着部からの溶離液に、対象とするイオンと沈殿を生じる晶析薬剤を添加し、沈殿を除去することにより、アルカリを再利用可能なものとし、また、イオンを沈殿物として回収できる。晶析薬剤としては、金属の水酸化物が挙げられる。金属の水酸化物は、金属塩がリン、ホウ素、フッ素、ヒ素といった陰イオンと結合して沈殿物を生成する。また水酸化物が脱着液のアルカリ源となるため、再生液を回収、リサイクルすることによりクローズな系とすることができる。具体的には、水酸化ナトリウム、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウムが挙げられる。難溶性沈殿物すなわち溶解度の低い沈殿が得られる点で、多価金属の水酸化物が好ましく、具体的には、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウムが特に好ましい。特に、コストの点で水酸化カルシウムが好ましい。例えば、リン酸ナトリウムとして存在する場合は、下記反応式にしたがって、アルカリを回収できる。さらに、晶析したリン酸カルシウムは、肥料等に再資源化が可能である。
6Na3PO4+10Ca(OH)2→18NaOH+Ca10(OH)2(PO4)6
金属の水酸化物の添加量は、特に制限は無いが対象とするイオンに対して1〜4倍当量である。添加量が等モル以下では、沈殿除去効率が低くなるし、4倍当量を超えると、除去効率はほとんど変わらないので経済的に不利になる傾向がある。沈殿除去する場合のpHは6以上であることが好ましく、さらにアルカリ水溶液を回収して、再利用することを考慮するとpH12以上、好ましくはpH13以上に保持するのが好ましい。沈殿処理時のpHが6より低いと、沈殿物の溶解度が大きくなり、沈殿効率が低下する。沈殿除去する場合に、金属の水酸化物の他に、硫酸アルミニウム、ポリ塩化アルミニウム等の無機系凝集剤や、高分子凝集剤を併用することもできる。本発明の、溶離液中の沈殿物の固液分離方法は、膜分離方法が好ましい。膜分離法は、設置面積が少なくて、清澄なろ過水を得ることができるため、本発明のようなクローズシステムに適している。膜分離法としては、特に限定されないが、限外ろ過膜(UF)、精密ろ過膜(MF)、透析膜等が挙げられる。膜の形態も、平膜、中空糸、プリーツ、チューブ状等、限定されない。好ましい膜分離法としては、ろ過スピードとろ過精度の点で、限外ろ過膜(UF)、精密ろ過膜(MF)等が好ましい。
By adding a target ion and a crystallization agent that causes precipitation to the eluent from the desorption part and removing the precipitate, the alkali can be reused and ions can be recovered as a precipitate. Examples of the crystallization agent include metal hydroxides. In the metal hydroxide, a metal salt combines with anions such as phosphorus, boron, fluorine, and arsenic to form a precipitate. Further, since the hydroxide becomes an alkali source of the desorption liquid, a closed system can be obtained by collecting and recycling the regenerated liquid. Specific examples include sodium hydroxide, aluminum hydroxide, magnesium hydroxide, and calcium hydroxide. From the viewpoint of obtaining a hardly soluble precipitate, that is, a precipitate having low solubility, a polyvalent metal hydroxide is preferable, and specifically, aluminum hydroxide, magnesium hydroxide, and calcium hydroxide are particularly preferable. In particular, calcium hydroxide is preferable in terms of cost. For example, when it exists as sodium phosphate, the alkali can be recovered according to the following reaction formula. Furthermore, the crystallized calcium phosphate can be recycled into fertilizers and the like.
6Na 3 PO 4 + 10Ca (OH) 2 → 18NaOH + Ca10 (OH) 2 (PO 4 ) 6
The addition amount of the metal hydroxide is not particularly limited, but is 1 to 4 times equivalent to the target ion. When the addition amount is equal to or less than the equimolar amount, the precipitation removal efficiency is low, and when it exceeds 4 times the equivalent, the removal efficiency hardly changes and tends to be economically disadvantageous. When removing the precipitate, the pH is preferably 6 or more. Further, considering that the aqueous alkaline solution is recovered and reused, it is preferably maintained at pH 12 or more, preferably pH 13 or more. If the pH during the precipitation process is lower than 6, the solubility of the precipitate increases and the precipitation efficiency decreases. When removing the precipitate, an inorganic flocculant such as aluminum sulfate or polyaluminum chloride or a polymer flocculant can be used in combination with the metal hydroxide. The solid-liquid separation method of the precipitate in the eluent of the present invention is preferably a membrane separation method. The membrane separation method is suitable for a closed system such as the present invention because it requires a small installation area and can obtain a clear filtered water. The membrane separation method is not particularly limited, and examples thereof include an ultrafiltration membrane (UF), a microfiltration membrane (MF), and a dialysis membrane. The form of the membrane is not limited to a flat membrane, a hollow fiber, a pleat, a tube shape or the like. As a preferable membrane separation method, an ultrafiltration membrane (UF), a microfiltration membrane (MF) and the like are preferable in terms of filtration speed and filtration accuracy.

本発明を実施例に基づいて説明する。
[製造例1]無機イオン吸着体(ジルコニウム含水亜鉄酸塩粉末)の製造
硫酸ジルコニウムのO.15モル水溶液を1リットル調製した。この溶液中にはジルコニウムとして13.7gの金属イオンが含まれていた。この水溶液中に硫酸第一鉄結晶(FeSO4・7H2O)84.Ogを添加し、撹幹しながら溶解した。この量は鉄イオンとしてO.3モルに相当する。つぎにこの水溶液に15重量%の水酸化ナトリウム溶液を撹拌しながら液のpHが10になるまで滴下すると青緑色の沈澱が生じた。次に、この水溶液を60℃に加温しながら10リットル/時の流量で空気を吹き込んだ。空気吹き込みを続けると水溶液のpHが低下するので、この場合は、15重量%の水酸化ナトリウム溶液を滴下してpHを9.5〜10に保持した。pHの低下が認められなくなるまで空気の吹き込みを続けると黒色のジルコニウムの含水亜鉄酸塩沈澱が生成した。次に、この黒色沈澱物を吸引濾別し、脱イオン水で濾液が中性となるまで洗浄した後、70℃以下で乾燥した。これをボールミルで7時間粉砕し、平均粒径2.5μmのジルコニウムの含水亜鉄酸塩粉末を得た。
[製造例2]吸着剤の製造法
エチレンビニルアルコール共重合体(EVOH、日本合成化学工業(株)、ソアノールE3803(商品名))10g、ポリビニルピロリドン(PVP、BASFジャパン(株)、Luvitec K30 Powder(商品名))10g、ジメチルスルホキシド(DMSO、関東化学(株))80gを、セパラフラスコ中にて、60℃に加温して溶解し、均一なポリマー溶液を得た。このポリマー溶液100gに対し、製造例1で作った無機イオン吸着体粉末92gを加え、よく混合してスラリーを得た。
The present invention will be described based on examples.
[Production Example 1] Production of inorganic ion adsorbent (zirconium hydrous ferrite powder) 1 liter of an O.15 molar aqueous solution of zirconium sulfate was prepared. This solution contained 13.7 g of metal ions as zirconium. In this aqueous solution, 84.Og of ferrous sulfate crystals (FeSO 4 · 7H 2 O) was added and dissolved while stirring. This amount corresponds to 0.3 mol of iron ion. Next, a 15% by weight sodium hydroxide solution was added dropwise to this aqueous solution while stirring until the pH of the solution reached 10. A blue-green precipitate was formed. Next, air was blown in at a flow rate of 10 liter / hour while the aqueous solution was heated to 60 ° C. If the air blowing was continued, the pH of the aqueous solution was lowered. In this case, the pH was maintained at 9.5 to 10 by dropping a 15% by weight sodium hydroxide solution. When air blowing was continued until no pH drop was observed, a black zirconium hydrous ferrite precipitate formed. The black precipitate was then filtered off with suction, washed with deionized water until the filtrate was neutral, and dried at 70 ° C. or lower. This was pulverized with a ball mill for 7 hours to obtain a zirconium hydrous ferrite powder having an average particle size of 2.5 μm.
[Production Example 2] Production method of adsorbent Ethylene vinyl alcohol copolymer (EVOH, Nippon Synthetic Chemical Industry Co., Ltd., Soarnol E3803 (trade name)) 10 g, Polyvinylpyrrolidone (PVP, BASF Japan Co., Ltd., Luvitec K30 Powder) (Product name) 10 g and dimethyl sulfoxide (DMSO, Kanto Chemical Co., Ltd.) 80 g were dissolved by heating to 60 ° C. in a Separa flask to obtain a uniform polymer solution. To 100 g of this polymer solution, 92 g of the inorganic ion adsorbent powder prepared in Production Example 1 was added and mixed well to obtain a slurry.

得られた複合高分子スラリーを40℃に加温し、側面に直径5mmのノズルを開けた円筒状回転容器の内部に供給し、この容器を回転させ、遠心力(15G)によりノズルから液滴を形成し、60℃の水からなる凝固浴槽中に吐出させ、複合高分子スラリーを凝固させた。さらに、洗浄、分級を行い、平均粒径623μmの球状吸着剤を得た。
[比較製造例1]比較吸着剤の製造法
製造例1で作ったジルコニウム含水亜鉄酸塩粉末150gにポリ塩化ビニリデンラテックスを60mL(固形分50重量%)を加え、ビニール袋中でよく混合した。これを、16メッシュの篩にかけた(粉体A)。次に、塩化ビニリデンラテックス(固形分50重量%)77gに水を23g加えたラテックス溶液(B)を調製した。転動造粒機を回転させながら、まず粉体Aを50g投入した。回転を続けながら、100gのラテックス溶液Bと115gの吸着粉体Aを少量ずつ同時に添加していき、平均粒径650μmの球状成形物に造粒した。この造粒品を70℃で一晩乾燥し、球状の吸着剤を得た。この吸着剤は、外表面に開口する連通孔がほとんど見られず、連通孔を形成するフィブリルの内部には空隙を有していなかった。
[実施例1]吸着装置および方法
吸着装置は、吸着部、洗浄部、脱着部および活性化部が図1のようにループ状に連結された装置を用いた。本装置には製造例2で得られた吸着剤が4L充填されている。原水として下水二次処理水、洗浄液として吸着部からの処理水、脱着液として3%水酸化ナトリウム水溶液、活性化液として0.1%硫酸水溶液を用いた。原水を1時間あたり40L通水させると、原水にはリン酸イオンがリンとして2mg/Lが含まれていたが、処理水のリン酸イオンはリンとして0.1mg/Lであった。
[比較例1]比較の吸着装置および方法
吸着剤を比較製造例1の吸着剤を用いた以外は、実施例1と同様の吸着装置を用いた。原水を1時間あたり40L通水させると、処理水のリン酸イオンはリンとして1mg/L程度と、充分にリンを除去することができなかった。原水を1時間当り4L通水させると、処理水のリン酸イオンはリンとして0.1mg/Lであった。
The obtained composite polymer slurry was heated to 40 ° C., and supplied to the inside of a cylindrical rotating container having a nozzle with a diameter of 5 mm on the side surface. The container was rotated, and droplets were discharged from the nozzle by centrifugal force (15G). Was discharged into a coagulation bath made of water at 60 ° C. to coagulate the composite polymer slurry. Further, washing and classification were performed to obtain a spherical adsorbent having an average particle size of 623 μm.
[Comparative Production Example 1] Production Method of Comparative Adsorbent 60 mL of polyvinylidene chloride latex (50 wt% solid content) was added to 150 g of the zirconium hydrous ferrite powder prepared in Production Example 1 and mixed well in a plastic bag. . This was passed through a 16 mesh sieve (powder A). Next, a latex solution (B) was prepared by adding 23 g of water to 77 g of vinylidene chloride latex (solid content: 50% by weight). First, 50 g of powder A was charged while rotating the rolling granulator. While continuing to rotate, 100 g of the latex solution B and 115 g of the adsorbed powder A were added simultaneously little by little, and granulated into a spherical molded product having an average particle diameter of 650 μm. This granulated product was dried at 70 ° C. overnight to obtain a spherical adsorbent. In this adsorbent, there were hardly any communication holes opened on the outer surface, and no voids were formed inside the fibrils forming the communication holes.
[Example 1] Adsorption device and method The adsorption device used was an apparatus in which an adsorption part, a washing part, a desorption part, and an activation part were connected in a loop shape as shown in FIG. This apparatus is filled with 4 L of the adsorbent obtained in Production Example 2. Sewage secondary treated water was used as raw water, treated water from the adsorbing part was used as a cleaning liquid, a 3% sodium hydroxide aqueous solution was used as a desorption liquid, and a 0.1% sulfuric acid aqueous solution was used as an activation liquid. When raw water was passed through 40 L per hour, the raw water contained 2 mg / L of phosphate ions as phosphorus, but the phosphate ion of treated water was 0.1 mg / L as phosphorus.
[Comparative Example 1] Comparative adsorption apparatus and method The same adsorption apparatus as in Example 1 was used except that the adsorbent of Comparative Production Example 1 was used. When the raw water was passed through 40 L per hour, the phosphate ion of the treated water was about 1 mg / L as phosphorus, and phosphorus could not be removed sufficiently. When the raw water was passed through 4 L per hour, the phosphate ion of the treated water was 0.1 mg / L as phosphorus.

本発明の吸着装置および方法は、水中のイオンを除去回収する分野で利用できる。特に、下水や産業排水などの有機性排水の二次処理水からリン酸イオンを除去回収する分野において好適に利用できる。 The adsorption apparatus and method of the present invention can be used in the field of removing and recovering ions in water. In particular, it can be suitably used in the field of removing and recovering phosphate ions from secondary treated water of organic wastewater such as sewage and industrial wastewater.

本発明の吸着装置の模式図。The schematic diagram of the adsorption | suction apparatus of this invention.

符号の説明Explanation of symbols

1吸着部、2洗浄部、3脱着部、4活性化部   1 adsorption part, 2 cleaning part, 3 desorption part, 4 activation part

Claims (4)

吸着剤が充填された移動床式吸着装置において、該吸着剤が有機高分子樹脂及び無機イオン吸着体を含んでなる、外表面に開口する連通孔を有する吸着剤であって、連通孔を形成するフィブリルの内部に空隙を有し、かつ、該空隙の少なくとも一部はフィブリルの表面で開孔しており、該フィブリルの外表面及び内部の空隙表面に無機イオン吸着体が担持されている吸着剤である吸着装置。   In a moving bed type adsorber filled with an adsorbent, the adsorbent is an adsorbent comprising an organic polymer resin and an inorganic ion adsorbent and having a communication hole that opens to the outer surface, and forms a communication hole. Adsorption with a void inside the fibril, and at least a part of the void is open at the surface of the fibril, and an inorganic ion adsorbent is supported on the outer surface of the fibril and the inner void surface. Adsorption device that is an agent. 前記有機高分子樹脂が、エチレンビニルアルコール共重合体(EVOH)、ポリアクリロニトリル(PAN)、ポリスルホン(PS)、ポリフッ化ビニリデン(PVDF)からなる群から選ばれる一種以上を含んでなる吸着剤である請求項1に記載の吸着装置。   The organic polymer resin is an adsorbent comprising at least one selected from the group consisting of ethylene vinyl alcohol copolymer (EVOH), polyacrylonitrile (PAN), polysulfone (PS), and polyvinylidene fluoride (PVDF). The adsorption device according to claim 1. 前記無機イオン吸着体が、チタン、ジルコニウム、スズ、鉄の水和酸化物;チタン、ジルコニウム、スズの含水亜鉄酸塩;含水酸化セリウム、含水酸化ランタン及び活性アルミナからなる群から選ばれる少なくとも一種を含んでなる請求項1〜2のいずれか一項に記載の吸着装置。   The inorganic ion adsorbent is at least one selected from the group consisting of titanium, zirconium, tin, iron hydrated oxide; titanium, zirconium, tin hydrous ferrite; hydrous cerium, hydrous lanthanum, and activated alumina. The adsorption | suction apparatus as described in any one of Claims 1-2 which comprises these. イオンを含む原水を吸着剤が充填された移動床式吸着装置を用いて処理する方法であって、該吸着装置として請求項1〜3のいずれか一項に記載の吸着装置を用いる原水処理方法。   A method for treating raw water containing ions using a moving bed type adsorber filled with an adsorbent, wherein the adsorber uses the adsorber according to any one of claims 1 to 3. .
JP2007086229A 2007-03-29 2007-03-29 Adsorption apparatus and method Pending JP2008238132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007086229A JP2008238132A (en) 2007-03-29 2007-03-29 Adsorption apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007086229A JP2008238132A (en) 2007-03-29 2007-03-29 Adsorption apparatus and method

Publications (1)

Publication Number Publication Date
JP2008238132A true JP2008238132A (en) 2008-10-09

Family

ID=39910103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007086229A Pending JP2008238132A (en) 2007-03-29 2007-03-29 Adsorption apparatus and method

Country Status (1)

Country Link
JP (1) JP2008238132A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805037A (en) * 2010-04-26 2010-08-18 南京大学 Method for removing humic acid pollutants in water by magnetic chitosan particle
CN102008942A (en) * 2010-10-18 2011-04-13 陕西科技大学 Method for removing tannic acid pollutant from aminated magnetic nano composite particles
WO2011062277A1 (en) * 2009-11-20 2011-05-26 旭化成ケミカルズ株式会社 Porous molded article, and process for production thereof
CN102698716A (en) * 2011-03-28 2012-10-03 清华大学 Metal oxide particle adsorbent and preparation method thereof
JP2013501603A (en) * 2009-08-13 2013-01-17 ウォーター ハーべスティング テクノロジーズ プロプライエタリー リミテッド Water filtration system using activated carbon and zeolite
JP2013033005A (en) * 2011-08-03 2013-02-14 Tokyo Univ Of Science Cesium and sodium adsorbent and manufacturing method thereof
CN105126789A (en) * 2015-09-01 2015-12-09 武汉长海高新技术有限公司 Sulfenyl polyvinylidene fluoride membrane absorbent, preparation method and method for recovering gold in wastewater
WO2021172619A1 (en) * 2020-02-25 2021-09-02 인오켐주식회사 Fluorine adsorbent, preparation method therefor, and method for treatment of fluorine-containing wastewater by using same
CN114524537A (en) * 2022-01-21 2022-05-24 广安德槿环保科技有限公司 Domestic sewage advanced treatment system
CN118122274A (en) * 2024-03-01 2024-06-04 浙江大学 Anti-corrosion multi-step modified alkali metal adsorbent applied to high-temperature environment and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10296077A (en) * 1996-08-14 1998-11-10 Takeda Chem Ind Ltd Ion adsorbent
WO2005056175A1 (en) * 2003-12-15 2005-06-23 Asahi Kasei Chemicals Corporation Porous formed article and method for production thereof
JP2006130420A (en) * 2004-11-05 2006-05-25 Yuuhei Inamori Phosphorus component recovery method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10296077A (en) * 1996-08-14 1998-11-10 Takeda Chem Ind Ltd Ion adsorbent
WO2005056175A1 (en) * 2003-12-15 2005-06-23 Asahi Kasei Chemicals Corporation Porous formed article and method for production thereof
JP2006130420A (en) * 2004-11-05 2006-05-25 Yuuhei Inamori Phosphorus component recovery method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012039403; 吸着工学要論 , 19770805, 191-192, 共立出版株式会社 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013501603A (en) * 2009-08-13 2013-01-17 ウォーター ハーべスティング テクノロジーズ プロプライエタリー リミテッド Water filtration system using activated carbon and zeolite
JP5622745B2 (en) * 2009-11-20 2014-11-12 旭化成ケミカルズ株式会社 Porous molded body and method for producing the same
WO2011062277A1 (en) * 2009-11-20 2011-05-26 旭化成ケミカルズ株式会社 Porous molded article, and process for production thereof
CN102612535A (en) * 2009-11-20 2012-07-25 旭化成化学株式会社 Porous molded article, and process for production thereof
CN101805037A (en) * 2010-04-26 2010-08-18 南京大学 Method for removing humic acid pollutants in water by magnetic chitosan particle
CN102008942A (en) * 2010-10-18 2011-04-13 陕西科技大学 Method for removing tannic acid pollutant from aminated magnetic nano composite particles
CN102698716A (en) * 2011-03-28 2012-10-03 清华大学 Metal oxide particle adsorbent and preparation method thereof
JP2013033005A (en) * 2011-08-03 2013-02-14 Tokyo Univ Of Science Cesium and sodium adsorbent and manufacturing method thereof
CN105126789A (en) * 2015-09-01 2015-12-09 武汉长海高新技术有限公司 Sulfenyl polyvinylidene fluoride membrane absorbent, preparation method and method for recovering gold in wastewater
CN105126789B (en) * 2015-09-01 2017-10-31 武汉长海高新技术有限公司 Sulfenyl Kynoar membrane adsorbent and preparation method and the method for reclaiming useless underwater gold
WO2021172619A1 (en) * 2020-02-25 2021-09-02 인오켐주식회사 Fluorine adsorbent, preparation method therefor, and method for treatment of fluorine-containing wastewater by using same
CN114524537A (en) * 2022-01-21 2022-05-24 广安德槿环保科技有限公司 Domestic sewage advanced treatment system
CN118122274A (en) * 2024-03-01 2024-06-04 浙江大学 Anti-corrosion multi-step modified alkali metal adsorbent applied to high-temperature environment and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4671419B2 (en) Porous molded body and method for producing the same
JP5062973B2 (en) Water treatment apparatus and method
JP4646301B2 (en) Porous molded body and method for producing the same
JP2008238132A (en) Adsorption apparatus and method
JP5062970B2 (en) Waste water treatment apparatus and method
JP4907585B2 (en) Water treatment apparatus and water treatment method
JP5062974B2 (en) Ion processing apparatus and method
Hezarjaribi et al. Novel adsorptive PVC nanofibrous/thiol-functionalized TNT composite UF membranes for effective dynamic removal of heavy metal ions
KR101479820B1 (en) Porous molded article, and process for production thereof
JP5062971B2 (en) Water treatment apparatus and water treatment method
JP2006297382A (en) Porous molding with high adsorption capacity and its production method
Mutharasi et al. Antifouling and photocatalytic properties of 2-D Zn/Al layered double hydroxide tailored low-pressure membranes
Aliahmadipoor et al. Preparation of PVDF/FMBO composite electrospun nanofiber for effective arsenate removal from water
JP2007260561A (en) Ion treatment apparatus and method
JP5062972B2 (en) Ion removal apparatus and ion removal method
JP6093223B2 (en) Inorganic ion adsorbent and porous molded body
JP5062976B2 (en) Waste water treatment apparatus and waste water treatment method
JP5062975B2 (en) Water purification system and water purification method
WO2019135371A1 (en) Porous molding
JP2019118881A (en) Porous molding
JP2019118877A (en) Porous molding
JP2019118880A (en) Porous molding
JP2015192944A (en) Washing water treatment in electrodeposition chemical conversion process
JP2020099866A (en) Porous molded body
JP2019118878A (en) Porous molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100203

A977 Report on retrieval

Effective date: 20110224

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120730

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20121121

Free format text: JAPANESE INTERMEDIATE CODE: A02