JP2008235465A - 電界効果型トランジスタ - Google Patents

電界効果型トランジスタ Download PDF

Info

Publication number
JP2008235465A
JP2008235465A JP2007071104A JP2007071104A JP2008235465A JP 2008235465 A JP2008235465 A JP 2008235465A JP 2007071104 A JP2007071104 A JP 2007071104A JP 2007071104 A JP2007071104 A JP 2007071104A JP 2008235465 A JP2008235465 A JP 2008235465A
Authority
JP
Japan
Prior art keywords
region
fin
effect transistor
semiconductor layer
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2007071104A
Other languages
English (en)
Inventor
Shoshichi Chin
正七 沈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007071104A priority Critical patent/JP2008235465A/ja
Publication of JP2008235465A publication Critical patent/JP2008235465A/ja
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

【課題】ゲート電圧を効率的に印加し、キャパシタンス成分を小さくすることにより、高効率化、高速化を図ることが可能な電界効果型トランジスタを提供する。
【解決手段】基板1上に形成され、ソース領域4、ドレイン領域5およびこれらの間に形成されるフィン状領域6を有する第1の化合物半導体層と、フィン状領域6の表面に、このフィン状領域6をまたぐように形成されたゲート電極7を備える。
【選択図】図1

Description

本発明は、例えばGaAsなどの化合物半導体を用いた高周波パワーデバイス(以下RFデバイスと記す)として用いられる電界効果型トランジスタに関する。
近年、インバータ回路やスイッチング素子の高機能化に伴い、HEMT(High Electron Mobility Transistor)、FET(Field Effect Transistor)といった、RFデバイスとして用いられる電界効果型トランジスタにおいて、さらなる高効率化が要求されている。
例えば、MESFET(Metal Semiconductor Field Effect Transistor)は、normally on状態で動作するデバイスであり、ゲートに電圧をかけ、空乏層を形成し、その空乏層の働きで電流を制御するが、例えば、厚さaの半導体層をチャネルとして用いる場合、そのチャネルを空乏層で埋めるために必要なゲート電圧(ピンチオフ電圧)Vpは、
Vp=qN/2ε ×a
q:電子の比電荷
D:チャネルのドナー密度
ε:真空の誘電率
で表され、チャネル厚の2乗に比例して大きな電流をかける必要がある。したがって、デバイスを流れる電流を、例えば2倍にするために、半導体層厚を2倍にすると、Vpは4倍にする必要があり、電圧印加効率が低下してしまう。
また、半導体層は、絶縁体からなるバッファ層上にエピタキシャル成長などにより形成されているが、一般に、エピタキシャル成長により形成された半導体膜の結晶性は、AlGaAsのように物質特性として成長厚さの制限のある場合を除き、厚くなるにつれて良くなる。これは、バッファ層と半導体膜の格子定数の差による歪や欠陥の影響が小さくなってくるからである。従って、結晶性に依存する電気的特性、動作効率の向上を図るためには、厚いエピタキシャル成長膜を形成する必要がある。
そして、このような半導体層の下層となるバッファ層は、上述したような成長基板としてだけではなく、絶縁層としての役割もあるが、RFデバイスの高周波化、高出力化に伴い、そのバンドギャップが大きくなることから、バッファ層とあまりバンドギャップの差がない状態にまでなってしまっている。これは、デバイスのゲート下が厚くなることと同じことで、その分ボディー部分のキャパシタンスが大きくなり、デバイスの動作速度が遅くなるという問題がある。
一方、近年、Si−LSIにおいて、次世代のトランジスタとしてFinFETが注目されている。FinFETは、例えば、特許文献1に記載されているように、SOI(Silicon on Insulator)基板上に、フィン状の凸型の半導体層を形成し、その両端をソース・ドレイン電極と接続するとともに、これをまたぐようにゲート電極を形成することにより、ゲート電極にはさまれた領域にチャネル領域を形成する三次元ダブルゲート型デバイスである。このような構造を採ることにより、既存の半導体製造技術により形成可能であり、高効率化、高速化が期待できる。しかしながら、RFデバイスにおいては、これまでプレーナ型で対応することが十分可能であり、適用は未だ検討されていない。
特開2006−13303号公報
本発明は、ゲート電圧を効率的に印加し、キャパシタンス成分を小さくすることにより、高効率化、高速化を図ることが可能な電界効果型トランジスタを提供することを目的とするものである。
本発明の一態様によれば、基板上に形成され、ソース領域、ドレイン領域およびこれらの間に形成されるフィン状領域を有する第1の化合物半導体層と、フィン状領域の表面に、このフィン状領域をまたぐように形成されたゲート電極を備えることを特徴とする電界効果型トランジスタが提供される。
本発明の一態様の電界効果型トランジスタによれば、ゲート電圧を効率的に印加し、キャパシタンス成分を小さくすることにより、高効率化、高速化を図ることが可能となる。
以下本発明の実施形態について、図を参照して説明する。
(実施形態1)
図1に本実施形態の電界効果型トランジスタ(MESFET)素子の斜視図を、図2にその上面図を、図3にそのA−A’断面図を示す。図に示すように、Si、GaAsなどの基板1上に、GaAs、GaNなどからなる半導体層2が形成されており、その上層にSiN、SiO、フォトレジストなどの絶縁膜3が形成されている。半導体層2は、ソース領域4、ドレイン領域5と、これらの間でチャネルが形成されるフィン状領域6から構成されている。そして、フィン状領域6上には、これをまたぐようにゲート電極7が形成されている。
このようなFET素子は、以下のようにして形成される。先ず、図4に断面図を示すように、Si、GaAsなどの基板1上に、エピタキシャル成長法によりGaAs、GaNなどからなる半導体層2を、さらにSiN、SiO、フォトレジストなどの絶縁膜3を順次形成する。そして、図5に示すように、例えば一般的な光やEB(Electron Beam)を用いたリソグラフィ法により、絶縁膜3をパターニングする。そして、絶縁膜3をマスクとして、エッチングすることにより、半導体層2をパターニングして、ソース領域、ドレイン領域とともにフィン状領域6を形成する。このようにして、フィン状領域6上に絶縁膜3が形成された構造が形成される。
そして、ソース領域4、ドレイン領域5の両端に、金属層を形成してアニールすることにより、半導体層2との間にオーミックコンタクトを有するソース電極(図示せず)、ドレイン電極(図示せず)を形成した後、図3に示すように、フィン状領域6および絶縁膜3の所定領域をまたぐようにゲート電極7を形成する。
このようにして形成されたMESFET素子は、ゲート電極7によりフィン状領域6の両壁面よりゲート電圧が印加されることによりチャネル電流が制御される。従って、ピンチオフ電圧は、同じチャネル厚の場合1/4となり、電圧印加効率を大きく向上させることが可能となる。尚、絶縁膜3を設けないで、直接ゲート電極を形成することにより、トリプルチャネル構造を形成することができる。
また、ゲート電極7は、2つのゲート間の厚さが薄くなることから基板側による寄生容量が低減されるため、動作速度の高速化が可能となる。
また、ゲート幅が高さ方向となるために、プレーナ型より半導体層3を厚く形成することになり、半導体層3の結晶性が良好となるため、電気的特性、動作効率を向上させることが可能となる。
尚、図7に断面図を示すように、エピタキシャル成長法により半導体層2を形成する代わりに、バルク基板1’を用いて同様の構造を形成することも可能である。上述のようなエピタキシャル層は、材料・プロセスコストが高く、デバイスの値段にもそれが反映されるが、バルク基板を用いることにより、同等の特性を得ることができる構造を、低コストで実現することが可能となる。
(実施形態2)
図8に本実施形態の電界効果型トランジスタであるHEMT(High Electron Mobility Transistor)素子の斜視図を、図9にその上面図を、図10にそのB−B’断面図を示す。図に示すように、Si、GaAsなどの基板11上に、例えばエピタキシャル成長法によりi−GaAsからなる半導体層12が形成されており、その上層に例えばSiNからなる絶縁膜13が形成されている。半導体層12は、ソース領域14、ドレイン領域15と、これらの間でチャネルが形成されるフィン状領域16から構成されている。そして、フィン状領域16上には、これをまたぐようにゲート電極17が形成されている。フィン状領域16の壁面には、フィン状領域16とヘテロ接合するn±AlGaAsなどの化合物半導体からなる電子供給層18が形成されている。
このようなHEMT素子は、実施形態1と同様にフィン状領域16が形成された後、フィン状領域16の壁面に選択的に電子供給層18を形成することにより形成される。電子供給層18を選択的に形成するためには、電子供給層18を選択成長させるか、あるいは、マスクを形成して残存させることにより形成することができる。例えば、図11に示すように、基板11上に形成された半導体層12、絶縁膜13上に、AlGaAs層18’を成長させる。そして、図12に示すように、全面にSiO層19(数十nm程度)を堆積させる。さらに、図13に示すように、これを異方性エッチングすることにより、SiO層からなる側壁19’を形成する。そして、図14に示すように、異方性エッチングすることにより、側壁19’がマスクとなり、その下層のAlGaAs層が残存して、電子供給層18が形成される。尚、電子供給層18は、必ずしも壁面全面に形成する必要はなく、ゲート電極の形成される領域を含む部分のみに形成されていてもよく、その場合は、ゲート電極の形成される領域を除く領域のマスク(側壁19’)を除去すればよい。また、側壁19’は除去しても、そのまま残したまま、その上にゲート電極17を形成してもよい。
尚、図15に断面図を示すように、実施形態1と同様に、エピタキシャル成長法により半導体層2を形成する代わりに、半導体層12を形成することなく、バルク基板11’を用いて同様の構造を形成することも可能である。上述のようなエピタキシャル層は、材料・プロセスコストが高く、デバイスの値段にもそれが反映されるが、バルク基板を用いることにより、同等の特性を得ることができる構造を、低コストで実現することが可能となる。
また、ソース−ドレイン間距離は、ストライプ部分(フィン状領域)の長さを変えることにより変動させることができ、要求される耐圧などにより適宜設定することができる。
また、ソース−ドレイン間において、適宜ゲート電極のソース側、ドレイン側にフィールドプレート電極を形成することも可能である。
また、基板としては、その他RFデバイスに用いられるGaNや、SiC、ダイヤモンドなどの基板を用いることができる。
尚、本発明は、上述した実施形態に限定されるものではない。その他要旨を逸脱しない範囲で種々変形して実施することができる。
本発明の一態様におけるFET素子を示す斜視図。 本発明の一態様におけるFET素子を示す上面図。 本発明の一態様におけるFET素子を示す断面図。 本発明の一態様におけるFET素子の製造工程を示す断面図。 本発明の一態様におけるFET素子の製造工程を示す断面図。 本発明の一態様におけるFET素子の製造工程を示す断面図。 本発明の一態様におけるFET素子を示す断面図。 本発明の一態様におけるHEMT素子を示す斜視図。 本発明の一態様におけるHEMT素子を示す上面図。 本発明の一態様におけるHEMT素子を示す断面図。 本発明の一態様におけるHEMT素子の製造工程を示す断面図。 本発明の一態様におけるHEMT素子の製造工程を示す断面図。 本発明の一態様におけるHEMT素子の製造工程を示す断面図。 本発明の一態様におけるHEMT素子の製造工程を示す断面図。 本発明の一態様におけるHEMT素子を示す断面図。
符号の説明
1、11…基板、2、12…半導体層、3、13…絶縁膜、4、14…ソース領域、5、15…ドレイン領域、6、16…フィン状領域、7、17…ゲート電極、18…電子供給層、18’…AlGaAs層、19…SiO層、19’…側壁

Claims (5)

  1. 基板上に形成され、ソース領域、ドレイン領域およびこれらの間に形成されるフィン状領域を有する第1の化合物半導体層と、
    前記フィン状領域の表面に、このフィン状領域をまたぐように形成されたゲート電極を備えることを特徴とする電界効果型トランジスタ。
  2. 第1の化合物半導体からなる基板に形成された、ソース領域、ドレイン領域およびこれらの間に形成されるフィン状領域と、
    前記フィン状領域の表面に、このフィン状領域をまたぐように形成されたゲート電極を備えることを特徴とする電界効果型トランジスタ。
  3. 前記フィン状領域の上面に、絶縁膜を介して前記ゲート電極が形成されていることを特徴とする請求項1または請求項2に記載の電界効果型トランジスタ。
  4. 前記フィン状領域の壁面に、前記第1の化合物半導体層とヘテロ接合する第2の半導体層を備えることを特徴とする請求項1から請求項3のいずれか1項に記載の電界効果型トランジスタ。
  5. 前記フィン状領域の壁面と前記ゲート電極の間に、前記第1の化合物半導体層とヘテロ接合する第2の半導体層を備えることを特徴とする請求項1から請求項4のいずれか1項に記載の電界効果型トランジスタ。
JP2007071104A 2007-03-19 2007-03-19 電界効果型トランジスタ Abandoned JP2008235465A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007071104A JP2008235465A (ja) 2007-03-19 2007-03-19 電界効果型トランジスタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007071104A JP2008235465A (ja) 2007-03-19 2007-03-19 電界効果型トランジスタ

Publications (1)

Publication Number Publication Date
JP2008235465A true JP2008235465A (ja) 2008-10-02

Family

ID=39907937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007071104A Abandoned JP2008235465A (ja) 2007-03-19 2007-03-19 電界効果型トランジスタ

Country Status (1)

Country Link
JP (1) JP2008235465A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220112159A (ko) * 2021-02-03 2022-08-10 한국전자통신연구원 화합물 반도체 소자
KR20220125032A (ko) 2021-03-04 2022-09-14 국방과학연구소 Hemt 소자 및 이의 제조 방법
DE112021007344T5 (de) 2021-03-23 2024-01-04 Mitsubishi Electric Corporation Halbleitereinheit und verfahren zur herstellung derselben
US11916140B2 (en) 2021-02-03 2024-02-27 Electronics And Telecommunications Research Institute Compound semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220112159A (ko) * 2021-02-03 2022-08-10 한국전자통신연구원 화합물 반도체 소자
US11916140B2 (en) 2021-02-03 2024-02-27 Electronics And Telecommunications Research Institute Compound semiconductor device
KR102658051B1 (ko) * 2021-02-03 2024-04-17 한국전자통신연구원 화합물 반도체 소자
KR20220125032A (ko) 2021-03-04 2022-09-14 국방과학연구소 Hemt 소자 및 이의 제조 방법
DE112021007344T5 (de) 2021-03-23 2024-01-04 Mitsubishi Electric Corporation Halbleitereinheit und verfahren zur herstellung derselben

Similar Documents

Publication Publication Date Title
US20230326984A1 (en) Vertical gallium oxide (ga2o3) power fets
TW577127B (en) Aluminum gallium nitride/gallium nitride high electron mobility transistors having a gate contact on a gallium nitride based cap segment and methods of fabricating same
JP6522521B2 (ja) 半導体デバイスの電極及びその製造方法
JP5652880B2 (ja) Hemt装置及びその製造方法
JP4592938B2 (ja) 半導体装置
JP5668085B2 (ja) セグメント化ゲートを有するパワートランジスタ
WO2006080109A1 (ja) Mis構造を有する半導体装置及びその製造方法
US10553711B2 (en) Tunable barrier transistors for high power electronics
WO1999066562A1 (en) Quantum wire field-effect transistor and method of making the same
US20130307026A1 (en) High electron mobility transistors and methods of manufacturing the same
JP2019117935A (ja) Iii−窒化物トランジスタレイアウト
KR20180041659A (ko) 수직 나노와이어 mosfet의 제조에서의 수직 게이트-라스트 공정을 위한 방법
CN103003930B (zh) 场效应晶体管
JP2008235465A (ja) 電界効果型トランジスタ
JP5487590B2 (ja) 半導体装置及びその製造方法
Santoruvo et al. In-plane-gate GaN transistors for high-power RF applications
KR101632314B1 (ko) 전계 효과형 반도체 소자 및 그 제조 방법
Son et al. Effects of contact potential and sidewall surface plane on the performance of GaN vertical nanowire MOSFETs for low-voltage operation
TWI619249B (zh) 高電子遷移率電晶體結構及其形成方法
US20150011057A1 (en) Method to fabricate self-aligned isolation in gallium nitride devices and integrated circuits
JP2014060427A (ja) 半導体装置及びその製造方法
KR101623381B1 (ko) 질화물 반도체 소자 및 질화물 반도체 소자 제조 방법
JP5505697B2 (ja) 半導体装置およびその作製法
JP2009027086A (ja) 電界効果型トランジスタおよびその製造方法
KR100765962B1 (ko) 동일 평면 게이트 양자점 트랜지스터 제작방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090305

Free format text: JAPANESE INTERMEDIATE CODE: A621

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20111227