JP2008232960A - Magnetizer of encoder - Google Patents

Magnetizer of encoder Download PDF

Info

Publication number
JP2008232960A
JP2008232960A JP2007075745A JP2007075745A JP2008232960A JP 2008232960 A JP2008232960 A JP 2008232960A JP 2007075745 A JP2007075745 A JP 2007075745A JP 2007075745 A JP2007075745 A JP 2007075745A JP 2008232960 A JP2008232960 A JP 2008232960A
Authority
JP
Japan
Prior art keywords
encoder
magnetizing
detected
yokes
magnetized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007075745A
Other languages
Japanese (ja)
Inventor
Takeshi Takizawa
岳史 滝澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2007075745A priority Critical patent/JP2008232960A/en
Publication of JP2008232960A publication Critical patent/JP2008232960A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize a magnetizer capable of making magnetic intensity of a detected surface of an encoder that can be made substantially uniform in the breadthwise direction of the surface. <P>SOLUTION: Both side rims corresponding to chevron-shaped bends in chevron-shaped leading end surfaces of a pair of magnetic yokes 15a and 15a constituting the magnetizer are defined as curves 16a and 16b, respectively. Use of such a structure alleviates concentration of a magnetic flux between regions corresponding to the chevron-shaped bends in both leading end surfaces, when a magnetic circuit for magnetization is formed between the leading end surfaces of the yokes 15a and 15a. Thus, the problem is solved. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、車輪支持用転がり軸受ユニット等の回転支持装置を構成する静止部材と回転部材との相対変位と、これら両部材同士の間に作用する外力とのうちの、少なくとも一方の状態量を測定する為に、センサと組み合わせて使用するエンコーダの着磁装置の改良に関する。   According to the present invention, at least one state quantity of a relative displacement between a stationary member and a rotating member constituting a rotation supporting device such as a wheel supporting rolling bearing unit and an external force acting between these members is obtained. The present invention relates to an improvement in a magnetizing apparatus of an encoder used in combination with a sensor for measurement.

自動車の車輪は懸架装置に対し、複列アンギュラ型等の転がり軸受ユニットにより回転自在に支持する。又、自動車の走行安定性を確保する為に、アンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)、更には、電子制御式ビークルスタビリティコントロールシステム(ESC)等の車両用走行安定化装置が使用されている。この様な各種車両用走行安定化装置を制御する為には、車輪の回転速度、車体に加わる各方向の加速度等を表す信号が必要になる。そして、より高度の制御を行なう為には、車輪を介して上記転がり軸受ユニットに加わる荷重(例えばラジアル荷重とアキシアル荷重との一方又は双方)の大きさを知る事が好ましい場合がある。   The wheel of the automobile is rotatably supported by the suspension device by a rolling bearing unit such as a double row angular type. In addition, in order to ensure the running stability of automobiles, anti-brake brake system (ABS), traction control system (TCS), and electronically controlled vehicle stability control system (ESC) etc. Is used. In order to control such various vehicle running stabilization devices, signals representing the rotational speed of the wheels, acceleration in each direction applied to the vehicle body, and the like are required. In order to perform higher-level control, it may be preferable to know the magnitude of a load (for example, one or both of a radial load and an axial load) applied to the rolling bearing unit via a wheel.

この様な事情に鑑みて、特許文献1には、特殊なエンコーダを使用して、転がり軸受ユニットに加わる荷重の大きさを測定する発明が記載されている。図5〜7は、この特許文献1に記載された転がり軸受ユニットの状態量測定装置の1例を示している。この従来構造の1例は、使用時にも回転しない静止部材である外輪1の内径側に、使用時に車輪を支持固定した状態でこの車輪と共に回転する、回転部材であるハブ2を、複数個の転動体3、3を介して、回転自在に支持している。これら各転動体3、3には、互いに逆向きの(図示の場合には背面組み合わせ型の)接触角と共に、予圧を付与している。尚、図示の例では、上記転動体3として玉を使用しているが、重量が嵩む自動車用の軸受ユニットの場合には、玉に代えて円すいころを使用する場合もある。   In view of such circumstances, Patent Document 1 describes an invention in which a special encoder is used to measure the magnitude of a load applied to a rolling bearing unit. 5 to 7 show an example of a state quantity measuring device for a rolling bearing unit described in Patent Document 1. FIG. One example of this conventional structure has a plurality of hubs 2 that are rotating members that rotate together with the wheels while being supported and fixed on the inner diameter side of the outer ring 1 that is a stationary member that does not rotate even when used. It is rotatably supported via rolling elements 3 and 3. A preload is applied to each of the rolling elements 3 and 3 together with contact angles that are opposite to each other (in the illustrated case, a rear combination type). In the illustrated example, a ball is used as the rolling element 3, but in the case of an automobile bearing unit that is heavy, a tapered roller may be used instead of the ball.

又、上記ハブ2の内端部(軸方向に関して「内」とは、自動車への組み付け状態で車両の幅方向中央側を言い、図5の右側。反対に、自動車への組み付け状態で車両の幅方向外側となる、図5の左側を、軸方向に関して「外」と言う。本明細書全体で同じ。)には、円環状のエンコーダ4を、上記ハブ2と同心に支持固定している。又、上記外輪1の内端開口を塞ぐ有底円筒状のカバー5の内側に、1対のセンサ6a、6bを支持固定すると共に、これら両センサ6a、6bの検出部を、上記エンコーダ4の被検出面である外周面に近接対向させている。   Further, the inner end of the hub 2 ("inner" in the axial direction means the center side in the width direction of the vehicle when assembled to the automobile, and is the right side of Fig. 5. On the contrary, when the vehicle is assembled to the automobile, 5 is called “outside” with respect to the axial direction. The same applies to the whole of the present specification.) An annular encoder 4 is supported and fixed concentrically with the hub 2. . A pair of sensors 6 a and 6 b are supported and fixed inside a bottomed cylindrical cover 5 that closes the inner end opening of the outer ring 1, and the detection portions of both the sensors 6 a and 6 b are connected to the encoder 4. It is made to face and face the outer peripheral surface that is the surface to be detected.

上記エンコーダ4は、芯金7とエンコーダ本体8とを組み合わせて成る。このうちの芯金7は、軟鋼板等の磁性金属板により、断面クランク形で全体を段付円筒状に構成しており、互いに同心の大径円筒部9及び小径円筒部10と、これら両円筒部9、10の軸方向端縁同士を連結する円輪部11とを備える。又、上記エンコーダ本体8は、上記大径円筒部9の内半部外周面の全周に、素材である円筒状の磁性部材(永久磁石材、高保磁力材)を、この大径円筒部9と同心に添着固定(接着固定、モールドによる固定等)した後、この磁性部材に着磁する事により構成している。被検出面である、上記エンコーダ本体8の外周面の軸方向内半部には、S極とN極とを、円周方向に関して交互に且つ等間隔で配置している。そして、この被検出面の軸方向外半部を、上記S極と上記N極との境界の位相が、上記外周面の軸方向に対して所定方向に所定角度で漸次変化する、第一特性変化部12としている。これに対し、上記被検出面の軸方向内半部を、上記S極と上記N極との境界の位相が、上記外周面の軸方向に対して上記所定方向と逆方向に上記所定角度と同じ角度で漸次変化する、第二特性変化部13としている。従って、上記S極と上記N極とは、軸方向中央部が円周方向に関して最も突出した(又は凹んだ)、「く」字形となっている。この様なエンコーダ4は、上記芯金7を構成する小径円筒部10を、上記ハブ2の内端部に締り嵌めで外嵌する事により、このハブ2に対し、このハブ2と同心に支持固定している。尚、測定精度は劣るが、上記両特性変化部12、13のうちの何れか一方の特性変化部の境界のみを軸方向に対し傾斜させ、他方の特性変化部の境界を軸方向と平行にする事もできる。   The encoder 4 is formed by combining a metal core 7 and an encoder body 8. Of these, the metal core 7 is composed of a magnetic metal plate such as a mild steel plate and is formed into a stepped cylindrical shape with a crank section in cross section. The large diameter cylindrical portion 9 and the small diameter cylindrical portion 10 are concentric with each other. And an annular portion 11 that connects the axial end edges of the cylindrical portions 9 and 10. Further, the encoder body 8 is formed by applying a cylindrical magnetic member (permanent magnet material, high coercive force material) as a material to the entire circumference of the inner half outer peripheral surface of the large-diameter cylindrical portion 9. It is constituted by magnetizing this magnetic member after fixing it concentrically (adhesion fixing, fixing by mold, etc.). S poles and N poles are alternately arranged at equal intervals in the circumferential direction on the inner half of the outer peripheral surface of the encoder body 8 in the axial direction, which is the detected surface. Then, the first characteristic in which the phase of the boundary between the S pole and the N pole gradually changes at a predetermined angle in a predetermined direction with respect to the axial direction of the outer peripheral surface in the outer half of the detected surface in the axial direction. The change unit 12 is used. On the other hand, the phase of the boundary between the S pole and the N pole on the inner half of the detected surface in the axial direction is the predetermined angle in the direction opposite to the predetermined direction with respect to the axial direction of the outer peripheral surface. The second characteristic changing unit 13 gradually changes at the same angle. Therefore, the S pole and the N pole have a “<” shape, with the central portion in the axial direction most protruding (or recessed) in the circumferential direction. Such an encoder 4 supports the hub 2 concentrically with the hub 2 by fitting the small-diameter cylindrical portion 10 constituting the cored bar 7 to the inner end of the hub 2 with an interference fit. It is fixed. Although the measurement accuracy is inferior, only the boundary of one of the characteristic change parts 12 and 13 is inclined with respect to the axial direction, and the boundary of the other characteristic change part is parallel to the axial direction. You can also do it.

又、上記両センサ6a、6bの検出部には、ホールIC、ホール素子、MR素子、GMR素子等の磁気検知素子を組み込んでいる。そして、これら両センサ6a、6bのうち、一方のセンサ6aの検出部を上記第一特性変化部12に、他方のセンサ6bの検出部を上記第二特性変化部13に、それぞれ近接対向させている。これら両センサ6a、6bの検出部が上記両特性変化部12、13に対向する位置は、上記エンコーダ4の円周方向に関して同じ位置としている。又、上記外輪1とハブ2との間にアキシアル荷重が作用しない状態で、上記S極と上記N極との軸方向中央部で円周方向に関して最も突出した部分が、上記両センサ6a、6bの検出部同士の間の丁度中央位置に存在する様に、各部材の設置位置を規制している。   Further, magnetic detection elements such as a Hall IC, a Hall element, an MR element, and a GMR element are incorporated in the detection portions of the sensors 6a and 6b. Of these two sensors 6a and 6b, the detection part of one sensor 6a is in close proximity to the first characteristic changing part 12, and the detection part of the other sensor 6b is in close proximity to the second characteristic changing part 13. Yes. The positions where the detection parts of both the sensors 6 a and 6 b face both the characteristic changing parts 12 and 13 are the same in the circumferential direction of the encoder 4. Further, in a state where an axial load is not applied between the outer ring 1 and the hub 2, the most projecting portions in the circumferential direction at the central portion in the axial direction between the S pole and the N pole are the sensors 6a and 6b. The installation position of each member is restricted so that it exists just in the center position between these detection parts.

上述の様に構成する従来構造の1例の場合、上記外輪1とハブ2との間にアキシアル荷重が作用する(これら外輪1とハブ2とがアキシアル方向に相対変位する)と、上記両センサ6a、6bの出力信号が変化する位相がずれる。即ち、上記外輪1とハブ2との間にアキシアル荷重が作用しておらず、これら外輪1とハブ2とが相対変位していない、中立状態では、上記両センサ6a、6bの検出部は、図7の(A)の実線イ、イ上、即ち、上記最も突出した部分から軸方向に同じだけずれた部分に対向する。従って、上記両センサ6a、6bの出力信号の位相は、同図の(C)に示す様に一致する。これに対し、上記エンコーダ4を固定したハブ2に、図7の(A)で下向きのアキシアル荷重が作用した場合には、上記両センサ6a、6bの検出部は、図7の(A)の破線ロ、ロ上、即ち、上記最も突出した部分からの軸方向に関するずれが互いに異なる部分に対向する。この状態では上記両センサ6a、6bの出力信号の位相は、同図の(B)に示す様にずれる。更に、上記エンコーダ4を固定したハブ2に、図7の(A)で上向きのアキシアル荷重が作用した場合には、上記両センサ6a、6bの検出部は、図7の(A)の鎖線ハ、ハ上、即ち、上記最も突出した部分からの軸方向に関するずれが、逆方向に互いに異なる部分に対向する。この状態では上記両センサ6a、6bの出力信号の位相は、同図の(D)に示す様に、上記(B)の場合とは逆方向にずれる。   In the case of an example of the conventional structure configured as described above, when an axial load acts between the outer ring 1 and the hub 2 (the outer ring 1 and the hub 2 are relatively displaced in the axial direction), both the sensors The phase at which the output signals 6a and 6b change is shifted. That is, in the neutral state in which an axial load is not acting between the outer ring 1 and the hub 2 and the outer ring 1 and the hub 2 are not relatively displaced, the detection units of the sensors 6a and 6b are It is opposed to the solid lines (a) and (b) in FIG. 7A, that is, the portion shifted from the most protruding portion by the same amount in the axial direction. Therefore, the phases of the output signals of the sensors 6a and 6b coincide as shown in FIG. On the other hand, when a downward axial load is applied to the hub 2 to which the encoder 4 is fixed as shown in FIG. 7A, the detecting portions of both the sensors 6a and 6b are shown in FIG. Opposed to broken lines b, b, i.e., portions different from each other in the axial direction from the most protruding portion. In this state, the phases of the output signals of the sensors 6a and 6b are shifted as shown in FIG. Further, when an upward axial load is applied to the hub 2 to which the encoder 4 is fixed as shown in FIG. 7A, the detecting portions of both the sensors 6a and 6b are connected to the chain line hub shown in FIG. , C, that is, the deviation in the axial direction from the most projecting portion opposes different portions in the opposite direction. In this state, the phases of the output signals of the sensors 6a and 6b are shifted in the opposite direction to the case of (B), as shown in (D) of FIG.

この様に、上述した従来構造の1例の場合には、上記両センサ6a、6bの出力信号の位相が、上記外輪1とハブ2との間に加わるアキシアル荷重の作用方向(これら外輪1とハブ2とのアキシアル方向の相対変位の方向)に応じた向きにずれる。又、このアキシアル荷重(相対変位)により上記両センサ6a、6bの出力信号の位相がずれる程度は、このアキシアル荷重(相対変位)が大きくなる程大きくなる。従って、上記両センサ6a、6bの出力信号同士の間の位相ずれの有無、ずれが存在する場合にはその向き及び大きさに基づいて、上記外輪1とハブ2とのアキシアル方向の相対変位の向き及び大きさ、並びに、これら外輪1とハブ2との間に作用しているアキシアル荷重の作用方向及び大きさを求められる。尚、上記両センサ6a、6bの出力信号同士の間に存在する位相差に基づいて上記アキシアル方向の相対変位及び荷重を算出する処理は、図示しない演算器により行なう。この為、この演算器のメモリ中には、予め理論計算や実験により調べておいた、上記位相差と、上記アキシアル方向の相対変位又は荷重との関係を表す式やマップを記憶させておく。   Thus, in the case of the above-described example of the conventional structure, the phase of the output signals of the two sensors 6a and 6b is such that the acting direction of the axial load applied between the outer ring 1 and the hub 2 (the outer ring 1 and It shifts in the direction corresponding to the axial direction relative displacement with the hub 2. Further, the degree of the phase shift of the output signals of the sensors 6a and 6b due to the axial load (relative displacement) increases as the axial load (relative displacement) increases. Accordingly, the presence or absence of a phase shift between the output signals of the sensors 6a and 6b, and if there is a shift, the relative displacement in the axial direction between the outer ring 1 and the hub 2 is determined based on the direction and magnitude. The direction and size, and the direction and size of the axial load acting between the outer ring 1 and the hub 2 are determined. Note that the processing for calculating the relative displacement and load in the axial direction based on the phase difference existing between the output signals of the sensors 6a and 6b is performed by an arithmetic unit (not shown). For this reason, in the memory of this arithmetic unit, an expression or map representing the relationship between the phase difference and the relative displacement or load in the axial direction, which has been examined in advance by theoretical calculation or experiment, is stored.

尚、上述した従来構造の1例の場合には、それぞれの検出部を第一、第二両特性変化部12、13に対向させた1対のセンサ6a、6bから成るセンサ組を1組だけ設けている。これに対し、特願2006−143097、特願2006−345849には、それぞれが1対のセンサから成るセンサ組を複数組設ける事で、多方向の変位或は外力を求められる構造が開示されている。   In the case of one example of the conventional structure described above, only one sensor set including a pair of sensors 6a and 6b in which the respective detection units are opposed to the first and second characteristic change units 12 and 13 is provided. Provided. On the other hand, Japanese Patent Application Nos. 2006-143097 and 2006-345849 disclose a structure in which a multi-directional displacement or external force is required by providing a plurality of sensor sets each composed of a pair of sensors. Yes.

次に、従来から提案されている、上述した従来構造に組み込むエンコーダ4の着磁方法の2例に就いて、図8〜9を参照しつつ説明する。これら図8〜9に示した2例の場合とも、着磁作業を行なうのに先立って、芯金7の外周面の全周に、エンコーダ本体8(図6)の素材である、円筒状の磁性部材14を添着固定しておく。又、着磁作業を行なう際には、1対の着磁ヨーク15、15を使用する。これら両着磁ヨーク15、15の先端面の形状(=断面形状)はそれぞれ、上記エンコーダ4の被検出面に配置すべきS極及びN極(図6)の形状と同様、「く」字形としている。   Next, two examples of magnetizing methods of the encoder 4 incorporated in the conventional structure described above will be described with reference to FIGS. In the two examples shown in FIGS. 8 to 9, prior to performing the magnetizing operation, a cylindrical shape, which is the material of the encoder body 8 (FIG. 6), is formed on the entire outer peripheral surface of the cored bar 7. The magnetic member 14 is attached and fixed. Further, when performing the magnetizing work, a pair of magnetized yokes 15 and 15 are used. The shapes (= cross-sectional shapes) of the front end surfaces of these two magnetized yokes 15 and 15 are each a “<” shape like the shapes of the S and N poles (FIG. 6) to be arranged on the detection surface of the encoder 4 It is said.

先ず、図8に示した着磁方法の第1例の場合、着磁作業を行なう際には、上記磁性部材14の外周面のうち、円周方向に関して互いに隣接する2個所部分に、円周方向に関する向きを互いに一致させた、上記両着磁ヨーク15、15の先端面を近接対向させる。この状態で、上記各着磁ヨーク15、15の周囲に巻回した図示しないコイルに電流を流すと、これら両着磁ヨーク15、15の先端面同士の間に磁気回路が形成され、この磁気回路を構成する磁束が、上記2個所部分を貫通する。この結果、これら2個所部分に、被検出面を構成する「く」字形のS極とN極とが1対、着磁形成される。そこで、本例の場合には、上記磁性部材14及び芯金7を連続的に(或は所定角度毎間欠的に)回転させながら、この回転速度に(或は回転、停止に)見合った適切なタイミングで、上記コイルへの通電のON・OFFを交互に切り替える。これにより、上記磁性部材14の外周面の全周に、上記被検出面を構成する「く」字形のS極及びN極を1対ずつ、円周方向に関して順次着磁形成し、上記エンコーダ本体8を完成させる。
尚、図示の例では、円周方向に並べて使用する着磁ヨーク15を2個としたが、3個以上(例えば3〜5個)として実施する事もできる。
First, in the case of the first example of the magnetizing method shown in FIG. 8, when performing the magnetizing operation, the outer circumferential surface of the magnetic member 14 is circumferentially arranged at two portions adjacent to each other in the circumferential direction. The front end surfaces of the two magnetized yokes 15 and 15 whose directions with respect to each other are made to coincide with each other are made to face each other. In this state, when a current is passed through a coil (not shown) wound around each of the magnetized yokes 15 and 15, a magnetic circuit is formed between the tip surfaces of the magnetized yokes 15 and 15, and this magnetic circuit is formed. Magnetic flux constituting the circuit penetrates the two portions. As a result, a pair of “<”-shaped S poles and N poles constituting the detection surface is magnetized and formed at these two portions. Therefore, in the case of this example, the magnetic member 14 and the cored bar 7 are rotated continuously (or intermittently at every predetermined angle), and an appropriate value corresponding to this rotational speed (or rotating and stopping) is appropriate. At appropriate timing, the energization of the coil is alternately switched on and off. Thus, a pair of “<”-shaped S poles and N poles constituting the detected surface is sequentially magnetized in the circumferential direction on the entire outer peripheral surface of the magnetic member 14, and the encoder main body is formed. Complete 8
In the example shown in the figure, the number of magnetized yokes 15 that are used side by side in the circumferential direction is two, but may be three or more (for example, three to five).

次に、図9に示した着磁方法の第2例の場合、着磁作業を行なう際には、上記磁性部材14及び芯金7の円周方向一部分を径方向両側から非接触に挟む状態で、円周方向に関する向きを互いに一致させた、上記両着磁ヨーク15、15の先端面同士を対向させる。この状態で、上記各着磁ヨーク15、15の周囲に巻回した図示しないコイルに電流を流すと、これら両着磁ヨーク15、15の先端面同士の間に磁気回路が形成され、この磁気回路を構成する磁束が、上記磁性部材14の外周面のうち、径方向外側の着磁ヨーク15の先端面が対向する部分を貫通する。この結果、この貫通した部分に、被検出面を構成する「く」字形のS極又はN極が1つ、着磁形成される。そこで、本例の場合には、上記磁性部材14を連続的に(或は所定角度毎間欠的に)回転させながら、この回転速度に(或は回転、停止に)見合った適切なタイミングで、上記コイルへの通電のON・OFF、並びに、このコイルへの通電の向きを、それぞれ交互に切り替える。これにより、上記磁性部材14の外周面の全周に、上記被検出面を構成する「く」字形のS極とN極とを、円周方向に関して1つずつ交互に着磁形成し、上記エンコーダ本体8を完成させる。
尚、図示の例では、使用する着磁ヨーク15の対の数を1としたが、この対の数を2以上(例えば2〜5)として実施する事もできる。
Next, in the case of the second example of the magnetizing method shown in FIG. 9, when performing the magnetizing operation, a state in which a part of the circumferential direction of the magnetic member 14 and the cored bar 7 is sandwiched from both sides in a non-contact manner. Thus, the front end surfaces of the two magnetized yokes 15 and 15 whose directions in the circumferential direction coincide with each other are made to face each other. In this state, when a current is passed through a coil (not shown) wound around each of the magnetized yokes 15 and 15, a magnetic circuit is formed between the tip surfaces of the magnetized yokes 15 and 15, and this magnetic circuit is formed. Magnetic flux constituting the circuit penetrates a portion of the outer peripheral surface of the magnetic member 14 that is opposed to the distal end surface of the radially outer magnetizing yoke 15. As a result, one "<"-shaped S pole or N pole constituting the surface to be detected is magnetized and formed in this penetrating portion. Therefore, in the case of this example, while rotating the magnetic member 14 continuously (or intermittently at every predetermined angle), at an appropriate timing commensurate with this rotation speed (or rotation and stop), The ON / OFF of energization to the coil and the direction of energization to the coil are alternately switched. Thereby, the "<"-shaped S pole and N pole constituting the detected surface are alternately magnetized one by one in the circumferential direction on the entire circumference of the outer peripheral surface of the magnetic member 14, The encoder body 8 is completed.
In the illustrated example, the number of magnetized yokes 15 to be used is one, but the number of pairs may be two or more (for example, 2 to 5).

ところで、上述した各着磁方法を実施する場合に使用する、上記両着磁ヨーク15、15の先端面の形状は、図10に詳示する様な「く」字形になっている。しかも、この「く」字形の折れ曲がり部に対応する部分の両側縁(破線X、Yで囲んだ部分)の線形状が、それぞれ角のある(曲率が大きくて尖った)「く」字形状になっている。この為、上述した各着磁方法を実施する場合に、上記両着磁ヨーク15、15の先端面同士の間に磁気回路を形成すると、これら両先端面のうち、上記「く」字形の折れ曲がり部に対応する部分同士の間に磁束が集中し易くなる。この結果、上記両着磁ヨーク15、15を使用して着磁したエンコーダ4の被検出面の着磁強度(この被検出面に近接対向する部分の磁束密度)が、この被検出面の幅方向中央部で特に大きくなる。具体的には、図11〜12の(A)に示す様に、上記被検出面に近接対向する部分の磁束密度が、この被検出面の幅方向(同図の上下方向)中央部で最も大きくなり、この被検出面の幅方向両端部に向かう程小さくなる(上記磁束密度の分布が、この被検出面の幅方向中央部を挟んだ両側で対称な山形分布となる)。   By the way, the shape of the front end surface of both the magnetized yokes 15 and 15 used when each of the above-mentioned magnetizing methods is carried out is a "<" shape as shown in detail in FIG. In addition, the line shape of both side edges (portions surrounded by broken lines X and Y) corresponding to the bent portion of the “<” shape is a “<” shape with a corner (having a large curvature and a sharp point). It has become. For this reason, when each of the magnetization methods described above is carried out, if a magnetic circuit is formed between the front end surfaces of the two magnetized yokes 15, 15, the "<"-shaped bent of the two front end surfaces. It becomes easy for magnetic flux to concentrate between the parts corresponding to a part. As a result, the magnetization intensity of the detected surface of the encoder 4 magnetized by using both the magnetized yokes 15 and 15 (the magnetic flux density of the portion facing and close to the detected surface) is the width of the detected surface. It becomes particularly large at the center in the direction. Specifically, as shown in FIGS. 11 to 12A, the magnetic flux density of the portion that is close to and faces the detected surface is the highest in the center of the width direction (vertical direction in the figure) of the detected surface. Increasing and decreasing toward both ends of the detected surface in the width direction (the distribution of the magnetic flux density is a symmetric mountain distribution on both sides across the widthwise central portion of the detected surface).

一方、前述の図5〜7に示した転がり軸受ユニットの状態量測定装置を構成する、1対のセンサ6a、6bの出力信号(図7)は、これら両センサ6a、6bの検出部を通過する磁束密度に基づいて生成される。この点に就いて、上記図11〜12を参照しつつ説明する。これら図11〜12のうち、図11は、外輪1とハブ2(図5)との間にアキシアル荷重が作用していない中立状態を、図12は、上記外輪1とハブ2との間にアキシアル荷重が作用している状態の1例を、それぞれ示している。又、これら図11〜12の(B)の正弦波状の曲線は、自動車の走行時に、上記両センサ6a、6bの検出部を通過する磁束密度(の大きさの変化)を示している。又、これら図11〜12の(C)は、上記両センサ6a、6bの出力信号を示している。この(C)の出力信号は、上記(B)の磁束密度を、スレッシュレベルSに所定のヒステリシス幅Wを設けたシュミットトリガ回路により、高電位、低電位の2値信号に変換して成るものである。尚、上記ヒステリシス幅Wは、上記磁束密度の誤検出を防止する為に設けられている。   On the other hand, the output signals (FIG. 7) of the pair of sensors 6a and 6b that constitute the state quantity measuring device for the rolling bearing unit shown in FIGS. 5 to 7 pass through the detectors of these sensors 6a and 6b. Generated based on the magnetic flux density. This point will be described with reference to FIGS. Among these FIGS. 11 to 12, FIG. 11 shows a neutral state where an axial load is not acting between the outer ring 1 and the hub 2 (FIG. 5), and FIG. 12 shows a state between the outer ring 1 and the hub 2. One example of a state in which an axial load is acting is shown. Also, the sinusoidal curves in FIGS. 11-12 (B) indicate the magnetic flux density (change in magnitude) passing through the detection portions of the sensors 6a and 6b when the vehicle is running. Further, (C) in FIGS. 11 to 12 show output signals of both the sensors 6a and 6b. The output signal of (C) is obtained by converting the magnetic flux density of (B) into a binary signal of high potential and low potential by a Schmitt trigger circuit in which a predetermined hysteresis width W is provided at the threshold level S. It is. The hysteresis width W is provided to prevent erroneous detection of the magnetic flux density.

又、上記図11に示した状態、即ち、上記アキシアル荷重が作用していない中立状態では、同図の(A)に示す様に、1対のセンサ6a、6bの検出部は、被検出面の幅方向中央部から幅方向に同じだけずれた位置に対向する。この為、この図11に示した状態では、同図の(B)に示す様に、上記両センサ6a、6bの検出部を通過する磁束密度の位相及び振幅が互いに一致する。この結果、同図の(C)に示す様に、上記両センサ6a、6bの出力信号同士の間に存在する位相差は0になる。これに対し、上記図12に示した状態、即ち、上記アキシアル荷重が作用している状態では、同図の(A)に示す様に、エンコーダ4が幅方向に(図示の例では上方に)変位する。又、これに伴い、一方(図示の例では上方)のセンサ6aの検出部が被検出面の幅方向中央部に近い位置に対向し、他方(図示の例では下方)のセンサ6bの検出部が被検出面の幅方向中央部から遠い位置に対向する。この為、上記図12に示した状態では、同図の(B)に示す様に、上記両センサ6a、6bの検出部を通過する磁束密度の位相が逆方向にずれると共に、上記一方のセンサ6aの検出部を通過する磁束密度の振幅が大きくなり、上記他方のセンサ6bの検出部を通過する磁束密度の振幅が小さくなる。この結果、同図の(C)に示す様に、上記両センサ6a、6bの出力信号の位相が逆方向にずれて、これら両出力信号同士の間に位相差が生じる。但し、この位相差には、本来生じるべき位相差と比較して、誤差が生じている。この理由は、次の通りである。   Further, in the state shown in FIG. 11, that is, in the neutral state where the axial load is not applied, the detection portions of the pair of sensors 6a and 6b are detected surfaces as shown in FIG. It faces the position shifted from the central part in the width direction by the same amount in the width direction. For this reason, in the state shown in FIG. 11, as shown in FIG. 11B, the phases and amplitudes of the magnetic flux densities that pass through the detection portions of the sensors 6a and 6b coincide with each other. As a result, the phase difference existing between the output signals of the two sensors 6a and 6b becomes zero as shown in FIG. On the other hand, in the state shown in FIG. 12, that is, in the state where the axial load is applied, the encoder 4 moves in the width direction (upward in the illustrated example) as shown in FIG. Displace. Accordingly, the detection unit of one sensor 6a (upper in the illustrated example) faces a position near the center in the width direction of the detection surface, and the detection unit of the other sensor 6b (lower in the illustrated example). Is opposed to a position far from the center of the detected surface in the width direction. For this reason, in the state shown in FIG. 12, the phase of the magnetic flux density passing through the detection portions of the sensors 6a and 6b is shifted in the opposite direction as shown in FIG. The amplitude of the magnetic flux density passing through the detection unit 6a is increased, and the amplitude of the magnetic flux density passing through the detection unit of the other sensor 6b is decreased. As a result, as shown in FIG. 6C, the phases of the output signals of the two sensors 6a and 6b are shifted in the opposite directions, and a phase difference is generated between the two output signals. However, this phase difference has an error as compared with the phase difference that should originally occur. The reason for this is as follows.

即ち、図13の(A)(B)に示す様に、上記センサ6a(6b)の検出部を通過する磁束密度α1 を2値信号に変換して成る出力信号β1 と、同じく磁束密度α2 を2値信号に変換して成る出力信号β2 とを比較した場合に、これら両出力信号β1 、β2 の位相は、上記両磁束密度α1 、α2 同士の間に位相差が生じていなくても、振幅差が生じているだけで、一致しなくなる。この理由は、同図の(A)に示す様に、上記両磁束密度α1 、α2 を表す曲線同士で、シュミットトリガ回路のヒステリシス幅Wを横切る角度が異なる為である。この事から、上記センサ6a(6b)の出力信号の位相は、上記エンコーダ4が幅方向に変位しなくても、このセンサ6a(6b)の検出部を通過する磁束密度の振幅が変化だけで、変化する事が分かる。従って、上述の図11〜12に示した例の様に、上記エンコーダ4の被検出面に近接対向する部分の磁束密度が、この被検出面の幅方向に関して不均一になっている場合には、この不均一の程度に応じた分だけ、実際のエンコーダ4の幅方向の変位量と異なった位相変化が、上記センサ6a(6b)の出力信号に生じる。この結果、上述した様に、上記図12の(C)に示した両センサ6a、6bの出力信号同士の間の位相差には、本来生じるべき位相差と比較して、誤差が生じている。前記外輪1とハブ2との間の状態量をより高精度に測定する為には、この様な誤差をなくす事が好ましい。 That is, as shown in FIGS. 13A and 13B, the output signal β 1 obtained by converting the magnetic flux density α 1 passing through the detection portion of the sensor 6a (6b) into a binary signal, and the same magnetic flux density. When the output signal β 2 obtained by converting α 2 into a binary signal is compared, the phase of both output signals β 1 and β 2 is a phase difference between the two magnetic flux densities α 1 and α 2. Even if there is no occurrence, only an amplitude difference is produced and they do not match. The reason for this is that, as shown in FIG. 5A, the angles representing the hysteresis width W of the Schmitt trigger circuit are different between the curves representing the two magnetic flux densities α 1 and α 2 . From this, the phase of the output signal of the sensor 6a (6b) can be obtained only by changing the amplitude of the magnetic flux density passing through the detection part of the sensor 6a (6b) even if the encoder 4 is not displaced in the width direction. I can see that it changes. Therefore, as in the example shown in FIGS. 11 to 12 described above, when the magnetic flux density of the portion close to and opposed to the detected surface of the encoder 4 is not uniform in the width direction of the detected surface. A phase change different from the actual displacement amount of the encoder 4 in the width direction is generated in the output signal of the sensor 6a (6b) by an amount corresponding to the degree of non-uniformity. As a result, as described above, there is an error in the phase difference between the output signals of both sensors 6a and 6b shown in FIG. . In order to measure the state quantity between the outer ring 1 and the hub 2 with higher accuracy, it is preferable to eliminate such an error.

尚、エンコーダを円輪状に構成すると共に、このエンコーダの軸方向側面を被検出面とし、この被検出面に1対のセンサの検出部を、径方向にずらせた状態で対向させれば、上記外輪1とハブ2とのラジアル方向に関する相対変位や、これら外輪1とハブ2との間に加わるラジアル荷重を求められる。但し、この様な構造を採用する場合も、やはり上述した様な、1対のセンサの出力信号同士の間の位相差の誤差に関する問題を生じる。   If the encoder is configured in an annular shape, the side surface in the axial direction of the encoder is a detection surface, and the detection portions of the pair of sensors are opposed to the detection surface in a state shifted in the radial direction, the above A relative displacement in the radial direction between the outer ring 1 and the hub 2 and a radial load applied between the outer ring 1 and the hub 2 are obtained. However, even when such a structure is adopted, there arises a problem regarding an error in the phase difference between the output signals of the pair of sensors as described above.

特開2006−133045号公報JP 2006-133045 A

本発明は、上述の様な事情に鑑み、1対のセンサの出力信号同士の間の位相差に誤差が生じる事を抑制できる様にすべく、エンコーダの被検出面に近接対向する部分の磁束密度の分布を、この被検出面の幅方向に関してほぼ均一にできる着磁装置を実現すべく発明したものである。   In view of the circumstances as described above, the present invention provides a magnetic flux in a portion that is close to and faces the detected surface of the encoder so as to suppress the occurrence of an error in the phase difference between the output signals of a pair of sensors. The invention was invented to realize a magnetizing apparatus capable of making the density distribution substantially uniform in the width direction of the detected surface.

本発明の着磁装置による着磁作業の対象となるエンコーダは、使用時に回転部材に支持固定されると共に、この回転部材と同心の被検出面を備え、この被検出面に、それぞれがこの被検出面の幅方向中間部に折れ曲がり部を有する「く」字形のS極とN極とを、円周方向に関して交互に且つ等間隔に配置している。
そして、本発明のエンコーダの着磁装置は、少なくとも1対の着磁ヨークを備える。そして、これら両着磁ヨークはそれぞれ、「く」字形の先端面を有すると共に、互いの先端面同士の間に形成される磁気回路を構成する磁束を、上記エンコーダを造る為の素材のうち、上記被検出面となるべき面の円周方向一部分に貫通させる事により、当該部分に上記「く」字形のS極又はN極を着磁形成するものであって、且つ、上記「く」字形の先端面のうち、この「く」字形の折れ曲がり部に対応する部分の両側縁の線形状を、それぞれ角の取れた曲線形状、又は、上記被検出面の幅方向に対し平行な直線形状としている。
The encoder to be magnetized by the magnetizing apparatus of the present invention is supported and fixed to the rotating member during use, and includes a detected surface concentric with the rotating member. The “<”-shaped S poles and N poles having a bent portion at the intermediate portion in the width direction of the detection surface are alternately arranged at equal intervals in the circumferential direction.
The encoder magnetizing apparatus of the present invention includes at least one pair of magnetizing yokes. Each of these magnetized yokes has a "<"-shaped tip surface, and a magnetic flux that forms a magnetic circuit formed between the tip surfaces of each other, among the materials for making the encoder, By passing through a portion of the surface to be detected in the circumferential direction, the “<”-shaped S pole or N-pole is magnetized and formed in the portion, and the “<” shape is In the tip surface of each of the two, the line shape of both side edges of the portion corresponding to the "<"-shaped bent portion is a curved shape with a corner, or a straight line shape parallel to the width direction of the detected surface. Yes.

本発明のエンコーダの着磁装置を実施する場合に、好ましくは、請求項2に記載した様に、上記エンコーダの着磁作業を行なう状態で、このエンコーダを造る為の素材のうち、被検出面となるべき面の幅方向に関する、上記各着磁ヨークの先端面の幅寸法を、上記被検出面となるべき面の幅寸法よりも大きくする。   When the magnetizing apparatus for an encoder according to the present invention is implemented, it is preferable that, as described in claim 2, a surface to be detected among materials for making the encoder in a state in which the encoder is magnetized. The width dimension of the front end surface of each of the magnetized yokes in the width direction of the surface to be formed is made larger than the width dimension of the surface to be the detected surface.

又、上述の請求項1〜2に記載した発明を実施する場合に、好ましくは、請求項3に記載した様に(具体的には、前述の図8又は図9に示した着磁装置の様に)、上記着磁ヨークの総数を、上記エンコーダの被検出面に設けるS極及びN極の数よりも少なくする{例えば、前述の図8に示した様に、エンコーダを造る為の素材の径方向片側にのみ着磁ヨークを配置する場合には、この着磁ヨークの総数を2〜5個(好ましくは2〜3個)程度とし、前述の図9に示した様に、エンコーダを造る為の素材の径方向両側に着磁ヨークを対にして配置する場合には、この着磁ヨークの対の数を2〜5(好ましくは2〜3)程度とする}。これと共に、上記エンコーダを造る為の素材を間欠的に又は連続的に回転させながら、上記各着磁ヨークにより、上記素材のうち上記被検出面となるべき面に上記S極と上記N極とを順次着磁形成する機能を持たせる。   In carrying out the invention described in claims 1 and 2, preferably, as described in claim 3 (specifically, the magnetizing apparatus shown in FIG. 8 or FIG. 9 described above). The total number of magnetized yokes is less than the number of S poles and N poles provided on the detection surface of the encoder {for example, as shown in FIG. 8, the material for making the encoder When the magnetizing yokes are arranged only on one side in the radial direction, the total number of magnetizing yokes is about 2 to 5 (preferably 2 to 3), and as shown in FIG. When the magnetized yokes are arranged in pairs on both sides in the radial direction of the material to be manufactured, the number of magnetized yoke pairs is set to about 2 to 5 (preferably about 2 to 3)}. At the same time, while rotating the material for making the encoder intermittently or continuously, the magnetized yoke causes the S pole and the N pole to be placed on the surface to be detected among the materials. Are provided with the function of sequentially magnetizing.

上述の様に、本発明のエンコーダの着磁装置の場合には、各着磁ヨークの「く」字形の先端面のうち、この「く」字形の折れ曲がり部に対応する部分の両側縁の線形状を、それぞれ角の取れた曲線形状、又は、上記被検出面の幅方向に対し平行な直線形状としている。この為、エンコーダの着磁作業を行なうべく、1対の着磁ヨークの先端面同士の間に磁気回路を形成した場合に、これら両先端面のうち、上記「く」字形の折れ曲がり部に対応する部分同士の間に磁束が集中するのを十分に緩和できる。従って、上記各着磁ヨークを使用して着磁したエンコーダの被検出面の着磁強度(この被検出面に近接対向する部分の磁束密度)を、この被検出面の幅方向に関してほぼ均一にできる。この為、このエンコーダを備えた回転機械の状態量測定装置を使用する場合に、1対のセンサの出力信号同士の間の位相差に誤差が生じる事を十分に抑制できる。従って、上記状態量測定装置による状態量の測定を、より高精度に行なえる。   As described above, in the case of the encoder magnetizing apparatus of the present invention, the line on the both side edges of the portion corresponding to the "<"-shaped bent portion of the "<->-" shaped tip surface of each magnetized yoke. The shape is a curved shape with rounded corners or a linear shape parallel to the width direction of the detected surface. For this reason, when a magnetic circuit is formed between the tip surfaces of a pair of magnetized yokes to perform the magnetizing operation of the encoder, it corresponds to the above-mentioned "<"-shaped bent portion of both the tip surfaces. It is possible to sufficiently alleviate the concentration of the magnetic flux between the parts to be performed. Therefore, the magnetizing strength of the detected surface of the encoder magnetized using each of the magnetized yokes (the magnetic flux density at the portion facing and close to the detected surface) is substantially uniform in the width direction of the detected surface. it can. For this reason, when using the state quantity measuring apparatus of the rotary machine provided with this encoder, it can fully suppress that an error arises in the phase difference between the output signals of a pair of sensors. Therefore, the state quantity measurement by the state quantity measuring device can be performed with higher accuracy.

又、本発明を実施する場合に、請求項2に記載した構造を採用すれば、エンコーダの被検出面の着磁強度を、この被検出面の幅方向に関して、より均一にできる。この理由は、次の通りである。即ち、1対の着磁ヨークの先端面から出入りする磁束は、互いに繋がった状態になる事が好ましい。ところが、エンコーダを造る為の素材のうち被検出面となるべき面の幅方向に関する、上記両着磁ヨークの先端面の両端部では、同じく中間部に比べて、出入りする磁束が他の方向に回り込む(互いに繋がらなくなる)割合が若干多くなる。この為、上記両着磁ヨークの先端面の両端部同士の間の磁束密度は、同じく中間部同士の間の磁束密度に比べて、若干小さくなる。これに対し、請求項2に記載した構造を採用すれば、エンコーダの着磁作業を行なう際に、このエンコーダを造る為の素材のうち、被検出面となるべき面(又はその背面)に対し、上記各着磁ヨークの先端面の中間部のみを対向させる(両端部を対向させない)事ができる。この為、1対の着磁ヨークの先端面の中間部同士の間に形成された、密度の均一度が高い磁束により、上記被検出面の着磁を行なえる。従って、エンコーダの被検出面の着磁強度を、この被検出面の幅方向に関して、より均一にできる。   When the present invention is implemented, if the structure described in claim 2 is adopted, the magnetization intensity of the detected surface of the encoder can be made more uniform in the width direction of the detected surface. The reason for this is as follows. That is, it is preferable that the magnetic flux entering and exiting from the tip surfaces of the pair of magnetizing yokes is in a state of being connected to each other. However, the magnetic flux entering and exiting at the both ends of the front end surfaces of the two magnetized yokes in the width direction of the surface to be detected among the materials for making the encoder is in the other direction as compared to the middle portion. Slightly increases the ratio of wrapping around (disconnecting each other). For this reason, the magnetic flux density between the both end portions of the front end surfaces of the two magnetized yokes is slightly smaller than the magnetic flux density between the intermediate portions. On the other hand, if the structure described in claim 2 is adopted, when performing the magnetizing operation of the encoder, the surface to be detected (or the back surface) of the material for making the encoder is to be detected. Only the intermediate part of the front end face of each of the magnetized yokes can be made to face each other (both ends are not made to face each other). For this reason, the surface to be detected can be magnetized by a magnetic flux formed between the front end surfaces of the pair of magnetized yokes and having a high density uniformity. Therefore, the magnetization intensity of the detected surface of the encoder can be made more uniform in the width direction of the detected surface.

更に、本発明を実施する場合に、請求項3に記載した構造を採用すれば、エンコーダの被検出面に配置するS極及びN極の着磁強度を互いに等しくし、且つ、これらS極及びN極の(単一、隣接、累積)ピッチ精度を良好にするのが容易になる。この理由は、次の通りである。即ち、本発明を実施する場合には、上記被検出面に配置するS極及びN極と同数又は同対数の着磁ヨークを使用して、上記被検出面の全周同時着磁を行なう構造を採用する事もできる。ところが、この様な構造を採用すると、着磁ヨークの数が多くなる為、これら各着磁ヨークに関する、寸法のばらつき、配置のピッチ精度、周囲に巻回するコイルの状態(インピーダンスや位置決め)を、それぞれ高精度に規制するのが難しくなる。従って、上記S極及びN極の着磁強度を互いに等しくし、且つ、これらS極及びN極のピッチ精度を良好にするのが難しくなる。これに対し、請求項3に記載した構造を採用すれば、着磁ヨークの数を少なくできる為、上述の様な規制を高精度に行なうのが容易になる。従って、上記S極及びN極の着磁強度を互いに等しくし、且つ、これらS極及びN極のピッチ精度を良好にするのが容易になる。   Further, when the present invention is implemented, if the structure described in claim 3 is adopted, the S poles and N poles arranged on the detection surface of the encoder have the same magnetization intensity, and these S poles and It becomes easy to improve the pitch accuracy of N poles (single, adjacent, cumulative). The reason for this is as follows. That is, when carrying out the present invention, a structure for performing simultaneous magnetization of the entire surface to be detected by using magnetizing yokes having the same number or logarithm as the S and N poles disposed on the surface to be detected. Can also be adopted. However, when such a structure is adopted, the number of magnetized yokes increases, so the variation in dimensions, the pitch accuracy of the arrangement, and the state of the coil wound around (impedance and positioning) for each of these magnetized yokes. , Each becomes difficult to regulate with high accuracy. Therefore, it is difficult to make the magnetization strengths of the S pole and N pole equal to each other and to improve the pitch accuracy of the S pole and N pole. On the other hand, if the structure described in claim 3 is adopted, the number of magnetized yokes can be reduced, so that it becomes easy to perform the above-described regulation with high accuracy. Therefore, it becomes easy to make the magnetization intensity of the S pole and N pole equal to each other and to improve the pitch accuracy of the S pole and N pole.

[実施の形態の第1例]
図1〜2は、請求項1〜3に対応する、本発明の実施の形態の第1例を示している。尚、本例の特徴は、着磁装置を構成する1対の着磁ヨーク15a、15aの先端面の形状(=断面形状)を工夫した点にある。その他の部分の構造及び作用は、前述の図8に示した着磁装置の場合とほぼ同様である為、重複する図示並びに説明は省略若しくは簡略にし、以下、本例の特徴部分、並びに、上記図8に示した着磁装置と異なる部分を中心に説明する。
[First example of embodiment]
1 and 2 show a first example of an embodiment of the present invention corresponding to claims 1 to 3. The feature of this example is that the shape (= cross-sectional shape) of the tip surfaces of the pair of magnetizing yokes 15a, 15a constituting the magnetizing device is devised. Since the structure and operation of the other parts are almost the same as those of the magnetizing apparatus shown in FIG. 8, the overlapping illustrations and explanations are omitted or simplified. The description will focus on the parts different from the magnetizing apparatus shown in FIG.

図1は、エンコーダ4(図2)の着磁作業状態を示している。本例の場合には、1対の着磁ヨーク15a、15aの「く」字形の先端面のうち、この「く」字形の折れ曲がり部に対応する部分の両側縁を、それぞれ曲線部16a、16bとしている。即ち、当該部分の両側縁の線形状を、それぞれ角の取れた曲線形状としている。これと共に、エンコーダ本体8(図2)の素材である、磁性部材14の外周面の幅方向(図1の上下方向)に関する、上記両着磁ヨーク15a、15aの幅寸法W15a を、上記磁性部材14の外周面の幅寸法W14よりも大きく(W15a >W14)している。そして、上記磁性部材14の外周面に対し、上記両着磁ヨーク15a、15aの先端面の中間部のみを対向させている(両端部は対向させていない)。 FIG. 1 shows a magnetizing work state of the encoder 4 (FIG. 2). In the case of this example, the side edges of the portions corresponding to the "<"-shaped bent portions of the "<"-shaped end surfaces of the pair of magnetized yokes 15a, 15a are respectively curved portions 16a, 16b. It is said. That is, the line shape on both side edges of the portion is a curved shape with a corner. At the same time, the width dimension W 15a of the two magnetized yokes 15a and 15a with respect to the width direction (vertical direction in FIG. 1) of the outer peripheral surface of the magnetic member 14, which is the material of the encoder body 8 (FIG. 2), is larger (W 15a> W 14) than the width W 14 of the outer peripheral surface of the member 14. And only the intermediate part of the front end surface of both said magnetized yokes 15a and 15a is made to oppose with respect to the outer peripheral surface of the said magnetic member 14 (it is not made to oppose both ends).

上述の様に、本例の場合には、1対の着磁ヨーク15a、15aの「く」字形の先端面のうち、この「く」字形の折れ曲がり部に対応する部分の両側縁を、それぞれ曲線部16a、16bとしている。この為、上記両着磁ヨーク15a、15aの先端面同士の間に磁気回路を形成した場合に、これら両先端面のうち、上記「く」字形の折れ曲がり部に対応する部分同士の間に磁束が集中するのを十分に緩和できる。一方、前述した様に、上記両着磁ヨーク15a、15aの先端面から出入りする磁束は、互いに繋がった状態になる事が好ましい。ところが、上記両着磁ヨーク15a、15aの先端面の両端部では、同じく中間部に比べて、出入りする磁束が他の方向に回り込む(互いに繋がらなくなる)割合が若干多くなる。この為、上記両着磁ヨーク15a、15aの先端面の両端部同士の間の磁束密度は、同じく中間部同士の間の磁束密度に比べて、若干小さくなる。これに対し、本例の場合には、上記磁性部材14の外周面に対し、上記両着磁ヨーク15a、15aの先端面の中間部のみを対向させている(両端部は対向させていない)。この為、上記両着磁ヨーク15a、15aの先端面の中間部同士の間に形成された、密度の均一度が高い磁束のみを、上記磁性部材14の外周面に貫通させる事ができる。   As described above, in the case of this example, both side edges of the portions corresponding to the "<"-shaped bent portions of the "<"-shaped end surfaces of the pair of magnetized yokes 15a, 15a are respectively The curved portions 16a and 16b are used. For this reason, when a magnetic circuit is formed between the front end surfaces of both the magnetized yokes 15a, 15a, a magnetic flux is generated between the two end surfaces corresponding to the "<"-shaped bent portions. Can be relaxed enough. On the other hand, as described above, it is preferable that the magnetic fluxes entering and exiting from the front end surfaces of the two magnetized yokes 15a and 15a are connected to each other. However, at both end portions of the front end surfaces of the two magnetized yokes 15a, 15a, the rate at which the entering and exiting magnetic flux wraps around in the other direction (cannot be connected to each other) is slightly higher than that at the intermediate portion. For this reason, the magnetic flux density between the both end portions of the front end surfaces of the magnetized yokes 15a, 15a is slightly smaller than the magnetic flux density between the intermediate portions. On the other hand, in the case of this example, only the intermediate part of the front end surfaces of the magnetized yokes 15a and 15a is opposed to the outer peripheral surface of the magnetic member 14 (both ends are not opposed). . For this reason, only the magnetic flux with high uniformity of density formed between the intermediate portions of the front end surfaces of the two magnetized yokes 15a, 15a can be penetrated through the outer peripheral surface of the magnetic member 14.

従って、上述した様な本例のエンコーダの着磁装置によれば、図2の(A)の右部に示す様に、エンコーダ4の被検出面の着磁強度(この被検出面に近接対向する部分の磁束密度)を、この被検出面の幅方向(同図の上下方向)に関してほぼ均一にできる。この為、外輪1とハブ2(図5参照)との間にアキシアル荷重が作用する事により、図2の(A)に示す様に、上記エンコーダ4の被検出面に対する1対のセンサ6a、6bの検出部の対向位置が中立位置からずれた場合でも、同図の(B)に示す様に、これら両センサ6a、6bの検出部を通過する磁束密度の振幅を、互いにほぼ等しくできる。従って、同図の(C)に示す様な、上記両センサ6a、6bの出力信号同士の間の位相差に、上記振幅差に基づく誤差が生じる事を十分に抑制できる。即ち、上記図2の場合と、前記図12の場合とを比較した場合に、それぞれの(A)に示した、エンコーダ4の被検出面に対する1対のセンサ6a、6bの検出部の対向位置は互いに同じになっているが、それぞれの(C)に示した、これら両センサ6a、6bの出力信号同士の間の位相差の大きさは互いに異なっている。この理由は、この位相差に含まれる、上記両センサ6a、6bの検出部を通過する磁束の密度のばらつきに基づく誤差が、図12の場合には比較的多くなっているのに対し、図2の場合には十分に少なくなっている為である。この事から、本例の着磁装置により着磁したエンコーダ4を使用すれば、上記外輪1とハブ2との間のアキシアル方向の相対変位や、これら外輪1とハブ2との間に作用するアキシアル荷重の測定を、より高精度に行なえる事が分かる。   Therefore, according to the encoder magnetizing apparatus of the present example as described above, as shown in the right part of FIG. 2A, the magnetizing strength of the detected surface of the encoder 4 (proximity facing this detected surface). Magnetic flux density of the portion to be detected) can be made substantially uniform with respect to the width direction (the vertical direction in the figure) of the detected surface. For this reason, when an axial load acts between the outer ring 1 and the hub 2 (see FIG. 5), as shown in FIG. 2A, a pair of sensors 6a with respect to the detected surface of the encoder 4, Even when the opposing position of the detection part 6b deviates from the neutral position, the amplitudes of the magnetic flux densities passing through the detection parts of both the sensors 6a and 6b can be made substantially equal to each other, as shown in FIG. Therefore, it is possible to sufficiently suppress the occurrence of an error based on the amplitude difference in the phase difference between the output signals of the sensors 6a and 6b as shown in FIG. That is, when the case of FIG. 2 is compared with the case of FIG. 12, the opposing positions of the detection portions of the pair of sensors 6a and 6b with respect to the detection surface of the encoder 4 shown in FIG. Are the same as each other, but the magnitudes of the phase differences between the output signals of these sensors 6a and 6b shown in (C) are different from each other. The reason for this is that the error based on the variation in the density of the magnetic flux passing through the detectors of the two sensors 6a and 6b included in this phase difference is relatively large in the case of FIG. This is because the number is sufficiently small in the case of 2. For this reason, if the encoder 4 magnetized by the magnetizing apparatus of this example is used, the relative displacement in the axial direction between the outer ring 1 and the hub 2 and the action between the outer ring 1 and the hub 2 are exerted. It can be seen that the axial load can be measured with higher accuracy.

[実施の形態の第2例]
次に、図3は、請求項1、3に対応する、本発明の実施の形態の第2例を示している。上述した第1例の場合と異なり、本例の場合には、1対の着磁ヨーク15b、15bの幅寸法W15b を、磁性部材14の外周面の幅寸法W14と同じ大きさ(W15b =W14)にしている。そして、上記磁性部材14の外周面に対し、上記両着磁ヨーク15b、15bの先端面の全体を対向させている。この様に、本例の着磁装置の場合には、上記磁性部材14の外周面に対し、上記両着磁ヨーク15b、15bの先端面の中間部だけでなく、両端部も対向させている為、上述した第1例の着磁装置の場合と比べて、エンコーダ4(図2)の被検出面の着磁強度を幅方向に関して均一にできる程度は、多少低くなる。但し、前述の図8に示した着磁装置に比べれば、上記エンコーダ4の被検出面の着磁強度を幅方向に関して均一にできる程度を、十分に高くできる。その他の構成及び作用は、上述した第1例の場合と同様である。
[Second Example of Embodiment]
Next, FIG. 3 shows a second example of an embodiment of the present invention corresponding to claims 1 and 3. Unlike the case of the first example described above, in this example, the width dimension W 15b of the pair of magnetized yokes 15b, 15b is the same as the width dimension W 14 of the outer peripheral surface of the magnetic member 14 (W 15b = is the W 14). The entire front end surfaces of the magnetized yokes 15b and 15b are opposed to the outer peripheral surface of the magnetic member 14. Thus, in the case of the magnetizing apparatus of this example, not only the intermediate part of the front end surfaces of the two magnetized yokes 15b and 15b but also the both end parts are opposed to the outer peripheral surface of the magnetic member 14. Therefore, as compared with the case of the magnetizing apparatus of the first example described above, the degree to which the magnetizing intensity of the detected surface of the encoder 4 (FIG. 2) can be made uniform in the width direction is somewhat lower. However, as compared with the magnetizing apparatus shown in FIG. 8, the degree to which the magnetizing intensity of the detection surface of the encoder 4 can be made uniform in the width direction can be sufficiently increased. Other configurations and operations are the same as those of the first example described above.

[実施の形態の第3例]
次に、図4は、請求項1〜3に対応する、本発明の実施の形態の第3例を示している。本例の場合には、着磁装置を構成する着磁ヨーク15cの「く」字形の先端面のうち、この「く」字形の折れ曲がり部に対応する部分の両側縁を、それぞれ、着磁すべきエンコーダ4(図2参照)の被検出面の幅方向に対し平行な、直線部17a、17bとしている。即ち、上記折れ曲がり部に対応する部分の両側縁の線形状を、それぞれ角の取れた直線形状としている。尚、上記両直線部17a、17bの両端部と、上記「く」字形の各辺に対応する部分の両側縁(斜め縁)の端部とは、それぞれ曲線部18a、18bを介して滑らかに連続させている。その他の構成及び作用は、上述した第1〜2例の場合と同様である。
[Third example of embodiment]
Next, FIG. 4 shows a third example of the embodiment of the present invention corresponding to claims 1 to 3. In the case of this example, both side edges of the portion corresponding to the "<"-shaped bent portion of the "<"-shaped end surface of the magnetized yoke 15c constituting the magnetizing device are magnetized. The straight portions 17a and 17b are parallel to the width direction of the detected surface of the power encoder 4 (see FIG. 2). That is, the line shape on both side edges of the portion corresponding to the bent portion is a straight line shape with corners. In addition, both ends of both the straight portions 17a and 17b and the ends of both side edges (oblique edges) of the portions corresponding to the respective sides of the "<" shape are smoothly passed through the curved portions 18a and 18b, respectively. It is continuous. Other configurations and operations are the same as those in the first and second examples described above.

尚、上述した各実施の形態では、前述の図8に示した着磁装置に本発明を適用したが、本発明は、前述の図9に示した着磁装置に適用する事もできる。又、被検出面に設けるS極とN極との境界が、この被検出面の幅方向に対し、一方の特性変化部でのみ傾斜し、他方の特性変化部で平行になっているエンコーダの着磁装置にも適用できる。更には、ラジアル荷重を測定可能とする為に、円輪状の被検出面を備えたエンコーダの着磁装置(アキシアル対向着磁)にも適用できる。   In each of the above-described embodiments, the present invention is applied to the magnetizing apparatus shown in FIG. 8, but the present invention can also be applied to the magnetizing apparatus shown in FIG. Further, the boundary between the S pole and the N pole provided on the detected surface is inclined only at one characteristic changing portion and parallel to the other characteristic changing portion with respect to the width direction of the detected surface. It can also be applied to a magnetizing device. Furthermore, in order to make it possible to measure a radial load, the present invention can be applied to an encoder magnetizing device (axially opposed magnetizing) having an annular detection surface.

本発明の実施の形態の第1例を示す、1対の着磁ヨークによりエンコーダの着磁作業を行なう状態を、このエンコーダの径方向外方から見た図。The figure which looked at the state which magnetizes an encoder by a pair of magnetizing yokes which shows the 1st example of embodiment of this invention from the radial direction outer side of this encoder. この第1例の着磁ヨークにより着磁したエンコーダと、このエンコーダに対向させた1対のセンサの出力信号の生成過程とを、アキシアル荷重が作用した状態で示す図。The figure which shows the production | generation process of the output signal of a pair of sensor facing this encoder and the encoder magnetized by the magnetizing yoke of this 1st example in the state where the axial load acted. 本発明の実施の形態の第2例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 2nd example of embodiment of this invention. 同第3例を示す、着磁ヨークの先端面を示す図。The figure which shows the front end surface of the magnetizing yoke which shows the 3rd example. 転がり軸受ユニットの状態量測定装置に関する、従来構造の1例を示す断面図。Sectional drawing which shows one example of the conventional structure regarding the state quantity measuring apparatus of a rolling bearing unit. エンコーダの一部を示す斜視図。The perspective view which shows a part of encoder. アキシアル荷重に基づいて1対のセンサの出力信号が変化する状態を説明する為の線図。The diagram for demonstrating the state from which the output signal of a pair of sensor changes based on an axial load. 従来から提案されているエンコーダの着磁方法の第1例を、このエンコーダの軸方向から見た図。The figure which looked at the 1st example of the magnetizing method of the encoder proposed conventionally from the axial direction of this encoder. 同第2例を示す、図8と同様の図。The figure similar to FIG. 8 which shows the said 2nd example. 従来の着磁ヨークの先端面を示す図。The figure which shows the front end surface of the conventional magnetizing yoke. 従来の着磁ヨークにより着磁したエンコーダと、このエンコーダに対向させた1対のセンサの出力信号の生成過程とを、中立状態で示す図。The figure which shows the production | generation process of the output signal of a pair of sensor made to oppose this encoder and the encoder magnetized by the conventional magnetizing yoke in a neutral state. 同じく、アキシアル荷重が作用した状態で示す図。Similarly, the figure shown in the state where the axial load acted. センサの検出部を通過する磁束密度の振幅が変化する事によって、このセンサの出力信号の位相がずれる事を説明する為の線図。The diagram for demonstrating that the phase of the output signal of this sensor shifts | deviates because the amplitude of the magnetic flux density which passes the detection part of a sensor changes.

符号の説明Explanation of symbols

1 外輪
2 ハブ
3 転動体
4 エンコーダ
5 カバー
6a、6b センサ
7 芯金
8 エンコーダ本体
9 大径円筒部
10 小径円筒部
11 円輪部
12 第一の特性変化部
13 第二の特性変化部
14 磁性部材
15、15a〜15c 着磁ヨーク
16a、16b 曲線部
17a、17b 直線部
18a、18b 曲線部
DESCRIPTION OF SYMBOLS 1 Outer ring 2 Hub 3 Rolling element 4 Encoder 5 Cover 6a, 6b Sensor 7 Core metal 8 Encoder main body 9 Large diameter cylindrical part 10 Small diameter cylindrical part 11 Circular ring part 12 First characteristic change part 13 Second characteristic change part 14 Magnetic Members 15, 15a to 15c Magnetized yokes 16a, 16b Curved portions 17a, 17b Linear portions 18a, 18b Curved portions

Claims (3)

使用時に回転部材に支持固定されると共に、この回転部材と同心の被検出面を備え、この被検出面に、それぞれがこの被検出面の幅方向中間部に折れ曲がり部を有する「く」字形のS極とN極とを、円周方向に関して交互に且つ等間隔に配置しているエンコーダの着磁装置であって、少なくとも1対の着磁ヨークを備え、これら両着磁ヨークはそれぞれ、「く」字形の先端面を有すると共に、互いの先端面同士の間に形成される磁気回路を構成する磁束を、上記エンコーダを造る為の素材のうち、上記被検出面となるべき面の円周方向一部分に貫通させる事により、当該部分に上記「く」字形のS極又はN極を着磁形成するものであって、且つ、上記「く」字形の先端面のうち、この「く」字形の折れ曲がり部に対応する部分の両側縁の線形状を、それぞれ角の取れた曲線形状、又は、上記被検出面の幅方向に対し平行な直線形状としているエンコーダの着磁装置。   It is supported and fixed to the rotating member at the time of use, and has a detected surface concentric with the rotating member, and each of the detected surfaces has a bent shape at a middle portion in the width direction of the detected surface. An encoder magnetizing apparatus in which S poles and N poles are alternately arranged at equal intervals in the circumferential direction, and includes at least one pair of magnetizing yokes. The circumferential surface of the surface to be the detected surface of the material for making the encoder is made of magnetic flux that forms a magnetic circuit formed between the front end surfaces and has a U-shaped tip surface. By passing through a part in the direction, the "<"-shaped S-pole or N-pole is magnetized in that part, and the "<"-shaped Alignment of both side edges of the part corresponding to the bent part of A balanced curve shapes of square, or magnetizing apparatus of an encoder which is parallel to the straight line shape with respect to the width direction of the sensed surface. エンコーダの着磁作業を行なう状態で、このエンコーダを造る為の素材のうち、被検出面となるべき面の幅方向に関する、各着磁ヨークの先端面の幅寸法を、上記被検出面となるべき面の幅寸法よりも大きくした、請求項1に記載したエンコーダの着磁装置。   In the state of performing the magnetizing work of the encoder, the width dimension of the front end surface of each magnetized yoke with respect to the width direction of the surface to be detected among the materials for making the encoder becomes the detected surface. The encoder magnetizing apparatus according to claim 1, wherein the magnetizing apparatus is larger than a width dimension of the power surface. 着磁ヨークの総数が、エンコーダの被検出面に設けるS極及びN極の数よりも少なく、且つ、上記エンコーダを造る為の素材を間欠的に又は連続的に回転させながら、上記各着磁ヨークにより、上記素材のうち上記被検出面となるべき面に上記S極と上記N極とを順次着磁形成する機能を有する、請求項1又は請求項2に記載したエンコーダの着磁装置。   The total number of magnetizing yokes is smaller than the number of S poles and N poles provided on the detection surface of the encoder, and each of the magnetizing yokes is rotated while intermittently or continuously rotating the material for manufacturing the encoder. The encoder magnetizing apparatus according to claim 1 or 2, wherein the yoke has a function of sequentially magnetizing and forming the S pole and the N pole on the surface to be detected of the material.
JP2007075745A 2007-03-23 2007-03-23 Magnetizer of encoder Pending JP2008232960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007075745A JP2008232960A (en) 2007-03-23 2007-03-23 Magnetizer of encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007075745A JP2008232960A (en) 2007-03-23 2007-03-23 Magnetizer of encoder

Publications (1)

Publication Number Publication Date
JP2008232960A true JP2008232960A (en) 2008-10-02

Family

ID=39905916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007075745A Pending JP2008232960A (en) 2007-03-23 2007-03-23 Magnetizer of encoder

Country Status (1)

Country Link
JP (1) JP2008232960A (en)

Similar Documents

Publication Publication Date Title
JP4844010B2 (en) Rolling bearing unit with load measuring device
JP4018313B2 (en) Manufacturing method of magnetic encoder
JP2536566Y2 (en) Rotation sensor
JP3900031B2 (en) Rolling bearing unit for wheel support with load measuring device
JP2004003918A (en) Rolling bearing unit for supporting wheel with load-measuring device
JP5099245B2 (en) Rolling bearing unit with load measuring device
JP2006113017A (en) Encoder, rolling bearing unit with the encoder, and rolling bearing unit with load-measuring instrument
JP2007078678A (en) Rotation supporting device with displacement measuring unit, and rotation supporting device with load measuring unit
JP2008232960A (en) Magnetizer of encoder
JP2007051962A (en) Load measuring apparatus
JP5151634B2 (en) Magnetization method of encoder
JP2006258801A (en) Rolling bearing unit with displacement measuring device and rolling bearing unit with load cell device
JP5045490B2 (en) Magnetizing method and magnetizing apparatus for encoder
JP5092393B2 (en) Method for assembling state quantity measuring device for rolling bearing unit
JP2007085761A (en) Magnetization method and magnetizing apparatus for encoder
JP2009019880A (en) State quantity measuring device for rolling bearing unit
JP2006058256A (en) Rotation detector
JP4956940B2 (en) State quantity measuring device
JP2006292730A (en) Rolling bearing unit with displacement-measuring device, and rolling bearing unit with load-measuring device
JP5200898B2 (en) Inspection method and inspection device for state quantity measuring device of rolling bearing unit
KR20220009585A (en) Absolute position detection device and detection method of rotating body
JP4735526B2 (en) State quantity measuring device for rolling bearing units
JP4941140B2 (en) State quantity measuring device for rolling bearing units
JP2008122171A (en) Method of exchanging sensor of bearing unit with state quantity measuring device
JP2008232682A (en) Apparatus for measuring quantity of state of rolling bearing unit