JP2007078678A - Rotation supporting device with displacement measuring unit, and rotation supporting device with load measuring unit - Google Patents

Rotation supporting device with displacement measuring unit, and rotation supporting device with load measuring unit Download PDF

Info

Publication number
JP2007078678A
JP2007078678A JP2006214195A JP2006214195A JP2007078678A JP 2007078678 A JP2007078678 A JP 2007078678A JP 2006214195 A JP2006214195 A JP 2006214195A JP 2006214195 A JP2006214195 A JP 2006214195A JP 2007078678 A JP2007078678 A JP 2007078678A
Authority
JP
Japan
Prior art keywords
detected
pair
rotation
encoder
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006214195A
Other languages
Japanese (ja)
Inventor
Ichiu Tanaka
一宇 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006214195A priority Critical patent/JP2007078678A/en
Publication of JP2007078678A publication Critical patent/JP2007078678A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure that determines axial displacement or axial load based on the phase difference between detection signals of a pair of sensors 5a and 5a, and can reduce axial dimension of a detected face of an encoder 4a using a combination of both sensors 5a and 5a. <P>SOLUTION: The encoder 4a is provided with a pair of cylinder sections 9 and 10 superimposed on each other concentrically in the radial direction. An outer-diameter-side detected face 11 facing a detecting section 17 of one sensor 5a is disposed on the outer peripheral surface of the cylinder section 9 on the radial outside, and an inner-diameter-side detected face 12 facing a detecting section 17 of the other sensor 5a is disposed on the outer peripheral surface of the cylinder section 10 on the radial inside. The tilting direction of the boundary of characteristic variation is made different between the outer-diameter-side detected face 11 and inner-diameter-side detected face 12. Employing such a constitution, the above-mentioned problem is solved. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明に係る変位測定装置付回転支持装置及び荷重測定装置付回転支持装置は、例えば自動車の車輪支持部や各種機械装置の回転支持部に組み込んで、静止側部材と回転側部材との間の軸方向に関する相対変位量や作用荷重を測定する為に利用する。   A rotation support device with a displacement measuring device and a rotation support device with a load measuring device according to the present invention are incorporated in, for example, a wheel support portion of an automobile or a rotation support portion of various mechanical devices, and are arranged between a stationary side member and a rotation side member. It is used to measure relative displacement and working load in the axial direction.

例えば自動車の車輪は懸架装置に対し、複列アンギュラ型の転がり軸受ユニット等の転がり軸受ユニットにより回転自在に支持する。又、自動車の走行安定性を確保する為に、アンチロックブレーキシステム(ABS)、トラクションコントロールシステム(TCS)、電子制御式スタビリティコントロールシステム(ESC)等の車両用走行安定化装置が使用されている。この様な各種車両用走行安定化装置を制御する為には、車輪の回転速度、車体に加わる各方向の加速度等の信号が必要になる。そして、より高度の制御を行なう為には、車輪を介して上記転がり軸受ユニットに加わる荷重(例えばラジアル荷重とアキシアル荷重との一方又は双方)の大きさを知る事が好ましい場合がある。   For example, automobile wheels are rotatably supported by a rolling bearing unit such as a double-row angular type rolling bearing unit with respect to a suspension device. Also, in order to ensure the running stability of automobiles, vehicle running stabilization devices such as anti-lock brake system (ABS), traction control system (TCS), electronically controlled stability control system (ESC) are used. Yes. In order to control such various vehicle running stabilization devices, signals such as the rotational speed of the wheels and the acceleration in each direction applied to the vehicle body are required. In order to perform higher-level control, it may be preferable to know the magnitude of a load (for example, one or both of a radial load and an axial load) applied to the rolling bearing unit via a wheel.

この様な問題に対応できる発明として、例えば特許文献1には、転がり軸受ユニットに加わるアキシアル荷重を測定する構造が記載されている。この特許文献1に記載された構造の場合、外輪の外周面に設けた固定側フランジの内側面複数個所で、この固定側フランジをナックルに結合する為のボルトを螺合する為のねじ孔を囲む部分に、それぞれ荷重センサを添設している。上記外輪を上記ナックルに支持固定した状態でこれら各荷重センサは、このナックルの外側面と上記固定側フランジの内側面との間で挟持される。この様な転がり軸受ユニットの荷重測定装置の場合、車輪と上記ナックルとの間に加わるアキシアル荷重は、上記各荷重センサにより測定される。   As an invention that can cope with such a problem, for example, Patent Document 1 describes a structure for measuring an axial load applied to a rolling bearing unit. In the case of the structure described in Patent Document 1, screw holes for screwing bolts for coupling the fixed side flange to the knuckle are provided at a plurality of locations on the inner surface of the fixed side flange provided on the outer peripheral surface of the outer ring. Load sensors are attached to the surrounding parts. Each load sensor is clamped between the outer surface of the knuckle and the inner surface of the fixed flange in a state where the outer ring is supported and fixed to the knuckle. In the case of such a load measuring device for a rolling bearing unit, the axial load applied between the wheel and the knuckle is measured by the load sensors.

ところが、この様な特許文献1に記載された構造の場合、ナックルに対し外輪を支持固定する為のボルトと同数だけ、荷重センサを設ける必要がある。この為、荷重センサ自体が高価である事と相まって、転がり軸受ユニットの荷重測定装置全体としてのコストが相当に嵩む事が避けられない。又、転がり軸受ユニットに加わる荷重を測定する為に専用のセンサを設けている為、この点からも、コストが嵩む事が避けられない。   However, in the case of the structure described in Patent Document 1, it is necessary to provide the same number of load sensors as bolts for supporting and fixing the outer ring to the knuckle. For this reason, coupled with the fact that the load sensor itself is expensive, it is inevitable that the cost of the entire load measuring device of the rolling bearing unit is considerably increased. Further, since a dedicated sensor is provided for measuring the load applied to the rolling bearing unit, it is inevitable that the cost increases from this point.

この様な不都合を解消できる発明として、例えば特願2005−147642号には、荷重の作用方向に配置された1対のセンサの出力信号の位相差に基づき、転がり軸受ユニットに加わる荷重の大きさを測定する発明(先発明)が開示されている。図20〜23は、この先発明の構造を示している。この先発明の構造は、図20に示す様に、懸架装置に支持された状態で回転しない静止側部材である外輪1の径方向内方に、車輪を支持固定する回転側部材であるハブ2を、複数個の転動体3、3を介して回転自在に支持している。そして、このハブ2の中間部に、永久磁石により円筒状に構成したエンコーダ4を外嵌固定すると共に、上記外輪1の軸方向中間部で複列に配置された上記各転動体3、3の間部分に1対のセンサ5、5を、それぞれの検出部を被検出面である上記エンコーダ4の外周面に近接対向させた状態で設けている。   As an invention that can eliminate such inconvenience, for example, Japanese Patent Application No. 2005-147642 discloses the magnitude of a load applied to a rolling bearing unit based on the phase difference between the output signals of a pair of sensors arranged in the direction of load application. An invention (prior invention) is disclosed. 20 to 23 show the structure of the present invention. As shown in FIG. 20, the structure of this prior invention has a hub 2 that is a rotating side member that supports and fixes a wheel on the radially inner side of the outer ring 1 that is a stationary side member that does not rotate while being supported by a suspension device. These are rotatably supported via a plurality of rolling elements 3 and 3. Then, an encoder 4 configured in a cylindrical shape by a permanent magnet is externally fitted and fixed to an intermediate portion of the hub 2, and each of the rolling elements 3 and 3 disposed in a double row at an axially intermediate portion of the outer ring 1. A pair of sensors 5 and 5 are provided in the intermediate portion in a state where the respective detection portions are closely opposed to the outer peripheral surface of the encoder 4 which is the detection surface.

上記エンコーダ4の外周面には、図21〜23に示す様に、N極に着磁した部分(第一被検出部)とS極に着磁した部分(第二被検出部)とを、円周方向に関して交互に且つ等間隔(等しい中心角ピッチ)で配置している。これらN極に着磁された部分とS極に着磁された部分との境界は、上記エンコーダ4の軸方向に対し同じ角度だけ傾斜させると共に、この軸方向に対する傾斜方向を、このエンコーダ4の軸方向中間部を境に互いに逆方向としている。従って、上記N極に着磁された部分とS極に着磁された部分とは、軸方向中間部が円周方向に関して最も突出した(又は凹んだ)、「く」字形となっている。   On the outer peripheral surface of the encoder 4, as shown in FIGS. 21 to 23, a portion magnetized in the N pole (first detected portion) and a portion magnetized in the S pole (second detected portion), They are arranged alternately and at equal intervals (equal center angle pitch) in the circumferential direction. The boundary between the part magnetized in the N pole and the part magnetized in the S pole is inclined by the same angle with respect to the axial direction of the encoder 4, and the inclination direction with respect to the axial direction of the encoder 4 is The axial directions are opposite to each other at the intermediate portion. Therefore, the portion magnetized in the N pole and the portion magnetized in the S pole have a “<” shape with the axially middle portion protruding (or recessed) most in the circumferential direction.

又、上記各センサ5、5は、検出部に、ホールIC、ホール素子、MR、GMR等の磁気検知素子を組み込んでいる。この様な両センサ5、5の検出部が上記エンコーダ4の外周面に対向する位置は、このエンコーダ4の円周方向に関して同じ位置としている。言い換えれば、上記両センサ5、5の検出部は、上記外輪1の中心軸を含む同一の仮想平面上に配置されている。又、この外輪1と上記ハブ2との間にアキシアル荷重が作用しない状態で、上記N極に着磁された部分と上記S極に着磁された部分との軸方向中間部で円周方向に関して最も突出した部分(境界の傾斜方向が変化する部分)が、上記両センサ5、5の検出部同士の間の丁度中央位置に存在する様に、各部材4、5、5の設置位置を規制している。尚、図示の構造では、上記エンコーダ4として永久磁石製のものを使用している為、上記両センサ5、5側に永久磁石を組み込んではいない。   Each of the sensors 5 and 5 incorporates a magnetic detection element such as a Hall IC, a Hall element, MR, or GMR in the detection unit. The positions at which the detection parts of both the sensors 5 and 5 face the outer peripheral surface of the encoder 4 are the same with respect to the circumferential direction of the encoder 4. In other words, the detection parts of the sensors 5 and 5 are arranged on the same virtual plane including the central axis of the outer ring 1. Further, in a state where an axial load is not applied between the outer ring 1 and the hub 2, a circumferential direction is provided at an axial intermediate portion between the portion magnetized at the N pole and the portion magnetized at the S pole. The positions where the members 4, 5 and 5 are installed are such that the most protruding part (the part where the inclination direction of the boundary changes) exists at the center position between the detection parts of the sensors 5 and 5 above. It is regulated. In the structure shown in the figure, since the encoder 4 is made of a permanent magnet, no permanent magnet is incorporated on both the sensors 5 and 5 side.

上述の様に構成する先発明の構造の場合、上記外輪1と上記ハブ2との間にアキシアル荷重が作用すると、上記両センサ5、5の出力信号が変化する位相がずれる。即ち、上記外輪1と上記ハブ2との間にアキシアル荷重が作用していない状態では、上記両センサ5、5の検出部は、図23の(A)の実線イ、イ上、即ち、上記最も突出した部分から軸方向に同じだけずれた部分に対向する。従って、上記両センサ5、5の出力信号の位相は、同図の(C)に示す様に一致する。これに対し、上記エンコーダ4を固定したハブ2に、図23の(A)で下向きのアキシアル荷重が作用し(上記外輪1と上記ハブ2とが軸方向に相対変位し)た場合には、上記両センサ5、5の検出部は、図23の(A)の破線ロ、ロ上、即ち、上記最も突出した部分からの軸方向に関するずれが互いに異なる部分に対向する。この状態では上記両センサ5、5の出力信号の位相は、同図の(B)に示す様にずれる。更に、上記エンコーダ4を固定したハブ2に、図23の(A)で上向きのアキシアル荷重が作用した場合には、上記両センサ5、5の検出部は、図23の(A)の鎖線ハ、ハ上、即ち、上記最も突出した部分からの軸方向に関するずれが、逆方向に互いに異なる部分に対向する。この状態では上記両センサ5、5の出力信号の位相は、同図の(D)に示す様にずれる。   In the case of the structure of the prior invention configured as described above, when an axial load is applied between the outer ring 1 and the hub 2, the phase at which the output signals of the sensors 5, 5 change is shifted. That is, in the state where an axial load is not applied between the outer ring 1 and the hub 2, the detecting portions of the sensors 5 and 5 are on the solid lines A and B in FIG. It faces a portion that is shifted by the same amount in the axial direction from the most protruding portion. Accordingly, the phases of the output signals of the sensors 5 and 5 coincide as shown in FIG. On the other hand, when a downward axial load acts on the hub 2 to which the encoder 4 is fixed in FIG. 23A (the outer ring 1 and the hub 2 are relatively displaced in the axial direction), The detection parts of both the sensors 5 and 5 are opposed to the broken lines B and B in FIG. 23A, that is, the parts different from each other in the axial direction from the most protruding part. In this state, the phases of the output signals of the sensors 5 and 5 are shifted as shown in FIG. Further, when an upward axial load is applied to the hub 2 to which the encoder 4 is fixed as shown in FIG. 23A, the detecting portions of both the sensors 5 and 5 are connected to the chain line haf shown in FIG. , C, that is, the deviation in the axial direction from the most projecting portion opposes different portions in the opposite direction. In this state, the phases of the output signals of the sensors 5 and 5 are shifted as shown in FIG.

この様に、先発明の構造の場合には、上記両センサ5、5の出力信号の位相が、上記外輪1と上記ハブ2との間に加わるアキシアル荷重の方向に応じた方向にずれる。又、このアキシアル荷重により上記両センサ5、5の出力信号の位相がずれる程度(変位量)は、このアキシアル荷重が大きくなる程大きくなる。従って、上述した先発明の場合には、上記両センサ5、5の出力信号の位相ずれの有無、ずれが存在する場合にはその向き及び大きさに基づいて、上記外輪1とハブ2との軸方向の相対変位の向き及び大きさ、延いては、これら外輪1とハブ2との間に作用しているアキシアル荷重の向き及び大きさを求められる。又、上記各センサ5、5の出力信号の周波数は、車輪の回転速度に比例する。従って、少なくとも一方のセンサ5の出力信号の周波数に基づいて、車輪の回転速度を求める事ができる。この様に、先発明の構造の場合には、1個のエンコーダ4と1対のセンサ5、5とにより、上記外輪1とハブ2との間に作用するアキシアル荷重だけでなく、車輪の回転速度をも求める事ができる。この為、自動車の走行制御用の情報を測定する装置の低コスト化を図れる。   Thus, in the case of the structure of the prior invention, the phases of the output signals of the sensors 5 and 5 are shifted in the direction corresponding to the direction of the axial load applied between the outer ring 1 and the hub 2. Further, the degree to which the phase of the output signals of the sensors 5, 5 is shifted by this axial load (displacement amount) increases as the axial load increases. Therefore, in the case of the above-described prior invention, the presence or absence of a phase shift between the output signals of the sensors 5 and 5 and, if there is a shift, based on the direction and size of the outer ring 1 and the hub 2. The direction and magnitude of the relative displacement in the axial direction, and thus the direction and magnitude of the axial load acting between the outer ring 1 and the hub 2 can be obtained. The frequency of the output signals of the sensors 5 and 5 is proportional to the rotational speed of the wheels. Therefore, the rotational speed of the wheel can be obtained based on the frequency of the output signal of at least one sensor 5. Thus, in the case of the structure of the prior invention, not only the axial load acting between the outer ring 1 and the hub 2 but also the rotation of the wheel by the single encoder 4 and the pair of sensors 5 and 5. You can also ask for speed. For this reason, it is possible to reduce the cost of an apparatus for measuring information for driving control of an automobile.

尚、前記特願2005−147642号には、上記エンコーダ4を磁性材製とすると共に、第一被検出部を凹部とし、第二被検出部を凸部とし、且つ、上記1対のセンサ5、5側に永久磁石を組み込んだ構造を採用する事もできる旨、記載されている。この様な構造を採用した場合も、上述の図20〜23に示した構造の場合と同様の原理で、上記アキシアル荷重と上記回転速度とを求める事ができる。   In Japanese Patent Application No. 2005-147642, the encoder 4 is made of a magnetic material, the first detected portion is a concave portion, the second detected portion is a convex portion, and the pair of sensors 5 It is described that a structure in which a permanent magnet is incorporated on the 5 side can be adopted. Even when such a structure is adopted, the axial load and the rotational speed can be obtained based on the same principle as that of the structure shown in FIGS.

上述した様なエンコーダ4とセンサ5、5とを含んで構成する変位測定装置は、図20に示した様な車輪支持用軸受ユニットの他、工作機械等の各種機械装置を構成する回転支持装置に組み込んで使用する事もできる。
何れにしても、上述した様な構成を有する先発明のエンコーダ4の場合、狭小空間への設置を可能とする為の、軸方向の小型化要求に対応しにくいと言った問題がある。即ち、上述した変位測定装置に関する、軸方向変位やアキシアル荷重の測定値の信頼性を確保する為には、上記各センサ5、5の出力信号の波形を安定させる必要がある。そして、この為には、これら各センサ5、5の検出部を対向させる1対の被検出面{第一被検出部(N極、凹部)と第二被検出部(S極、凸部)との境界の傾きを互いに逆にした1対の円輪面}の軸方向寸法を、それぞれ最低でも所定量ずつ確保しておく必要がある。これに対し、上述した先発明のエンコーダ4の場合には、上記両被検出面を、円筒部の周面(このエンコーダ4の外周面)に軸方向に関して直列に配置する構成を採用している。この為、この円筒部(上記エンコーダ4)の軸方向寸法を、最低でも上記所定量の2倍は確保しておく必要がある。従って、上述した先発明のエンコーダ4の場合には、上記両被検出面を設ける円筒部の軸方向寸法が嵩み易く、軸方向の小型化要求(特に、この円筒部の軸方向寸法を上記所定量の2倍未満にすると言った要求)には対応しにくい。
The displacement measuring device including the encoder 4 and the sensors 5 and 5 as described above is a rotation support device that constitutes various machine devices such as a machine tool in addition to the wheel support bearing unit as shown in FIG. It can also be used by incorporating it in
In any case, the encoder 4 of the prior invention having the above-described configuration has a problem that it is difficult to meet the demand for downsizing in the axial direction so that it can be installed in a narrow space. That is, in order to ensure the reliability of the measured values of the axial displacement and the axial load related to the displacement measuring device described above, it is necessary to stabilize the waveform of the output signal of each of the sensors 5 and 5. For this purpose, a pair of detection surfaces {first detected portion (N pole, concave portion) and second detected portion (S pole, convex portion) facing the detection portions of these sensors 5, 5 It is necessary to secure at least a predetermined amount in each of the axial dimensions of a pair of circular ring surfaces with the inclinations of the boundaries opposite to each other. On the other hand, in the case of the encoder 4 of the prior invention described above, a configuration is adopted in which both the detected surfaces are arranged in series in the axial direction on the peripheral surface of the cylindrical portion (the outer peripheral surface of the encoder 4). . For this reason, it is necessary to ensure the axial dimension of the cylindrical portion (the encoder 4) at least twice the predetermined amount. Therefore, in the case of the encoder 4 of the above-described invention, the axial dimension of the cylindrical portion provided with the two detection surfaces is easily bulky, and the axial size reduction requirement (in particular, the axial dimension of the cylindrical portion is the above-described It is difficult to respond to a request that is less than twice the predetermined amount.

特開平3−209016号公報Japanese Patent Laid-Open No. 3-209016

本発明の変位測定装置付回転支持装置及び荷重測定装置付回転支持装置は、上述の様な事情に鑑み、エンコーダの軸方向の小型化要求に十分に応えられる構造を実現すべく発明したものである。   The rotation support device with a displacement measuring device and the rotation support device with a load measuring device according to the present invention have been invented to realize a structure that can sufficiently meet the downsizing requirement in the axial direction of the encoder in view of the above-described circumstances. is there.

本発明の変位測定装置付回転支持装置、又は、荷重測定装置付回転支持装置は、回転支持装置と、変位測定装置、又は、荷重測定装置とを備える。
このうちの回転支持装置は、静止側周面に静止側軌道を有し、使用時にも回転しない静止側部材と、回転側周面に回転側軌道を有し、使用時に回転する回転側部材と、この回転側軌道と上記静止側軌道との間に転動自在に設けられた複数個の転動体とを備える。
又、上記変位測定装置、又は、荷重測定装置は、エンコーダと、1対のセンサとを備える。
このうちのエンコーダは、互いに同心に且つ径方向に重畳して配置された1対の円筒部を有し、これら各円筒部の外周面又は内周面をそれぞれ被検出面とすると共に、上記回転側部材又はこの回転側部材と同期して回転する部分に、この回転側部材と同心に支持固定されている。そして、上記両被検出面の特性をそれぞれ、円周方向に関して交互に変化させると共に、少なくとも一方の被検出面の円周方向に関する特性変化のパターンを、測定すべき変位の方向である軸方向に亙り、他方の被検出面と異なる傾向で漸次変化させている。
又、上記1対のセンサは、一方のセンサの検出部を上記1対の被検出面のうちの一方の被検出面の軸方向一部に、他方のセンサの検出部を他方の被検出面の軸方向一部に、それぞれ対向させた状態で、使用時にも回転しない部分に支持されている。そして、それぞれが自身の検出部を対向させた上記何れかの被検出面の特性変化のパターンに対応して、出力信号のパターンを変化させる。
The rotation support device with a displacement measurement device or the rotation support device with a load measurement device according to the present invention includes a rotation support device and a displacement measurement device or a load measurement device.
Among these, the rotation support device has a stationary side track on the stationary side circumferential surface and does not rotate during use, and a rotation side member that has a rotation side track on the rotating side circumferential surface and rotates during use. A plurality of rolling elements are provided between the rotation side track and the stationary side track so as to be freely rollable.
The displacement measuring device or the load measuring device includes an encoder and a pair of sensors.
Of these, the encoder has a pair of cylindrical portions arranged concentrically and overlapping in the radial direction. The outer peripheral surface or inner peripheral surface of each cylindrical portion is a detected surface, and the rotation It is supported and fixed concentrically with the rotating side member on a side member or a portion that rotates in synchronization with the rotating side member. Then, the characteristics of both of the detected surfaces are alternately changed with respect to the circumferential direction, and the characteristic change pattern with respect to the circumferential direction of at least one of the detected surfaces is changed in the axial direction, which is the direction of displacement to be measured It is gradually changed with a tendency different from that of the other detected surface.
Further, the pair of sensors includes a detection portion of one sensor in a part of one of the detection surfaces in the axial direction of one detection surface and a detection portion of the other sensor as the other detection surface. Are supported by a portion that does not rotate even when used in a state of being opposed to a part of each of the axial directions. Then, the pattern of the output signal is changed in accordance with the characteristic change pattern of any one of the above-described detection surfaces each facing its own detection unit.

上述の様に構成する本発明の変位測定装置付回転支持装置及び荷重測定装置付回転支持装置の場合、静止側部材と回転側部材との間にアキシアル荷重が作用する事に基づき、これら静止側部材と回転側部材とが軸方向に相対変位すると、この相対変位の向き及び大きさに応じて、1対のセンサのうちの少なくとも一方のセンサの出力信号のパターン(例えば、位相)が、他方のセンサの出力信号のパターンと異なる傾向で変化する。この為、これら両センサの出力信号を比較すれば(例えば、互いの位相差を求めれば)、その結果に基づき、上記軸方向の相対変位及びアキシアル荷重の向き及び大きさを求める事ができる。   In the case of the rotation support device with a displacement measurement device and the rotation support device with a load measurement device of the present invention configured as described above, an axial load acts between the stationary side member and the rotation side member. When the member and the rotation side member are relatively displaced in the axial direction, the pattern (for example, phase) of the output signal of at least one of the pair of sensors is changed according to the direction and magnitude of the relative displacement. It changes with the tendency different from the pattern of the output signal of the sensor. Therefore, if the output signals of these two sensors are compared (for example, if the phase difference between them is obtained), the relative displacement in the axial direction and the direction and magnitude of the axial load can be obtained based on the result.

特に、本発明の場合には、エンコーダを構成する1対の円筒部の外周面又は内周面に、それぞれ1つずつ被検出面を設けている。この為、この様な本発明のエンコーダと、1つの円筒部の外周面又は内周面に1対の被検出面を軸方向に並列配置する先発明のエンコーダとで、各被検出面の軸方向寸法を互いに同じ大きさにすると、本発明のエンコーダの場合には、先発明のエンコーダの場合に比べて、上記各被検出面を設ける円筒部の軸方向寸法を半分の大きさにできる。そして、本発明のエンコーダの場合には、上記1対の円筒部を、互いに同心に且つ径方向に重畳して配置している為、これら両円筒部が軸方向に嵩張る事はない。従って、本発明の場合には、エンコーダを狭小空間に設置する為の、このエンコーダの軸方向の小型化要求に対応し易くできる。
尚、上記回転側部材と静止側部材との間に作用するアキシアル荷重を求める為には、必ずしもこれら回転側部材と静止側部材との相対変位量を求める必要はない。即ち、演算器に、1対のセンサの出力信号に基づいて、上記静止側部材と上記回転側部材との間に作用するアキシアル荷重を直接(上記相対変位量を求める過程を経る事なく)算出する機能を持たせる事もできる。
In particular, in the case of the present invention, one detected surface is provided on each of the outer peripheral surface or inner peripheral surface of a pair of cylindrical portions constituting the encoder. Therefore, such an encoder of the present invention and the encoder of the previous invention in which a pair of detected surfaces are arranged in parallel in the axial direction on the outer peripheral surface or inner peripheral surface of one cylindrical portion, If the directional dimensions are the same, the encoder according to the present invention can reduce the axial dimension of the cylindrical portion provided with each of the detected surfaces to half that of the encoder according to the previous invention. In the case of the encoder of the present invention, the pair of cylindrical portions are arranged concentrically and overlapped in the radial direction, so that both the cylindrical portions are not bulky in the axial direction. Therefore, in the case of the present invention, it is possible to easily meet the demand for downsizing the encoder in the axial direction for installing the encoder in a narrow space.
In order to determine the axial load acting between the rotating side member and the stationary side member, it is not always necessary to determine the relative displacement amount between the rotating side member and the stationary side member. That is, the arithmetic unit directly calculates the axial load acting between the stationary member and the rotating member based on the output signals of the pair of sensors (without going through the process of obtaining the relative displacement). It can also have a function to do.

本発明を実施する場合には、例えば請求項2、9に記載した様に、エンコーダに設けた1対の被検出面にそれぞれ、互いに異なる特性を有する第一被検出部と第二被検出部とを、円周方向に関して交互に、且つ、上記両被検出面同士で互いに等しい中心角ピッチで配置する。そして、上記第一、第二両被検出部の境界を上記エンコーダの軸方向に対し、上記両被検出面同士で互いに異なる角度(絶対値が同じで方向が逆の場合を含む)だけ傾斜させる。   When carrying out the present invention, for example, as described in claims 2 and 9, a first detected portion and a second detected portion having different characteristics on a pair of detected surfaces provided in the encoder, respectively. Are alternately arranged in the circumferential direction and at the same central angle pitch between the two detection surfaces. Then, the boundary between the first and second detected portions is inclined with respect to the axial direction of the encoder by different angles (including the case where the absolute values are the same and the directions are opposite) on the detected surfaces. .

又、上記請求項2、9に記載した発明を実施する場合に、好ましくは、請求項3、10に記載した様に、エンコーダを構成する1対の円筒部をそれぞれ磁性材製とすると共に、第一被検出部を、凹部、透孔、切り欠きのうちの何れかとし、第二被検出部を、円周方向に隣り合うこれら各第一被検出部同士の間に存在する部分とする。且つ、1対のセンサの検出部を、それぞれ磁気検知素子と永久磁石とを組み合わせて成るものとし、上記両センサの検出部を構成する永久磁石として、互いに1つの永久磁石を共用する。
この様な構造を採用すれば、全体としての部品点数を減らす事ができる為、コストの低減を図れる。
When carrying out the inventions described in the second and ninth aspects, preferably, as described in the third and tenth aspects, each of the pair of cylindrical portions constituting the encoder is made of a magnetic material, The first detected portion is one of a recess, a through hole, and a notch, and the second detected portion is a portion that exists between the first detected portions adjacent in the circumferential direction. . In addition, the detection units of the pair of sensors are each composed of a combination of a magnetic sensing element and a permanent magnet, and one permanent magnet is shared as the permanent magnet that constitutes the detection unit of both sensors.
By adopting such a structure, the number of parts as a whole can be reduced, so that the cost can be reduced.

又、本発明を実施する場合には、例えば請求項4、11に記載した様に、回転側部材を静止側部材の径方向内方に設け、この回転側部材又はこの回転側部材に内嵌固定した回転軸に対し、エンコーダを支持固定する事もできる。
又、例えば請求項5、12に記載した様に、静止側部材を自動車の懸架装置に支持固定する静止輪とし、回転側部材を車輪を支持固定するハブとする事もできる。
又、例えば請求項6、13に記載した様に、1対のセンサの出力信号の位相差に基づいて、静止側部材と回転側部材との軸方向の相対変位量(相対変位の向き及び大きさ)を算出する演算器を備える事もできる。
更に、本発明のうちの変位測定装置付回転支持装置の発明を実施する場合に、例えば請求項7に記載した様に、上記演算器に、算出した軸方向の相対変位量に基づき、静止側部材と回転側部材との間に作用しているアキシアル荷重を算出する機能を持たせる事もできる。
In carrying out the present invention, for example, as described in claims 4 and 11, the rotation side member is provided radially inward of the stationary side member, and the rotation side member or the rotation side member is fitted inside. The encoder can be supported and fixed to the fixed rotating shaft.
Further, for example, as described in claims 5 and 12, the stationary member can be a stationary wheel that is supported and fixed to a suspension device of an automobile, and the rotating member can be a hub that supports and fixes the wheel.
Further, as described in, for example, claims 6 and 13, based on the phase difference between the output signals of a pair of sensors, the relative displacement amount in the axial direction between the stationary member and the rotating member (direction and magnitude of relative displacement). It is also possible to provide an arithmetic unit for calculating (S).
Furthermore, when carrying out the invention of the rotation support device with a displacement measuring device of the present invention, for example, as described in claim 7, the computing unit is operated on the stationary side based on the calculated axial relative displacement amount. A function of calculating an axial load acting between the member and the rotation side member can be provided.

図1〜9は、請求項1、2、4、5、6、7、8、9、11、12、13に対応する、本発明の実施例1を示している。本実施例の場合、対象となる回転支持装置は、自動車の車輪を懸架装置に対して回転自在に支持する為の車輪支持用軸受ユニットである。即ち、図1に示す様に、懸架装置に支持された状態で回転しない静止側部材である外輪1の径方向内方に、車輪を支持固定する回転側部材であるハブ2を、複数個の転動体3、3を介して回転自在に支持している。又、上記外輪1の内端部(軸方向に関して「内」とは、自動車への組み付け状態で車両の幅方向中央側を言い、図1の右側。反対に、車両の幅方向外側となる、図1の左側を、軸方向に関して「外」と言う。本明細書全体で同じ。)に有底円筒状のカバー6を内嵌固定し、このカバー6により、上記外輪1の内端開口を塞いでいる。そして、上記ハブ2の内端部に円環状のエンコーダ4aを、このハブ2と同心に支持固定すると共に、上記カバー6の底板部の径方向外端部に、1対のセンサ5a、5aを支持している。   1 to 9 show a first embodiment of the present invention corresponding to claims 1, 2, 4, 5, 6, 7, 8, 9, 11, 12, and 13. FIG. In the case of the present embodiment, the target rotation support device is a wheel support bearing unit for rotatably supporting the wheel of the automobile with respect to the suspension device. That is, as shown in FIG. 1, a hub 2 that is a rotating side member that supports and fixes a wheel is radially inward of an outer ring 1 that is a stationary side member that does not rotate while being supported by a suspension device. It is rotatably supported via rolling elements 3 and 3. Further, the inner end of the outer ring 1 ("inner" in the axial direction means the center side in the width direction of the vehicle when assembled to the automobile, and is the right side in Fig. 1. On the contrary, the outer side in the width direction of the vehicle. 1 is referred to as “outside” in the axial direction. The same applies throughout the present specification.) A bottomed cylindrical cover 6 is fitted and fixed, and the cover 6 opens the inner end opening of the outer ring 1. It is blocking. An annular encoder 4a is supported and fixed concentrically with the hub 2 at the inner end portion of the hub 2, and a pair of sensors 5a and 5a are provided at the radially outer end portion of the bottom plate portion of the cover 6. I support it.

上記エンコーダ4aは、それぞれが軟鋼板等の磁性金属板により全体を円環状に構成した1対の環状部材7、8を、図1〜2に示す様に、径方向に関して互いに組み合わせて成る。そして、径方向に関して互いに重ね合わせた上記両環状部材7、8の軸方向外端部を、上記ハブ2の内端部に外嵌固定している。又、上記両環状部材7、8の軸方向内半部には、それぞれ互いに同心に、且つ、径方向に重畳して配置された1対の円筒部9、10を設けている。そして、これら径方向外側の円筒部9及び径方向内側の円筒部10(それぞれ図1〜2に斜格子を付して示した部分)の各外周面を、それぞれ外径側被検出面11及び内径側被検出面12としている。図5〜6に示す様に、これら外径側被検出面11{図5〜6の(A)}及び内径側被検出面12{図5〜6の(B)}にはそれぞれ、第一被検出部である凸部13a(13b)と、第二被検出部である凹部14a(14b)とを、円周方向に関して交互に且つ等間隔(等しい中心角ピッチ)で配置している。これと共に、上記各凸13a(13b)と上記各凹部14a(14b)との境界を、上記エンコーダ4aの軸方向に対し同じ角度だけ傾斜させている。又、本実施例の場合には、上記軸方向に対する上記境界の傾斜角度の絶対値を、上記外径側被検出面11と上記内径側被検出面12とで互いに等しくする{|θ|(図示の例では45度)とする}と共に、上記軸方向に対する上記境界の傾斜方向(±)を、上記外径側被検出面11と上記内径側被検出面12とで互いに逆にしている。即ち、この外径側被検出面11に存在する境界の傾斜角度を+θとすると共に、上記内径側被検出面12に存在する境界の傾斜角度を−θとしている。又、上記各凸部13a(13b)と上記各凹部14a(14b)とを円周方向に関して交互に配置する中心角ピッチを、上記外径側被検出面11と上記内径側被検出面12とで互いに等しくしている。更に、これら外径側被検出面11と内径側被検出面12とで、上記各凸部13a、13b同士(上記各凹部14a、14b同士)の円周方向の配置の位相を、図5の鎖線α、α上、即ち、上記外径側被検出面11及び内径側被検出面12の軸方向中央部で互いに一致させている。   The encoder 4a is formed by combining a pair of annular members 7 and 8, each of which is formed into a ring shape by a magnetic metal plate such as a mild steel plate, as shown in FIGS. The outer end portions in the axial direction of the annular members 7 and 8 that are overlapped with each other in the radial direction are externally fitted and fixed to the inner end portion of the hub 2. In addition, a pair of cylindrical portions 9 and 10 are provided in the inner half of the annular members 7 and 8 in the axial direction so as to be concentric with each other and overlap in the radial direction. Then, the outer peripheral surfaces of these radially outer cylindrical portion 9 and radially inner cylindrical portion 10 (the portions shown in FIGS. 1 and 2 with diagonal grids) are respectively referred to as outer diameter detected surface 11 and The inner diameter side detection surface 12 is used. As shown in FIGS. 5 to 6, the outer diameter side detected surface 11 {(A) of FIGS. 5 to 6] and the inner diameter side detected surface 12 {(B) of FIGS. The convex portions 13a (13b) as the detected portions and the concave portions 14a (14b) as the second detected portions are alternately arranged at equal intervals (equal central angle pitch) in the circumferential direction. At the same time, the boundary between each projection 13a (13b) and each recess 14a (14b) is inclined by the same angle with respect to the axial direction of the encoder 4a. In the case of the present embodiment, the absolute value of the inclination angle of the boundary with respect to the axial direction is made equal between the outer diameter side detected surface 11 and the inner diameter side detected surface 12 {| θ | ( In the example shown in the drawing, the inclination direction (±) of the boundary with respect to the axial direction is reversed between the outer diameter side detected surface 11 and the inner diameter side detected surface 12. That is, the inclination angle of the boundary existing on the outer diameter side detection surface 11 is + θ, and the inclination angle of the boundary existing on the inner diameter side detection surface 12 is −θ. In addition, the center angle pitch at which the convex portions 13a (13b) and the concave portions 14a (14b) are alternately arranged in the circumferential direction is set to the outer diameter side detected surface 11 and the inner diameter side detected surface 12. Are equal to each other. Further, the phase of the circumferential arrangement of the convex portions 13a and 13b (the concave portions 14a and 14b) between the outer diameter side detected surface 11 and the inner diameter side detected surface 12 is shown in FIG. On the chain lines α, α, that is, the axially central portions of the outer diameter side detected surface 11 and the inner diameter side detected surface 12 are made to coincide with each other.

又、上記各センサ5a、5aはそれぞれ、ホールIC、ホール素子、MR、GMR等の磁気検知素子15と永久磁石16とを組み合わせて成る、検出部17を有する。そして、径方向外側に配置したセンサ5aの検出部17を上記外径側被検出面11に、径方向内側に配置したセンサ5aの検出部17を上記内径側被検出面12に、それぞれ対向させている。本実施例の場合、上記両検出部17、17が上記外径側被検出面11及び内径側被検出面12に対向する位置は、上記エンコーダ4aの円周方向に関して同じ位置としている。言い換えれば、上記両検出部17、17は、上記エンコーダ4aの中心軸を含む同一の仮想平面上に配置されている。又、上記外輪1と上記ハブ2との間にアキシアル荷重が作用しない状態で、上記両検出部17、17は、上記外径側被検出面11及び内径側被検出面12の軸方向中央部{図5の鎖線α、α上}に対向する様に、上記エンコーダ4a及び上記両センサ5a、5aの設置位置を規制している。又、これら各センサ5a、5aの出力信号は、それぞれハーネス18、18を通じて、車体側に設けた図示しない演算器に送り込み自在としている。   Each of the sensors 5a and 5a has a detection unit 17 formed by combining a permanent magnet 16 and a magnetic detection element 15 such as a Hall IC, a Hall element, MR, or GMR. Then, the detection part 17 of the sensor 5a arranged radially outside is opposed to the outer diameter side detected surface 11, and the detection part 17 of the sensor 5a arranged radially inside is opposed to the inner diameter side detected surface 12, respectively. ing. In the case of the present embodiment, the positions where both the detection portions 17 and 17 face the outer diameter side detected surface 11 and the inner diameter side detected surface 12 are the same position in the circumferential direction of the encoder 4a. In other words, the detection units 17 and 17 are arranged on the same virtual plane including the central axis of the encoder 4a. Further, in a state where an axial load does not act between the outer ring 1 and the hub 2, the detection parts 17, 17 are the axially central parts of the outer diameter side detected surface 11 and the inner diameter side detected surface 12. The installation positions of the encoder 4a and the sensors 5a and 5a are restricted so as to face {on the chain lines α and α in Fig. 5}. The output signals of the sensors 5a and 5a can be sent to a calculator (not shown) provided on the vehicle body side through harnesses 18 and 18, respectively.

上述の様に構成する本実施例の変位検出装置付回転支持装置(荷重測定装置付回転支持装置)の場合、上記外輪1と上記ハブ2との間にアキシアル荷重が作用すると、上記両センサ5a、5aの出力信号が変化する位相がずれる。即ち、上記外輪1と上記ハブ2との間にアキシアル荷重が作用していない状態では、上記両センサ5a、5aの検出部17、17は、図7(A)(a)の鎖線α、α上、即ち、上記外径側被検出面11及び内径側被検出面12の軸方向中央部に対向する。従って、上記両センサ5a、5aの出力信号の位相は、図7(A)(b)に示す様に一致する。尚、この様な出力結果は、同図(B)(b)に示す様な、前述した先発明で上記アキシアル荷重が作用していない場合に得られる出力結果と一致する。   In the case of the rotation support device with a displacement detection device (rotation support device with a load measuring device) of the present embodiment configured as described above, when an axial load acts between the outer ring 1 and the hub 2, both the sensors 5a. 5a is shifted in phase. That is, in a state where an axial load is not applied between the outer ring 1 and the hub 2, the detection portions 17 and 17 of the sensors 5a and 5a are shown by chain lines α and α in FIGS. That is, it faces the central part in the axial direction of the outer diameter side detected surface 11 and the inner diameter side detected surface 12. Accordingly, the phases of the output signals of the two sensors 5a and 5a coincide as shown in FIGS. Note that such an output result coincides with an output result obtained when the axial load is not applied in the above-described prior invention as shown in FIGS.

これに対し、上記エンコーダ4aを支持固定したハブ2に、図7(A)(a)で下向きのアキシアル荷重が作用し(上記外輪1と上記ハブ2とが軸方向に相対変位し)た場合には、上記両センサ5a、5aの検出部17、17は、図8(A)(a)の鎖線β、β上、即ち、上記軸方向中央部からの軸方向に関するずれが互いに等しい部分に対向する。この状態で、上記両センサ5a、5aの出力信号の位相は、図8(A)(b)に示す様にずれる。尚、この様な出力結果も、同図(B)(b)に示す様な、前述した先発明で上述した様なアキシアル荷重が作用した場合に得られる出力結果と一致する。   On the other hand, when a downward axial load acts on the hub 2 that supports and fixes the encoder 4a in FIGS. 7A and 7A (the outer ring 1 and the hub 2 are relatively displaced in the axial direction). The detectors 17 and 17 of both the sensors 5a and 5a are located on the chain lines β and β in FIGS. 8A and 8A, that is, at portions where the deviations in the axial direction from the central portion in the axial direction are equal to each other. opposite. In this state, the phases of the output signals of the sensors 5a and 5a are shifted as shown in FIGS. Note that such an output result also coincides with the output result obtained when the axial load as described above in the previous invention is applied as shown in FIGS.

更に、上記エンコーダ4aを支持固定したハブ2に、図7(A)(a)で上向きのアキシアル荷重が作用し(上記外輪1と上記ハブ2とが軸方向に相対変位し)た場合には、上記両センサ5a、5aの検出部17、17は、図9(A)(a)の鎖線γ、γ上、即ち、上記軸方向中央部からの軸方向に関するずれが、逆方向に互いに等しい部分に対向する。この状態で、上記両センサ5a、5aの出力信号の位相は、図9(A)(b)に示す様にずれる。尚、この様な出力結果も、同図(B)(b)に示す様な、前述した先発明で上述した様なアキシアル荷重が作用した場合に得られる出力結果と一致する。   Further, in the case where an upward axial load acts on the hub 2 supporting and fixing the encoder 4a in FIGS. 7A and 7A (the outer ring 1 and the hub 2 are relatively displaced in the axial direction), The detectors 17 and 17 of both the sensors 5a and 5a have the same displacement in the axial direction on the chain lines γ and γ in FIGS. 9A and 9A, that is, from the axial center. Opposite the part. In this state, the phases of the output signals of the two sensors 5a and 5a are shifted as shown in FIGS. Note that such an output result also coincides with the output result obtained when the axial load as described above in the previous invention is applied as shown in FIGS.

この様に、本実施例の変位測定装置付回転支持装置(荷重測定装置付回転支持装置)の場合には、前述した先発明の場合と同様、上記両センサ5a、5aの出力信号の位相が、上記外輪1と上記ハブ2との間に加わるアキシアル荷重の方向に応じた方向にずれる。又、このアキシアル荷重により上記両センサ5a、5aの出力信号の位相がずれる程度(変位量)は、このアキシアル荷重が大きくなる程大きくなる。そこで、本実施例の場合には、上記両センサ5a、5aの出力信号を前記演算器に、前記各ハーネス18、18を通じて送信する。そして、この演算器により、上記両センサ5a、5aの出力信号の位相ずれの有無、ずれが存在する場合にはその方向及び大きさに基づいて、上記外輪1とハブ2との軸方向の相対変位の向き及び大きさを求める。これと共に、この相対変位の向き及び大きさに基づいて、上記外輪1と上記ハブ2との間に作用しているアキシアル荷重の向き及び大きさを求める。このアキシアル荷重の作用方向及び大きさは、上記相対変位から求める他、上記両センサ5a、5aの出力信号の位相のずれから直接求める事もできる。又、上記各センサ5a、5aの出力信号の周波数は、上記エンコーダ4a及びハブ2の回転速度に応じて変化する。そこで、本実施例の場合には、上記演算器により、上記各センサ5a、5aのうちの少なくとも一方のセンサ5aの出力信号の周波数に基づいて、上記ハブ2の回転速度を求める。   Thus, in the case of the rotation support device with displacement measuring device (rotation support device with load measuring device) of the present embodiment, the phases of the output signals of both sensors 5a and 5a are the same as in the case of the previous invention. The direction of the axial load applied between the outer ring 1 and the hub 2 is shifted according to the direction. Further, the degree of displacement (displacement amount) of the output signals of the sensors 5a and 5a due to the axial load increases as the axial load increases. Therefore, in the case of the present embodiment, the output signals of both the sensors 5a and 5a are transmitted to the calculator through the harnesses 18 and 18, respectively. Then, with this calculator, the relative presence of the outer ring 1 and the hub 2 in the axial direction is determined based on the direction and magnitude of the output signal of the sensors 5a and 5a. Find the direction and magnitude of the displacement. At the same time, based on the direction and magnitude of the relative displacement, the direction and magnitude of the axial load acting between the outer ring 1 and the hub 2 are obtained. The acting direction and magnitude of the axial load can be obtained from the relative displacement or directly from the phase shift of the output signals of the sensors 5a and 5a. The frequency of the output signal of each of the sensors 5a and 5a varies according to the rotational speed of the encoder 4a and the hub 2. Therefore, in the case of the present embodiment, the rotational speed of the hub 2 is obtained by the computing unit based on the frequency of the output signal of at least one of the sensors 5a and 5a.

上述の様に構成し作用する本実施例の変位測定装置付回転支持装置(荷重測定装置付回転支持装置)の場合には、図7〜9の(A)(a)に示す様に、エンコーダ4aを構成する1対の円筒部9、10の外周面に、それぞれ被検出面(外径側被検出面11又は内径側被検出面12)を1つずつ設けている。これに対し、図7〜9の(B)(a)に示す様に、先発明のエンコーダ4の場合には、1つの円筒部19の外周面に1対の被検出面11、12を軸方向に並列配置している。この為、本実施例の場合と先発明の場合とで、上記各被検出面11、12の幅を互いに同じ大きさにすると、図7〜9に示す様に、本実施例{同図(A)}の場合には、先発明{同図(B)}の場合と同様の出力結果を得られる構造でありながら、本発明のエンコーダ4aを構成する各円筒部9、10(図1〜2に斜格子を付して示した部分)の軸方向寸法WA を、先発明のエンコーダ4を構成する円筒部19の軸方向寸法Wに比べて、半分の大きさ(WA =W/2)にできる。そして、本実施例のエンコーダ4aの場合には、上記1対の円筒部9、10を、互いに同心に且つ径方向に重畳して配置している為、これら両円筒部9、10が軸方向に嵩張る事はない。従って、本実施例の場合には、ハブ2とカバー6との間に存在する、軸方向寸法が小さい狭小空間に、上記各円筒部9、10をゆとりを持って設置できる。 In the case of the rotation support device with a displacement measuring device (rotation support device with a load measuring device) of the present embodiment constructed and operated as described above, as shown in FIGS. One detected surface (the outer diameter side detected surface 11 or the inner diameter side detected surface 12) is provided on each of the outer peripheral surfaces of the pair of cylindrical portions 9 and 10 constituting 4a. On the other hand, as shown in FIGS. 7-9 (B) (a), in the case of the encoder 4 of the prior invention, a pair of detected surfaces 11, 12 are pivoted on the outer peripheral surface of one cylindrical portion 19. They are arranged in parallel in the direction. Therefore, when the widths of the detected surfaces 11 and 12 are made the same in the case of the present embodiment and the case of the prior invention, as shown in FIGS. In the case of A)}, the cylindrical portions 9, 10 (FIG. 1 to FIG. 1) constituting the encoder 4a of the present invention have the structure that can obtain the same output result as in the case of the previous invention {FIG. the axial dimension W a of the part) to show 2 are denoted by the cross hatching, in comparison with the axial dimension W of the cylindrical portion 19 constituting the encoder 4 of the prior invention, the half size (W a = W / 2). In the case of the encoder 4a of the present embodiment, the pair of cylindrical portions 9, 10 are arranged concentrically and overlapped in the radial direction, so that both the cylindrical portions 9, 10 are in the axial direction. There is nothing bulky. Therefore, in the case of the present embodiment, each of the cylindrical portions 9 and 10 can be installed in a narrow space between the hub 2 and the cover 6 and having a small axial dimension.

次に、図10〜13は、やはり請求項1、2、4、5、6、7、8、9、11、12、13に対応する、本発明の実施例2を示している。本実施例の場合には、エンコーダ4bを構成する1対の円筒部9a、10aのうち、径方向外側の円筒部9aの内周面に外径側被検出面11を、径方向内側の円筒部10aの外周面に内径側被検出面12を、それぞれ設けている。又、本実施例の場合には、1対のセンサを、1つのセンサユニット20として一体化している。そして、このセンサユニット20内に設けた各センサの検出部17、17を1つずつ、上記外径側被検出面11と上記内径側被検出面12とに対向させている。又、上記1対のセンサの出力信号を図示しない演算器に送るハーネス18も、1本に束ねている。その他の構成及び作用は、上述した実施例1の場合と同様である。   Next, FIGS. 10 to 13 show a second embodiment of the present invention that also corresponds to the first, second, fourth, fifth, sixth, seventh, eighth, ninth, eleventh, twelfth and thirteenth aspects. In the case of the present embodiment, of the pair of cylindrical portions 9a and 10a constituting the encoder 4b, the outer diameter side detected surface 11 is provided on the inner peripheral surface of the radially outer cylindrical portion 9a, and the radially inner cylinder. An inner diameter side detection surface 12 is provided on the outer peripheral surface of the portion 10a. In the present embodiment, a pair of sensors are integrated as one sensor unit 20. And the detection parts 17 and 17 of each sensor provided in this sensor unit 20 are made to oppose the said outer diameter side detected surface 11 and the said inner diameter side detected surface 12 one by one. Further, the harness 18 that sends the output signals of the pair of sensors to a calculator (not shown) is also bundled into one. Other configurations and operations are the same as those of the first embodiment described above.

次に、図14〜15は、請求項1〜13に対応する、本発明の実施例3を示している。本実施例の場合には、1対のセンサの検出部17a、17bを構成する永久磁石として、1つの永久磁石16aを共用している。具体的には、この永久磁石16aのN極側の端面に磁気検知素子15を添設する事で一方の検出部17aを構成し、同じくS極側の端面に別の磁気検知素子15を添設する事で他方の検出部17bを構成している。そして、この様な構成を採用する事により、部品点数(永久磁石の数)を減らして、低コスト化を図っている。尚、本実施例の場合には、上記両検出部17a、17b同士で、上記各磁気検知素子15、15内を通る磁束の向きが互いに逆になる。この為、外輪1とハブ2(図1参照)との間にアキシアル荷重が作用していない状態では、上記1対のセンサの出力信号の位相が互いに逆になる。その他の構成及び作用は、上述した実施例2の場合と同様である。   Next, FIGS. 14 to 15 show a third embodiment of the present invention corresponding to claims 1 to 13. In the case of the present embodiment, one permanent magnet 16a is shared as a permanent magnet constituting the detection units 17a and 17b of the pair of sensors. Specifically, one detection unit 17a is configured by attaching the magnetic detection element 15 to the end face on the N pole side of the permanent magnet 16a, and another magnetic detection element 15 is attached to the end face on the S pole side. The other detection part 17b is comprised by providing. And by adopting such a configuration, the number of parts (the number of permanent magnets) is reduced and the cost is reduced. In the case of the present embodiment, the direction of the magnetic flux passing through each of the magnetic detection elements 15 and 15 is opposite to each other between the detection units 17a and 17b. For this reason, when an axial load is not acting between the outer ring 1 and the hub 2 (see FIG. 1), the phases of the output signals of the pair of sensors are opposite to each other. Other configurations and operations are the same as those of the second embodiment described above.

尚、本発明を実施する場合、エンコーダは、上記各実施例で示したものに限らず、特許請求の範囲に記載された条件を満たす限り、各種のものを採用できる。例えば、図16の(A)〜(D)に示す様な断面形状を有するエンコーダ4c〜4fを採用する事もできる。この場合に、互いに同心に且つ径方向に重畳して配置した1対の円筒部9c〜9f、10c〜10fの外周面と内周面とのうち、何れの周面を被検出面とするかは、任意に決定できる。但し、決定に際しては、上記被検出面に対向する部分にセンサ設置空間が必要である点に留意する。   When implementing the present invention, the encoder is not limited to those shown in the above embodiments, and various encoders can be adopted as long as the conditions described in the claims are satisfied. For example, encoders 4c to 4f having a cross-sectional shape as shown in FIGS. In this case, which one of the outer peripheral surface and the inner peripheral surface of the pair of cylindrical portions 9c to 9f, 10c to 10f arranged concentrically and overlapping in the radial direction is the detection surface? Can be arbitrarily determined. However, when determining, it should be noted that a sensor installation space is required in a portion facing the detected surface.

又、エンコーダを構成する1対の円筒部を磁性材製とする場合、これら各円筒部の外周面又は内周面に設ける1対の被検出面としては、例えば、図17に示す様に、第一被検出部を透孔21a、21bとし、第二被検出部を柱部22a、22bとしたものや、図18に示す様に、第一被検出部を切り欠き23a、23bとし、第二被検出部を舌片24a、24bとしたものを採用する事もできる。又、1対の円筒部を永久磁石製とし、且つ、これら各円筒部の外周面又は内周面に設ける1対の被検出面として、図19に示す様に、第一被検出部をN極に着磁された部分とし、第二被検出部をS極に着磁された部分としたものを採用する事もできる。この様に1対の円筒部を永久磁石製とする場合には、1対のセンサ側には永久磁石を組み込まない。   Further, when a pair of cylindrical portions constituting the encoder is made of a magnetic material, as a pair of detected surfaces provided on the outer peripheral surface or inner peripheral surface of each cylindrical portion, for example, as shown in FIG. The first detected portion is the through hole 21a, 21b, the second detected portion is the column portion 22a, 22b, or the first detected portion is notched 23a, 23b as shown in FIG. It is also possible to adopt a configuration in which the two detection target portions are tongue pieces 24a and 24b. Further, as shown in FIG. 19, the first detected portion is made of N as a pair of detected surfaces provided on the outer peripheral surface or inner peripheral surface of each cylindrical portion. It is also possible to adopt a part magnetized in the pole and a part in which the second detected part is magnetized in the S pole. When the pair of cylindrical portions are made of permanent magnets in this way, no permanent magnet is incorporated on the pair of sensor sides.

又、上述した各実施例では、エンコーダの軸方向に対する、第一被検出部(凹部等)と第二被検出部(凸部等)との境界の傾斜角度の絶対値を、1対の被検出面同士で互いに等しくする(|θ|とする)と共に、上記エンコーダの軸方向に対する上記境界の傾斜方向(±)を、上記1対の被検出面同士で互いに逆にする構成を採用した。但し、本発明を実施する場合、上記傾斜角度の絶対値は、上記1対の被検出面同士で互いに異ならせる事もできる。又、この様に1対の被検出面同士で上記傾斜角度の絶対値を互いに異ならせる場合には、上記傾斜方向を、上記1対の被検出面同士で互いに等しくしたり、何れかの被検出面の境界を軸方向に対し傾斜させない事もできる。何れの場合でも、静止側部材と回転側部材とが軸方向に相対変位した場合に、この相対変位の向き及び大きさに見合った分、1対のセンサの出力信号の位相を、互いにずらせる事ができる。但し、上記静止側部材と上記回転側部材との間の相対変位量及び作用荷重の測定感度を十分に確保する為には、上記両センサの出力信号の位相差を、軸方向の変位に対して高い割合で変化させられる様にするのが好ましい。従って、何れの構成を採用する場合も、上記両センサの出力信号の位相差を、軸方向の変位に対して高い割合で変化させられる様にすべく、一方の被検出面に存在する境界の方向と、上記他方の被検出面に存在する境界の方向との間の開き角度(角度差)を、十分に確保する事が好ましい。   Further, in each of the above-described embodiments, the absolute value of the inclination angle of the boundary between the first detected portion (concave portion and the like) and the second detected portion (convex portion and the like) with respect to the axial direction of the encoder is calculated as one pair The detection surfaces are made equal (| θ |), and the inclination direction (±) of the boundary with respect to the axial direction of the encoder is reversed between the pair of detection surfaces. However, when carrying out the present invention, the absolute value of the inclination angle can be made different between the pair of detected surfaces. Further, when the absolute value of the tilt angle is made different between the pair of detected surfaces in this way, the tilt direction is made equal between the pair of detected surfaces, or any one of the detected surfaces. It is also possible not to incline the boundary of the detection surface with respect to the axial direction. In any case, when the stationary member and the rotating member are relatively displaced in the axial direction, the phases of the output signals of the pair of sensors are shifted from each other by an amount corresponding to the direction and magnitude of the relative displacement. I can do things. However, in order to ensure sufficient measurement sensitivity of the relative displacement amount and the applied load between the stationary side member and the rotating side member, the phase difference between the output signals of both sensors is set to the axial displacement. It is preferable to change the ratio at a high rate. Therefore, regardless of which configuration is used, the boundary between the detected surfaces of one of the detected surfaces should be changed so that the phase difference between the output signals of both sensors can be changed at a high rate with respect to the axial displacement. It is preferable to ensure a sufficient opening angle (angle difference) between the direction and the direction of the boundary existing on the other detected surface.

本発明の実施例1を示す断面図。Sectional drawing which shows Example 1 of this invention. 図1のA部拡大図。The A section enlarged view of FIG. エンコーダを構成する1対の円筒部と1対のセンサの検出部とを軸方向内方から見た図。The figure which looked at a pair of cylindrical part which comprises an encoder, and the detection part of a pair of sensor from the axial direction inner side. 図3のB部拡大図。The B section enlarged view of FIG. (A)は、図3のX方向から見た外径側被検出面の展開図、(B)は、同じく内径側被検出面の展開図。(A) is a development view of the outer diameter side detection surface viewed from the X direction of FIG. 3, and (B) is a development view of the inner diameter side detection surface. (A)は外径側被検出面の部分斜視図、(B)は内径側被検出面の部分斜視図。(A) is a partial perspective view of an outer diameter side detected surface, (B) is a partial perspective view of an inner diameter side detected surface. アキシアル荷重が加わっていない場合の1対のセンサの出力結果を示す図であって、(A)は実施例1に関するもの、(B)は先発明に関するもの。It is a figure which shows the output result of a pair of sensor when an axial load is not added, Comprising: (A) is related with Example 1, (B) is related with prior invention. アキシアル荷重が所定方向に加わっている場合の1対のセンサの出力結果を示す図であって、(A)は実施例1に関するもの、(B)は先発明に関するもの。It is a figure which shows the output result of a pair of sensor in case an axial load is added to the predetermined direction, Comprising: (A) is related with Example 1, (B) is related with prior invention. アキシアル荷重が所定方向とは逆方向に加わっている場合の1対のセンサの出力結果を示す図であって、(A)は実施例1に関するもの、(B)は先発明に関するもの。It is a figure which shows the output result of a pair of sensor when an axial load is added to the reverse direction with respect to a predetermined direction, Comprising: (A) is related to Example 1, (B) is related to prior invention. 本発明の実施例2を示す、図2と同様の図。The figure similar to FIG. 2 which shows Example 2 of this invention. 同じく、図3と同様の図。Similarly, the same figure as FIG. 図11のC部拡大図。The C section enlarged view of FIG. (A)は外径側被検出面の部分斜視図、(B)は内径側被検出面の部分斜視図。(A) is a partial perspective view of an outer diameter side detected surface, (B) is a partial perspective view of an inner diameter side detected surface. 本発明の実施例3を示す、図3と同様の図。The figure similar to FIG. 3 which shows Example 3 of this invention. 図14のD部拡大図。The D section enlarged view of FIG. エンコーダの他の4例を示す断面図。Sectional drawing which shows other 4 examples of an encoder. それぞれが透孔と柱部とを円周方向に関して交互に配置して成る1対の被検出面を示す図。The figure which shows a pair of to-be-detected surface which each arranges a through-hole and a pillar part alternately about the circumferential direction. それぞれが切り欠きと舌片とを円周方向に関して交互に配置して成る1対の被検出面を示す図。The figure which shows a pair of to-be-detected surface which each arrange | positions a notch and a tongue piece alternately regarding the circumferential direction. それぞれがN極とS極とを円周方向に関して交互に配置して成る1対の被検出面を示す図。The figure which shows a pair of to-be-detected surface which each arrange | positions N pole and S pole alternately with respect to the circumferential direction. 先発明の構造を示す断面図。Sectional drawing which shows the structure of a prior invention. この先発明の構造に組み込むエンコーダの斜視図。The perspective view of the encoder integrated in the structure of this prior invention. 同じく展開図。Similarly development. アキシアル荷重の変動に伴って変化するセンサの出力信号を示す線図。The diagram which shows the output signal of the sensor which changes with the fluctuation | variation of an axial load.

符号の説明Explanation of symbols

1 外輪
2 ハブ
3 転動体
4、4a〜4f エンコーダ
5、5a センサ
6 カバー
7 環状部材
8 環状部材
9、9a〜9f 円筒部
10、10a〜10f 円筒部
11 外径側被検出面
12 内径側被検出面
13a、13b 凸部
14a、14b 凹部
15 磁気検知素子
16、16a 永久磁石
17、17a、17b 検出部
18 ハーネス
19 円筒部
20 センサユニット
21a、21b 透孔
22a、22b 柱部
23a、23b 切り欠き
24a、24b 舌片
DESCRIPTION OF SYMBOLS 1 Outer ring 2 Hub 3 Rolling element 4, 4a-4f Encoder 5, 5a Sensor 6 Cover 7 Annular member 8 Annular member 9, 9a-9f Cylindrical part 10, 10a-10f Cylindrical part 11 Outer diameter side detected surface 12 Inner diameter side covered Detection surface 13a, 13b Convex part 14a, 14b Concave part 15 Magnetic detection element 16, 16a Permanent magnet 17, 17a, 17b Detection part 18 Harness 19 Cylindrical part 20 Sensor unit 21a, 21b Through hole 22a, 22b Column part 23a, 23b Notch 24a, 24b tongue

Claims (13)

回転支持装置と変位測定装置とを備え、このうちの回転支持装置は、静止側周面に静止側軌道を有し、使用時にも回転しない静止側部材と、回転側周面に回転側軌道を有し、使用時に回転する回転側部材と、この回転側軌道と上記静止側軌道との間に転動自在に設けられた複数個の転動体とを備えたものであり、上記変位測定装置は、エンコーダと1対のセンサとを備え、このうちのエンコーダは、互いに同心に且つ径方向に重畳して配置された1対の円筒部を有し、これら各円筒部の外周面又は内周面をそれぞれ被検出面とすると共に、上記回転側部材又はこの回転側部材と同期して回転する部分にこの回転側部材と同心に支持固定され、上記両被検出面の特性をそれぞれ、円周方向に関して交互に変化させると共に、少なくとも一方の被検出面の円周方向に関する特性変化のパターンを、測定すべき変位の方向である軸方向に亙り、他方の被検出面と異なる傾向で漸次変化させたものであり、上記1対のセンサは、一方のセンサの検出部を上記1対の被検出面のうちの一方の被検出面の軸方向一部に、他方のセンサの検出部を他方の被検出面の軸方向一部に、それぞれ対向させた状態で使用時にも回転しない部分に支持され、それぞれが自身の検出部を対向させた上記何れかの被検出面の特性変化のパターンに対応して出力信号のパターンを変化させるものである、変位測定装置付回転支持装置。   The rotation support device includes a rotation support device and a displacement measurement device, and the rotation support device has a stationary side track on the stationary side circumferential surface, and a stationary side member that does not rotate during use, and a rotation side track on the rotation side circumferential surface. A rotation-side member that rotates when in use, and a plurality of rolling elements that are rotatively provided between the rotation-side track and the stationary-side track. The encoder includes a pair of sensors, and the encoder includes a pair of cylindrical portions disposed concentrically and overlapping in the radial direction, and an outer peripheral surface or an inner peripheral surface of each cylindrical portion. Each of the detected surfaces is concentrically supported and fixed to the rotating side member or a portion that rotates in synchronization with the rotating side member. And alternately changing at least one of The characteristic change pattern related to the circumferential direction of the exit surface is gradually changed with a tendency different from that of the other detected surface over the axial direction that is the direction of displacement to be measured. The detection part of one sensor is opposed to a part in the axial direction of one of the detected surfaces of the pair of detection surfaces, and the detection part of the other sensor is made to face a part in the axial direction of the other detection surface. It is supported by a portion that does not rotate even when used in a state in which it is used, and the pattern of the output signal is changed corresponding to the characteristic change pattern of any of the above-described detected surfaces, each facing its own detection unit. Rotary support device with displacement measuring device. エンコーダに設けた1対の被検出面にそれぞれ、互いに異なる特性を有する第一被検出部と第二被検出部とが、円周方向に関して交互に、且つ、上記両被検出面同士で互いに等しい中心角ピッチで配置されており、上記第一、第二両被検出部の境界が上記エンコーダの軸方向に対し、上記両被検出面同士で互いに異なる角度だけ傾斜している、請求項1に記載した変位測定装置付回転支持装置。   A first detected portion and a second detected portion having different characteristics from each other on a pair of detected surfaces provided in the encoder are alternately in the circumferential direction, and the detected surfaces are equal to each other. The first and second detected portions are arranged at a central angle pitch, and the boundaries of the first and second detected portions are inclined by different angles between the two detected surfaces with respect to the axial direction of the encoder. The rotation support device with the displacement measuring device described. エンコーダを構成する1対の円筒部がそれぞれ磁性材製であると共に、第一被検出部が凹部、透孔、切り欠きのうちの何れかであり、第二被検出部が円周方向に隣り合うこれら各第一被検出部同士の間に存在する部分であり、且つ、1対のセンサの検出部がそれぞれ磁気検知素子と永久磁石とを組み合わせて成るものであると共に、これら両センサの検出部を構成する永久磁石として、互いに1つの永久磁石を共用している、請求項2に記載した変位測定装置付回転支持装置。   Each of the pair of cylindrical portions constituting the encoder is made of a magnetic material, the first detected portion is one of a recess, a through hole, and a notch, and the second detected portion is adjacent in the circumferential direction. The first detection target portions that are in the same position, and the detection portions of the pair of sensors are each composed of a combination of a magnetic sensing element and a permanent magnet, and the detection of these two sensors. The rotation support device with a displacement measuring device according to claim 2, wherein one permanent magnet is shared as the permanent magnet constituting the part. 回転側部材が静止側部材の径方向内方に設けられており、この回転側部材又はこの回転側部材に内嵌固定した回転軸に対しエンコーダが支持固定されている、請求項1〜3のうちの何れか1項に記載した変位測定装置付回転支持装置。   The rotation-side member is provided radially inward of the stationary-side member, and the encoder is supported and fixed to the rotation-side member or a rotation shaft fitted and fixed to the rotation-side member. The rotation support apparatus with a displacement measuring device described in any one of them. 静止側部材が自動車の懸架装置に支持固定する静止輪であり、回転側部材が車輪を支持固定するハブである、請求項1〜4のうちの何れか1項に記載した変位測定装置付回転支持装置。   The rotation with a displacement measuring device according to any one of claims 1 to 4, wherein the stationary member is a stationary wheel that is supported and fixed to a suspension device of an automobile, and the rotating member is a hub that supports and fixes the wheel. Support device. 1対のセンサの出力信号の位相差に基づいて、静止側部材と回転側部材との軸方向の相対変位量を算出する演算器を備えた、請求項1〜5のうちの何れか1項に記載した変位測定装置付回転支持装置。   6. The computing device according to claim 1, further comprising an arithmetic unit that calculates a relative displacement amount in the axial direction between the stationary member and the rotating member based on a phase difference between the output signals of the pair of sensors. The rotation support device with a displacement measuring device described in 1. 演算器が、算出した軸方向の相対変位量に基づいて、静止側部材と回転側部材との間に作用しているアキシアル荷重を算出する機能を有する、請求項6に記載した変位測定装置付回転支持装置。   The arithmetic unit has a function of calculating an axial load acting between the stationary member and the rotating member based on the calculated axial relative displacement amount. Rotating support device. 回転支持装置と荷重測定装置とを備え、このうちの回転支持装置は、静止側周面に静止側軌道を有し、使用時にも回転しない静止側部材と、回転側周面に回転側軌道を有し、使用時に回転する回転側部材と、この回転側軌道と上記静止側軌道との間に転動自在に設けられた複数個の転動体とを備えたものであり、上記荷重測定装置は、エンコーダと1対のセンサとを備え、このうちのエンコーダは、互いに同心に且つ径方向に重畳して配置された1対の円筒部を有し、これら各円筒部の外周面又は内周面をそれぞれ被検出面とすると共に、上記回転側部材又はこの回転側部材と同期して回転する部分にこの回転側部材と同心に支持固定され、上記両被検出面の特性をそれぞれ、円周方向に関して交互に変化させると共に、少なくとも一方の被検出面の円周方向に関する特性変化のパターンを、測定すべき変位の方向である軸方向に亙り、他方の被検出面と異なる傾向で漸次変化させたものであり、上記1対のセンサは、一方のセンサの検出部を上記1対の被検出面のうちの一方の被検出面の軸方向一部に、他方のセンサの検出部を他方の被検出面の軸方向一部に、それぞれ対向させた状態で使用時にも回転しない部分に支持され、それぞれが自身の検出部を対向させた上記何れかの被検出面の特性変化のパターンに対応して出力信号のパターンを変化させるものである、荷重測定装置付回転支持装置。   The rotary support device includes a rotary support device and a load measuring device, and the rotary support device has a stationary side track on the stationary side peripheral surface, and a stationary side member that does not rotate during use, and a rotary side track on the rotary side peripheral surface. And a rotating side member that rotates when in use, and a plurality of rolling elements provided between the rotating side track and the stationary side track so as to be freely rollable. The encoder includes a pair of sensors, and the encoder includes a pair of cylindrical portions disposed concentrically and overlapping in the radial direction, and an outer peripheral surface or an inner peripheral surface of each cylindrical portion. Each of the detected surfaces is concentrically supported and fixed to the rotating side member or a portion that rotates in synchronization with the rotating side member. And alternately changing at least one of The characteristic change pattern related to the circumferential direction of the exit surface is gradually changed with a tendency different from that of the other detected surface over the axial direction that is the direction of displacement to be measured. The detection part of one sensor is opposed to a part in the axial direction of one of the detected surfaces of the pair of detection surfaces, and the detection part of the other sensor is made to face a part in the axial direction of the other detection surface. It is supported by a portion that does not rotate even when used in a state in which it is used, and the pattern of the output signal is changed corresponding to the characteristic change pattern of any of the above-described detected surfaces, each facing its own detection unit. Rotating support device with load measuring device. エンコーダに設けた1対の被検出面にそれぞれ、互いに異なる特性を有する第一被検出部と第二被検出部とが、円周方向に関して交互に、且つ、上記両被検出面同士で互いに等しい中心角ピッチで配置されており、上記第一、第二両被検出部の境界が上記エンコーダの軸方向に対し、上記両被検出面同士で互いに異なる角度だけ傾斜している、請求項8に記載した荷重測定装置付回転支持装置。   A first detected portion and a second detected portion having different characteristics from each other on a pair of detected surfaces provided in the encoder are alternately in the circumferential direction, and the detected surfaces are equal to each other. It is arranged at a central angle pitch, and the boundary between the first and second detected parts is inclined with respect to the axial direction of the encoder by different angles between the detected surfaces. The rotation support device with the load measuring device described. エンコーダを構成する1対の円筒部がそれぞれ磁性材製であると共に、第一被検出部が凹部、透孔、切り欠きのうちの何れかであり、第二被検出部が円周方向に隣り合うこれら各第一被検出部同士の間に存在する部分であり、且つ、1対のセンサの検出部がそれぞれ磁気検知素子と永久磁石とを組み合わせて成るものであると共に、これら両センサの検出部を構成する永久磁石として、互いに1つの永久磁石を共用している、請求項9に記載した荷重測定装置付回転支持装置。   Each of the pair of cylindrical portions constituting the encoder is made of a magnetic material, the first detected portion is one of a recess, a through hole, and a notch, and the second detected portion is adjacent in the circumferential direction. The first detection target portions that are in the same position, and the detection portions of the pair of sensors are each composed of a combination of a magnetic sensing element and a permanent magnet, and the detection of these two sensors. The rotation support device with a load measuring device according to claim 9, wherein one permanent magnet is shared as the permanent magnet constituting the part. 回転側部材が静止側部材の径方向内方に設けられており、この回転側部材又はこの回転側部材に内嵌固定した回転軸に対しエンコーダが支持固定されている、請求項8〜10のうちの何れか1項に記載した荷重測定装置付回転支持装置。   The rotation-side member is provided radially inward of the stationary-side member, and an encoder is supported and fixed to the rotation-side member or a rotation shaft fitted and fixed to the rotation-side member. The rotation support apparatus with a load measuring apparatus described in any one of them. 静止側部材が自動車の懸架装置に支持固定する静止輪であり、回転側部材が車輪を支持固定するハブである、請求項8〜11のうちの何れか1項に記載した荷重測定装置付回転支持装置。   The rotation with a load measuring device according to any one of claims 8 to 11, wherein the stationary side member is a stationary wheel that is supported and fixed to a suspension device of an automobile, and the rotating side member is a hub that supports and fixes the wheel. Support device. 1対のセンサの出力信号の位相差に基づいて、静止側部材と回転側部材との間に作用するアキシアル荷重を算出する演算器を備えた、請求項8〜12のうちの何れか1項に記載した荷重測定装置付回転支持装置。   The calculator according to any one of claims 8 to 12, further comprising: an arithmetic unit that calculates an axial load acting between the stationary member and the rotating member based on a phase difference between output signals of the pair of sensors. The rotation support device with a load measuring device described in 1.
JP2006214195A 2005-08-19 2006-08-07 Rotation supporting device with displacement measuring unit, and rotation supporting device with load measuring unit Pending JP2007078678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006214195A JP2007078678A (en) 2005-08-19 2006-08-07 Rotation supporting device with displacement measuring unit, and rotation supporting device with load measuring unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005239051 2005-08-19
JP2006214195A JP2007078678A (en) 2005-08-19 2006-08-07 Rotation supporting device with displacement measuring unit, and rotation supporting device with load measuring unit

Publications (1)

Publication Number Publication Date
JP2007078678A true JP2007078678A (en) 2007-03-29

Family

ID=37939147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006214195A Pending JP2007078678A (en) 2005-08-19 2006-08-07 Rotation supporting device with displacement measuring unit, and rotation supporting device with load measuring unit

Country Status (1)

Country Link
JP (1) JP2007078678A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074858A (en) * 2007-09-19 2009-04-09 Jtekt Corp Torque detection device
JP2009229324A (en) * 2008-03-25 2009-10-08 Panasonic Corp Quantification device
JP2010217167A (en) * 2009-02-19 2010-09-30 Nsk Ltd Bearing device and spindle device of machine tool
JP2011127964A (en) * 2009-12-16 2011-06-30 Uchiyama Manufacturing Corp Magnetic encoder and rotation detection device
JP2011179551A (en) * 2010-02-26 2011-09-15 Nsk Ltd Bearing with sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074858A (en) * 2007-09-19 2009-04-09 Jtekt Corp Torque detection device
JP2009229324A (en) * 2008-03-25 2009-10-08 Panasonic Corp Quantification device
JP2010217167A (en) * 2009-02-19 2010-09-30 Nsk Ltd Bearing device and spindle device of machine tool
JP2011127964A (en) * 2009-12-16 2011-06-30 Uchiyama Manufacturing Corp Magnetic encoder and rotation detection device
JP2011179551A (en) * 2010-02-26 2011-09-15 Nsk Ltd Bearing with sensor

Similar Documents

Publication Publication Date Title
JP4844010B2 (en) Rolling bearing unit with load measuring device
JP4887882B2 (en) Displacement measuring device and load measuring device of rolling bearing unit
JP2007078678A (en) Rotation supporting device with displacement measuring unit, and rotation supporting device with load measuring unit
JP2007183247A (en) Rotation supporting device with load measuring device
JP2006113017A (en) Encoder, rolling bearing unit with the encoder, and rolling bearing unit with load-measuring instrument
JP2006337356A (en) Rolling bearing unit with displacement measuring instrument, and rolling bearing unit with load measuring instrument
JP5099245B2 (en) Rolling bearing unit with load measuring device
JP4862318B2 (en) Load measuring device
JP2007171104A (en) Roller bearing unit with load-measuring device
JP2006317434A (en) Apparatus for measuring displacement and load of rolling bearing unit
JP2007085742A (en) Rolling bearing unit with load measuring device
JP4887816B2 (en) Load measuring device for rolling bearing units
JP2009019880A (en) State quantity measuring device for rolling bearing unit
JP5092393B2 (en) Method for assembling state quantity measuring device for rolling bearing unit
JP2006258801A (en) Rolling bearing unit with displacement measuring device and rolling bearing unit with load cell device
JP4752483B2 (en) Rolling bearing unit with displacement measuring device and rolling bearing unit with load measuring device
JP4956940B2 (en) State quantity measuring device
JP4957259B2 (en) State quantity measuring device for rolling bearing units
JP2008224397A (en) Load measuring device for roller bearing unit
JP4941140B2 (en) State quantity measuring device for rolling bearing units
JP2009103549A (en) Device for measuring state of quantity of rolling bearing unit
JP2007057525A (en) Rotary support device with displacement measuring instrument, and rotary support device with load measuring instrument
JP4882403B2 (en) Encoder and state quantity measuring device
JP4735526B2 (en) State quantity measuring device for rolling bearing units
JP2007199040A (en) Rolling bearing unit with load-measuring device joint-fixed with wheel