JP2008232500A - Refrigerating cycle device - Google Patents

Refrigerating cycle device Download PDF

Info

Publication number
JP2008232500A
JP2008232500A JP2007070363A JP2007070363A JP2008232500A JP 2008232500 A JP2008232500 A JP 2008232500A JP 2007070363 A JP2007070363 A JP 2007070363A JP 2007070363 A JP2007070363 A JP 2007070363A JP 2008232500 A JP2008232500 A JP 2008232500A
Authority
JP
Japan
Prior art keywords
outdoor
refrigeration cycle
control mode
blower
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007070363A
Other languages
Japanese (ja)
Inventor
Kazunori Sakanobe
和憲 坂廼邊
Kazunori Hatakeyama
和徳 畠山
Takuya Shimomugi
卓也 下麥
Tomoo Yamada
倫雄 山田
Sunao Saito
直 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007070363A priority Critical patent/JP2008232500A/en
Publication of JP2008232500A publication Critical patent/JP2008232500A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an economical refrigerating cycle device of high reliability by preventing degradation of operational efficiency caused by frost formation on an evaporation-side heat exchanger when an operation is performed under a low-temperature environment. <P>SOLUTION: This refrigerating cycle device capable of switching a normal operation and a defrosting operation by a four-way valve, is provided with a constant torque control mode for controlling the torque of a motor of an outdoor or indoor air blower constant at a prescribed torque value, or a constant electric current control mode for controlling electric current of the motor of the outdoor or indoor air blower constant at a prescribed electric current value, and the evaporator-side air blower as the air blower at a heat exchanger side operated as the evaporator of the refrigerating cycle in the normal operation is operated in the constant torque control mode or the constant electric current control mode, when the normal operation is operated under a low temperature environment requiring a defrost operation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、通常運転と除霜運転とを切り換え可能な冷凍サイクル装置に関するものである。   The present invention relates to a refrigeration cycle apparatus capable of switching between normal operation and defrosting operation.

従来の冷凍サイクル装置として、圧縮機、四方弁、室外熱交換器、膨張機構、室内熱交換器を順次配管で接続して冷凍サイクルを構成し、四方弁の切り替えによって、暖房時には室外熱交換器を蒸発器、室内熱交換機を凝縮器として動作させ、冷房時には室外熱交換器を凝縮器、室内熱交換器を蒸発器として動作させるようにした冷凍空調装置がある。   As a conventional refrigeration cycle device, a compressor, a four-way valve, an outdoor heat exchanger, an expansion mechanism, and an indoor heat exchanger are connected in sequence to form a refrigeration cycle. By switching the four-way valve, an outdoor heat exchanger is used during heating. There is a refrigeration air conditioner that operates as an evaporator and an indoor heat exchanger as a condenser, and operates as an outdoor heat exchanger as a condenser and an indoor heat exchanger as an evaporator during cooling.

この種の冷凍空調装置を低温・高湿の条件下で暖房運転すると、蒸発側熱交換器(室外熱交換器)に霜が付着する。このまま運転を続けると霜が成長して蒸発側熱交換器の風路を妨害し冷凍空調能力が低下する。一般にはこの空調能力低下を回復するため、霜を解かす運転、即ち除霜運転を定期的に行っている。除霜運転中のエネルギーは主に霜を融解することに費やされるため、頻繁に除霜運転を行うと運転能力の低下をもたらすことになる。一方、除霜運転を行うタイミングが遅いと、蒸発温度が低下することによる液バック現象や蒸発側熱交換器の風路が塞がることによる送風機の過電流停止などの不具合が発生する恐れがある。   When this type of refrigeration air conditioner is heated under low temperature and high humidity conditions, frost adheres to the evaporation side heat exchanger (outdoor heat exchanger). If the operation is continued as it is, frost grows, obstructs the air passage of the evaporation side heat exchanger, and the refrigeration and air conditioning capacity is reduced. In general, in order to recover this decrease in air conditioning capacity, an operation for defrosting, that is, a defrosting operation is periodically performed. Since the energy during the defrosting operation is mainly consumed for melting the frost, frequent defrosting operation results in a decrease in operating capacity. On the other hand, if the timing of performing the defrosting operation is late, there is a possibility that problems such as a liquid back phenomenon due to a decrease in the evaporation temperature and an overcurrent stop of the blower due to the air path of the evaporation side heat exchanger being blocked may occur.

そこで、従来、蒸発側熱交換器の温度とその周囲の外気温度との温度差が予め設定された除霜開始温度差になると、除霜を開始させて適切なタイミングで除霜運転を実施することにより、蒸発側熱交換器の着霜状態を適切に維持するようにした技術があった(例えば、特許文献1参照)。
特開2004−116796号公報
Therefore, conventionally, when the temperature difference between the temperature of the evaporation side heat exchanger and the ambient outside air temperature becomes a preset defrosting start temperature difference, defrosting is started and defrosting operation is performed at an appropriate timing. Thus, there has been a technique that appropriately maintains the frosting state of the evaporation side heat exchanger (see, for example, Patent Document 1).
JP 2004-116796 A

しかしながら、上記特許文献1の技術では、単に、除霜運転の開始タイミングのみに着目した制御を行っており、蒸発側熱交換器の着霜状態に応じた送風機制御が不十分で、着霜防止効果の向上に更なる改善の余地があった。なお、上記では、冷凍サイクル装置が冷凍空調装置の場合に、暖房運転時に蒸発器として動作する室外送風機側の除霜について説明したが、上記冷凍サイクル装置が冷蔵・冷凍装置である場合にも同様に着霜の問題があり、除霜を行う必要があった。冷蔵・冷凍装置の場合には、前記冷凍空調装置とは逆に、室内送風機側に着霜が発生する。   However, in the technique of the above-mentioned Patent Document 1, control is performed only focusing on the start timing of the defrosting operation, and the blower control according to the frosting state of the evaporation side heat exchanger is insufficient, so that frosting prevention is performed. There was room for further improvement in the effect. In the above description, when the refrigeration cycle apparatus is a refrigeration air conditioner, the defrosting on the outdoor fan side that operates as an evaporator during heating operation has been described. However, the same applies to the case where the refrigeration cycle apparatus is a refrigeration / refrigeration apparatus. There was a problem of frost formation, and it was necessary to perform defrosting. In the case of a refrigeration / refrigeration system, frost forms on the indoor fan side, contrary to the refrigeration and air conditioning system.

この発明はこのような点を鑑みなされたもので、低温環境下で運転する場合の蒸発側熱交換器の着霜を起因とした運転効率の低下を防止して、経済的で信頼性の高い冷凍サイクル装置を得ることを目的とする。   The present invention has been made in view of the above points, and prevents a reduction in operation efficiency due to frost formation on the evaporation side heat exchanger when operating in a low temperature environment, and is economical and highly reliable. An object is to obtain a refrigeration cycle apparatus.

この発明に係る冷凍サイクル装置は、圧縮機、四方弁、室外熱交換器、膨張機構、室内熱交換器を冷媒配管で接続した冷凍サイクルと、室外熱交換器の熱交換を促進する室外送風機と、室内熱交換器の熱交換を促進する室内送風機と、冷凍サイクル、室外送風機及び室内送風機を制御する制御部とを有し、四方弁の切り換えにより通常運転と除霜運転とを切り換え可能な冷凍サイクル装置において、制御部が、室外又は室内送風機のモータのトルクが、所定トルク値に一定になるように制御する定トルク制御モード、又は、室外又は室内送風機のモータの電流が、所定電流値に一定になるように制御する定電流制御モードを有し、所定の低温環境下で通常運転を行う際には、通常運転時に冷凍サイクルの蒸発器として動作する熱交換器側の送風機である蒸発器側送風機を、定トルク制御モード又は定電流制御モードで動作させるものである。   A refrigeration cycle apparatus according to the present invention includes a refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, an expansion mechanism, and an indoor heat exchanger are connected by a refrigerant pipe, and an outdoor fan that promotes heat exchange of the outdoor heat exchanger; Refrigeration having an indoor blower that promotes heat exchange of the indoor heat exchanger and a control unit that controls the refrigeration cycle, outdoor blower, and indoor blower, and switching between normal operation and defrosting operation by switching the four-way valve In the cycle device, the control unit controls the constant torque control mode so that the torque of the motor of the outdoor or indoor fan becomes constant at a predetermined torque value, or the current of the motor of the outdoor or indoor fan becomes a predetermined current value. It has a constant current control mode that controls it to be constant, and when performing normal operation in a predetermined low-temperature environment, the heat exchanger side that operates as the evaporator of the refrigeration cycle during normal operation The evaporator blower is machine is intended to operate at a constant torque control mode or the constant current control mode.

この発明によれば、送風機モータを一定のトルク又は電流となるように制御する定トルク制御モード又は定電流制御モードを設け、着霜が発生する低温環境下で通常運転を行う際には、蒸発器側送風機を定トルク制御モード又は定電流制御モードで駆動するようにしたので、負荷条件(着霜状態)に応じた最大許容回転数で蒸発器側送風機を駆動することができる。このため、通常運転の能力を向上させることができると共に霜の付着進行を抑制することができる。その結果、着霜を起因とした運転効率の低下を防止して、経済的で信頼性の高い冷凍サイクル装置を得ることができる。   According to the present invention, a constant torque control mode or a constant current control mode for controlling the blower motor to have a constant torque or current is provided, and when performing normal operation in a low temperature environment where frost formation occurs, evaporation is performed. Since the evaporator-side fan is driven in the constant torque control mode or the constant current control mode, the evaporator-side fan can be driven at the maximum permissible rotational speed corresponding to the load condition (frosting state). For this reason, the capability of normal operation can be improved and the progress of frost adhesion can be suppressed. As a result, it is possible to prevent a reduction in operating efficiency due to frost formation, and to obtain an economical and highly reliable refrigeration cycle apparatus.

実施の形態1.
図1はこの発明の実施の形態における冷凍サイクル装置の構成を示すものである。なお、以下では、冷凍サイクル装置が冷凍空調装置である場合を例に説明する。
図において、冷凍空調装置は、圧縮機1、四方弁2、室外熱交換器3、膨張機構4、室内熱交換器5が冷媒配管11により接続された冷凍サイクルを備え、暖房運転時には、圧縮機1からの冷媒が四方弁2により室内熱交換器5から膨張機構4、室外熱交換器3に流され、除霜運転時には、四方弁2の切り換えにより暖房運転時とは逆方向に冷媒が流されるようになっている。なお、図1に示す四方弁2は、圧縮機1の吐出側と室内熱交換器5とを接続する様な状態となっており暖房運転に相当する状態となっている。
Embodiment 1 FIG.
FIG. 1 shows a configuration of a refrigeration cycle apparatus according to an embodiment of the present invention. Hereinafter, a case where the refrigeration cycle apparatus is a refrigeration air conditioner will be described as an example.
In the figure, the refrigeration air conditioner includes a refrigeration cycle in which a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an expansion mechanism 4, and an indoor heat exchanger 5 are connected by a refrigerant pipe 11, and during the heating operation, the compressor The refrigerant from 1 is caused to flow from the indoor heat exchanger 5 to the expansion mechanism 4 and the outdoor heat exchanger 3 by the four-way valve 2, and during the defrosting operation, the refrigerant flows in the opposite direction to that in the heating operation by switching the four-way valve 2. It is supposed to be. The four-way valve 2 shown in FIG. 1 is in a state in which the discharge side of the compressor 1 and the indoor heat exchanger 5 are connected, and is in a state corresponding to a heating operation.

また、冷凍空調装置には更に、室外熱交換器3および室内熱交換器5のそれぞれに風を送って熱交換を促進するための室外送風機6および室内送風機7と、室外送風機6および室内送風機7のそれぞれを駆動する室外送風機駆動手段8および室内送風機駆動手段9と、室外送風機駆動手段8および室内送風機駆動手段9との間で運転指令信号およびモニタ信号を授受しつつ冷凍空調装置全体の統括制御を行う制御部10とを備えている。   Further, the refrigerating and air-conditioning apparatus further includes an outdoor fan 6 and an indoor fan 7 for sending air to the outdoor heat exchanger 3 and the indoor heat exchanger 5 to promote heat exchange, and the outdoor fan 6 and the indoor fan 7. Control of the entire refrigerating and air-conditioning apparatus while exchanging operation command signals and monitor signals between the outdoor fan driving means 8 and the indoor fan driving means 9 and the outdoor fan driving means 8 and the indoor fan driving means 9 for driving each of them. The control part 10 which performs is provided.

室外送風機6は、室外送風機羽根61とこの室外送風機羽根61を回転駆動する室外送風機モータ62とを備えており、室外送風機モータ62は室外送風機駆動手段8を介して制御部10に接続されており、制御部10からの制御信号に基づき室外送風機駆動手段8によって回転駆動される。また、室内送風機7も同様に、室内送風機羽根71とこの室内送風機羽根71を駆動する室内送風機モータ72とを備え、室内送風機モータ72は室内送風機駆動手段9を介して制御部に接続されており、制御部10からの制御信号に基づき室内送風機駆動手段9により回転駆動される。   The outdoor blower 6 includes an outdoor blower blade 61 and an outdoor blower motor 62 that rotationally drives the outdoor blower blade 61. The outdoor blower motor 62 is connected to the control unit 10 via the outdoor blower driving means 8. Based on a control signal from the control unit 10, the outdoor fan driving means 8 is rotationally driven. Similarly, the indoor blower 7 includes an indoor blower blade 71 and an indoor blower motor 72 that drives the indoor blower blade 71, and the indoor blower motor 72 is connected to the control unit via the indoor blower driving means 9. Based on the control signal from the control unit 10, it is rotationally driven by the indoor fan driving means 9.

ここで、この発明は、室外熱交換器3又は室内熱交換器5のうち、冷凍サイクルの蒸発器として動作する熱交換器側に霜が付くことによる運転能力低下を防止するものであり、上記構成の冷凍空調装置では、暖房運転時、特に低外気条件(例えば、5℃以下の低温環境)での暖房運転時(以下では、通常の暖房運転と区別するため、低外気条件での暖房運転を低温暖房運転という)に室外熱交換器3側に着霜が生じる。   Here, the present invention prevents a reduction in operating capacity due to frost on the side of the heat exchanger operating as the evaporator of the refrigeration cycle in the outdoor heat exchanger 3 or the indoor heat exchanger 5, In the refrigeration air-conditioning apparatus having the configuration, during heating operation, particularly under low outdoor air conditions (for example, a low temperature environment of 5 ° C. or lower), heating operation under low outdoor air conditions is used to distinguish from normal heating operation. Frosting occurs on the outdoor heat exchanger 3 side.

以下、まず、低温暖房運転時の基本動作について図2から図6を用いて説明する。  Hereinafter, first, the basic operation during the low-temperature heating operation will be described with reference to FIGS.

図2は低温暖房運転時の基本動作を示す図である。
低温暖房運転では、蒸発器として動作する室外熱交換器3の表面温度が0度を下回ると、室外熱交換器3の表面に空気中の水分が霜となって付着する。そして、霜が室外熱交換器3の風路を妨げるまで成長すると、外気と冷媒との熱交換を十分に行えず、図2に示すように暖房能力が急激に低下していく。この能力低下を回復するために除霜運転が行われる。除霜運転は、上述したように例えば図1の四方弁2を逆方向、すなわち圧縮機1の吐出管と室外熱交換器3を接続する様に切り替えて運転するなどして行われる。これにより、室外熱交換器3側に高温・高圧の冷媒が供給され、この熱により霜を溶かすことができる。霜が除かれた後は再度四方弁2を切り替えて暖房運転を再開する。なお、除霜運転時は暖房が停止することとなるため、除霜運転時間および頻度はできるだけ少ない方が良い。
FIG. 2 is a diagram showing a basic operation during a low-temperature heating operation.
In the low-temperature heating operation, when the surface temperature of the outdoor heat exchanger 3 that operates as an evaporator is less than 0 degrees, moisture in the air adheres to the surface of the outdoor heat exchanger 3 as frost. And if frost grows until it blocks the air path of the outdoor heat exchanger 3, the heat exchange between the outside air and the refrigerant cannot be sufficiently performed, and the heating capacity rapidly decreases as shown in FIG. A defrosting operation is performed in order to recover this reduced capability. As described above, the defrosting operation is performed, for example, by switching the four-way valve 2 of FIG. 1 to operate in the reverse direction, that is, so as to connect the discharge pipe of the compressor 1 and the outdoor heat exchanger 3. Thereby, a high-temperature and high-pressure refrigerant is supplied to the outdoor heat exchanger 3 side, and frost can be melted by this heat. After the frost is removed, the four-way valve 2 is switched again to resume the heating operation. In addition, since heating stops during the defrosting operation, it is better that the defrosting operation time and frequency are as small as possible.

なお、熱交換性能は蒸発器側送風機(室外送風機6)の風量により変化することが知られている。図3は、室外送風機6の回転数の差による暖房能力の差及び着霜による能力低下タイミングの差を示す図である。図3の点線は、室外送風機6の回転数が高い場合を示し、実線は室外送風機6の回転数が低い場合を示している。図3より、風量大すなわち室外送風機6の回転数が高い場合は、室外熱交換器3の伝熱が促進されて高い暖房能力を得ることができ、また、着霜の抑止効果が高くて着霜による能力低下の発生タイミングを遅らせることができることがわかる。   It is known that the heat exchange performance varies depending on the air volume of the evaporator-side fan (outdoor fan 6). FIG. 3 is a diagram illustrating a difference in heating capacity due to a difference in the rotational speed of the outdoor blower 6 and a difference in timing for reducing the capacity due to frost formation. The dotted line in FIG. 3 shows the case where the rotational speed of the outdoor blower 6 is high, and the solid line shows the case where the rotational speed of the outdoor blower 6 is low. From FIG. 3, when the air volume is large, that is, when the rotational speed of the outdoor fan 6 is high, the heat transfer of the outdoor heat exchanger 3 is promoted to obtain a high heating capacity, and the effect of suppressing frost formation is high. It turns out that the generation | occurrence | production timing of the capability fall by frost can be delayed.

次に、着霜発生タイミングの遅延による効果について図4を用いて説明する。図4は、低温暖房運転中の暖房/除霜運転の運転サイクルを示す図である。図中の上の棒グラフは室外送風機6の回転数が高い場合、下の棒グラフは室外送風機6の回転数が低い場合を示している。先の図3に示したように室外送風機6の回転数が高い場合は、暖房開始から着霜までの時間が長くなるため、図4に示したように所定時間中における除霜時間比率が低回転時よりも小さくなる。結果、暖房能力が向上し温度ムラの少ない暖房運転が行える。従って室外送風機6の回転数はできる限り高回転を維持できる方が好ましい。   Next, the effect by the delay of frost formation timing is demonstrated using FIG. FIG. 4 is a diagram illustrating an operation cycle of heating / defrosting operation during low-temperature heating operation. The upper bar graph in the figure shows the case where the rotational speed of the outdoor blower 6 is high, and the lower bar graph shows the case where the rotational speed of the outdoor blower 6 is low. As shown in FIG. 3, when the rotational speed of the outdoor fan 6 is high, the time from the start of heating to frosting becomes longer, so the defrosting time ratio during the predetermined time is low as shown in FIG. It becomes smaller than during rotation. As a result, the heating capacity is improved and a heating operation with little temperature unevenness can be performed. Therefore, it is preferable that the rotational speed of the outdoor fan 6 can be maintained as high as possible.

次に、室外送風機6として、室外送風機6の羽根形状をプロペラ型としたプロペラファンを用いた場合の、着霜防止に効果的な室外送風機6の運転制御方法について説明する。   Next, a description will be given of an operation control method for the outdoor blower 6 that is effective for preventing frost formation when a propeller fan having a propeller type blade shape of the outdoor blower 6 is used as the outdoor blower 6.

図5はプロペラファンにおける一般的な回転数−負荷トルク特性を示す図、図6はプロペラファンを用いた場合の一般的な着霜面積−負荷トルク特性を示す図である。
図5に示すように、プロペラファンは回転数および圧損に応じてトルクが増大する。従って、圧損が大きくなると同一トルク条件では回転数が低下することとなる。そして、着霜が進むと風路の圧損は増加するため、着霜面積とモータの負荷トルクとの関係は図6の如く右肩あがりの特性となる。
FIG. 5 is a diagram showing a general rotational speed-load torque characteristic in a propeller fan, and FIG. 6 is a diagram showing a general frost formation area-load torque characteristic when a propeller fan is used.
As shown in FIG. 5, the torque of the propeller fan increases according to the rotational speed and pressure loss. Therefore, when the pressure loss increases, the rotational speed decreases under the same torque condition. As the frosting progresses, the pressure loss of the air passage increases, so the relationship between the frosting area and the load torque of the motor has a characteristic of rising right shoulder as shown in FIG.

ここで、モータの最大定格トルクをτmとし、着霜面積100%時にトルクτmを発生する回転数をω1、着霜面積0%時にトルクτmを発生する回転数をω2とする。そして、着霜面積比率が0%から100%に至るまで、モータの回転数をω1に一定になるように制御した場合と、ω2に一定になるように制御した場合とでは、着霜面積とモータの負荷トルクとの関係は、図6の如くω2に一定にした場合のグラフの方が、ω1のグラフよりも上に描かれる。   Here, it is assumed that the maximum rated torque of the motor is τm, the rotational speed that generates the torque τm when the frost area is 100%, ω1, and the rotational speed that generates the torque τm when the frost area is 0%, ω2. Then, when the motor speed is controlled to be constant at ω1 until the frosting area ratio is from 0% to 100%, and when the motor speed is controlled to be constant at ω2, As for the relationship with the motor load torque, the graph in the case of constant ω2 as shown in FIG. 6 is drawn above the graph of ω1.

ここで注目すべきは、着霜面積が100%に満たない条件では、モータの負荷トルクは図6の如く最大定格トルクτmに達していない。このため、回転数を上昇する余地がある。言い換えれば、出力トルクをτm一定としてプロペラファン(室外送風機6)を運転すれば、暖房運転開始直後(着霜面積0%)の回転数をω2まで増大することが可能となる。そして、時間経過に伴い着霜が進行した場合は、その負荷に応じて回転数がω1に向かって自然と低下することになる。このため、出力トルクτmを保ったまま運転しても、モータの最大定格トルクを越えない運転が実現できる。   It should be noted that under the condition that the frost formation area is less than 100%, the load torque of the motor does not reach the maximum rated torque τm as shown in FIG. For this reason, there is room for increasing the rotational speed. In other words, if the propeller fan (outdoor fan 6) is operated with the output torque kept constant at τm, the rotational speed immediately after the start of the heating operation (frosting area 0%) can be increased to ω2. And when frosting progresses with progress of time, a rotation speed will fall naturally toward (omega) 1 according to the load. For this reason, even if it operates with output torque (tau) m maintained, the driving | operation which does not exceed the maximum rated torque of a motor is realizable.

以上の内容を整理すると、着霜防止向上を図るには、室外送風機6の回転数をできる限り高く維持できることが好ましく、これを実現するためには、上述したように室外送風機モータ62の出力トルクを最大定格トルクτmに一定となるように制御すればよい。このような定トルク制御を行うことにより、室外送風機6を、その時点での負荷に見合った最大回転数で駆動することができ、高い着霜防止効果を得ることが可能となる。   In order to improve the prevention of frost formation by arranging the above contents, it is preferable that the rotational speed of the outdoor fan 6 can be maintained as high as possible. In order to realize this, the output torque of the outdoor fan motor 62 as described above. May be controlled to be constant at the maximum rated torque τm. By performing such constant torque control, the outdoor fan 6 can be driven at the maximum number of rotations commensurate with the load at that time, and a high frosting prevention effect can be obtained.

なお、送風機の羽根の形状を、シロッコ、ラインフロー、ターボ型とした場合の着霜と負荷トルクの関係について説明する。これらのファンの場合の一般的な回転数−負荷トルク特性を図7、着霜面積−負荷トルク特性を図8に示す。回転数とトルクの関係は正の相関となるが、圧損とトルクの関係はプロペラ型の場合と逆転し、高圧損時に低負荷トルクとなる特性となる。このため着霜面積と負荷トルクの関係は図8の様に右肩下がりとなる。従って、このような羽根形状の送風機を用いる場合は、モータの最大定格トルク同一条件では暖房運転開始直後(着霜面積0%)の回転数ω1よりも着霜した場合の回転数を高くすることが可能である。すなわち、出力トルクをτm一定に制御すれば着霜による風量低下を緩和することが可能となり着霜の進行を遅らせることができる。   The relationship between frost formation and load torque when the blade shape of the blower is sirocco, line flow, or turbo type will be described. FIG. 7 shows a general rotational speed-load torque characteristic in the case of these fans, and FIG. 8 shows a frost formation area-load torque characteristic. The relationship between the rotational speed and the torque has a positive correlation, but the relationship between the pressure loss and the torque is reversed from that in the case of the propeller type, and has a characteristic of low load torque at the time of high pressure loss. For this reason, the relationship between the frost formation area and the load torque is lowered to the right as shown in FIG. Therefore, when such a fan-shaped blower is used, the rotational speed when frosting is made higher than the rotational speed ω1 immediately after the start of heating operation (frosting area 0%) under the same maximum rated torque of the motor. Is possible. That is, if the output torque is controlled to be constant τm, it is possible to mitigate the decrease in the air volume due to frost formation, and the progress of frost formation can be delayed.

なお、室外送風機6の風量制御は室外送風機駆動手段8にて行われるが、その制御方式としては速度制御が一般に用いられている。本例の室外送風機6でも、通常の暖房運転の際には速度制御が用いられており、低温暖房運転の際に、上記で説明した定トルク制御を用いるようにしている。このように速度制御と定トルク制御とを併用することで、より高機能な室外送風機6が実現されている。以下、室外送風機駆動手段8の具体的な実現構成の一例について次の図9を用いて説明する。   In addition, although the air volume control of the outdoor fan 6 is performed by the outdoor fan driving means 8, speed control is generally used as the control method. Also in the outdoor blower 6 of this example, speed control is used during normal heating operation, and the constant torque control described above is used during low-temperature heating operation. As described above, by using the speed control and the constant torque control in combination, a more functional outdoor fan 6 is realized. Hereinafter, an example of a specific realization configuration of the outdoor fan driving means 8 will be described with reference to FIG.

図9は図1の室外送風機駆動手段8の構成図である。なお、図9の構成は、制御方式として位置センサレスベクトル制御を用いた場合の構成例を示している。
室外送風機駆動手段8は、室外送風機駆動制御部81と、室外送風機インバータ82と、電流検出手段83とを備えている。室外送風機駆動制御部81は制御部10から与えられる制御モード指令及び速度指令から指令を受けてPWM制御信号を作成し、室外送風機インバータ82のトランジスタを駆動して室外送風機モータ62及び室外送風機モータ62の軸に固定されている室外送風機羽根61を回転させる。また、室外送風機駆動制御部81は、室外送風機モータ62の回転速度情報を制御部10に返送する。
FIG. 9 is a block diagram of the outdoor fan driving means 8 of FIG. The configuration in FIG. 9 shows a configuration example when position sensorless vector control is used as the control method.
The outdoor fan drive unit 8 includes an outdoor fan drive control unit 81, an outdoor fan inverter 82, and a current detection unit 83. The outdoor fan drive control unit 81 receives a command from the control mode command and the speed command given from the control unit 10 to create a PWM control signal, drives the transistor of the outdoor fan inverter 82, and drives the outdoor fan motor 62 and the outdoor fan motor 62. The outdoor fan blade 61 fixed to the shaft is rotated. The outdoor fan drive control unit 81 returns the rotational speed information of the outdoor fan motor 62 to the control unit 10.

次に室外送風機駆動制御部81の内部構成について説明する。室外送風機駆動制御部81は、室外送風機モータ62のモータ電流情報をデジタル信号に変換するA/Dコンバータ811と、電流を静止座標から回転座標に座標変換する座標変換器812と、回転子位置および速度を推定する位置・速度推定器813と、速度を一定に制御する速度制御器814と、出力トルクを一定に制御する定トルク制御器815と、外部からの制御モード指令に基づき定トルク制御と速度制御のいずれかを選択する制御モード切替手段816と、電流が電流指令が近づくよう電圧指令Vd*,Vq* を演算するd軸電流制御器817およびq軸電流制御器818と、電圧指令Vd*,Vq*を静止座標での電圧指令Vu*,Vv*,Vw*に変換する座標変換器819と、電圧指令Vu*,Vv*,Vw* を室外送風機インバータ駆動用のPWM制御信号に変換するPWM制御手段820と、で構成される。   Next, the internal configuration of the outdoor fan drive control unit 81 will be described. The outdoor fan drive control unit 81 includes an A / D converter 811 that converts motor current information of the outdoor fan motor 62 into a digital signal, a coordinate converter 812 that converts the current from a stationary coordinate to a rotating coordinate, a rotor position, A position / speed estimator 813 for estimating the speed, a speed controller 814 for controlling the speed to be constant, a constant torque controller 815 for controlling the output torque to be constant, and a constant torque control based on a control mode command from the outside. Control mode switching means 816 for selecting either speed control, d-axis current controller 817 and q-axis current controller 818 for calculating voltage commands Vd * and Vq * so that the current approaches the current command, and voltage command Vd Coordinate converter 819 that converts *, Vq * into voltage commands Vu *, Vv *, Vw * in stationary coordinates, and voltage commands Vu *, Vv *, Vw * into PWM control signals for driving the outdoor fan inverter P to do And M control unit 820, in constructed.

次に室外送風機駆動制御部81の概略動作について説明する。まずA/Dコンバータ811および座標変換器812から得られる電流情報Id,Iqと、現在の出力電圧指令Vd,Vqとから位置θおよび速度ωを推定する。ここで、速度制御器814は、外部(制御部10)から与えられる速度指令ω*と現在の速度ωとに基づき、現在の速度ωが速度指令ω* に近づくように出力Iq* を求め、制御モード切替手段816に出力している。また、定トルク制御器815は予め定められたIq* (ここでは便宜上、室外送風機モータ62の最大定格トルク時のq軸電流指令値Iq_maxとする)を制御モード切替手段816に出力している。そして、制御モード指令が速度制御モードの場合、制御モード切替手段816は速度制御器814側に切り換えられ、速度制御器814の出力がq軸電流制御器818に入力される。一方、制御モード指令が定トルク制御モードの場合、制御モード切替手段816は定トルク制御器815側に切り換えられ、定トルク制御器815の出力がq軸電流制御器818に入力される。 Next, a schematic operation of the outdoor fan drive control unit 81 will be described. First, the position θ and the speed ω are estimated from the current information Id, Iq obtained from the A / D converter 811 and the coordinate converter 812 and the current output voltage commands Vd, Vq. Here, the speed controller 814 obtains the output Iq * based on the speed command ω * given from the outside (control unit 10) and the current speed ω so that the current speed ω approaches the speed command ω * . It is output to the control mode switching means 816. The constant torque controller 815 outputs a predetermined Iq * (here, for convenience, the q-axis current command value Iq_max at the time of the maximum rated torque of the outdoor fan motor 62) to the control mode switching means 816. When the control mode command is the speed control mode, the control mode switching means 816 is switched to the speed controller 814 side, and the output of the speed controller 814 is input to the q-axis current controller 818. On the other hand, when the control mode command is the constant torque control mode, the control mode switching means 816 is switched to the constant torque controller 815 side, and the output of the constant torque controller 815 is input to the q-axis current controller 818.

室外送風機駆動制御部81は、さらに室外送風機モータ62および運転条件に応じた所定の励磁電流指令Id* (ここでは便宜上ゼロ固定とする)を得、d軸電流制御器817及びq軸電流制御器818にて電流Id,Iq がそれぞれ指令値Id*,Iq*に近づくように電圧指令Vd*,Vq*を制御する。次に座標変換器819は電圧指令Vd*,Vq*を静止座標系の電圧指令Vu*,Vv*,Vw*に変換し、PWM制御手段820にて室外送風機インバータ82の各トランジスタの制御信号に変換する。室外送風機インバータ82は前記各トランジスタの制御信号に応じた交流電圧を室外送風機モータ62に印加し室外送風機モータ62を回転制御する。   The outdoor fan drive control unit 81 further obtains a predetermined excitation current command Id * (here, fixed to zero for convenience) according to the outdoor fan motor 62 and operating conditions, and a d-axis current controller 817 and a q-axis current controller At 818, the voltage commands Vd * and Vq * are controlled so that the currents Id and Iq approach the command values Id * and Iq *, respectively. Next, the coordinate converter 819 converts the voltage commands Vd *, Vq * into voltage commands Vu *, Vv *, Vw * of the stationary coordinate system, and converts them into control signals for each transistor of the outdoor fan inverter 82 by the PWM control means 820. Convert. The outdoor fan inverter 82 applies an AC voltage corresponding to the control signal of each transistor to the outdoor fan motor 62 to control the rotation of the outdoor fan motor 62.

速度制御モードで運転している場合、速度制御器814はω=ω* が定常状態(τ→∞での安定状態)であるため、室外送風機モータ62は所定速度ωになるように制御される。一方、定トルク制御モードで運転している場合はId=0、Iq=Iq_max が定常状態であるため、定電流、定トルクとなるように制御される。 When operating in the speed control mode, the speed controller 814 is controlled so that the outdoor fan motor 62 has a predetermined speed ω because ω = ω * is in a steady state (a stable state when τ → ∞). . On the other hand, when operating in the constant torque control mode, since Id = 0 and Iq = Iq_max are in a steady state, control is performed so that constant current and constant torque are obtained.

次に上記で説明した室外送風機駆動手段8と制御部10とによる低温暖房運転時の室外送風機6の着霜検出シーケンスについて図10を用いて説明する。図10は室外送風機羽根形状がプロペラ型である場合の低温暖房運転時の室外送風機6の制御フローチャートである。なお、低温暖房運転は、暖房運転の開始指示が入力された際に、外気温度センサ3aで検出した外気温度が所定温度(例えば、5℃)以下の低外気条件に相当している場合に行われるもので、低外気条件に相当していなければ、通常の暖房運転(すなわち速度制御モード)を行う。なお、所定温度を5℃としているが、これは実験的に得られた着霜温度である。   Next, the frost formation detection sequence of the outdoor fan 6 during the low-temperature heating operation by the outdoor fan driving means 8 and the control unit 10 described above will be described with reference to FIG. FIG. 10 is a control flowchart of the outdoor blower 6 during the low-temperature heating operation when the outdoor blower blade shape is a propeller type. The low-temperature heating operation is performed when the outside temperature detected by the outside temperature sensor 3a corresponds to a low outside air condition of a predetermined temperature (for example, 5 ° C.) or less when a heating operation start instruction is input. If it does not correspond to the low outside air condition, normal heating operation (that is, speed control mode) is performed. In addition, although predetermined temperature is 5 degreeC, this is frosting temperature obtained experimentally.

低温暖房運転では、上述したように、室外送風機6を定トルク制御モードで動作させる。具体的には室外送風機モータ62の最大定格トルクに一定になるようにq軸電流指令を最大定格値Iq_maxとして定トルク制御を行う(ステップ1)。なお、低温暖房運転の開始タイミングは、上記の低温時の暖房運転の開始指示の他、除霜運転の終了も含まれる。   In the low temperature heating operation, as described above, the outdoor fan 6 is operated in the constant torque control mode. Specifically, constant torque control is performed with the q-axis current command as the maximum rated value Iq_max so that the maximum rated torque of the outdoor fan motor 62 is constant (step 1). Note that the start timing of the low-temperature heating operation includes the end of the defrosting operation in addition to the instruction to start the heating operation at the low temperature.

これにより室外送風機モータ62の回転数は、運転可能な最大回転数まで速やかに上昇する。制御部10は定トルク運転開始直後より速度(以下、回転数)ωを監視し、回転数フィルタ値ωfil を求める。回転数フィルタ値ωfil は例えば回転数ωを入力とする一次遅れ関数等で求める。一次遅れ関数をマイコン等で実現する場合の例を次の式(1)に示す。   Thereby, the rotation speed of the outdoor fan motor 62 rises rapidly to the maximum rotation speed that can be operated. The controller 10 monitors the speed (hereinafter referred to as the rotational speed) ω immediately after the start of the constant torque operation, and obtains the rotational speed filter value ωfil. The rotational speed filter value ωfil is obtained, for example, by a first-order lag function with the rotational speed ω as an input. The following formula (1) shows an example in which the first-order lag function is realized by a microcomputer or the like.

ωfil ← ωfil + K・{ω(t) - ωfil} ・・・ (1)
ただしKはフィルタ係数(0<K<1)
ωfil ← ωfil + K ・ {ω (t)-ωfil} (1)
Where K is the filter coefficient (0 <K <1)

制御部10は運転開始と共に加速が終了したかを判断する(ステップ3)。これは例えば回転数ωと回転数フィルタ値ωfil が一致した事等により判断する。以上のステップ1〜ステップ4で着霜検出準備処理が終了する。   The control unit 10 determines whether the acceleration has been completed with the start of operation (step 3). This is determined, for example, by the fact that the rotational speed ω and the rotational speed filter value ωfil coincide. The frost detection preparation process is completed in steps 1 to 4 described above.

そして、ステップ3で加速終了と判断された場合、着霜検出処理に入り、まず、現在の回転数フィルタ値ωfil を着霜検出用初期回転数ωnom に設定する(ステップ4)。   If it is determined in step 3 that acceleration has ended, the process enters frosting detection processing. First, the current rotation speed filter value ωfil is set to the initial rotation speed ωnom for frosting detection (step 4).

なおここで室外送風機駆動手段8は定トルク制御モードで制御しているが、同モードでは速度制御が働かず、室外送風機モータ62の速度及び回転数は負荷の増減に応じて変化する。室外送風機羽根61の形状がプロペラ型である場合、運転中に室外熱交換器3に着霜すると、圧損が増加して室外送風機モータ62の負荷トルクが増加し回転数が徐々に低下していく。   Here, the outdoor fan driving means 8 is controlled in the constant torque control mode. However, in this mode, the speed control does not work, and the speed and the rotational speed of the outdoor fan motor 62 change according to the increase or decrease of the load. When the shape of the outdoor fan blade 61 is a propeller type, if the outdoor heat exchanger 3 is frosted during operation, the pressure loss increases, the load torque of the outdoor fan motor 62 increases, and the rotational speed gradually decreases. .

着霜検出処理では、引き続き回転数フィルタ値ωfil を計算し(ステップ5)、回転数フィルタ値の初期値ωnom からの低下を監視する(ステップ6)。所定差分Δω1以上低下すると、着霜と判断して暖房運転を休止し、除霜運転に移行する。なお、ここでは、除霜運転の開始タイミングを、回転数ωではなく回転数フィルタ値ωfil を用いて決定するようにしているが、これは、室外送風機モータ62の回転数は、室外送風機6の設置環境の風量等によってふらつきがあることを考慮したものであり、回転数データのふらつきに問題なければ、回転数ωに基づいて行うようにしても良い。また、除霜運転の開始条件を、ここでは回転数フィルタ値の変化量が所定差分Δω1以上低下したときとしているが、回転数フィルタ値が所定回転数以下に下がったときとしてもよい。   In the frosting detection process, the rotational speed filter value ωfil is continuously calculated (step 5), and the decrease of the rotational speed filter value from the initial value ωnom is monitored (step 6). When the difference is decreased by a predetermined difference Δω1 or more, it is determined that frost is formed, the heating operation is stopped, and the defrosting operation is started. Here, the start timing of the defrosting operation is determined using the rotation speed filter value ωfil instead of the rotation speed ω, but this is because the rotation speed of the outdoor fan motor 62 is determined by the outdoor fan 6. This is based on consideration of the fact that there is a fluctuation due to the air volume of the installation environment, and if there is no problem with the fluctuation of the rotation speed data, it may be performed based on the rotation speed ω. In addition, the defrosting operation start condition is here when the amount of change in the rotational speed filter value is decreased by a predetermined difference Δω1 or more, but may be when the rotational speed filter value is decreased to a predetermined rotational speed or less.

なお一般的には暖房開始から着霜までの時間間隔は数分から数時間のオーダであるので、上記において回転数フィルタ値を得るためのフィルタの時定数は、概ね上記の時間よりも短くなる様設定すれば、着霜してから除霜運転開始までの時間を短縮することができる。また、上記フィルタの時定数を暖房運転開始から加速までの加速時間よりも概ね長くなる様に設定すれば、加速完了を着霜と誤判定することなく、良好な着霜検出が可能となる。   In general, since the time interval from the start of heating to frost formation is on the order of several minutes to several hours, the time constant of the filter for obtaining the rotation speed filter value in the above is generally shorter than the above time. If set, the time from frost formation to the start of the defrosting operation can be shortened. Further, if the time constant of the filter is set to be substantially longer than the acceleration time from the start of heating operation to acceleration, good frost detection can be performed without erroneously determining completion of acceleration as frost formation.

このように実施の形態1によれば、低温暖房運転時に、着霜が生じる室外熱交換器3側の室外送風機6を定トルク制御モードで運転するようにしたので、負荷条件(着霜状態)に応じた最大許容回転数で室外送風機6を運転することができる。このため、暖房能力を向上させることができると共に霜の付着進行を抑制することができる。その結果、着霜を起因とした運転効率の低下を防止して、経済的で信頼性の高い冷凍サイクル装置を得ることができる。   As described above, according to the first embodiment, during the low-temperature heating operation, the outdoor fan 6 on the outdoor heat exchanger 3 side where frost formation occurs is operated in the constant torque control mode. The outdoor blower 6 can be operated at the maximum allowable number of rotations according to the above. For this reason, while being able to improve a heating capability, the adhesion progress of frost can be suppressed. As a result, it is possible to prevent a reduction in operating efficiency due to frost formation, and to obtain an economical and highly reliable refrigeration cycle apparatus.

また、室外送風機モータ62の回転数の時間変化量を見て霜付きの状況を判別し、除霜運転の開始、あるいは終了を判断するようにしたので、実際の動作環境(風量や湿度など)に見合った正確な判断が可能となり、除霜運転の開始タイミングを的確に判断することができる。このため、送風機平均回転数上昇による暖房能力の向上が可能となり、また、除霜頻度低減による温度ムラの抑制が可能となる。   In addition, since the frosted state is determined by looking at the amount of time change in the rotational speed of the outdoor fan motor 62 and the start or end of the defrosting operation is determined, the actual operating environment (air volume, humidity, etc.) Therefore, it is possible to accurately determine the start timing of the defrosting operation. For this reason, it is possible to improve the heating capacity by increasing the average rotational speed of the blower, and it is possible to suppress temperature unevenness by reducing the defrost frequency.

また、この実施の形態1では、室外送風機駆動手段8の制御方式をベクトル制御(位置センサレスベクトル制御)としたので、速度制御モードと定トルク制御モードとの切り替えを簡単な構成で実現できる。   In Embodiment 1, since the control method of the outdoor fan driving means 8 is vector control (position sensorless vector control), switching between the speed control mode and the constant torque control mode can be realized with a simple configuration.

実施の形態2.
この実施の形態2では、除霜運転時の室外送風機6の制御について説明する。図11は羽根がプロペラ型の場合の除霜運転時の室外送風機6の制御フローチャートである。なお、図11において、上記で説明した図10のフローチャートと同一の動作であるステップについては同一番号を付し説明を省略する。
Embodiment 2. FIG.
In this Embodiment 2, control of the outdoor fan 6 at the time of a defrost operation is demonstrated. FIG. 11 is a control flowchart of the outdoor blower 6 during the defrosting operation when the blade is a propeller type. In FIG. 11, steps having the same operations as those in the flowchart of FIG. 10 described above are denoted by the same reference numerals and description thereof is omitted.

図11におけるステップ1〜3は除霜検出準備処理であり、最大トルクで加速し加速終了時の回転数をωnomに格納し、除霜検出処理に移行する。除霜検出処理では、回転数フィルタ値ωfilを計算してその時間変化を確認し、所定回転数差分Δω2以上上昇したら(ステップ16)、霜が取れたものと判断して再度低温暖房運転に移行する。   Steps 1 to 3 in FIG. 11 are defrost detection preparation processing, which accelerates with the maximum torque, stores the rotation speed at the end of acceleration in ωnom, and shifts to defrost detection processing. In the defrosting detection process, the rotational speed filter value ωfil is calculated and the change with time is confirmed. When the rotational speed difference Δω2 is increased by more than a predetermined rotational speed Δω2 (step 16), it is determined that the frost has been removed and the process proceeds to low temperature heating operation again. To do.

この実施の形態2によれば、除霜運転時に室外送風機6を定トルクモードで運転するため、負荷条件(着霜状態)に応じた最大許容速度で運転することができ、除霜運転時間を短縮することができる。また、室外送風機6の室外送風機モータ62の回転数の上昇を見て着霜を判断するようにしたので、除霜運転の終了タイミングを的確に判断することができ、温度ムラの増大や平均暖房能力の低下を防ぐことが可能となる。   According to the second embodiment, since the outdoor fan 6 is operated in the constant torque mode during the defrosting operation, it can be operated at the maximum allowable speed according to the load condition (frosting state), and the defrosting operation time can be reduced. It can be shortened. Further, since the frost formation is judged by looking at the increase in the rotational speed of the outdoor blower motor 62 of the outdoor blower 6, it is possible to accurately judge the end timing of the defrosting operation, thereby increasing the temperature unevenness and the average heating. It becomes possible to prevent a decline in ability.

なお、この実施の形態2では、除霜運転時に定トルク制御モードを用いるようにしているが、速度制御モードを用いても良い。   In the second embodiment, the constant torque control mode is used during the defrosting operation, but the speed control mode may be used.

また、上記実施の形態1及び2では、定トルク制御モードを、低温暖房運転時のみに行う例を挙げたが、この定トルク制御モードは、出力最大で送風機を制御したい場合に有効な制御法であるため、暖房の起動時にも使用しても良く、この場合、室内温度の制御性を更に向上できるなどの効果がある。   In the first and second embodiments, the constant torque control mode is performed only during the low-temperature heating operation. However, this constant torque control mode is an effective control method for controlling the blower with the maximum output. Therefore, it may be used even when heating is started. In this case, there is an effect that the controllability of the room temperature can be further improved.

また、上記実施の形態1及び2では、モータのトルクを最大定格トルクに一定に保つ定トルク制御の例を示したが、トルクに比例して変化する電流を最大定格電流に一定に保つ定電流制御としても良い。   In the first and second embodiments, an example of constant torque control that keeps the motor torque constant at the maximum rated torque has been shown. However, a constant current that keeps the current that changes in proportion to the torque constant at the maximum rated current is shown. It is good also as control.

また、上記実施の形態1及び2では、除霜運転の開始あるいは終了の条件判断として、室外送風機6の回転数の時間的な変化を用いて判断するようにしたが、回転数に比例して変化する他の動作物理量(電流・電圧(電圧指令で指令された電圧を含む))に基づいて判断するようにしてもよい。   In Embodiments 1 and 2 described above, the determination of the start or end of the defrosting operation is performed using the temporal change in the rotational speed of the outdoor fan 6, but in proportion to the rotational speed. The determination may be made based on other operating physical quantities that change (current / voltage (including a voltage commanded by a voltage command)).

実施の形態3.
実施の形態3は、定トルク制御モードの更なる利用法として、風路中(定トルク制御モードで動作中の送風機の風路)の目詰まり検出を行う場合について説明する。図12は送風機羽根形状がプロペラ型の場合の目詰まり検出の制御フローチャートである。定トルク制御モードでは、風路内に風路抵抗となる物体が存在する場合、送風機に負荷がかかり回転数が低下する。この特性を利用して目詰まり検出を行うものである。よって、ここでの目詰まりには、風路内に存在する熱交換器に付着した霜や、その他、熱交換器の外側に設置された集塵フィルターに付着したゴミなども含まれる。なお図12においてωshはモータの定格最大トルクで定トルク制御を行った場合の目詰まり判定しきい回転数である。加速直後において回転数フィルタ値ωfilとωsh を比較し(ステップ20)、ωfil>ωshであったならば目詰まり無しと判断し(ステップ21)、ωfil<ωshであったならば目詰まりと判断する(ステップ22)。
Embodiment 3 FIG.
In the third embodiment, as a further usage of the constant torque control mode, a case where clogging is detected in the air passage (the air passage of the blower operating in the constant torque control mode) will be described. FIG. 12 is a control flowchart for detecting clogging when the fan blade shape is a propeller type. In the constant torque control mode, when there is an object that becomes air path resistance in the air path, a load is applied to the blower and the rotational speed is reduced. This characteristic is used to detect clogging. Therefore, the clogging here includes frost adhering to the heat exchanger existing in the air passage, and dust adhering to the dust collecting filter installed outside the heat exchanger. In FIG. 12, ωsh is the threshold value for determining the clogging when constant torque control is performed with the rated maximum torque of the motor. Immediately after acceleration, the rotational speed filter values ωfil and ωsh are compared (step 20). If ωfil> ωsh, it is determined that there is no clogging (step 21), and if ωfil <ωsh, it is determined that clogging occurs. (Step 22).

このように、定トルク制御モードを目詰まり判定に利用することも可能である。   Thus, the constant torque control mode can be used for clogging determination.

上記各実施の形態では送風機羽根形状がプロペラ型の場合における暖房運転および除霜運転に関する実施例について説明したが、例えば室外機羽根形状がラインフロー・シロッコ・ターボ型などでも同様の効果を得ることが可能である。これらの羽根の場合は圧損の上昇に伴い負荷トルクが低下するため、上記実施の形態と逆、すなわち低温暖房運転を図11、除霜運転を図10の如く制御すれば良い。   In each of the above-described embodiments, examples relating to the heating operation and the defrosting operation in the case where the fan blade shape is a propeller type have been described. For example, the same effect can be obtained even if the outdoor unit blade shape is a line flow, sirocco, turbo type, or the like. Is possible. In the case of these blades, the load torque decreases with an increase in pressure loss. Therefore, the reverse of the above embodiment, that is, the low temperature heating operation may be controlled as shown in FIG. 11 and the defrosting operation as shown in FIG.

また、上記各実施の形態では冷凍サイクル装置として、冷凍空調装置の例を挙げて説明したが、これに限るものではなく、冷凍機又は冷蔵庫としても良い。この場合、四方弁2を図1で示した状態とは逆側に切り替え、室内熱交換器5を蒸発器として動作させる構成となり、室内送風機7に対し上記の制御方法を採用することになる。これにより、上記と同様の作用効果を奏することができる。   In each of the above embodiments, an example of a refrigeration air-conditioning apparatus has been described as a refrigeration cycle apparatus. However, the present invention is not limited to this and may be a refrigerator or a refrigerator. In this case, the four-way valve 2 is switched to the side opposite to the state shown in FIG. 1 and the indoor heat exchanger 5 is operated as an evaporator, and the above-described control method is adopted for the indoor blower 7. Thereby, there can exist an effect similar to the above.

また、上記のように冷凍サイクル装置を冷凍機又は冷蔵庫とした場合には、室内送風機7の室内機羽根形状をラインフロー・シロッコ・ターボ型の何れかとしてもよく、この場合も上記と同様の効果を得ることができる。   When the refrigeration cycle apparatus is a refrigerator or a refrigerator as described above, the indoor unit blade shape of the indoor blower 7 may be any of a line flow, a sirocco, and a turbo type. An effect can be obtained.

この発明の実施の形態1における冷凍サイクル装置としての冷凍空調装置の構成図である。It is a block diagram of the refrigerating air conditioning apparatus as a refrigerating cycle apparatus in Embodiment 1 of this invention. 低温暖房運転時の基本動作を示す図である。It is a figure which shows the basic operation at the time of low-temperature heating operation. 室外送風機6の回転数の差による暖房能力の差及び着霜による能力低下タイミングの差を示す図である。It is a figure which shows the difference in the heating capability by the difference in the rotation speed of the outdoor air blower 6, and the difference in the capability fall timing by frost formation. 低温暖房運転中の暖房/除霜運転の運転サイクルを示す図である。It is a figure which shows the driving | running cycle of heating / defrosting operation in low temperature heating operation. プロペラファンにおける回転数とトルクの関係を示す図である。It is a figure which shows the relationship between the rotation speed and torque in a propeller fan. プロペラファンを用いた場合の一般的な着霜面積−負荷トルク特性を示す図である。It is a figure which shows the general frost formation area-load torque characteristic at the time of using a propeller fan. シロッコ、ラインフロー、ターボ型ファンにおける回転数−負荷トルク特性を示す図である。It is a figure which shows the rotation speed-load torque characteristic in a sirocco, a line flow, and a turbo type fan. シロッコ、ラインフロー、ターボ型ファンにおける着霜面積−負荷トルク特性を示す図である。It is a figure which shows the frost formation area-load torque characteristic in a sirocco, a line flow, and a turbo type fan. 実施の形態1の室外送風機駆動手段8の構成図である。It is a block diagram of the outdoor fan drive means 8 of Embodiment 1. FIG. 送風機羽根形状がプロペラ型である場合の低温暖房運転時の室外送風機の制御フローチャートである。It is a control flowchart of the outdoor air blower at the time of low-temperature heating operation in case a fan blade shape is a propeller type. 羽根がプロペラ型の場合の除霜運転に関するフローチャートである。It is a flowchart regarding the defrost operation in case a blade | wing is a propeller type. 送風機羽根形状がプロペラ型である場合の目詰まり検出の制御フローチャートである。It is a control flowchart of clogging detection when a fan blade shape is a propeller type.

符号の説明Explanation of symbols

1 圧縮機、2 四方弁、3 室外熱交換器、3a 外気温度センサ、4 膨張機構、5 室内熱交換器、6 室外送風機、7 室内送風機、8 室外送風機駆動手段、9 室内送風機駆動手段、10 制御部、11 冷媒配管、61 室外送風機羽根、62 室外送風機モータ、71 室内送風機羽根、72 室内送風機モータ。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Four way valve, 3 Outdoor heat exchanger, 3a Outside air temperature sensor, 4 Expansion mechanism, 5 Indoor heat exchanger, 6 Outdoor blower, 7 Indoor blower, 8 Outdoor blower drive means, 9 Indoor blower drive means, 10 Control unit, 11 refrigerant pipe, 61 outdoor fan blade, 62 outdoor fan motor, 71 indoor fan blade, 72 indoor fan motor.

Claims (25)

圧縮機、四方弁、室外熱交換器、膨張機構、室内熱交換器を冷媒配管で接続した冷凍サイクルと、前記室外熱交換器の熱交換を促進する室外送風機と、前記室内熱交換器の熱交換を促進する室内送風機と、前記冷凍サイクル、前記室外送風機及び前記室内送風機を制御する制御部とを有し、前記四方弁の切り換えにより通常運転と除霜運転とを切り換え可能な冷凍サイクル装置において、
前記制御部は、前記室外又は室内送風機のモータのトルクが、所定トルク値に一定になるように制御する定トルク制御モード、又は、前記室外又は室内送風機のモータの電流が、所定電流値に一定になるように制御する定電流制御モードを有し、所定の低温環境下で前記通常運転を行う際には、前記室外又は室内送風機のうち、通常運転時に前記冷凍サイクルの蒸発器として動作する熱交換器側の送風機である蒸発器側送風機を、前記定トルク制御モード又は前記定電流制御モードで動作させることを特徴とする冷凍サイクル装置。
A refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, an expansion mechanism, and an indoor heat exchanger are connected by a refrigerant pipe, an outdoor fan that promotes heat exchange of the outdoor heat exchanger, and heat of the indoor heat exchanger In a refrigeration cycle apparatus having an indoor blower that promotes replacement, a control unit that controls the refrigeration cycle, the outdoor blower, and the indoor blower, and capable of switching between a normal operation and a defrosting operation by switching the four-way valve ,
The control unit is a constant torque control mode for controlling the motor torque of the outdoor or indoor fan to be constant at a predetermined torque value, or the current of the motor of the outdoor or indoor fan is constant at a predetermined current value. When the normal operation is performed in a predetermined low-temperature environment, heat that operates as an evaporator of the refrigeration cycle during normal operation of the outdoor or indoor fan is provided. An refrigeration cycle apparatus, wherein an evaporator-side fan, which is an exchanger-side fan, is operated in the constant torque control mode or the constant current control mode.
前記所定トルク値は、前記蒸発器側送風機のモータの最大定格トルクであり、前記所定電流値は、蒸発器側送風機のモータの最大定格電流であることを特徴とする請求項1記載の冷凍サイクル装置。   2. The refrigeration cycle according to claim 1, wherein the predetermined torque value is a maximum rated torque of a motor of the evaporator side blower, and the predetermined current value is a maximum rated current of a motor of the evaporator side blower. apparatus. 前記通常運転は暖房運転であり、外気温が所定温度値以下での低温暖房運転時において、前記室外送風機を前記定トルク制御モード又は前記定電流制御モードで動作させることを特徴とする請求項1又は請求項2記載の冷凍サイクル装置。   The normal operation is a heating operation, and the outdoor fan is operated in the constant torque control mode or the constant current control mode during a low temperature heating operation in which an outside air temperature is equal to or lower than a predetermined temperature value. Or the refrigerating-cycle apparatus of Claim 2. 前記所定温度値は5℃であることを特徴とする請求項3記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 3, wherein the predetermined temperature value is 5 ° C. 前記制御部は、前記除霜運転の開始あるいは終了を、前記室外送風機の動作物理量の時間的な変化を用いて判断することを特徴とする請求項3記載の冷凍サイクル装置。   The said control part judges the start or completion | finish of the said defrost operation using the temporal change of the operation | movement physical quantity of the said outdoor air blower, The refrigeration cycle apparatus of Claim 3 characterized by the above-mentioned. 前記室外送風機の羽根形状はプロペラ型であり、前記室外送風機の動作物理量が所定値以下となったことを除霜運転の開始条件とすることを特徴とする請求項5記載の冷凍サイクル装置。   6. The refrigeration cycle apparatus according to claim 5, wherein a blade shape of the outdoor fan is a propeller type, and a defrosting operation start condition is that an operation physical quantity of the outdoor fan becomes a predetermined value or less. 前記室外送風機の羽根形状はプロペラ型であり、前記室外送風機の動作物理量の減少量が所定量以上となったことを除霜運転の開始条件とすることを特徴とする請求項5記載の冷凍サイクル装置。   6. The refrigeration cycle according to claim 5, wherein a blade shape of the outdoor fan is a propeller type, and a defrosting operation start condition is that a decrease amount of an operation physical quantity of the outdoor fan is equal to or greater than a predetermined amount. apparatus. 前記室外送風機の羽根形状はプロペラ型であり、除霜運転中の前記室外送風機の動作物理量が所定値以上となったことを除霜運転の終了条件とすることを特徴とする請求項5記載の冷凍サイクル装置。   The blade shape of the outdoor blower is a propeller type, and an operation physical quantity of the outdoor blower during the defrosting operation is a predetermined value or more is set as a defrosting operation end condition. Refrigeration cycle equipment. 前記室外送風機の羽根形状はプロペラ型であり、除霜運転中の前記室外送風機の動作物理量の増加量が所定量以上となったことを除霜運転の終了条件とすることを特徴とする請求項5記載の冷凍サイクル装置。   The blade shape of the outdoor blower is a propeller type, and an end condition of the defrosting operation is that the amount of increase in the operation physical quantity of the outdoor blower during the defrosting operation is a predetermined amount or more. 5. The refrigeration cycle apparatus according to 5. 前記動作物理量は、前記室外送風機の回転数、電流、電圧の少なくともいずれかであることを特徴とする請求項5乃至請求項9の何れかに記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 5 to 9, wherein the operating physical quantity is at least one of a rotational speed, a current, and a voltage of the outdoor blower. 除霜運転時に、前記室外送風機を前記定トルク制御モード又は前記定電流制御モードで動作させることを特徴とする請求項3記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 3, wherein during the defrosting operation, the outdoor fan is operated in the constant torque control mode or the constant current control mode. 前記低温暖房運転以外の通常暖房運転の開始時において前記室外送風機を定トルク制御モード又は前記定電流制御モードで動作させることを特徴とする請求項3記載の冷凍サイクル装置。   4. The refrigeration cycle apparatus according to claim 3, wherein the outdoor fan is operated in a constant torque control mode or the constant current control mode at the start of a normal heating operation other than the low-temperature heating operation. 前記低温暖房運転以外の通常暖房運転は速度を一定にした速度制御モードで駆動されており、前記室外送風機の制御方式を、ベクトル制御方式としたことを特徴とする請求項3記載の冷凍サイクル装置。   4. The refrigeration cycle apparatus according to claim 3, wherein the normal heating operation other than the low-temperature heating operation is driven in a speed control mode with a constant speed, and the control method of the outdoor fan is a vector control method. . 前記定トルク制御モード又は前記定電流制御モードで動作中の前記室外送風機の動作物理量に基づいて、前記室外送風機の風が通過する風路中の目詰まり状態の検出を行うことを特徴とする請求項3記載の冷凍サイクル装置。   The clogged state in the air passage through which the wind of the outdoor blower passes is detected based on an operation physical quantity of the outdoor blower operating in the constant torque control mode or the constant current control mode. Item 4. The refrigeration cycle apparatus according to item 3. 前記通常運転は、冷蔵・冷凍運転であり、室内気温が所定温度値以下の低温の冷蔵・冷凍運転時において、前記室内送風機を前記定トルク制御モード又は前記定電流制御モードで動作させることを特徴とする請求項1又は請求項2記載の冷凍サイクル装置。   The normal operation is a refrigeration / freezing operation, and the indoor blower is operated in the constant torque control mode or the constant current control mode at a low temperature refrigeration / freezing operation in which the room temperature is a predetermined temperature value or less. The refrigeration cycle apparatus according to claim 1 or 2. 前記制御部は、前記除霜運転の開始あるいは終了を、前記室内送風機の動作物理量の時間的な変化を用いて判断することを特徴とする請求項15記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 15, wherein the control unit determines the start or end of the defrosting operation using a temporal change in an operation physical quantity of the indoor blower. 室内送風機の羽根形状はラインフロー、シロッコ及びターボ型の何れかであり、低温冷蔵・冷凍運転中の前記室内送風機の動作物理量が所定値以上となったことを除霜運転の開始条件とすることを特徴とする請求項16記載の冷凍サイクル装置。   The blade shape of the indoor blower is either a line flow, sirocco or turbo type, and the defrosting operation start condition is that the operating physical quantity of the indoor blower during the low-temperature refrigeration / freezing operation exceeds a predetermined value. The refrigeration cycle apparatus according to claim 16. 室内送風機の羽根形状はラインフロー、シロッコ及びターボ型の何れかであり、低温冷蔵・冷凍運転中の前記室内送風機の動作物理量の増加量が所定量以上となったことを除霜運転の開始条件とすることを特徴とする請求項16記載の冷凍サイクル装置。   The fan shape of the indoor blower is either line flow, sirocco or turbo type, and the defrosting operation start condition is that the increase in the physical quantity of operation of the indoor blower during the low-temperature refrigeration / freezing operation exceeds a predetermined amount The refrigeration cycle apparatus according to claim 16, wherein 室内送風機の羽根形状はラインフロー、シロッコ及びターボ型の何れかであり、除霜運転中の前記室内送風機の動作物理量が所定値以下となったことを除霜運転の終了条件とすることを特徴とする請求項16記載の冷凍サイクル装置。   The blade shape of the indoor blower is either a line flow, sirocco or turbo type, and the defrosting operation end condition is that the operation physical quantity of the indoor blower during the defrosting operation is equal to or less than a predetermined value. The refrigeration cycle apparatus according to claim 16. 室内送風機の羽根形状はラインフロー、シロッコ及びターボ型の何れかであり、除霜運転中の前記室内送風機の動作物理量の減少量が所定量以上となったことを除霜運転の終了条件とすることを特徴とする請求項16記載の冷凍サイクル装置。   The blade shape of the indoor blower is either a line flow, sirocco, or turbo type, and the defrosting operation end condition is that the amount of decrease in the operation physical quantity of the indoor blower during the defrosting operation exceeds a predetermined amount. The refrigeration cycle apparatus according to claim 16. 前記動作物理量は、前記室内送風機の回転数、電流、電圧の少なくともいずれかであることを特徴とする請求項16乃至請求項20の何れかに記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 16 to 20, wherein the operating physical quantity is at least one of a rotation speed, a current, and a voltage of the indoor blower. 除霜運転時に、前記室内送風機を前記定トルク制御モード又は前記定電流制御モードで動作させることを特徴とする請求項15記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 15, wherein the indoor blower is operated in the constant torque control mode or the constant current control mode during a defrosting operation. 前記低温冷蔵・冷凍運転以外の通常冷蔵・冷凍運転の開始時において前記室内送風機を前記定トルク制御モード又は前記定電流制御モードで動作させることを特徴とする請求項15記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 15, wherein the indoor blower is operated in the constant torque control mode or the constant current control mode at the start of normal refrigeration / refrigeration operation other than the low-temperature refrigeration / refrigeration operation. 前記低温冷蔵・冷凍運転以外の通常冷蔵・冷凍運転は速度を一定にした速度制御モードで駆動されており、前記室内送風機の制御方式を、ベクトル制御方式としたことを特徴とする請求項15記載の冷凍サイクル装置。   16. The normal refrigeration / freezing operation other than the low-temperature refrigeration / freezing operation is driven in a speed control mode with a constant speed, and the control method of the indoor blower is a vector control method. Refrigeration cycle equipment. 前記定トルク制御モード又は前記定電流制御モードで動作中の前記室内送風機の動作物理量に基づいて前記室内送風機の風が通過する風路中の目詰まり状態を検出することを特徴とする請求項15記載の冷凍サイクル装置。   The clogged state in the air passage through which the wind of the indoor blower passes is detected based on an operation physical quantity of the indoor blower operating in the constant torque control mode or the constant current control mode. The refrigeration cycle apparatus described.
JP2007070363A 2007-03-19 2007-03-19 Refrigerating cycle device Pending JP2008232500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007070363A JP2008232500A (en) 2007-03-19 2007-03-19 Refrigerating cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007070363A JP2008232500A (en) 2007-03-19 2007-03-19 Refrigerating cycle device

Publications (1)

Publication Number Publication Date
JP2008232500A true JP2008232500A (en) 2008-10-02

Family

ID=39905507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007070363A Pending JP2008232500A (en) 2007-03-19 2007-03-19 Refrigerating cycle device

Country Status (1)

Country Link
JP (1) JP2008232500A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009052409A1 (en) * 2009-11-10 2011-05-12 Stiebel Eltron Gmbh & Co. Kg heat pump system
CN104748316A (en) * 2015-03-31 2015-07-01 广东美的制冷设备有限公司 Air conditioner and control method and device for compressor motor in air conditioner
WO2016084139A1 (en) * 2014-11-26 2016-06-02 日立アプライアンス株式会社 Air conditioner
WO2018037465A1 (en) * 2016-08-22 2018-03-01 三菱電機株式会社 Heat pump apparatus, air conditioner, and water heater
WO2019215878A1 (en) * 2018-05-10 2019-11-14 三菱電機株式会社 Air conditioner
CN111947349A (en) * 2019-05-14 2020-11-17 广东万博电气有限公司 Defrosting control method, defrosting control system and air source heat pump device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475850A (en) * 1987-09-16 1989-03-22 Hitachi Ltd Air conditioner
JPH05118630A (en) * 1991-06-20 1993-05-14 Mitsubishi Electric Corp Air conditioner and air volume control device for air conditioner
JPH0849956A (en) * 1994-08-04 1996-02-20 Fuji Electric Co Ltd Defrosting controller for refrigerating show-case
JPH0979710A (en) * 1995-09-19 1997-03-28 Hitachi Ltd Defrosting control system of freezer
JP2003348885A (en) * 2002-05-23 2003-12-05 Sanyo Electric Co Ltd Method and apparatus for controlling permanent magnet synchronous motor
JP2004177063A (en) * 2002-11-29 2004-06-24 Hitachi Home & Life Solutions Inc Air conditioner
JP2004257628A (en) * 2003-02-25 2004-09-16 Denso Corp Refrigerator
JP2005042982A (en) * 2003-07-23 2005-02-17 Mitsubishi Electric Corp Air conditioner

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475850A (en) * 1987-09-16 1989-03-22 Hitachi Ltd Air conditioner
JPH05118630A (en) * 1991-06-20 1993-05-14 Mitsubishi Electric Corp Air conditioner and air volume control device for air conditioner
JPH0849956A (en) * 1994-08-04 1996-02-20 Fuji Electric Co Ltd Defrosting controller for refrigerating show-case
JPH0979710A (en) * 1995-09-19 1997-03-28 Hitachi Ltd Defrosting control system of freezer
JP2003348885A (en) * 2002-05-23 2003-12-05 Sanyo Electric Co Ltd Method and apparatus for controlling permanent magnet synchronous motor
JP2004177063A (en) * 2002-11-29 2004-06-24 Hitachi Home & Life Solutions Inc Air conditioner
JP2004257628A (en) * 2003-02-25 2004-09-16 Denso Corp Refrigerator
JP2005042982A (en) * 2003-07-23 2005-02-17 Mitsubishi Electric Corp Air conditioner

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009052409A1 (en) * 2009-11-10 2011-05-12 Stiebel Eltron Gmbh & Co. Kg heat pump system
WO2016084139A1 (en) * 2014-11-26 2016-06-02 日立アプライアンス株式会社 Air conditioner
JPWO2016084139A1 (en) * 2014-11-26 2017-07-20 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
US10989433B2 (en) 2014-11-26 2021-04-27 Hitachi-Johnson Controls Air Conditioning, Inc. Air conditioner
CN104748316A (en) * 2015-03-31 2015-07-01 广东美的制冷设备有限公司 Air conditioner and control method and device for compressor motor in air conditioner
WO2018037465A1 (en) * 2016-08-22 2018-03-01 三菱電機株式会社 Heat pump apparatus, air conditioner, and water heater
JPWO2018037465A1 (en) * 2016-08-22 2019-06-20 三菱電機株式会社 Heat pump device, air conditioner, and water heater
WO2019215878A1 (en) * 2018-05-10 2019-11-14 三菱電機株式会社 Air conditioner
JPWO2019215878A1 (en) * 2018-05-10 2021-02-25 三菱電機株式会社 Air conditioner
CN111947349A (en) * 2019-05-14 2020-11-17 广东万博电气有限公司 Defrosting control method, defrosting control system and air source heat pump device
CN111947349B (en) * 2019-05-14 2023-05-12 广东万和电气有限公司 Defrosting control method, defrosting control system and air source heat pump device

Similar Documents

Publication Publication Date Title
JP5306007B2 (en) Air conditioner
JP6071648B2 (en) Air conditioner
JP6768546B2 (en) Air conditioner
WO2010023975A1 (en) Heat pump device
JP5634071B2 (en) Air conditioner and defrosting operation method of air conditioner
JPWO2015145714A1 (en) Air conditioner
JP5831355B2 (en) Air conditioner
JP2008232500A (en) Refrigerating cycle device
JP6749471B2 (en) Air conditioner
JP2010032107A (en) Air conditioner
CN113405231B (en) Self-cleaning sterilization control method and device for air conditioner, air conditioner and storage medium
CN113405229B (en) Self-cleaning sterilization control method and device for air conditioner, air conditioner and storage medium
JP6084297B2 (en) Air conditioner
JP5407342B2 (en) Air conditioner
JP2014085078A (en) Air conditioner
JP5656789B2 (en) Refrigeration cycle equipment
JP5511867B2 (en) Refrigeration cycle equipment
JP2010032102A (en) Air conditioner
JP2007212023A (en) Air conditioning system
JP2004225929A (en) Air conditioner and control method of air conditioner
US10443901B2 (en) Indoor unit of air conditioner
US10830483B2 (en) Refrigeration cycle apparatus
JP2010230240A (en) Air conditioner
JP6253731B2 (en) Air conditioner
JP2003050066A (en) Controller for air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090917

A131 Notification of reasons for refusal

Effective date: 20100615

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100727

A131 Notification of reasons for refusal

Effective date: 20101130

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110405

Free format text: JAPANESE INTERMEDIATE CODE: A02