JP2008231150A - Method for controlling polymerization reaction and device for controlling the reaction - Google Patents

Method for controlling polymerization reaction and device for controlling the reaction Download PDF

Info

Publication number
JP2008231150A
JP2008231150A JP2007068580A JP2007068580A JP2008231150A JP 2008231150 A JP2008231150 A JP 2008231150A JP 2007068580 A JP2007068580 A JP 2007068580A JP 2007068580 A JP2007068580 A JP 2007068580A JP 2008231150 A JP2008231150 A JP 2008231150A
Authority
JP
Japan
Prior art keywords
polymerization reaction
solvent
amount
temperature
outer bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007068580A
Other languages
Japanese (ja)
Other versions
JP5289719B2 (en
Inventor
Shinsuke Sugiura
紳介 杉浦
Koji Toyooka
孝司 豊岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2007068580A priority Critical patent/JP5289719B2/en
Publication of JP2008231150A publication Critical patent/JP2008231150A/en
Application granted granted Critical
Publication of JP5289719B2 publication Critical patent/JP5289719B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polymerisation Methods In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling the polymerization reaction by controlling the temperature of an outer bath so that the total dripping amount of a solvent dripped until the completion of the polymerization reaction becomes an objective amount set in advance, and a device for controlling the polymerization reaction. <P>SOLUTION: This method for controlling the polymerization reaction is constituted by calculating the accumulated dripped amount (n) [kg] of the solvent at the time point of passing (tn), on passing (tn) min (in this embodiment, 30 min) from the start of the polymerization reaction (S12), calculating the ΔSV of controlling amount of the temperature of the outer bath (S13) by substituting the calculated accumulated dripped amount (n) to a calculation formula (1): ΔSV [°C]=-0.285(n)×12.555 (1) obtained by performing a prior experiment in advance, and setting the temperature of the outer bath afterwards by the temperature obtained by adding the calculated ΔSV to the set temperature (S14) so that the total dripping amount of the dripped solvent until the completion of the reaction becomes the objective value set in advance. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、粘着剤等に使用されるポリマーを合成する際の重合反応を制御する重合反応制御方法及び重合反応制御装置であって、特に、重合反応の終了までに滴下する溶剤の総滴下量が予め設定された目標量となるように外浴の温度を制御する重合反応制御方法及び重合反応制御装置に関する。   The present invention relates to a polymerization reaction control method and a polymerization reaction control device for controlling a polymerization reaction when a polymer used for an adhesive or the like is synthesized, and in particular, a total dripping amount of a solvent dropped before the completion of the polymerization reaction The present invention relates to a polymerization reaction control method and a polymerization reaction control apparatus for controlling the temperature of an outer bath so that the temperature reaches a preset target amount.

従来より、粘着剤等に使用されるポリマーを合成する際には、攪拌槽内に予め投入したモノマーに開始剤を滴下してモノマー混合物を重合反応させることにより合成する。その際、重合反応の再現性を向上させるためには、重合温度(以下、内浴温度)について、目標温度からの差異を小さくすることが極めて重要である。
その為、重合反応に伴う重合発熱量を適宜除熱する必要があるが、以下に代表される2種類の方法を用いてそれを実施している。
(1)攪拌槽外側に設置した冷却ジャケットとの熱交換を行うことにより重合発熱量を除熱する方法(例えば、特開2004−256734号公報参照)。
操作パラメーター:外浴冷媒温度、攪拌翼回転数(熱伝達効率)
(2)重合温度より低温度の溶剤(あるいは分散媒)の系内への滴下を行うことにより重合発熱量を除熱する方法。
操作パラメーター:溶剤滴下量、滴下タイミング
特開2004−256734号公報
Conventionally, when synthesizing a polymer used for an adhesive or the like, the polymer is synthesized by dropping an initiator into a monomer charged in advance in a stirring tank to cause a monomer mixture to undergo a polymerization reaction. At that time, in order to improve the reproducibility of the polymerization reaction, it is extremely important to reduce the difference from the target temperature with respect to the polymerization temperature (hereinafter referred to as the inner bath temperature).
Therefore, it is necessary to appropriately remove the heat generated by the polymerization accompanying the polymerization reaction, but this is carried out using two types of methods represented below.
(1) A method of removing heat of polymerization heat by performing heat exchange with a cooling jacket installed outside the stirring tank (see, for example, JP-A-2004-256734).
Operating parameters: Outer bath refrigerant temperature, stirring blade rotation speed (heat transfer efficiency)
(2) A method of removing heat generated by polymerization by dropping a solvent (or dispersion medium) having a temperature lower than the polymerization temperature into the system.
Operation parameters: amount of solvent dripping, dripping timing
JP 2004-256734 A

上記2つの方法の内、制御を開始し、実際の除熱効果が現れるまでの遅れ時間が短い(温調レスポンスが高い)のは、(2)の低温溶剤滴下による方法である。
特に、重合が進んで液粘度が増加すると、内浴側の境膜が増大するので、(1)の方法では温調レスポンスが著しく低下し、内浴温度を好適に制御できなくなり、(2)の方法に基づく制御が重要となる。従って、特に高粘度となるような重合を行う場合には、外浴温度設定値及び攪拌速度設定値をあらかじめ決定した値で固定し、大まかに除熱をしておき、それでも除熱できない発熱分を溶剤滴下によって除熱する高精度な温度制御を実施することが必要となる。
Of the above two methods, the delay time until the actual heat removal effect appears after the start of control is short (the temperature control response is high) is the method of (2) by low temperature solvent dropping.
Particularly, when the polymerization proceeds and the liquid viscosity increases, the boundary film on the inner bath side increases, so that the temperature control response is remarkably reduced by the method (1), and the inner bath temperature cannot be suitably controlled. (2) Control based on this method is important. Therefore, when performing polymerization that results in a particularly high viscosity, the outer bath temperature set value and the stirring speed set value are fixed at predetermined values, and heat is roughly removed. It is necessary to carry out highly accurate temperature control that removes heat by dripping solvent.

ここで、上記(2)の除熱方法における溶剤の具体的な滴下方法としては、更に以下の2つの方法がある。
(i)内浴温度の閾値を段階的に決定しておき、その各閾値を超えた場合に、定量の溶剤を反応系内に滴下する方法。
(ii)内浴温度、及び内浴温度変化率を関数とした、最適溶剤滴下量の算出式をあらかじめ実験などにより求めておき、算出された量の溶剤を反応系内に滴下する方法。
Here, there are the following two methods as specific methods for dropping the solvent in the heat removal method (2).
(I) A method in which threshold values for the inner bath temperature are determined stepwise, and when each threshold value is exceeded, a fixed amount of solvent is dropped into the reaction system.
(Ii) A method in which an equation for calculating the optimum amount of solvent dripping using the inner bath temperature and the rate of change in the inner bath temperature as a function is obtained in advance by experiments or the like, and the calculated amount of the solvent is dripped into the reaction system.

上記(i)及び(ii)の方法を用いることによって、内浴温度を目標温度付近に好適に制御することが可能である。しかし、上記いずれの滴下方法をとったとしても、総滴下量にバラつきが生じ、この結果、得られるポリマーの物性(分子量)にバラつきが生じるという問題が生じていた。   By using the methods (i) and (ii) above, it is possible to suitably control the inner bath temperature near the target temperature. However, even if any of the above dropping methods is employed, the total dropping amount varies, and as a result, the physical property (molecular weight) of the obtained polymer varies.

この溶剤総滴下量がポリマー分子量に影響を与える原因としては、溶剤そのものが重合反応の連鎖移動剤としての効果も持っていることや、滴下によりモノマー濃度を低下させる(分子量はモノマー濃度に依存)こと等が挙げられる。そして、実際に重合に用いた溶剤の総滴下量と生成されたポリマー分子量は、図10に示すような相関が得られることが分かっている。
従って、所望のポリマー物性を得るには、溶剤の総滴下量を常に一定範囲内に抑える必要がある。
しかし、実際の生産現場では、攪拌槽内の溶存酸素濃度のバラツキから、溶剤の総滴下量にバラツキが生じることとなっていた。即ち、溶存酸素濃度のバラツキから反応阻害効果が変化することによって、重合速度、発熱挙動、溶剤の総滴下量がそれぞれ変化し、その結果、ポリマー分子量が変化する。そして、ポリマー分子量の変化が所定の範囲を超えた場合には、異常ロットとなり、製品の歩留まり低下にも繋がるといったケースも起こる。
The reason why the total amount of solvent dripped affects the molecular weight of the polymer is that the solvent itself has an effect as a chain transfer agent for the polymerization reaction, and the monomer concentration is lowered by dripping (the molecular weight depends on the monomer concentration). And so on. Then, it is known that a correlation as shown in FIG. 10 is obtained between the total dripping amount of the solvent actually used for polymerization and the generated polymer molecular weight.
Therefore, in order to obtain desired polymer properties, it is necessary to keep the total amount of solvent dripped within a certain range.
However, in actual production sites, the total amount of solvent dropped varies due to variations in dissolved oxygen concentration in the stirring tank. That is, when the reaction inhibition effect changes due to the variation in dissolved oxygen concentration, the polymerization rate, the exothermic behavior, and the total dripping amount of the solvent change, and as a result, the polymer molecular weight changes. When the change in the molecular weight of the polymer exceeds a predetermined range, an abnormal lot may occur, leading to a decrease in product yield.

そして、上記の攪拌槽内の溶存酸素濃度のバラツキには、以下の要因が考えられる。
窒素置換条件バラツキ、開始剤投入時の酸素混入、重合温度(反応液温度)バラツキ、各種モノマー中に含まれる禁止剤濃度バラツキ、その他不純物混入濃度バラツキ、滴下溶剤の温度、滴下溶剤内の溶存酸素濃度である。
これら要因が、重合速度を変化させる要因として働き、その結果、冷却のために滴下する溶剤の量が変化してしまう。
And the following factors can be considered for variation in the dissolved oxygen concentration in said stirring tank.
Nitrogen substitution condition variation, oxygen mixing at the time of initiator addition, polymerization temperature (reaction solution temperature) variation, concentration variation of inhibitor contained in various monomers, other impurity contamination concentration variation, dropping solvent temperature, dissolved oxygen in dropping solvent Concentration.
These factors work as factors for changing the polymerization rate, and as a result, the amount of the solvent dropped for cooling changes.

そこで、上記問題に対する改善策としては、以下の2つの方法がある。
(I)上記に挙げた要因を全て反応に影響しないよう、すべての生産ロットにおいて、計測管理する方法。
(II)上記バラツキ発生要因が反応に影響したとしても、溶剤を一定の量及び間隔で滴下し続け、他制御因子にて、内浴温度を制御する方法。
Therefore, there are the following two methods for improving the above problem.
(I) A method of measuring and managing all production lots so that all the above-mentioned factors do not affect the reaction.
(II) A method in which the internal bath temperature is controlled by another control factor while the solvent is continuously dropped at a constant amount and interval even if the above-described variation generation factor affects the reaction.

しかしながら、(I)の方法については、バッチ方式の生産設備では、複数台の設備が導入されているケースも多く、これらすべての生産設備において、上記要因を計測・制御することは非常に難しくコスト増に繋がり、非現実的である(計測機のメンテナンスを含める)。
一方、(II)の方法について、ここでの他制御因子とは、外浴温度設定値及び攪拌翼回転数の設定値が挙げられるが、冒頭に上げたように、これらは、時定数が大きく、詳細な温度制御ができない。
However, with regard to the method (I), there are many cases where multiple production facilities are introduced in batch-type production facilities, and it is very difficult to measure and control the above factors in all these production facilities. This is unrealistic (including maintenance of measuring instruments).
On the other hand, with respect to the method (II), examples of other control factors here include the outer bath temperature set value and the set value of the stirring blade rotation speed. As described above, these have large time constants. Detailed temperature control is not possible.

本発明は前記従来における問題点を解消するためになされたものであり、重合途中の溶剤の積算滴下量により、各種バラツキ要因による反応への影響度を代替的に定量化し、更に、反応終了時の総滴下量を予測することにより、重合反応の再現性を向上させつつポリマーの物性(分子量)のバラつきを防止した重合反応制御方法及び重合反応制御装置を提供することを目的とする。   The present invention has been made to solve the above-described problems in the prior art, and by quantifying the degree of influence on the reaction due to various variation factors by the cumulative amount of solvent in the middle of polymerization, and at the end of the reaction It is an object of the present invention to provide a polymerization reaction control method and a polymerization reaction control apparatus that prevent variations in physical properties (molecular weight) of a polymer while improving the reproducibility of the polymerization reaction by predicting the total amount of dripping.

前記目的を達成するため本願の請求項1に係る重合反応制御方法は、モノマー混合物を攪拌槽内に投入して重合反応によりポリマーを合成する過程で、攪拌槽の外浴温度を制御すると共に、溶剤を攪拌槽内に滴下することにより重合反応を制御する重合反応制御方法において、重合反応中における所定のタイミングで重合開始からの前記溶剤の積算滴下量を算出し、重合反応終了時までに予め設定された総滴下量の溶剤を滴下するように前記算出された溶剤の積算滴下量に基づいて外浴の温度を制御することを特徴とする。   In order to achieve the above object, the polymerization reaction control method according to claim 1 of the present application controls the outer bath temperature of the stirring tank in the course of synthesizing the polymer by the polymerization reaction by introducing the monomer mixture into the stirring tank, In a polymerization reaction control method for controlling a polymerization reaction by dropping a solvent into a stirring vessel, an integrated dropping amount of the solvent from the start of polymerization is calculated at a predetermined timing during the polymerization reaction, and the polymerization reaction is completed in advance by the end of the polymerization reaction. The temperature of the outer bath is controlled based on the calculated cumulative dripping amount of the solvent so as to drop the total dripping amount of the solvent.

また、請求項2に係る重合反応制御方法は、請求項1に記載の重合反応制御方法において、前記溶剤の積算滴下量に基づく外浴の温度の制御量を以下のようにして求める、異なる温度の複数種類の溶剤を用いて重合反応を行い、重合開始から所定時間後に外浴温度を変更し、前記用いた溶剤の種類毎に変更した外浴温度の温度差と重合反応終了までの総滴下量とをそれぞれ算出し、目標の総滴下量となる温度差と外浴温度の変更時点までの溶剤の積算滴下量との関係から外浴の温度の制御量を求めることを特徴とする。   Further, the polymerization reaction control method according to claim 2 is the polymerization reaction control method according to claim 1, wherein the temperature difference of the outer bath based on the cumulative dripping amount of the solvent is determined as follows. The polymerization reaction is performed using a plurality of types of solvents, and the outer bath temperature is changed after a predetermined time from the start of the polymerization, and the temperature difference of the outer bath temperature changed for each type of the solvent used and the total dropwise addition until the end of the polymerization reaction The control amount of the temperature of the outer bath is obtained from the relationship between the temperature difference that becomes the target total dripping amount and the cumulative dripping amount of the solvent up to the time of changing the outer bath temperature.

また、請求項3に係る重合反応制御方法は、請求項1又は請求項2に記載の重合反応制御方法において、前記溶剤の積算滴下量を算出するタイミングを以下のようにして求める、異なる温度の複数種類の溶剤を用いて重合反応を行い、前記用いた溶剤の種類毎に重合開始から所定時間毎の前記溶剤の積算滴下量と重合反応終了までの総滴下量との相関を求め、前記相関が所定高さ以上で且つ重合開始から最も早いタイミングを前記溶剤の積算滴下量を算出するタイミングとして求めることを特徴とする。   Further, the polymerization reaction control method according to claim 3 is the polymerization reaction control method according to claim 1 or claim 2, wherein the timing for calculating the cumulative dripping amount of the solvent is determined as follows. Performing a polymerization reaction using a plurality of types of solvents, for each type of the solvent used, to determine the correlation between the cumulative amount of the solvent dropped from the start of polymerization and the total amount of dripping from the polymerization reaction until the end of the polymerization reaction, the correlation Is the predetermined height or more and the earliest timing from the start of polymerization is obtained as the timing for calculating the cumulative amount of the solvent.

また、請求項4に係る重合反応制御装置は、モノマー混合物を攪拌する攪拌槽と、前記攪拌槽の外浴の温度を制御する外浴温度制御手段と、溶剤を前記攪拌槽内に滴下する滴下手段と、を有し、モノマー混合物を攪拌槽内に投入して重合反応によりポリマーを合成する過程で、前記外浴温度制御手段により外浴温度を制御すると共に、前記滴下手段で溶剤を攪拌槽内に滴下することにより重合反応を制御する重合反応制御装置において、重合反応中における所定のタイミングで重合開始からの前記溶剤の積算滴下量を算出する滴下量算出手段を備え、前記外浴温度制御手段は重合反応終了時までに予め設定された総滴下量の溶剤を滴下するように前記滴下量算出手段で算出された溶剤の積算滴下量に基づいて外浴の温度を制御することを特徴とする。   The polymerization reaction control device according to claim 4 is a stirring tank for stirring the monomer mixture, an outer bath temperature control means for controlling the temperature of the outer bath of the stirring tank, and a dropping for dropping a solvent into the stirring tank. Means, and in the process of synthesizing the polymer by polymerization reaction by introducing the monomer mixture into the stirring tank, the outer bath temperature is controlled by the outer bath temperature control means, and the solvent is stirred by the dropping means. In the polymerization reaction control apparatus for controlling the polymerization reaction by dripping in, provided with a dripping amount calculating means for calculating the cumulative dripping amount of the solvent from the start of polymerization at a predetermined timing during the polymerization reaction, the outer bath temperature control The means controls the temperature of the outer bath based on the cumulative drop amount of the solvent calculated by the drop amount calculation means so as to drop a preset total drop amount of the solvent by the end of the polymerization reaction. To.

また、請求項5に係る重合反応制御装置は、請求項4に記載の重合反応制御装置において、前記外浴温度制御手段による溶剤の積算滴下量に基づく外浴の温度の制御量を以下のようにして求める、異なる温度の複数種類の溶剤を用いて重合反応を行い、重合開始から所定時間後に外浴温度を変更し、前記用いた溶剤の種類毎に変更した外浴温度の温度差と重合反応終了までの総滴下量とをそれぞれ算出し、目標の総滴下量となる温度差と外浴温度の変更時点までの溶剤の積算滴下量との関係から外浴の温度の制御量を求めることを特徴とする。   The polymerization reaction control device according to claim 5 is the polymerization reaction control device according to claim 4, wherein the control amount of the temperature of the outer bath based on the cumulative dripping amount of the solvent by the outer bath temperature control means is as follows. The polymerization reaction is carried out using a plurality of types of solvents at different temperatures, the outer bath temperature is changed after a predetermined time from the start of polymerization, and the temperature difference between the outer bath temperature and the polymerization changed for each type of solvent used. Calculate the total dripping amount until the end of the reaction, and obtain the control amount of the temperature of the outer bath from the relationship between the temperature difference that becomes the target total dripping amount and the cumulative dripping amount of the solvent until the change of the outer bath temperature. It is characterized by.

更に、請求項6に係る重合反応制御装置は、請求項4又は請求項5に記載の重合反応制御装置において、前記滴下量算出手段による溶剤の積算滴下量を算出するタイミングを以下のようにして求める、異なる温度の複数種類の溶剤を用いて重合反応を行い、前記用いた溶剤の種類毎に重合開始から所定時間毎の前記溶剤の積算滴下量と重合反応終了までの総滴下量との相関を求め、前記相関が所定高さ以上で且つ重合開始から最も早いタイミングを前記溶剤の積算滴下量を算出するタイミングとして求めることを特徴とする。   Furthermore, the polymerization reaction control device according to claim 6 is the polymerization reaction control device according to claim 4 or claim 5, wherein the timing for calculating the cumulative dripping amount of the solvent by the dripping amount calculating means is as follows. The polymerization reaction is performed using a plurality of types of solvents at different temperatures to be obtained, and the correlation between the total amount of dripping of the solvent and the total amount of dripping from the start of polymerization to the end of the polymerization reaction every predetermined time for each type of the solvent used. The correlation is equal to or higher than a predetermined height and the earliest timing from the start of polymerization is determined as the timing for calculating the cumulative dripping amount of the solvent.

前記構成を有する請求項1に係る重合反応制御方法では、重合反応中における所定のタイミングで重合開始からの溶剤の積算滴下量を算出し、重合反応終了時までに予め設定された総滴下量の溶剤を滴下するように算出された溶剤の積算滴下量に基づいて外浴の温度を制御するので、重合途中の溶剤の積算滴下量により、溶存酸素濃度等の各種バラツキ要因による反応への影響度を代替的に定量化し、更に、反応終了時の総滴下量を予測することにより、重合反応の再現性を向上させつつポリマーの物性(分子量)のバラつきを防止することができる。   In the polymerization reaction control method according to claim 1 having the above-described configuration, the cumulative dripping amount of the solvent from the start of polymerization is calculated at a predetermined timing during the polymerization reaction, and the total dripping amount set in advance by the end of the polymerization reaction is calculated. Since the temperature of the outer bath is controlled based on the cumulative amount of solvent calculated so that the solvent is dripped, the degree of influence on the reaction due to various dispersion factors such as dissolved oxygen concentration by the cumulative amount of solvent during polymerization Alternatively, by quantifying the amount and predicting the total dropping amount at the end of the reaction, it is possible to improve the reproducibility of the polymerization reaction and prevent variations in the physical properties (molecular weight) of the polymer.

また、請求項2に係る重合反応制御方法では、異なる温度の複数種類の溶剤を用いて重合反応を行い、重合開始から所定時間後に外浴温度を変更し、用いた溶剤の種類毎に変更した外浴温度の温度差と重合反応終了までの総滴下量とをそれぞれ算出し、目標の総滴下量となる温度差と外浴温度の変更時点までの溶剤の積算滴下量との関係から外浴の温度の制御量を求めるので、外浴温度の制御を行うことにより溶剤の総滴下量を常に一定範囲内に抑えることができ、所望のポリマー物性を得ることが可能となる。   Moreover, in the polymerization reaction control method according to claim 2, the polymerization reaction is performed using a plurality of types of solvents at different temperatures, the outer bath temperature is changed after a predetermined time from the start of the polymerization, and is changed for each type of solvent used. Calculate the temperature difference of the outer bath temperature and the total dripping amount until the completion of the polymerization reaction, and calculate the outer bath from the relationship between the temperature difference that becomes the target total dripping amount and the cumulative dripping amount of the solvent until the change of the outer bath temperature. Therefore, by controlling the outer bath temperature, the total dripping amount of the solvent can be always kept within a certain range, and desired polymer physical properties can be obtained.

また、請求項3に係る重合反応制御方法では、異なる温度の複数種類の溶剤を用いて重合反応を行い、用いた溶剤の種類毎に重合開始から所定時間毎の溶剤の積算滴下量と重合反応終了までの総滴下量との相関を求め、相関が所定高さ以上で且つ重合開始から最も早いタイミングを溶剤の積算滴下量を算出するタイミングとして求めるので、外浴温度の制御を行う際に外浴の温度設定幅を小さくでき、オーバーシュート等の制御による外乱の影響を小さくできる。   In the polymerization reaction control method according to claim 3, the polymerization reaction is performed using a plurality of types of solvents at different temperatures, and the cumulative amount of the solvent dropped and the polymerization reaction every predetermined time from the start of polymerization for each type of solvent used. Since the correlation with the total dripping amount until completion is obtained, and the correlation is equal to or higher than a predetermined height and the earliest timing from the start of polymerization is obtained as the timing for calculating the cumulative dripping amount of the solvent, The temperature setting range of the bath can be reduced, and the influence of disturbance due to control such as overshoot can be reduced.

また、請求項4に係る重合反応制御装置では、重合反応中における所定のタイミングで重合開始からの溶剤の積算滴下量を算出し、重合反応終了時までに予め設定された総滴下量の溶剤を滴下するように算出された溶剤の積算滴下量に基づいて外浴の温度を制御するので、重合途中の溶剤の積算滴下量により、溶存酸素濃度等の各種バラツキ要因による反応への影響度を代替的に定量化し、更に、反応終了時の総滴下量を予測することにより、重合反応の再現性を向上させつつポリマーの物性(分子量)のバラつきを防止することができる。   Further, in the polymerization reaction control device according to claim 4, the cumulative dropping amount of the solvent from the start of the polymerization is calculated at a predetermined timing during the polymerization reaction, and the total dropping amount of the solvent set in advance by the end of the polymerization reaction is calculated. Since the temperature of the outer bath is controlled based on the cumulative amount of solvent calculated to be dripped, the cumulative amount of solvent in the middle of polymerization substitutes the degree of influence on the reaction due to various variation factors such as dissolved oxygen concentration. By quantitatively quantifying and predicting the total dropping amount at the end of the reaction, it is possible to prevent variations in the physical properties (molecular weight) of the polymer while improving the reproducibility of the polymerization reaction.

また、請求項5に係る重合反応制御装置では、異なる温度の複数種類の溶剤を用いて重合反応を行い、重合開始から所定時間後に外浴温度を変更し、前記用いた溶剤の種類毎に変更した外浴温度の温度差と重合反応終了までの総滴下量とをそれぞれ算出し、目標の総滴下量となる温度差と外浴温度の変更時点までの溶剤の積算滴下量との関係から外浴の温度の制御量を求めるので、外浴温度の制御を行うことにより溶剤の総滴下量を常に一定範囲内に抑えることができ、所望のポリマー物性を得ることが可能となる。   Further, in the polymerization reaction control apparatus according to claim 5, the polymerization reaction is performed using a plurality of types of solvents at different temperatures, the outer bath temperature is changed after a predetermined time from the start of the polymerization, and is changed for each type of the solvent used. The temperature difference between the outer bath temperatures and the total dripping amount until the end of the polymerization reaction are calculated, respectively, and it is excluded from the relationship between the temperature difference that becomes the target total dripping amount and the cumulative dripping amount of the solvent until the change of the outer bath temperature. Since the control amount of the bath temperature is obtained, the total dripping amount of the solvent can be always kept within a certain range by controlling the outer bath temperature, and desired polymer physical properties can be obtained.

更に、請求項6に係る重合反応制御装置では、異なる温度の複数種類の溶剤を用いて重合反応を行い、用いた溶剤の種類毎に重合開始から所定時間毎の溶剤の積算滴下量と重合反応終了までの総滴下量との相関を求め、相関が所定高さ以上で且つ重合開始から最も早いタイミングを溶剤の積算滴下量を算出するタイミングとして求めるので、外浴温度の制御を行う際に外浴の温度設定幅を小さくでき、オーバーシュート等の制御による外乱の影響を小さくできる。   Furthermore, in the polymerization reaction control apparatus according to claim 6, the polymerization reaction is performed using a plurality of types of solvents at different temperatures, and the cumulative amount of the solvent dropped and the polymerization reaction every predetermined time from the start of polymerization for each type of solvent used. Since the correlation with the total dripping amount until completion is obtained, and the correlation is equal to or higher than a predetermined height and the earliest timing from the start of polymerization is obtained as the timing for calculating the cumulative dripping amount of the solvent, The temperature setting range of the bath can be reduced, and the influence of disturbance due to control such as overshoot can be reduced.

以下、本発明に係る重合反応制御方法及び重合反応制御装置について具体化した実施形態に基づき図面を参照しつつ詳細に説明する。先ず、本実施形態に係る重合反応制御装置1について図1に基づき説明する。図1は本実施形態に係る重合反応制御装置1の要部を示す概略側面図である。   DETAILED DESCRIPTION Hereinafter, a polymerization reaction control method and a polymerization reaction control device according to the present invention will be described in detail with reference to the drawings based on specific embodiments. First, the polymerization reaction control apparatus 1 according to this embodiment will be described with reference to FIG. FIG. 1 is a schematic side view showing a main part of a polymerization reaction control device 1 according to this embodiment.

図1に示すように、本実施形態に係る重合反応制御装置1は、投入したモノマー混合物からポリマーを合成する攪拌機2と、攪拌機2を構成する攪拌槽3に溶剤(本実施形態では冷却水)を滴下する滴下槽4と、攪拌槽3の外浴温度、溶剤の滴下等を制御する制御部5と、種々の条件の入力設定や操作を行う操作部6から基本的に構成されている。   As shown in FIG. 1, a polymerization reaction control apparatus 1 according to this embodiment includes a stirrer 2 that synthesizes a polymer from a charged monomer mixture, and a solvent (cooling water in this embodiment) in a stirrer 3 that constitutes the stirrer 2. Is basically composed of a dripping tank 4 for dripping, an outer bath temperature of the stirring tank 3, a controller 5 for controlling the dripping of the solvent, and the like, and an operation section 6 for performing input setting and operation of various conditions.

以下、各構成について具体的に説明する。尚、滴下槽4は本発明の滴下手段に、制御部5は外浴温度制御手段、滴下量算出手段にそれぞれ相当する。   Each configuration will be specifically described below. The dropping tank 4 corresponds to the dropping means of the present invention, and the control unit 5 corresponds to the outer bath temperature control means and the dropping amount calculation means.

攪拌機2は、底部が椀状をした攪拌槽3と、攪拌槽3の中心部の上方から片持ち支持された回転軸7と、回転軸7に取り付けられた攪拌翼8とから構成されている。この回転軸7は、図示しない回転駆動手段に連接されており、図中のY軸回りに回転する。また、攪拌槽3の外周には攪拌槽3内で行われる重合反応の重合温度(攪拌槽3内の内浴温度)を制御するための温度調節手段であるジャケット9が付設されている。   The stirrer 2 includes a stirring tank 3 having a bowl-like bottom, a rotating shaft 7 that is cantilevered from above the center of the stirring tank 3, and a stirring blade 8 attached to the rotating shaft 7. . The rotation shaft 7 is connected to a rotation driving means (not shown) and rotates around the Y axis in the drawing. A jacket 9 is attached to the outer periphery of the stirring tank 3 as temperature adjusting means for controlling the polymerization temperature of the polymerization reaction performed in the stirring tank 3 (inner bath temperature in the stirring tank 3).

また、攪拌槽3は上蓋10に対してコンデンサ11が立設されている。コンデンサ11は重合反応にともなって蒸発した水分を冷却して水に戻すとともに、攪拌槽3内に供給して不要となった窒素(N)を排出する。尚、窒素は、攪拌槽3の下部と上部に接続された配管を介して、その近傍に配備された図示しない窒素タンクから適時・適量供給される。また、底部には内浴の温度を検出する温度センサS1が取り付けられている。 Further, the stirring tank 3 is provided with a condenser 11 with respect to the upper lid 10. The condenser 11 cools and returns the water evaporated in accordance with the polymerization reaction to water, and discharges unnecessary nitrogen (N 2 ) supplied to the stirring tank 3. Nitrogen is supplied in a timely and appropriate amount from a nitrogen tank (not shown) disposed in the vicinity thereof through a pipe connected to the lower and upper portions of the stirring tank 3. A temperature sensor S1 for detecting the temperature of the inner bath is attached to the bottom.

一方、ジャケット9は、温度調節用流体を供給・排出循環させるための配管R1が上・下部に連通接続されている。この配管R1のジャケット入口側(図1では下部)には熱交換器15が設けられている。熱交換器15は攪拌槽3内の温度を上昇させるために、配管R1に循環する水温を上昇させ、温水をジャケット9へと供給する。また、熱交換器15には、バルブV1を開放することにより蒸気が供給される配管R2が連通接続されている。更に、配管R1には、攪拌槽3を冷却するために配管R1を循環する温水または冷却水を排出するためのバルブV2が設けられているとともに、バルブV2を開放して温水などを排出したときに新たな冷却水を供給するための配管R3がバルブV3を介して配管R1に連通接続されている。   On the other hand, the jacket 9 is connected to the upper and lower portions of a pipe R1 for supplying and discharging the temperature adjusting fluid. A heat exchanger 15 is provided on the jacket inlet side (lower part in FIG. 1) of the pipe R1. The heat exchanger 15 raises the temperature of the water circulating in the pipe R <b> 1 in order to raise the temperature in the stirring tank 3, and supplies the hot water to the jacket 9. Further, the heat exchanger 15 is connected to a pipe R2 through which steam is supplied by opening the valve V1. Further, the pipe R1 is provided with a valve V2 for discharging hot water or cooling water circulating through the pipe R1 in order to cool the stirring tank 3, and when the valve V2 is opened to discharge hot water or the like. A pipe R3 for supplying new cooling water to the pipe R1 is connected to the pipe R1 through a valve V3.

また、温度調節用流体をジャケット9に供給する側の配管R1(図1ではジャケット9の下部近傍)には外浴の入口温度を検出する温度センサS2が設けられている。一方、排出する側(図1ではジャケット9の上部近傍)には外浴の出口温度を検出する温度センサS3と、ジャケット9を循環する循環水の流量を検出するジャケット循環水流量計F1とがそれぞれ設けられている。   In addition, a temperature sensor S2 for detecting the inlet temperature of the outer bath is provided on the pipe R1 on the side for supplying the temperature adjusting fluid to the jacket 9 (in the vicinity of the lower portion of the jacket 9 in FIG. 1). On the other hand, on the discharge side (in the vicinity of the upper part of the jacket 9 in FIG. 1), there are a temperature sensor S3 for detecting the outlet temperature of the outer bath and a jacket circulating water flow meter F1 for detecting the flow rate of circulating water circulating through the jacket 9. Each is provided.

滴下槽4は、所定の温度および所定の溶存酸素濃度に調整された溶剤(本実施形態では冷却水)が蓄えられている。また、その外周には、溶剤の温度を一定に保持するジャケット21が付設されている。また、滴下槽4の内部には内浴の温度(冷却水の温度)を検出する温度センサS4が配置されている。そして、ジャケット21には、温度センサS4によって検出された冷却水の温度に基づいて、適時に設定変更された冷却水が循環する。尚、溶存酸素濃度については、滴下槽4から供給される過程で、酸素を供給してスタテックミキサなどで攪拌し、その濃度レベルを適時に調節してもよい。   The dripping tank 4 stores a solvent (cooling water in this embodiment) adjusted to a predetermined temperature and a predetermined dissolved oxygen concentration. A jacket 21 for keeping the temperature of the solvent constant is attached to the outer periphery. Further, a temperature sensor S4 for detecting the temperature of the inner bath (cooling water temperature) is disposed inside the dropping tank 4. The jacket 21 is circulated with the cooling water whose setting is changed in a timely manner based on the temperature of the cooling water detected by the temperature sensor S4. As for the dissolved oxygen concentration, in the process of being supplied from the dropping tank 4, oxygen may be supplied and stirred with a static mixer or the like to adjust the concentration level in a timely manner.

また、滴下槽4の上下部には配管が連通接続されており、それぞれの配管から窒素(N)が供給される。そして、滴下槽4に窒素を供給し滴下槽4内の酸素を排気管から排出する窒素置換を行う。 Moreover, piping is connected to the upper and lower portions of the dropping tank 4, and nitrogen (N 2 ) is supplied from each piping. Then, nitrogen replacement is performed in which nitrogen is supplied to the dropping tank 4 and oxygen in the dropping tank 4 is discharged from the exhaust pipe.

更に、滴下槽4は、バルブV4を備えた配管R4を介して攪拌槽3と連通接続されている。そして、滴下槽4の溶剤は、後述する制御部5の制御によりバルブV4が開閉操作されることで攪拌槽3に所定量が滴下される。なお、配管R4には、攪拌槽3に供給される溶剤の滴下量を検出する溶剤流量計F2が取り付けられている。   Furthermore, the dripping tank 4 is connected to the stirring tank 3 through a pipe R4 provided with a valve V4. Then, a predetermined amount of the solvent in the dropping tank 4 is dropped into the stirring tank 3 by opening and closing the valve V4 under the control of the control unit 5 described later. Note that a solvent flow meter F2 that detects the dripping amount of the solvent supplied to the stirring tank 3 is attached to the pipe R4.

制御部5は攪拌槽3の外浴温度や溶剤の滴下を制御することによって重合反応制御装置1で行われる重合反応を制御する制御手段であり、回路基板上に配置され予め設定されたプログラムに従って制御動作を行うCPU、並びに記憶手段であるROMやRAM等を備える。また、制御部5にはポリマー合成条件に応じた外浴の温度の制御量及び制御タイミング、溶剤を攪拌槽3に滴下する量及びタイミング等の種々の設定条件が操作部6から予め入力設定されて、RAM等のメモリに記憶されている。そして、記憶された各種条件と各センサからの測定結果に基づいて後述のように外浴温度や溶剤の滴下を制御する。   The control unit 5 is a control unit that controls the polymerization reaction performed in the polymerization reaction control device 1 by controlling the outer bath temperature of the stirring tank 3 and the dropping of the solvent, and is arranged on the circuit board according to a preset program. A CPU that performs control operations and ROM, RAM, and the like, which are storage means, are provided. In addition, various setting conditions such as the control amount and control timing of the temperature of the outer bath according to the polymer synthesis conditions and the amount and timing of dropping the solvent into the stirring tank 3 are input and set to the control unit 5 from the operation unit 6 in advance. And stored in a memory such as a RAM. And based on the various conditions memorize | stored and the measurement result from each sensor, outer bath temperature and dripping of a solvent are controlled as mentioned later.

次に、上記構成を有する重合反応制御装置1の重合反応制御方法について説明する。
先ず、攪拌機2の攪拌槽3に予め用意したモノマー溶液を抽入する。また、滴下槽4に滴下用溶剤を抽入する。その後、ジャケット9及びジャケット21を循環させる温度調節用流体の温度を調整し、攪拌槽3及び滴下槽4の外浴の温度を目標温度(攪拌槽3を59℃、滴下槽4を15℃)に温調する。
次に、それぞれ任意の窒素流量にて、モノマー溶液や溶剤をバブリングして窒素置換を行う。規定の時間だけ窒素置換を実施後、液相部よりの窒素送入を止め、気相部よりの送入に切り替える。そして、内浴温度が安定していることを確認後、重合開始剤を投入する。
その後、攪拌槽3の外浴設定温度を59℃に固定した状態で待機し、内浴温度が上昇して重合反応が開始されたことを確認したと同時に制御部5による重合反応の制御を開始する。
重合反応の制御が開始されると、先ず、攪拌槽3の外浴温度を40℃に設定し、10分経過後に20℃に設定し、150分経過後から反応終了(180分経過)までは50℃に設定する。
一方で、攪拌槽3の内浴温度が60℃以上となると、バルブV4を開放し、滴下槽4からの溶剤の滴下を行う。ここで、溶剤の滴下は内浴温度が60℃未満となるまで、10kgの溶剤を120secかけて繰り返し滴下することにより行われる。
また、重合反応の開始から30分経過した際に、30分経過時点での溶剤の積算滴下量n[kg]を算出し、更に算出した積算滴下量nを予め事前実験を行うことにより求めた下記の演算式(1)に代入することによって外浴の温度の制御量(外浴の設定温度の補正量)ΔSVを算出する。
ΔSV[℃]=−0.285n×12.555・・・(1)
そして、算出したΔSVを設定温度に加算した温度により、それ以後の外浴の温度を設定する(例えば、ΔSV=2℃と算出された場合には、重合反応の開始から150分が経過するまでは現在の設定温度を2℃上昇させた22℃へと外浴温度を新たに設定し直し、150分経過後から反応終了までは52℃に設定する)。それによって、反応終了までに滴下される溶剤の総滴下量を予め設定した目標値とすることができる。
Next, a polymerization reaction control method of the polymerization reaction control device 1 having the above configuration will be described.
First, a monomer solution prepared in advance is drawn into the stirring tank 3 of the stirrer 2. Further, a dropping solvent is drawn into the dropping tank 4. Thereafter, the temperature of the temperature adjusting fluid circulating through the jacket 9 and the jacket 21 is adjusted, and the temperatures of the outer baths of the stirring tank 3 and the dropping tank 4 are set to the target temperature (the stirring tank 3 is 59 ° C., the dropping tank 4 is 15 ° C.). Adjust the temperature.
Next, nitrogen substitution is performed by bubbling a monomer solution or a solvent at an arbitrary nitrogen flow rate. After carrying out nitrogen substitution for a specified time, stop nitrogen feeding from the liquid phase part and switch to feeding from the gas phase part. Then, after confirming that the inner bath temperature is stable, a polymerization initiator is added.
After that, the apparatus was on standby with the set temperature of the outer bath of the stirring tank 3 fixed at 59 ° C., and it was confirmed that the inner bath temperature was increased and the polymerization reaction was started, and at the same time, the control of the polymerization reaction by the control unit 5 was started. To do.
When the control of the polymerization reaction is started, the outer bath temperature of the stirring tank 3 is first set to 40 ° C., set to 20 ° C. after 10 minutes, and from 150 minutes to the end of the reaction (180 minutes). Set to 50 ° C.
On the other hand, when the inner bath temperature of the stirring tank 3 is 60 ° C. or higher, the valve V4 is opened and the solvent from the dropping tank 4 is dropped. Here, the dropping of the solvent is performed by repeatedly dropping 10 kg of the solvent over 120 seconds until the inner bath temperature becomes less than 60 ° C.
Further, when 30 minutes have elapsed from the start of the polymerization reaction, the cumulative drop amount n [kg] of the solvent at the point of 30 minutes was calculated, and the calculated cumulative drop amount n was obtained by conducting a preliminary experiment in advance. By substituting into the following equation (1), the control amount of the outer bath temperature (correction amount of the set temperature of the outer bath) ΔSV is calculated.
ΔSV [° C.] = − 0.285 n × 12.555 (1)
Then, the temperature of the outer bath after that is set by the temperature obtained by adding the calculated ΔSV to the set temperature (for example, when ΔSV = 2 ° C. is calculated, 150 minutes have elapsed from the start of the polymerization reaction). (2), the outside bath temperature is newly set to 22 ° C., which is increased by 2 ° C., and is set to 52 ° C. after 150 minutes until the end of the reaction. Thereby, the total amount of solvent dripped before the end of the reaction can be set to a preset target value.

続いて、前記構成を有する本実施形態に係る重合反応制御装置1の重合反応制御に係る各処理について図2及び図3に基づき説明する。図2は本実施形態に係る重合反応制御装置1の攪拌槽3の外浴温度制御プログラムのフローチャートである。図3は本実施形態に係る重合反応制御装置1の溶剤の滴下制御プログラムのフローチャートである。尚、攪拌槽3の外浴温度制御プログラムは、攪拌槽3内に重合開始剤が投入され、内浴温度が上昇して重合反応が開始されたことを確認したと同時に開始される。また、図2及び図3にフローチャートで示されるプログラムは、制御部5が備えているRAMやROMに記憶されており、CPUにより実行される。   Next, each process related to the polymerization reaction control of the polymerization reaction control apparatus 1 according to this embodiment having the above-described configuration will be described with reference to FIGS. FIG. 2 is a flowchart of an outer bath temperature control program of the stirring tank 3 of the polymerization reaction control apparatus 1 according to this embodiment. FIG. 3 is a flowchart of the solvent dropping control program of the polymerization reaction control apparatus 1 according to this embodiment. The outer bath temperature control program for the stirring tank 3 is started at the same time as confirming that the polymerization initiator has been introduced into the stirring tank 3 and the inner bath temperature has risen to initiate the polymerization reaction. 2 and FIG. 3 are stored in the RAM or ROM provided in the control unit 5 and executed by the CPU.

ここで、図2に示すように攪拌槽3の外浴温度制御プログラムのフローチャートは、2つのフローチャートによって基本的に構成される。一方は、重合反応の開始から所定時間の経過に伴って攪拌槽3の外浴の設定温度を変更する基本制御フローチャートであり、他方は、所定のタイミングでの溶剤の積算滴下量に基づいて、その後の外浴の設定温度に補正を加える設定温度補正制御フローチャートである。   Here, as shown in FIG. 2, the flowchart of the outer bath temperature control program of the stirring tank 3 is basically constituted by two flowcharts. One is a basic control flowchart for changing the set temperature of the outer bath of the stirring tank 3 as the predetermined time elapses from the start of the polymerization reaction, and the other is based on the cumulative amount of solvent dropped at a predetermined timing, It is a preset temperature correction control flowchart which adds correction | amendment to the preset temperature of the subsequent outer bath.

先ず、外浴温度制御プログラムでは、ステップ(以下、Sと略記する)1において制御部5は、重合反応開始からの経過時間を示すタイマTM1の計測を開始する。次に、S2で制御部5は、熱交換器15やバルブV1〜V3の開度を制御して攪拌槽3の外浴温度SVの設定温度をT1(℃)に設定する。ここで、本実施形態ではT1は基本的に40℃であるが、後述するS14の処理によって設定温度が補正された場合には補正された後の設定温度へと設定されることとなる。   First, in the outer bath temperature control program, in step (hereinafter abbreviated as S) 1, the control unit 5 starts measuring the timer TM1 indicating the elapsed time from the start of the polymerization reaction. Next, in S2, the control unit 5 controls the opening degree of the heat exchanger 15 and the valves V1 to V3 to set the set temperature of the outer bath temperature SV of the stirring tank 3 to T1 (° C.). Here, in this embodiment, T1 is basically 40 ° C., but when the set temperature is corrected by the process of S14 described later, it is set to the set temperature after correction.

続いて、S3で制御部5はタイマTM1の示す重合反応開始からの経過時間がt1となったか否か判定される。尚、本実施形態では、t1は10分とする。そして、重合反応開始からの経過時間がt1となったと判定された場合(S3:YES)にはS4へと移行する。一方、重合反応開始からの経過時間がt1となっていないと判定された場合(S3:NO)には、t1を経過するまで待機する。   Subsequently, in S3, the control unit 5 determines whether or not the elapsed time from the start of the polymerization reaction indicated by the timer TM1 has reached t1. In the present embodiment, t1 is 10 minutes. When it is determined that the elapsed time from the start of the polymerization reaction has become t1 (S3: YES), the process proceeds to S4. On the other hand, when it is determined that the elapsed time from the start of the polymerization reaction is not t1 (S3: NO), the process waits until t1 elapses.

S4で制御部5は、熱交換器15やバルブV1〜V3の開度を制御して攪拌槽3の外浴温度SVの設定温度をT2(℃)に設定する。ここで、本実施形態ではT2は基本的に20℃であるが、後述するS14の処理によって設定温度が補正された場合には補正された後の設定温度へと設定されることとなる。   In S4, the control unit 5 controls the opening degree of the heat exchanger 15 and the valves V1 to V3 to set the set temperature of the outer bath temperature SV of the stirring tank 3 to T2 (° C.). Here, in this embodiment, T2 is basically 20 ° C., but when the set temperature is corrected by the process of S14 described later, it is set to the corrected set temperature.

続いて、S5で制御部5はタイマTM1の示す重合反応開始からの経過時間がt2となったか否か判定される。尚、本実施形態では、t2は150分とする。そして、重合反応開始からの経過時間がt2となったと判定された場合(S5:YES)にはS6へと移行する。一方、重合反応開始からの経過時間がt2となっていないと判定された場合(S5:NO)には、t2を経過するまで待機する。   Subsequently, in S5, the control unit 5 determines whether or not the elapsed time from the start of the polymerization reaction indicated by the timer TM1 has reached t2. In this embodiment, t2 is 150 minutes. When it is determined that the elapsed time from the start of the polymerization reaction has become t2 (S5: YES), the process proceeds to S6. On the other hand, when it is determined that the elapsed time from the start of the polymerization reaction is not t2 (S5: NO), the process waits until t2.

S6で制御部5は、熱交換器15やバルブV1〜V3の開度を制御して攪拌槽3の外浴温度SVの設定温度をT3(℃)に設定する。ここで、本実施形態ではT3は基本的に50℃であるが、後述するS14の処理によって設定温度が補正された場合には補正された後の設定温度へと設定されることとなる。   In S6, the control unit 5 controls the opening degree of the heat exchanger 15 and the valves V1 to V3 to set the set temperature of the outer bath temperature SV of the stirring tank 3 to T3 (° C.). Here, in this embodiment, T3 is basically 50 ° C., but when the set temperature is corrected by the process of S14 described later, it is set to the corrected set temperature.

続いて、S7で制御部5はタイマTM1の示す重合反応開始からの経過時間が、重合反応の終了する180分となったか否か判定される。尚、本実施形態では重合反応が終了するまでの時間を180分としているが、その時間はポリマーの製造条件によって異なる。そして、重合反応開始からの経過時間が180分となったと判定された場合(S7:YES)には当該外浴温度制御プログラムを終了する。一方、重合反応開始からの経過時間が180分となっていないと判定された場合(S7:NO)には、180分を経過するまで待機する。   Subsequently, in S7, the control unit 5 determines whether or not the elapsed time from the start of the polymerization reaction indicated by the timer TM1 has reached 180 minutes when the polymerization reaction ends. In this embodiment, the time until the completion of the polymerization reaction is 180 minutes, but this time varies depending on the polymer production conditions. If it is determined that the elapsed time from the start of the polymerization reaction is 180 minutes (S7: YES), the outer bath temperature control program is terminated. On the other hand, when it is determined that the elapsed time from the start of the polymerization reaction is not 180 minutes (S7: NO), the process waits until 180 minutes have elapsed.

また、外浴温度制御プログラムでは、S11において制御部5はタイマTM1の示す重合反応開始からの経過時間がtnとなったか否か判定される。尚、本実施形態ではtnは30分とするが、このtnの値は後述する事前実験によって求められるものである。そして、重合反応開始からの経過時間がtnとなったと判定された場合(S11:YES)にはS12へと移行する。一方、重合反応開始からの経過時間がtnとなっていないと判定された場合(S11:NO)には、tnを経過するまで待機する。   In the outer bath temperature control program, in S11, the control unit 5 determines whether or not the elapsed time from the start of the polymerization reaction indicated by the timer TM1 has reached tn. In this embodiment, tn is 30 minutes, but the value of tn is obtained by a preliminary experiment described later. When it is determined that the elapsed time from the start of the polymerization reaction has become tn (S11: YES), the process proceeds to S12. On the other hand, when it is determined that the elapsed time from the start of the polymerization reaction is not tn (S11: NO), the process waits until tn elapses.

S12で制御部5は、溶剤流量計F2の検出結果に基づいて、tn経過時点での滴下槽4からの溶剤の積算滴下量nを算出する。   In S12, the control unit 5 calculates the cumulative dropping amount n of the solvent from the dropping tank 4 at the time when tn has elapsed, based on the detection result of the solvent flow meter F2.

次に、S13で制御部5は、前記S12で算出した積算滴下量nを予め事前実験で求めた下記の演算式(1)に代入することによって外浴の温度の制御量(補正量)ΔSVを算出する。
ΔSV[℃]=−0.285n×12.555・・・(1)
Next, in step S13, the control unit 5 substitutes the integrated drop amount n calculated in step S12 into the following arithmetic expression (1) obtained in advance in advance, thereby controlling the temperature (control amount) ΔSV of the temperature of the outer bath. Is calculated.
ΔSV [° C.] = − 0.285 n × 12.555 (1)

更に、S14で制御部5は、前記S13で算出したΔSVを設定温度に加算した温度により、それ以後の外浴の温度T1〜T3を補正する。例えば、本実施形態においてΔSV=2℃と算出された場合には、重合反応の開始から150分が経過するまでは現在の設定温度を2℃上昇させた22℃へと外浴温度を新たに設定し直し、前記S6では外浴温度を52℃に設定する。また、本実施形態においてΔSV=−1.5℃と算出された場合には、重合反応の開始から150分が経過するまでは現在の設定温度を1.5℃下降させた18.5℃へと外浴温度を新たに設定し直し、前記S6では外浴温度を48.5℃に設定する。このように外浴の設定温度を補正することによって、反応終了までに滴下される溶剤の総滴下量を予め設定した目標値とすることができる。   Further, in S14, the control unit 5 corrects the subsequent temperatures T1 to T3 of the outer bath with the temperature obtained by adding ΔSV calculated in S13 to the set temperature. For example, when ΔSV = 2 ° C. is calculated in the present embodiment, the outer bath temperature is newly increased to 22 ° C. by increasing the current set temperature by 2 ° C. until 150 minutes have elapsed from the start of the polymerization reaction. In step S6, the outer bath temperature is set to 52 ° C. In the present embodiment, when ΔSV = −1.5 ° C. is calculated, the current set temperature is decreased by 1.5 ° C. to 18.5 ° C. until 150 minutes have elapsed from the start of the polymerization reaction. The outer bath temperature is newly set, and the outer bath temperature is set to 48.5 ° C. in S6. Thus, by correcting the set temperature of the outer bath, the total amount of solvent dripped before the end of the reaction can be set to a preset target value.

続いて、図3に示す溶剤の滴下制御プログラムでは、先ずS21において制御部5は、温度センサS1により攪拌槽3の内浴温度を検出する。次に、S22で制御部5は前記S21で検出した内浴温度がT4(例えば60℃)以上であるか否か判定される。   Subsequently, in the solvent dropping control program shown in FIG. 3, first, in S <b> 21, the control unit 5 detects the inner bath temperature of the stirring tank 3 by the temperature sensor S <b> 1. Next, in S22, the controller 5 determines whether or not the inner bath temperature detected in S21 is equal to or higher than T4 (for example, 60 ° C.).

そして、内浴温度がT4以上であると判定された場合(S22:YES)にはS23へと移行し、バルブV4が開放されて溶剤の滴下が開始される。尚、溶剤の滴下はAkg(例えば10kg)の溶剤がその後にt3秒かけて滴下される。一方、内浴温度がT4未満であると判定された場合(S22:NO)には、S26へと移行する。   When it is determined that the inner bath temperature is equal to or higher than T4 (S22: YES), the process proceeds to S23, the valve V4 is opened, and the dropping of the solvent is started. The solvent is dropped by adding A kg (for example, 10 kg) of solvent over a period of t3 seconds. On the other hand, when it is determined that the inner bath temperature is lower than T4 (S22: NO), the process proceeds to S26.

その後、S24では制御部5は、溶剤の滴下開始からの経過時間を示すタイマTM2の計測を開始する。そして、S25で制御部5はタイマTM2の示す溶剤の滴下開始からの経過時間がt3となったか否か判定される。尚、本実施形態では、t3は120秒とする。そして、溶剤の滴下開始からの経過時間がt3となったと判定された場合(S25:YES)にはS26へと移行する。一方、溶剤の滴下開始からの経過時間がt3となっていないと判定された場合(S25:NO)には、t3を経過するまで待機する。   Thereafter, in S24, the control unit 5 starts measuring the timer TM2 indicating the elapsed time from the start of the dropping of the solvent. In S25, the control unit 5 determines whether or not the elapsed time from the start of dropping of the solvent indicated by the timer TM2 has reached t3. In the present embodiment, t3 is 120 seconds. And when it determines with the elapsed time from the dripping start of a solvent having become t3 (S25: YES), it transfers to S26. On the other hand, when it is determined that the elapsed time from the start of the dropping of the solvent is not t3 (S25: NO), the process waits until t3 elapses.

次に、S26で制御部5はタイマTM1の示す重合反応開始からの経過時間が、重合反応の終了する180分を経過したか否か判定される。尚、本実施形態では重合反応が終了するまでの時間を180分としているが、その時間はポリマーの製造条件によって異なる。そして、重合反応開始からの経過時間が180分を経過したと判定された場合(S26:YES)には当該溶剤の滴下制御プログラムを終了する。一方、重合反応開始からの経過時間が180分を経過していないと判定された場合(S26:NO)にはS21へと戻り、再度、攪拌槽3の内浴温度の検出が行われる。   Next, in S26, the control unit 5 determines whether the elapsed time from the start of the polymerization reaction indicated by the timer TM1 has passed 180 minutes when the polymerization reaction ends. In this embodiment, the time until the completion of the polymerization reaction is 180 minutes, but this time varies depending on the polymer production conditions. When it is determined that the elapsed time from the start of the polymerization reaction has passed 180 minutes (S26: YES), the solvent dropping control program is terminated. On the other hand, when it is determined that the elapsed time from the start of the polymerization reaction has not passed 180 minutes (S26: NO), the process returns to S21, and the inner bath temperature of the stirring tank 3 is detected again.

続いて、上記S11で判定される溶剤の積算滴下量を算出するタイミングである反応開始時間からの経過時刻tnを求める為の事前実験1と、前記S13で外浴温度の制御量を算出する際に用いる上記(1)の演算式を求める為の事前実験2について説明する。   Subsequently, in the preliminary experiment 1 for obtaining the elapsed time tn from the reaction start time, which is the timing for calculating the cumulative amount of solvent determined in S11, and in calculating the control amount of the outer bath temperature in S13. A preliminary experiment 2 for obtaining the arithmetic expression (1) used in the above will be described.

〔事前実験1〕
事前実験1では、図1に示す重合反応制御装置1を用い、温度の異なる4種類の溶剤A〜D(溶剤A:15℃、溶剤B:20℃、溶剤C:25℃、溶剤D:30℃)を滴下することにより攪拌槽3の内浴温度を調整し、攪拌槽3内にあるモノマー混合物を重合反応させ、ポリマーを合成することにより行う。尚、攪拌槽3の外浴温度は既に説明したS1〜S7の処理(図2)に従って制御部5により制御される。また、溶剤の滴下は既に説明したS21〜S26の処理(図3)に従って制御部5により制御される。
[Preliminary experiment 1]
In the preliminary experiment 1, the polymerization reaction control apparatus 1 shown in FIG. 1 was used, and four types of solvents A to D having different temperatures (solvent A: 15 ° C., solvent B: 20 ° C., solvent C: 25 ° C., solvent D: 30 C.) is added dropwise to adjust the inner bath temperature of the stirring vessel 3, polymerize the monomer mixture in the stirring vessel 3, and synthesize the polymer. In addition, the outer bath temperature of the stirring tank 3 is controlled by the control part 5 according to the process (FIG. 2) of S1-S7 already demonstrated. Further, the dropping of the solvent is controlled by the control unit 5 in accordance with the processes of S21 to S26 already described (FIG. 3).

先ず、事前実験1を行うに際して、それぞれ任意の窒素流量にて、攪拌槽3をバブリングして窒素置換を行う。そして、窒素置換を4時間行った後、液相部よりの窒素送入を止め、気相部よりの送入に切り替える。そして、内浴温度が安定していることを確認後、重合開始剤を投入する。
そして、前記S1〜S7の処理(図2)に従って攪拌槽3の外浴温度を制御し、前記S21〜S26の処理(図3)に従って溶剤の滴下を制御する。図4は上記条件でポリマーの合成を行った結果、重合反応の開始から終了までの各時刻での溶剤の積算滴下量を、実験に用いた溶剤A〜D毎に示した図である。
First, when the preliminary experiment 1 is performed, nitrogen is substituted by bubbling the stirring tank 3 at an arbitrary nitrogen flow rate. And after nitrogen substitution is performed for 4 hours, the nitrogen feeding from the liquid phase part is stopped, and it switches to the feeding from the gas phase part. Then, after confirming that the inner bath temperature is stable, a polymerization initiator is added.
Then, the outer bath temperature of the agitation tank 3 is controlled according to the processing of S1 to S7 (FIG. 2), and the dropping of the solvent is controlled according to the processing of S21 to S26 (FIG. 3). FIG. 4 is a graph showing the cumulative amount of solvent dripped at each time from the start to the end of the polymerization reaction for each of the solvents A to D used in the experiment as a result of polymer synthesis under the above conditions.

次に、重合時間10分毎に反応開始から30分までの溶剤の積算滴下量と最終の総滴下量とをプロットし、相関性が所定高さ以上(本実施形態では、決定係数Rが0.9以上)で、且つ重合反応の開始からの時間が最も早い時間を求める。図5は重合反応の開始から10分後の溶剤の積算滴下量とその後に反応終了まで要した総滴下量を、実験に用いた溶剤A〜D毎に示した図、図6は重合反応の開始から20分後の溶剤の積算滴下量とその後に反応終了まで要した総滴下量を、実験に用いた溶剤A〜D毎に示した図、図7は重合反応の開始から30分後の溶剤の積算滴下量とその後に反応終了まで要した総滴下量を、実験に用いた溶剤A〜D毎に示した図である。 Next, the cumulative drop amount of the solvent and the final total drop amount from the start of the reaction to every 30 minutes are plotted every 10 minutes, and the correlation is equal to or higher than a predetermined height (in this embodiment, the determination coefficient R 2 is 0.9 or more) and the earliest time from the start of the polymerization reaction is obtained. FIG. 5 is a graph showing the cumulative amount of solvent added 10 minutes after the start of the polymerization reaction and the total amount of dripping required thereafter until the end of the reaction, for each of the solvents A to D used in the experiment, and FIG. FIG. 7 shows the cumulative amount of solvent dropped 20 minutes after the start and the total amount of dripping required until the end of the reaction for each of the solvents A to D used in the experiment. FIG. 7 shows the result after 30 minutes from the start of the polymerization reaction. It is the figure which showed the total dripping amount required until the completion | finish of reaction after the total dripping amount of a solvent for every solvent AD used for experiment.

先ず、重合反応開始から10分経過時点での溶剤の積算滴下量と総滴下量の相関性について図5に基づいて求める。図5に示すように、各プロットに基づいて決定された回帰直線はy=12.92x+214.96となる。そして、実測データとの差異に基づいて算出された決定係数Rは0.37となる。 First, the correlation between the cumulative dripping amount of the solvent and the total dripping amount after 10 minutes from the start of the polymerization reaction is determined based on FIG. As shown in FIG. 5, the regression line determined based on each plot is y = 12.92x + 214.96. The coefficient of determination R 2 calculated based on the difference between the actual measurement data becomes 0.37.

次に、重合反応開始から20分経過時点での溶剤の積算滴下量と総滴下量の相関性について図6に基づいて求める。図6に示すように、各プロットに基づいて決定された回帰直線はy=9.90x+97.63となる。そして、実測データとの差異に基づいて算出された決定係数Rは0.83となる。 Next, the correlation between the cumulative dripping amount of the solvent and the total dripping amount after 20 minutes from the start of the polymerization reaction is determined based on FIG. As shown in FIG. 6, the regression line determined based on each plot is y = 9.90x + 97.63. The coefficient of determination R 2 calculated based on the difference between the actual measurement data becomes 0.83.

更に、重合反応開始から30分経過時点での溶剤の積算滴下量と総滴下量の相関性について図7に基づいて求める。図7に示すように、各プロットに基づいて決定された回帰直線はy=5.39x+110.19となる。そして、実測データとの差異に基づいて算出された決定係数Rは0.91となる。
従って、相関性が所定高さ以上(本実施形態では、決定係数Rが0.9以上)で、且つ重合反応の開始からの時間が最も早い時間は、重合反応開始から30分経過時点であることが求められる。
Furthermore, the correlation between the cumulative dripping amount of the solvent and the total dripping amount after 30 minutes from the start of the polymerization reaction is determined based on FIG. As shown in FIG. 7, the regression line determined based on each plot is y = 5.39x + 110.19. The determination coefficient R 2 calculated based on the difference from the actual measurement data is 0.91.
Therefore, (in the present embodiment, the coefficient of determination R 2 is 0.9 or higher) correlated than the predetermined height, and the polymerization reaction earliest time is the time from the start of the 30 minute elapsed time from the beginning of the polymerization reaction It is required to be.

そして、求められた時刻(重合反応開始から30分経過時)を、上記S11で判定される溶剤の積算滴下量を算出するタイミングである反応開始時間からの経過時刻tnとする。また、このとき得られたポリマーの分子量を測定しておき、図10に示す溶剤の総滴下量とポリマー分子量の相関から、所望の分子量が得られる最適な溶剤の総滴下量を導出する。尚、本実施形態では最適な溶剤の総滴下量が350kgと導出されたとして、以下に事前実験2の説明を行う。   And let the calculated | required time (at the time of 30-minute progress from a polymerization reaction start) be the elapsed time tn from the reaction start time which is a timing which calculates the cumulative dripping amount of the solvent determined by said S11. Further, the molecular weight of the polymer obtained at this time is measured, and the optimum total dripping amount of the solvent for obtaining a desired molecular weight is derived from the correlation between the total dripping amount of the solvent and the polymer molecular weight shown in FIG. In the present embodiment, assuming that the optimum total amount of the solvent dropped is 350 kg, the preliminary experiment 2 will be described below.

〔事前実験2〕
事前実験2では、事前実験1と同様に図1に示す重合反応制御装置1を用い、温度の異なる4種類の溶剤A〜D(溶剤A:15℃、溶剤B:20℃、溶剤C:25℃、溶剤D:30℃)を滴下することにより攪拌槽3の内浴温度を調整し、攪拌槽3内にあるモノマー混合物を重合反応させ、ポリマーを合成することにより行う。尚、攪拌槽3の外浴温度は既に説明したS1〜S7の処理(図2)に従って制御部5により制御される。また、溶剤の滴下は既に説明したS21〜S26の処理(図3)に従って制御部5により制御される。
更に、事前実験2における攪拌槽3の外浴温度の制御については、事前実験1で求めたtnの時刻(重合反応開始から30分経過時)で、以降の攪拌槽3の外浴の設定温度を−4℃、−2℃、±0、+2℃、+4℃変更する。
ここで、図8は上記条件でポリマーの合成を行った結果、重合反応開始からtn(30分)経過時点での外浴温度変化量と重合反応の終了までに要した溶剤の総滴下量を、実験に用いた溶剤A〜D毎に示した図である。
[Preliminary experiment 2]
In the preliminary experiment 2, similarly to the preliminary experiment 1, the polymerization reaction control apparatus 1 shown in FIG. 1 is used, and four types of solvents A to D (solvent A: 15 ° C., solvent B: 20 ° C., solvent C: 25 having different temperatures) are used. C., solvent D: 30.degree. C.) is added dropwise to adjust the inner bath temperature of the stirring tank 3, polymerize the monomer mixture in the stirring tank 3, and synthesize the polymer. In addition, the outer bath temperature of the stirring tank 3 is controlled by the control part 5 according to the process (FIG. 2) of S1-S7 already demonstrated. Further, the dropping of the solvent is controlled by the control unit 5 in accordance with the processes of S21 to S26 already described (FIG. 3).
Further, regarding the control of the outer bath temperature of the stirring tank 3 in the preliminary experiment 2, the set temperature of the outer bath of the subsequent stirring tank 3 at the time of tn obtained in the preliminary experiment 1 (30 minutes after the start of the polymerization reaction). Are changed by -4 ° C, -2 ° C, ± 0, + 2 ° C, and + 4 ° C.
Here, FIG. 8 shows the result of synthesizing the polymer under the above conditions. As a result, the amount of change in the outer bath temperature after the start of the polymerization reaction and the total dripping amount of the solvent required until the end of the polymerization reaction are shown. It is the figure shown for every solvent AD used for experiment.

先ず、図8に基づいて溶剤Aを用いた場合の各プロットを参照し、回帰直線を求めると、y=19.5x+272.8となる。そして、回帰直線に基づいて最適な溶剤の総滴下量である350kgを滴下する為の外浴の温度変化を以下の演算式(2)で求める。
(350−272.8)/19.5=3.96[℃]・・・(2)
従って、溶剤Aを用いた場合にはtn経過時点で以降の外浴温度を3.96℃上昇させることにより、重合反応の終了までに要する溶剤の総滴下量を350kgとすることが可能であることが分かる。
First, referring to each plot in the case of using the solvent A based on FIG. 8 and finding a regression line, y = 19.5x + 272.8. Then, based on the regression line, the temperature change of the outer bath for dropping 350 kg which is the optimum total dripping amount of the solvent is obtained by the following calculation formula (2).
(350-272.8) /19.5=3.96 [° C.] (2)
Therefore, when the solvent A is used, the total amount of the solvent required to complete the polymerization reaction can be 350 kg by increasing the subsequent bath temperature by 3.96 ° C. after elapse of tn. I understand that.

次に、図8に基づいて溶剤Bを用いた場合の各プロットを参照し、回帰直線を求めると、y=20.3x+311.0となる。そして、回帰直線に基づいて最適な溶剤の総滴下量である350kgを滴下する為の外浴の温度変化を以下の演算式(3)で求める。
(350−311.0)/20.3=1.92[℃]・・・(3)
従って、溶剤Bを用いた場合にはtn経過時点で以降の外浴温度を1.92℃上昇させることにより、重合反応の終了までに要する溶剤の総滴下量を350kgとすることが可能であることが分かる。
Next, referring to each plot in the case of using the solvent B based on FIG. 8, the regression line is obtained, and y = 20.3x + 311.0. Then, based on the regression line, the temperature change of the outer bath for dropping 350 kg which is the optimum total dripping amount of the solvent is obtained by the following arithmetic expression (3).
(350-311.0) /20.3=1.92 [° C.] (3)
Therefore, when the solvent B is used, the total amount of the solvent required to complete the polymerization reaction can be 350 kg by raising the subsequent outer bath temperature by 1.92 ° C. after the time tn has elapsed. I understand that.

次に、図8に基づいて溶剤Cを用いた場合の各プロットを参照し、回帰直線を求めると、y=26.3x+370.0となる。そして、回帰直線に基づいて最適な溶剤の総滴下量である350kgを滴下する為の外浴の温度変化を以下の演算式(4)で求める。
(350−370.0)/26.3=−0.76[℃]・・・(4)
従って、溶剤Cを用いた場合にはtn経過時点で以降の外浴温度を0.76℃下降させることにより、重合反応の終了までに要する溶剤の総滴下量を350kgとすることが可能であることが分かる。
Next, referring to each plot when the solvent C is used based on FIG. 8, the regression line is obtained, and y = 26.3x + 370.0. Then, based on the regression line, the temperature change of the outer bath for dropping 350 kg which is the optimum total dropping amount of the solvent is obtained by the following calculation formula (4).
(350−370.0) /26.3=−0.76 [° C.] (4)
Therefore, when the solvent C is used, the total amount of the solvent required to complete the polymerization reaction can be reduced to 350 kg by lowering the subsequent outer bath temperature by 0.76 ° C. at the time when tn has elapsed. I understand that.

更に、図8に基づいて溶剤Dを用いた場合の各プロットを参照し、回帰直線を求めると、y=24.1x+397.3となる。そして、回帰直線に基づいて最適な溶剤の総滴下量である350kgを滴下する為の外浴の温度変化を以下の演算式(5)で求める。
(350−397.3)/24.1=−1.96[℃]・・・(5)
従って、溶剤Cを用いた場合にはtn経過時点で以降の外浴温度を1.96℃下降させることにより、重合反応の終了までに要する溶剤の総滴下量を350kgとすることが可能であることが分かる。
Further, referring to each plot when the solvent D is used based on FIG. 8, the regression line is obtained and y = 24.1x + 397.3. Then, based on the regression line, the temperature change of the outer bath for dropping 350 kg which is the optimum total dropping amount of the solvent is obtained by the following arithmetic expression (5).
(350-397.3) /24.1=-1.96 [° C.] (5)
Therefore, when the solvent C is used, the total amount of the solvent required to complete the polymerization reaction can be reduced to 350 kg by lowering the subsequent outer bath temperature by 1.96 ° C. after the time tn has elapsed. I understand that.

次に、この最適な溶剤の総滴下量(350kg)となる外浴の温度制御量ΔSVとtn経過時(重合反応開始から30分経過時)での溶剤の積算滴下量をプロットする。図9は溶剤の総滴下量を350kgとする為の外浴の温度制御量ΔSVと重合反応開始から30分経過時での溶剤の積算滴下量を、実験に用いた溶剤A〜D毎に示した図である。   Next, the temperature control amount ΔSV of the outer bath to be the optimum total dripping amount of the solvent (350 kg) and the cumulative dripping amount of the solvent when tn has elapsed (30 minutes after the start of the polymerization reaction) are plotted. FIG. 9 shows the temperature control amount ΔSV of the outer bath for setting the total dripping amount of the solvent to 350 kg and the cumulative dripping amount of the solvent after 30 minutes from the start of the polymerization reaction for each of the solvents A to D used in the experiment. It is a figure.

ここで、図9に基づいて各溶剤A〜Dのプロットを参照し、回帰直線を求めると、y=−0.285x+12.555となる。この式が上記(1)の演算式に相当するものであり、重合反応開始からtn経過時点での積算滴下量を代入することにより、tn経過時点で行う外浴の温度制御量ΔSVを算出することが可能となる。   Here, referring to the plots of the respective solvents A to D based on FIG. 9, the regression line is obtained, and y = −0.285x + 12.555. This equation corresponds to the above equation (1), and the temperature control amount ΔSV of the outer bath performed at the time point tn is calculated by substituting the integrated dripping amount at the time point tn after the start of the polymerization reaction. It becomes possible.

従って、以上に説明した事前実験1により、図2のS11で判定される溶剤の積算滴下量を算出するタイミングである反応開始時間からの経過時刻tnが求まり、事前実験2により、S13で外浴温度の制御量を算出する際に用いる上記(1)の演算式が求まる。   Therefore, by the preliminary experiment 1 described above, an elapsed time tn from the reaction start time, which is the timing for calculating the cumulative dripping amount of the solvent determined in S11 of FIG. 2, is obtained. The arithmetic expression (1) used when calculating the temperature control amount is obtained.

以上詳細に説明した通り、本実施形態に係る重合反応制御装置1及び重合反応制御方法では、重合開始剤が攪拌槽3に投入され、重合反応が開始されたことを確認したと同時に制御部5による重合反応の制御を開始する。重合反応の制御では、重合反応の開始からtn(本実施形態では30分)が経過した際に、tn経過時点での溶剤の積算滴下量n[kg]を算出し(S12)、更に算出した積算滴下量nを予め事前実験1、2を行うことにより求めた演算式(1)に代入することによって、外浴の温度の制御量ΔSVを算出する(S13)。そして、算出したΔSVを設定温度に加算した温度により、それ以後の外浴の温度を設定する(S14)とことにより、反応終了までに滴下される溶剤の総滴下量を予め設定した目標値とするので、重合途中の溶剤の積算滴下量により、溶存酸素濃度等の各種バラツキ要因による反応への影響度を代替的に定量化することができる。更に、反応終了時の総滴下量を予測することにより、重合反応の再現性を向上させつつポリマーの物性(分子量)のバラつきを防止することができる。
また、事前実験1、2では異なる温度の複数種類の溶剤A〜Dを用いて重合反応を行い、重合開始から所定時間後に外浴温度を変更し、用いた溶剤の種類毎に変更した外浴温度の温度差と重合反応終了までの総滴下量とをそれぞれ算出し、目標の総滴下量となる温度差と外浴温度の変更時点までの溶剤の積算滴下量との関係から外浴の温度の制御量を求める。それにより、外浴温度の制御を行うことにより溶剤の総滴下量を常に一定範囲内に抑えることができ、所望のポリマー物性を得ることが可能となる。
更に、事前実験1、2では異なる温度の複数種類の溶剤を用いて重合反応を行い、用いた溶剤の種類毎に重合開始から所定時間毎の溶剤の積算滴下量と重合反応終了までの総滴下量との相関を求め、相関が所定高さ以上で且つ重合開始から最も早いタイミングを溶剤の積算滴下量を算出するタイミングとして求める。それにより、外浴温度の制御を行う際に外浴の温度設定幅を小さくでき、オーバーシュート等の制御による外乱の影響を小さくできる。
As described above in detail, in the polymerization reaction control device 1 and the polymerization reaction control method according to the present embodiment, the control unit 5 simultaneously confirms that the polymerization initiator is charged into the stirring tank 3 and the polymerization reaction is started. Control of the polymerization reaction is started. In the control of the polymerization reaction, when tn (30 minutes in the present embodiment) has elapsed from the start of the polymerization reaction, the cumulative drop amount n [kg] of the solvent at the time tn has been calculated (S12) and further calculated. By substituting the integrated dropping amount n into the arithmetic expression (1) obtained by performing the preliminary experiments 1 and 2 in advance, the control amount ΔSV of the temperature of the outer bath is calculated (S13). Then, by setting the calculated ΔSV to the set temperature, the temperature of the outer bath thereafter is set (S14), so that the total amount of solvent dripped before the end of the reaction is set to a preset target value. Therefore, the degree of influence on the reaction due to various variation factors such as dissolved oxygen concentration can be quantified alternatively by the cumulative amount of solvent dropped during the polymerization. Furthermore, by predicting the total dropping amount at the end of the reaction, it is possible to prevent variations in the physical properties (molecular weight) of the polymer while improving the reproducibility of the polymerization reaction.
In the preliminary experiments 1 and 2, the polymerization reaction is performed using a plurality of types of solvents A to D at different temperatures, the outer bath temperature is changed after a predetermined time from the start of polymerization, and the outer bath is changed for each type of solvent used. Calculate the temperature difference of the temperature and the total dripping amount until the end of the polymerization reaction, and calculate the temperature of the outer bath from the relationship between the temperature difference that becomes the target total dripping amount and the cumulative dripping amount of the solvent until the change of the outer bath temperature. Determine the amount of control. Thereby, by controlling the outer bath temperature, the total dripping amount of the solvent can always be kept within a certain range, and desired polymer physical properties can be obtained.
Furthermore, in the preliminary experiments 1 and 2, the polymerization reaction is performed using a plurality of types of solvents at different temperatures, and for each type of solvent used, the total amount of solvent dropped from the start of polymerization to the end of the polymerization reaction every predetermined time. The correlation with the amount is obtained, and the earliest timing at which the correlation is equal to or higher than a predetermined height and from the start of polymerization is obtained as the timing for calculating the cumulative amount of solvent. Thereby, the temperature setting range of the outer bath can be reduced when controlling the outer bath temperature, and the influence of disturbance due to control of overshoot and the like can be reduced.

尚、本発明は前記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改良、変形が可能であることは勿論である。
例えば、本実施形態では事前実験1で溶剤の積算滴下量を算出するタイミングを求める際に、溶剤の積算滴下量と総滴下量の相関性を示す決定係数Rが0.9以上であることを条件としたが、決定係数Rが0.8以上であることを条件としても良い。
Note that the present invention is not limited to the above-described embodiment, and various improvements and modifications can be made without departing from the scope of the present invention.
For example, when the present embodiment to determine the timing to calculate the cumulative dropping amount of the solvent in the pre Experiment 1, it determines the coefficient R 2 indicating the correlation of the integrated dropwise and total dropping amount of the solvent is 0.9 or more the was a condition may be the condition that the coefficient of determination R 2 is 0.8 or more.

本実施形態に係る重合反応制御装置の要部を示す概略側面図である。It is a schematic side view which shows the principal part of the polymerization reaction control apparatus which concerns on this embodiment. 本実施形態に係る重合反応制御装置の攪拌槽の外浴温度制御プログラムのフローチャートである。It is a flowchart of the outer bath temperature control program of the stirring tank of the polymerization reaction control device according to the present embodiment. 本実施形態に係る重合反応制御装置の溶剤の滴下制御プログラムのフローチャートである。It is a flowchart of the dripping control program of the solvent of the polymerization reaction control apparatus which concerns on this embodiment. 事前実験1で重合反応の開始から終了までの各時刻での溶剤の積算滴下量を、実験に用いた溶剤A〜D毎に示した図である。It is the figure which showed the cumulative dripping amount of the solvent at each time from the start of a polymerization reaction to completion | finish in the prior experiment 1 for every solvent AD used for experiment. 事前実験1で重合反応の開始から10分後の溶剤の積算滴下量とその後に反応終了まで要した総滴下量を、実験に用いた溶剤A〜D毎に示した図である。It is the figure which showed the integrated dripping amount of the solvent 10 minutes after the start of the polymerization reaction in the prior experiment 1, and the total dripping amount required until the completion of the reaction for each of the solvents A to D used in the experiment. 事前実験1で重合反応の開始から20分後の溶剤の積算滴下量とその後に反応終了まで要した総滴下量を、実験に用いた溶剤A〜D毎に示した図である。It is the figure which showed the integrated dripping amount of the solvent 20 minutes after the start of the polymerization reaction in the prior experiment 1, and the total dripping amount required until the completion of the reaction for each of the solvents A to D used in the experiment. 事前実験1で重合反応の開始から30分後の溶剤の積算滴下量とその後に反応終了まで要した総滴下量を、実験に用いた溶剤A〜D毎に示した図である。It is the figure which showed the integrated dripping amount of the solvent 30 minutes after the start of a polymerization reaction in prior experiment 1, and the total dripping amount required until the completion of reaction for every solvent AD used for experiment. 事前実験2で重合反応開始から30分経過時点での外浴温度変化と重合反応の終了までに要した溶剤の総滴下量を、実験に用いた溶剤A〜D毎に示した図である。It is the figure which showed the total dripping amount of the solvent required for the external bath temperature change and the completion | finish of a polymerization reaction at the time of 30-minute progress in the prior experiment 2 for every solvent AD used for experiment. 事前実験2で溶剤の総滴下量を350kgとする為の外浴の温度変化ΔSVと重合反応開始から30分経過時での溶剤の積算滴下量を、実験に用いた溶剤A〜D毎に示した図である。The temperature change ΔSV of the outer bath and the cumulative amount of solvent dripping after 30 minutes from the start of the polymerization reaction are shown for each of the solvents A to D used in the experiment in order to set the total dripping amount of the solvent to 350 kg in the preliminary experiment 2. It is a figure. 重合に用いた溶剤の総滴下量と生成されたポリマー分子量の相関を示した図である。It is the figure which showed the correlation of the total dripped amount of the solvent used for superposition | polymerization, and the produced | generated polymer molecular weight.

符号の説明Explanation of symbols

1 重合反応制御装置
2 攪拌機
3 攪拌槽
4 滴下槽
5 制御部
9 ジャケット
DESCRIPTION OF SYMBOLS 1 Polymerization reaction control apparatus 2 Stirrer 3 Stirrer tank 4 Dripping tank 5 Control part 9 Jacket

Claims (6)

モノマー混合物を攪拌槽内に投入して重合反応によりポリマーを合成する過程で、攪拌槽の外浴温度を制御すると共に、溶剤を攪拌槽内に滴下することにより重合反応を制御する重合反応制御方法において、
重合反応中における所定のタイミングで重合開始からの前記溶剤の積算滴下量を算出し、
重合反応終了時までに予め設定された総滴下量の溶剤を滴下するように前記算出された溶剤の積算滴下量に基づいて外浴の温度を制御することを特徴とする重合反応制御方法。
Polymerization reaction control method for controlling the polymerization reaction by controlling the outer bath temperature of the stirring tank and dropping the solvent into the stirring tank in the course of synthesizing the polymer by the polymerization reaction by introducing the monomer mixture into the stirring tank In
Calculate the cumulative dropping amount of the solvent from the start of polymerization at a predetermined timing during the polymerization reaction,
A polymerization reaction control method, wherein the temperature of the outer bath is controlled based on the calculated cumulative drop amount of the solvent so that a preset total drop amount of the solvent is dropped before the end of the polymerization reaction.
請求項1に記載の重合反応制御方法において、
前記溶剤の積算滴下量に基づく外浴の温度の制御量を以下のようにして求める、
異なる温度の複数種類の溶剤を用いて重合反応を行い、重合開始から所定時間後に外浴温度を変更し、前記用いた溶剤の種類毎に変更した外浴温度の温度差と重合反応終了までの総滴下量とをそれぞれ算出し、
目標の総滴下量となる温度差と外浴温度の変更時点までの溶剤の積算滴下量との関係から外浴の温度の制御量を求めることを特徴とする重合反応制御方法。
In the polymerization reaction control method according to claim 1,
A control amount of the temperature of the outer bath based on the cumulative dripping amount of the solvent is determined as follows.
A polymerization reaction is performed using a plurality of types of solvents at different temperatures, the outer bath temperature is changed after a predetermined time from the start of polymerization, and the temperature difference between the outer bath temperature changed for each of the used solvents and the end of the polymerization reaction are changed. Calculate the total dripping amount,
A polymerization reaction control method characterized in that a control amount of a temperature of an outer bath is obtained from a relationship between a temperature difference that becomes a target total dripping amount and an integrated dripping amount of a solvent up to a change time of the outer bath temperature.
請求項1又は請求項2に記載の重合反応制御方法において、
前記溶剤の積算滴下量を算出するタイミングを以下のようにして求める、
異なる温度の複数種類の溶剤を用いて重合反応を行い、前記用いた溶剤の種類毎に重合開始から所定時間毎の前記溶剤の積算滴下量と重合反応終了までの総滴下量との相関を求め、
前記相関が所定高さ以上で且つ重合開始から最も早いタイミングを前記溶剤の積算滴下量を算出するタイミングとして求めることを特徴とする重合反応制御方法。
In the polymerization reaction control method according to claim 1 or 2,
Obtain the timing for calculating the cumulative amount of the solvent added as follows:
The polymerization reaction is performed using a plurality of types of solvents at different temperatures, and the correlation between the total amount of dripping of the solvent from the start of polymerization and the total amount of dripping until the end of the polymerization reaction is determined for each type of solvent used. ,
A polymerization reaction control method characterized in that the correlation is equal to or higher than a predetermined height and the earliest timing from the start of polymerization is determined as the timing for calculating the cumulative dripping amount of the solvent.
モノマー混合物を攪拌する攪拌槽と、
前記攪拌槽の外浴の温度を制御する外浴温度制御手段と、
溶剤を前記攪拌槽内に滴下する滴下手段と、を有し、
モノマー混合物を攪拌槽内に投入して重合反応によりポリマーを合成する過程で、前記外浴温度制御手段により外浴温度を制御すると共に、前記滴下手段で溶剤を攪拌槽内に滴下することにより重合反応を制御する重合反応制御装置において、
重合反応中における所定のタイミングで重合開始からの前記溶剤の積算滴下量を算出する滴下量算出手段を備え、
前記外浴温度制御手段は重合反応終了時までに予め設定された総滴下量の溶剤を滴下するように前記滴下量算出手段で算出された溶剤の積算滴下量に基づいて外浴の温度を制御することを特徴とする重合反応制御装置。
A stirring tank for stirring the monomer mixture;
Outer bath temperature control means for controlling the temperature of the outer bath of the stirring tank;
Dropping means for dropping the solvent into the stirring tank,
In the process of putting the monomer mixture into the stirring tank and synthesizing the polymer by the polymerization reaction, the outer bath temperature is controlled by the outer bath temperature control means, and the solvent is dropped into the stirring tank by the dropping means. In the polymerization reaction control device for controlling the reaction,
A dropping amount calculating means for calculating the cumulative dropping amount of the solvent from the start of polymerization at a predetermined timing during the polymerization reaction;
The outer bath temperature control means controls the temperature of the outer bath based on the cumulative drop amount of the solvent calculated by the drop amount calculation means so as to drop a preset total drop amount of the solvent by the end of the polymerization reaction. A polymerization reaction control device.
請求項4に記載の重合反応制御装置において、
前記外浴温度制御手段による溶剤の積算滴下量に基づく外浴の温度の制御量を以下のようにして求める、
異なる温度の複数種類の溶剤を用いて重合反応を行い、重合開始から所定時間後に外浴温度を変更し、前記用いた溶剤の種類毎に変更した外浴温度の温度差と重合反応終了までの総滴下量とをそれぞれ算出し、
目標の総滴下量となる温度差と外浴温度の変更時点までの溶剤の積算滴下量との関係から外浴の温度の制御量を求めることを特徴とする重合反応制御装置。
In the polymerization reaction control device according to claim 4,
Obtaining the control amount of the temperature of the outer bath based on the cumulative dripping amount of the solvent by the outer bath temperature control means as follows:
A polymerization reaction is performed using a plurality of types of solvents at different temperatures, the outer bath temperature is changed after a predetermined time from the start of polymerization, and the temperature difference between the outer bath temperature changed for each of the used solvents and the end of the polymerization reaction are changed. Calculate the total dripping amount,
A polymerization reaction control apparatus for obtaining a control amount of a temperature of an outer bath from a relationship between a temperature difference that becomes a target total dripping amount and an accumulated dripping amount of a solvent up to a change time of the outer bath temperature.
請求項4又は請求項5に記載の重合反応制御装置において、
前記滴下量算出手段による溶剤の積算滴下量を算出するタイミングを以下のようにして求める、
異なる温度の複数種類の溶剤を用いて重合反応を行い、前記用いた溶剤の種類毎に重合開始から所定時間毎の前記溶剤の積算滴下量と重合反応終了までの総滴下量との相関を求め、
前記相関が所定高さ以上で且つ重合開始から最も早いタイミングを前記溶剤の積算滴下量を算出するタイミングとして求めることを特徴とする重合反応制御装置。
In the polymerization reaction control device according to claim 4 or 5,
The timing for calculating the cumulative amount of solvent dripping by the dripping amount calculating means is determined as follows.
The polymerization reaction is performed using a plurality of types of solvents at different temperatures, and the correlation between the total amount of dripping of the solvent from the start of polymerization and the total amount of dripping until the end of the polymerization reaction is determined for each type of solvent used. ,
A polymerization reaction control apparatus, wherein the correlation is equal to or higher than a predetermined height and the earliest timing from the start of polymerization is determined as the timing for calculating the cumulative amount of the solvent.
JP2007068580A 2007-03-16 2007-03-16 Polymerization reaction control method and polymerization reaction control apparatus Active JP5289719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007068580A JP5289719B2 (en) 2007-03-16 2007-03-16 Polymerization reaction control method and polymerization reaction control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007068580A JP5289719B2 (en) 2007-03-16 2007-03-16 Polymerization reaction control method and polymerization reaction control apparatus

Publications (2)

Publication Number Publication Date
JP2008231150A true JP2008231150A (en) 2008-10-02
JP5289719B2 JP5289719B2 (en) 2013-09-11

Family

ID=39904352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007068580A Active JP5289719B2 (en) 2007-03-16 2007-03-16 Polymerization reaction control method and polymerization reaction control apparatus

Country Status (1)

Country Link
JP (1) JP5289719B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179705A (en) * 2000-12-08 2002-06-26 Nippon Shokubai Co Ltd Method and apparatus for producing polymer
JP2003040910A (en) * 2001-07-27 2003-02-13 Nitto Denko Corp Method for controlling polymerization
JP2003313204A (en) * 2002-04-19 2003-11-06 Nitto Denko Corp Method for controlling polymerization temperature
JP2005113086A (en) * 2003-10-10 2005-04-28 Nitto Denko Corp Method for synthesizing polymer and device by using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179705A (en) * 2000-12-08 2002-06-26 Nippon Shokubai Co Ltd Method and apparatus for producing polymer
JP2003040910A (en) * 2001-07-27 2003-02-13 Nitto Denko Corp Method for controlling polymerization
JP2003313204A (en) * 2002-04-19 2003-11-06 Nitto Denko Corp Method for controlling polymerization temperature
JP2005113086A (en) * 2003-10-10 2005-04-28 Nitto Denko Corp Method for synthesizing polymer and device by using the same

Also Published As

Publication number Publication date
JP5289719B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
KR101700257B1 (en) Temperature controller for semiconductor manufacturing equipment, method for calculating pid constants in semiconductor manufacturing, and method for operating temperature controller for semiconductor manufacturing equipment
US8501599B2 (en) Substrate processing apparatus and substrate processing method
JPS60248702A (en) Method and device to control polymerization reaction
CN115138307B (en) Reaction kettle system, temperature control method thereof, electronic equipment and storage medium
JP2011251210A (en) Apparatus for inhibiting scale
WO2011001894A1 (en) Device and method for crystallizing (meth)acrylic acid
JP5289719B2 (en) Polymerization reaction control method and polymerization reaction control apparatus
JP3231601B2 (en) Electric furnace temperature control method and apparatus
JP2005113086A (en) Method for synthesizing polymer and device by using the same
TW200942322A (en) Method and system for regulating a continuous crystallization process
JP4710345B2 (en) Reactor temperature control method and reactor temperature control apparatus
WO2005043609A1 (en) Heat treatment apparatus and heat treatment method
RU2423559C2 (en) Procedure for growth of mono crystal of sapphire on seed left in melt under automatic mode
KR20010102026A (en) Method for Continuously Monitoring and Controlling the Monomer Conversion During Emulsion Polymerization
JP4711806B2 (en) Polymer production method and apparatus thereof
KR20180135452A (en) Process for producing dry noodle agent comprising glyoxylated polyacrylamide
WO2007117072A1 (en) Method for optimization of process by adjustment of initiator in polymerization system
JP3818375B2 (en) Polymerization temperature control method
JP2009162392A (en) Sherbet ice producing device and its method
JP2012164206A (en) Temperature control system and temperature control method
JP2005350499A (en) Method for controlling polymerization reaction and device for the same
JP5241051B2 (en) Polymerization reaction control method
JP2003176305A (en) Method for detecting polymerization starting point and method for cooling control using the same
RU2564442C2 (en) Method of increasing efficiency of controlling butyl rubber production process
JP4666438B2 (en) Polymer synthesis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130605

R150 Certificate of patent or registration of utility model

Ref document number: 5289719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250