JP2011251210A - Apparatus for inhibiting scale - Google Patents

Apparatus for inhibiting scale Download PDF

Info

Publication number
JP2011251210A
JP2011251210A JP2010124751A JP2010124751A JP2011251210A JP 2011251210 A JP2011251210 A JP 2011251210A JP 2010124751 A JP2010124751 A JP 2010124751A JP 2010124751 A JP2010124751 A JP 2010124751A JP 2011251210 A JP2011251210 A JP 2011251210A
Authority
JP
Japan
Prior art keywords
scale
concentration
fluid
dissolved component
scale inhibitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010124751A
Other languages
Japanese (ja)
Other versions
JP5372838B2 (en
Inventor
Kohei Inoue
公平 井上
Yoshitaka Kawahara
義隆 川原
Ichiro Meigan
市郎 明翫
Daisuke Fukuda
大輔 福田
Yasuyuki Hishi
靖之 菱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jmc Geothermal Eng Co Ltd
JMC GEOTHERMAL ENGINEERING CO Ltd
Fuji Electric Co Ltd
Original Assignee
Jmc Geothermal Eng Co Ltd
JMC GEOTHERMAL ENGINEERING CO Ltd
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jmc Geothermal Eng Co Ltd, JMC GEOTHERMAL ENGINEERING CO Ltd, Fuji Electric Co Ltd filed Critical Jmc Geothermal Eng Co Ltd
Priority to JP2010124751A priority Critical patent/JP5372838B2/en
Publication of JP2011251210A publication Critical patent/JP2011251210A/en
Application granted granted Critical
Publication of JP5372838B2 publication Critical patent/JP5372838B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for inhibiting the deposition of scale by injecting a scale inhibitor based on the decrease rate of the dissolved component concentration of a fluid to control the decrease rate of the dissolved component concentration to be a predetermined value.SOLUTION: The apparatus for inhibiting scale includes: concentration meters 2 and 3 for measuring the dissolved component concentration of the fluid; a scale inhibitor injection part 5 for injecting the scale inhibitor, which controls the deposition of the dissolved component, into the fluid; and a control part 4 for controlling the injection amount of the scale inhibitor based on the decrease rate of the dissolved component concentration, calculated from the dissolved component concentration of the fluid measured by the concentration meters 2 and 3 at different time, or a decrease rate coefficient.

Description

本発明は、スケール抑制装置およびそのスケール抑制方法に関する。   The present invention relates to a scale suppression device and a scale suppression method thereof.

硬度の高い水を使用する設備の運転効率やメンテナンス頻度低減には、スケールを抑制する技術が重要である。例えば、ボイラーの水や地熱発電の熱水でスケールの生成を抑制するために、薬剤注入量を制御する方法として、次の方法が知られている。   Technology that suppresses scale is important for reducing the operating efficiency and maintenance frequency of facilities that use water with high hardness. For example, the following method is known as a method for controlling the injection amount of chemicals in order to suppress the generation of scale with boiler water or geothermal power hot water.

特許文献1は、給水を加熱して蒸気を生成するボイラ2と、このボイラ2へ給水を供給する給水部3と、前記ボイラ2で生成した蒸気を負荷機器4へ供給する蒸気供給部5とを備えたボイラ装置1 において、スケール分散剤を用いて前記ボイラ2におけるスケールの生成を抑制する方法であって、前記給水部3の給水路11中の給水の全炭酸濃度を測定する全炭酸濃度測定工程と、前記給水部3の給水路11中の給水のシリカ濃度を測定するシリカ濃度測定工程と、前記全炭酸濃度測定工程および前記シリカ濃度測定工程における測定結果に基づいて、前記給水部3に対してスケール分散剤を供給するスケール分散剤供給工程を含むことを特徴とするボイラ装置のスケール生成抑制方法を開示している。   Patent Document 1 discloses a boiler 2 that heats feed water to generate steam, a water supply unit 3 that supplies water to the boiler 2, and a steam supply unit 5 that supplies steam generated by the boiler 2 to a load device 4. 1 is a method for suppressing the generation of scale in the boiler 2 by using a scale dispersant, and the total carbonic acid concentration for measuring the total carbonic acid concentration in the water supply channel 11 of the water supply unit 3 Based on the measurement results, the silica concentration measurement step of measuring the silica concentration of the feed water in the water supply channel 11 of the water supply unit 3, and the measurement results in the total carbonic acid concentration measurement step and the silica concentration measurement step, the water supply unit 3 The scale production | generation suppression method of the boiler apparatus characterized by including the scale dispersing agent supply process which supplies a scale dispersing agent with respect to is disclosed.

特許文献2は、水処理剤供給の消費濃度応答性の調節方法であって、工業的流体系より水処理剤を含む流体サンプルを取り出し、前記サンプルに、初期薬剤と実質的に非蛍光性の水処理剤の組み合わせを含む濃度指示剤を生成するに有効な量で初期薬剤を加え、前記サンプルの蛍光分析によって前記濃度指示剤を監視し、前記水処理剤のインシステム濃度に関係づけることができる少なくとも1種の蛍光発光値を測定し、前記蛍光発光値と、前記水処理剤の前記インシステム濃度を関係づけ、前記水処理剤の前記インシステム濃度に基づき、前記流体系への前記水処理剤の供給を調節する方法を開示している。   Patent Document 2 is a method for adjusting the consumption concentration responsiveness of water treatment agent supply. A fluid sample containing a water treatment agent is taken out from an industrial fluid system, and the sample is substantially non-fluorescent with the initial drug. An initial agent is added in an amount effective to produce a concentration indicator comprising a combination of water treatment agents, and the concentration indicator is monitored by fluorescence analysis of the sample and related to the in-system concentration of the water treatment agent. Measuring at least one type of fluorescence emission value, and relating the fluorescence emission value to the in-system concentration of the water treatment agent, and based on the in-system concentration of the water treatment agent, the water to the fluid system A method for adjusting the supply of treatment agent is disclosed.

地熱バイナリー発電は、生産井から噴出した蒸気あるいは熱水と熱交換して発生した低沸点媒体の蒸気を動力としてタービンを回転させ、このタービンに連結された発電機で発電を行っている。そして、使用後の蒸気が凝縮した熱水や低温になった熱水を還元井に戻している。地下深くから噴出する高温の熱水は、カルシウムや溶存シリカを多く含むため、炭酸カルシウムや非晶質シリカなどのスケールを析出しやすい。特に地上部や還元井では、熱水の温度降下によるシリカスケールの析出が問題となることが多い。地熱熱水からのシリカスケールの析出を抑制するためには、シリカの成長を抑制するポリマーを含んでいる抑制剤を注入する方法や、硫酸などの酸を注入することによって熱水のpHを調整する方法が知られている。   In geothermal binary power generation, a turbine is rotated using steam generated from a production well or steam of a low-boiling medium generated by heat exchange with hot water, and power is generated by a generator connected to the turbine. And the hot water which the steam after use condensed and the hot water which became low temperature are returned to the reduction well. High-temperature hot water ejected from deep underground tends to deposit scales such as calcium carbonate and amorphous silica because it contains a large amount of calcium and dissolved silica. In particular, in the above-ground part and the reduction well, precipitation of silica scale due to the temperature drop of hot water often becomes a problem. In order to suppress the deposition of silica scale from geothermal hot water, the pH of the hot water is adjusted by injecting an inhibitor containing a polymer that suppresses silica growth or by injecting an acid such as sulfuric acid. How to do is known.

特開2004−085144号公報JP 2004-085144 A 特開平7−265868号公報JP-A-7-265868

水質の違いや設備の運転条件の変更などに伴う水温変化に影響されずにスケールの発生を抑制するために、本発明は、流体の溶存成分濃度の減少速度または減少速度係数に基づいてスケール抑制剤を添加し、溶存成分濃度の減少速度を予め定めた値に制御することで、スケールの析出を抑制する装置を提供することを目標とする。   In order to suppress the generation of scales without being affected by changes in water temperature due to differences in water quality or changes in equipment operating conditions, the present invention suppresses scales based on the rate of decrease or the rate of decrease in the concentration of dissolved components in the fluid. An object is to provide a device that suppresses the precipitation of scale by adding an agent and controlling the rate of decrease in dissolved component concentration to a predetermined value.

上記課題を解決するため、本発明に係るスケール抑制装置は、流体の溶存成分濃度を測定する濃度計と、前記溶存成分の析出を抑制するスケール抑制剤を前記流体へ注入するスケール抑制剤注入部と、前記濃度計で測定した時間の異なる前記流体の溶存成分濃度から計算した前記溶存成分濃度の減少速度または減少速度係数に基づいて前記スケール抑制剤の注入速度を制御する制御部を備えることを特徴とする。 In order to solve the above problems, a scale suppression device according to the present invention includes a concentration meter that measures a dissolved component concentration of a fluid, and a scale inhibitor injection unit that injects a scale inhibitor that suppresses precipitation of the dissolved component into the fluid. And a controller for controlling the injection rate of the scale inhibitor based on a decrease rate or a decrease rate coefficient of the dissolved component concentration calculated from the dissolved component concentrations of the fluid having different times measured by the densitometer. Features.

この構成によれば、実際の流体中の溶存成分濃度の減少速度または減少速度係数を元にスケール抑制剤の注入速度を制御しているので、流体中に含まれる共存物質がスケール抑制剤注入速度の計算に誤差をもたらす場合であっても、溶存成分濃度の1回の測定に基づくスケール抑制剤注入速度の計算に比べて、この誤差を低減できる。   According to this configuration, since the injection rate of the scale inhibitor is controlled based on the decrease rate or the decrease rate coefficient of the dissolved component concentration in the actual fluid, the coexisting substances contained in the fluid are the scale inhibitor injection rate. Even in the case where an error is caused in the calculation, the error can be reduced as compared with the calculation of the scale inhibitor injection rate based on the single measurement of the dissolved component concentration.

また、上記スケール抑制装置において、前記流体を貯留する保持容器を備え、前記濃度計は、前記保持容器に貯留された前記流体の溶存成分濃度を異なる時に測定することとしてもよい。   The scale suppression device may further include a holding container for storing the fluid, and the concentration meter may measure the concentration of dissolved components of the fluid stored in the holding container at different times.

この構成によれば、流路近傍の環境が濃度計測に不向きな場合でも、流路から離れた場所で流体中の溶存成分濃度の減少速度を計測できる。   According to this configuration, even when the environment in the vicinity of the flow path is unsuitable for concentration measurement, it is possible to measure the rate of decrease of the dissolved component concentration in the fluid at a location away from the flow path.

また、上記スケール抑制装置において、前記濃度計は、前記流体の流路の複数の地点の前記溶存成分濃度を測定することとしてもよい。   Moreover, the said scale suppression apparatus WHEREIN: The said concentration meter is good also as measuring the said dissolved component density | concentration of the several point of the flow path of the said fluid.

この構成によれば、前記保持容器を備える必要がなくなり、装置を簡素化できる。   According to this configuration, it is not necessary to provide the holding container, and the apparatus can be simplified.

また、前記流体の流量を計測する流量計を備え、いずれの前記濃度計の計測場所よりも下流の流路に、前記スケール抑制剤を注入することとしてもよい。   Moreover, it is good also as providing the flowmeter which measures the flow volume of the said fluid, and inject | pouring the said scale inhibitor into the flow path downstream from the measurement place of any said concentration meter.

この構成によれば、スケール抑制剤を注入する前の流体の溶存成分濃度も計測できるので、新たに高価な濃度計を設けることなく元々の流体の溶存成分濃度の情報が得られ、流体の管理に活用することができる。   According to this configuration, the dissolved component concentration of the fluid before injecting the scale inhibitor can be measured, so that information on the dissolved component concentration of the original fluid can be obtained without providing a new expensive concentration meter, and the fluid management It can be used for.

また、これらのスケール抑制装置において、前記保持容器内の温度を一定にするための保温部を備え、複数の前記保持容器に貯留した前記流体へそれぞれ予め定めた時間に反応停止剤を注入する反応停止剤注入部を備え、前記溶存成分がシリカであり、前記反応停止剤が酸であり、前記スケール抑制剤がpH調整剤、反応封止剤、分散剤、キレート剤から選ばれる薬剤の内、少なくとも1種類を含んでいることとしてもよい。ここで、pH調整剤とは、溶液のpHを酸性またはアルカリ性に変化させて、前記流体のシリカ重合速度を遅くする薬剤のことである。反応封止剤とは、シリカ分子の官能基をマスクする薬剤のことである。分散剤とは、マイナス電荷のシリカの周囲をイオン性高分子で包み込んでシリカ同士の重合反応を阻止する薬品のことである。キレート剤とは、シリカ析出の核となる原子と錯体を形成することで、該原子とシリカの反応を阻止する薬品のことである。そして、前記pH調整剤または反応封止剤または分散剤またはキレート剤は、カルボキシル基、スルホン基、アミノ基、ホスフィノ基から選ばれる官能基の内、少なくとも1つの官能基を分子内に含んでいることが望ましい。ここで、溶存成分濃度としてのシリカ濃度とは、JIS K010141.1に記載のモリブデン黄法、あるいはモリブデン青法によって測定されたイオン状シリカ濃度の値、もしくはこれらの測定方法と相関のある方法で求めた値とする。   Further, in these scale suppression devices, a reaction is provided that includes a heat retaining unit for keeping the temperature in the holding container constant, and injects a reaction terminator into the fluid stored in the plurality of holding containers at predetermined times, respectively. Among the agents provided with a stopper injection part, the dissolved component is silica, the reaction stopper is an acid, and the scale inhibitor is a pH adjuster, reaction sealant, dispersant, chelating agent, At least one kind may be included. Here, the pH adjuster is an agent that changes the pH of the solution to acidic or alkaline to slow down the silica polymerization rate of the fluid. The reactive sealing agent is a drug that masks the functional group of the silica molecule. The dispersant is a chemical that wraps around the negatively charged silica with an ionic polymer to prevent the polymerization reaction between the silicas. A chelating agent is a chemical that forms a complex with an atom that becomes the core of silica precipitation, thereby preventing the reaction between the atom and silica. The pH adjusting agent, the reaction sealing agent, the dispersing agent, or the chelating agent contains at least one functional group in the molecule among functional groups selected from a carboxyl group, a sulfone group, an amino group, and a phosphino group. It is desirable. Here, the silica concentration as the dissolved component concentration is a value of ionic silica concentration measured by the molybdenum yellow method or the molybdenum blue method described in JIS K010141.1, or a method correlated with these measurement methods. The obtained value.

この構成によれば、溶存シリカ濃度の減少速度係数を制御することでシリカスケールの生成速度を抑制しつつ、スケール抑制剤の使用量を低減できる。   According to this structure, the usage-amount of a scale inhibitor can be reduced, suppressing the production rate of a silica scale by controlling the decreasing rate coefficient of a dissolved silica concentration.

また、これらのスケール抑制装置を地熱発電システムに備えることが望ましい。   Moreover, it is desirable to provide these scale suppression devices in a geothermal power generation system.

この構成によれば、蒸発器に付着するシリカスケールを抑制できるので、蒸発器のメンテナンス頻度を低減できる。   According to this structure, since the silica scale adhering to an evaporator can be suppressed, the maintenance frequency of an evaporator can be reduced.

本発明によれば、流体の溶存成分濃度の減少速度または減少速度係数に基づいてスケール抑制剤を注入し、溶存成分濃度の減少速度を予め定めた値に制御することで、スケールの析出を抑制することができる。   According to the present invention, the scale inhibitor is injected based on the decrease rate or the decrease rate coefficient of the dissolved component concentration of the fluid, and the decrease rate of the dissolved component concentration is controlled to a predetermined value, thereby suppressing the precipitation of the scale. can do.

本発明の第1の実施形態に係るスケール抑制装置の構成図である。It is a block diagram of the scale suppression apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るスケール抑制装置の制御フロー図である。It is a control flowchart of the scale suppression apparatus which concerns on the 1st Embodiment of this invention. 正常運転時と異常運転時のシリカ濃度測定値の経時変化の例を示す図である。It is a figure which shows the example of a time-dependent change of the silica concentration measured value at the time of normal driving | operation and abnormal driving | operation. 本発明の第2の実施形態に係るスケール抑制装置の構成図である。It is a block diagram of the scale suppression apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係るスケール抑制装置の制御フロー図である。It is a control flowchart of the scale suppression apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係るスケール抑制装置の構成図である。It is a block diagram of the scale suppression apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第1の実施形態に係るスケール抑制装置を地熱発電システムの一例であるバイナリー発電システムに用いた場合の構成図である。It is a lineblock diagram at the time of using the scale control device concerning a 1st embodiment of the present invention for the binary power generation system which is an example of a geothermal power generation system.

以下、図面を参照しながら本発明に係るスケール抑制装置の実施形態を説明する。同一の構成要素については、同一の符号を付け、重複する説明は省略する。なお、本発明は、下記の実施形態に限定されるものではなく、その要旨を変更しない範囲内で適宜変形して実施することができる。なお、上記の流体中の溶存成分濃度の減少速度は、以下の実施形態では、該減少速度が関係する反応が非線形の反応(下記式2参照)であるので、流体中の溶存成分濃度の減少速度係数がこれに対応する。該減少速度が関係する反応式が線形である場合は、減少速度で対応する。   Hereinafter, embodiments of a scale suppressing device according to the present invention will be described with reference to the drawings. About the same component, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted. In addition, this invention is not limited to the following embodiment, It can deform | transform suitably and implement in the range which does not change the summary. In the following embodiments, the decrease rate of the dissolved component concentration in the fluid is a non-linear reaction (see Equation 2 below), and therefore the decrease in the concentration of the dissolved component in the fluid. The speed factor corresponds to this. When the reaction equation related to the decrease rate is linear, the decrease rate corresponds.

本発明に係る第1の実施形態について、図面を用いて説明する。図1に、本発明の第1の実施形態に係るスケール抑制装置の構成図を示す。流路1には、流体が矢印7に示す方向に流れている。流路1に配置した濃度計2と濃度計3が、流体の溶存成分濃度を計測する。濃度計3は、濃度計2より下流側の位置に配置されている。濃度計3は、濃度計2で計測された流体が濃度計3の流路位置に到達した時に溶存成分濃度を計測する。濃度計2の計測開始から濃度計3の計測が完了する間に、それぞれの計測位置における流体の流量と流体の温度の変化がほとんど無い場合は、濃度計2と濃度計3の計測タイミングに制限は無く、濃度計2,3の両方で溶存成分濃度を同時に計測することとしてもよい。   A first embodiment according to the present invention will be described with reference to the drawings. In FIG. 1, the block diagram of the scale suppression apparatus which concerns on the 1st Embodiment of this invention is shown. The fluid flows in the flow path 1 in the direction indicated by the arrow 7. A concentration meter 2 and a concentration meter 3 arranged in the flow channel 1 measure the dissolved component concentration of the fluid. The densitometer 3 is arranged at a position downstream of the densitometer 2. The concentration meter 3 measures the dissolved component concentration when the fluid measured by the concentration meter 2 reaches the flow path position of the concentration meter 3. If there is almost no change in the flow rate of the fluid and the temperature of the fluid at each measurement position between the start of measurement by the densitometer 2 and the completion of measurement by the densitometer 3, the measurement timing of the densitometer 2 and the densitometer 3 is limited. The dissolved component concentration may be measured simultaneously by both the densitometers 2 and 3.

濃度計2と濃度計3で計測された溶存成分濃度(Ct1,Ct2)と流量計6で計測された流量(Ft1)は、信号配線を通じて制御部4に入力される。制御部4で溶存成分濃度の減少速度係数が計算され、この減少速度係数に基づいてスケール抑制剤の注入速度が計算される。制御部4は、計算したスケール抑制剤の注入速度になるようにスケール抑制剤注入部5を制御して流路内にスケール抑制剤を注入する。ここで、スケール抑制剤注入部5は、図7と同様に、スケール抑制剤タンク5−1とポンプ5−2と配管5−3から構成されている。また、制御部4は、濃度計2と濃度計3が計測する際の時間差を次式によって計算する。すなわち、濃度計2で溶存成分濃度が計測された流体は、流路1を流下して時間Δt後に濃度計3の位置に到達し、濃度計3で再び溶存成分濃度を計測される。   The dissolved component concentrations (Ct1, Ct2) measured by the densitometer 2 and the densitometer 3 and the flow rate (Ft1) measured by the flow meter 6 are input to the control unit 4 through signal wiring. The controller 4 calculates a decrease rate coefficient of the dissolved component concentration, and calculates the injection rate of the scale inhibitor based on the decrease rate coefficient. The control unit 4 controls the scale inhibitor injection unit 5 to inject the scale inhibitor into the flow path so that the calculated scale inhibitor injection rate is obtained. Here, the scale inhibitor injection part 5 is comprised from the scale inhibitor tank 5-1, the pump 5-2, and the piping 5-3 similarly to FIG. Moreover, the control part 4 calculates the time difference at the time of the concentration meter 2 and the concentration meter 3 measuring by following Formula. That is, the fluid whose dissolved component concentration is measured by the densitometer 2 flows down the flow path 1 and reaches the position of the densitometer 3 after time Δt, and the concentration meter 3 again measures the dissolved component concentration.

Δt = 濃度計2と濃度計3の間の流路の体積 / 流量Ft1 ・・・ 式1
制御部4の制御フローを図2に示す。まず、目標とする溶存成分濃度の減少速度係数(kset)と、スケール抑制剤の注入速度(Fch0)の初期値とを設定する(初期値設定ステップS1)。次に、流量計1の流量および濃度計2と濃度計3の溶存成分濃度(Ct1,Ct2)を制御部に読み込む(データ入力ステップS2)。次に、溶存成分濃度減少速度係数(k)を次式によって計算する(溶存成分濃度減少速度係数計算ステップS3)。
Δt = volume of flow path between densitometer 2 and densitometer 3 / flow rate Ft1 Equation 1
A control flow of the control unit 4 is shown in FIG. First, the target decreasing rate coefficient (kset) of the dissolved component concentration and the initial value of the scale inhibitor injection rate (Fch0) are set (initial value setting step S1). Next, the flow rate of the flow meter 1 and the dissolved component concentrations (Ct1, Ct2) of the concentration meter 2 and the concentration meter 3 are read into the control unit (data input step S2). Next, the dissolved component concentration decreasing rate coefficient (k) is calculated by the following equation (dissolved component concentration decreasing rate coefficient calculating step S3).

k = (Ct1−Ct2)/Δt2 ・・・ 式2
次に、スケール抑制剤注入速度を次式によって計算する(スケール抑制剤注入速度計算ステップS4)。αは、任意に設定する比例係数である。
k = (Ct1-Ct2) / Δt 2 ··· type 2
Next, the scale inhibitor injection rate is calculated by the following equation (scale inhibitor injection rate calculation step S4). α is a proportional coefficient set arbitrarily.

Fch1 = α ×(k/kset)× Fch0 ・・・ 式3
次に、スケール抑制剤注入速度(Fch1)をスケール抑制剤注入部に出力する(出力ステップS5)。なお、出力ステップS5で、このスケール抑制剤注入速度(Fch1)に任意の定数をさらに加えてもしくは減じて補正しても良い。次に、Fch0にFch1を代入して、次の制御サイクルのためにデータを更新する(データ更新ステップS6)。次に、前記データ入力ステップS2に戻りこれらの上記ステップループを繰り返す。
Fch1 = α × (k / kset) × Fch0 Formula 3
Next, the scale inhibitor injection speed (Fch1) is output to the scale inhibitor injection unit (output step S5). In the output step S5, the scale inhibitor injection speed (Fch1) may be corrected by adding or subtracting an arbitrary constant. Next, Fch1 is substituted for Fch0, and data is updated for the next control cycle (data update step S6). Next, the process returns to the data input step S2 to repeat the above step loop.

図4に、本発明の第2の実施形態に係るスケール抑制装置の構成図を示す。図1と図4の構造上の相違点は、スケール抑制剤注入部5が流路1と接続する位置が、濃度計3よりも下流にある点と、制御部8の制御方法が図5のように流量計6の流量が関与する点であり、それ以外は、第1の実施形態と同じである。   In FIG. 4, the block diagram of the scale suppression apparatus which concerns on the 2nd Embodiment of this invention is shown. The structural difference between FIG. 1 and FIG. 4 is that the position at which the scale inhibitor injecting section 5 is connected to the flow path 1 is downstream of the densitometer 3, and the control method of the control section 8 is that of FIG. Thus, the flow rate of the flow meter 6 is involved, and other than that is the same as the first embodiment.

図5に、制御フロー図を示す。制御部8は、濃度計2と濃度計3が計測する際の時間差を次式によって計算する。すなわち、濃度計2で溶存成分濃度が計測された流体は、流路1を流下して時間Δt
後に濃度計3の位置に到達し、濃度計3で再び溶存成分濃度を計測される。
FIG. 5 shows a control flow diagram. The control unit 8 calculates the time difference when the densitometer 2 and the densitometer 3 measure by the following equation. That is, the fluid whose dissolved component concentration is measured by the densitometer 2 flows down the flow path 1 and passes through the time Δt.
Later, the position of the densitometer 3 is reached, and the concentration of dissolved components is measured again by the densitometer 3.

Δt = 濃度計2と濃度計3の間の流路の体積 / 流量Ft1 ・・・ 上記式1と同じ
目標とする溶存成分濃度の減少速度係数(kset)と、スケール抑制剤の注入速度(Fch0)の初期値と、流量(Ft0)の初期値を設定する(初期値設定ステップS21)。次に、流量計6の流量(Ft1)および濃度計2と濃度計3の溶存成分濃度(Ct1,Ct2)を制御部に読み込む(データ入力ステップS22)。次に、溶存成分濃度減少速度係数kを次式によって計算する(溶存成分濃度減少速度係数計算ステップS23)。
Δt = volume of flow path between densitometer 2 and densitometer 3 / flow rate Ft1 Same as equation 1 above Target decrease rate coefficient of dissolved component concentration (kset) and scale inhibitor injection rate (Fch0 ) And an initial value of the flow rate (Ft0) are set (initial value setting step S21). Next, the flow rate (Ft1) of the flow meter 6 and the dissolved component concentrations (Ct1, Ct2) of the concentration meter 2 and the concentration meter 3 are read into the control unit (data input step S22). Next, the dissolved component concentration decreasing rate coefficient k is calculated by the following equation (dissolved component concentration decreasing rate coefficient calculating step S23).

k = (Ct1−Ct2)/Δt2 ・・・ 上記式2と同じ
次に、スケール抑制剤注入速度(Fch1)を次式によって計算する(スケール抑制剤注入速度計算ステップS4)。αは、任意に設定する比例係数である。
k = (Ct1−Ct2) / Δt 2 ... Same as Equation 2 Next, the scale inhibitor injection rate (Fch1) is calculated by the following equation (scale inhibitor injection rate calculation step S4). α is a proportional coefficient set arbitrarily.

Fch1 = α ×(k/kset)× Fch0 × Ft1 / Ft0 ・・・ 式4
次に、スケール抑制剤注入速度(Fch1)をスケール抑制剤注入部に出力する(出力ステップS25)。なお、出力ステップS25で、このスケール抑制剤注入速度(Fch1)に任意の定数をさらに加えてもしくは減じて補正しても良い。次に、Fch0にFch1を代入し、Ft0にFt1を代入して、次の制御サイクルのためにデータを更新する(データ更新ステップS26)。次に、前記データ入力ステップS22に戻りこれらの上記ステップループを繰り返す。
Fch1 = α × (k / kset) × Fch0 × Ft1 / Ft0 Formula 4
Next, the scale inhibitor injection speed (Fch1) is output to the scale inhibitor injection unit (output step S25). In the output step S25, the scale inhibitor injection speed (Fch1) may be corrected by adding or subtracting an arbitrary constant. Next, Fch1 is substituted for Fch0, Ft1 is substituted for Ft0, and data is updated for the next control cycle (data update step S26). Next, the process returns to the data input step S22 to repeat these step loops.

図6に、本発明の第3の実施形態に係るスケール抑制装置の構成図を示す。流路1には、流体が矢印7に示す方向に流れている。流路1を流れる流体は、弁18、ポンプ10、弁19が備えられた配管を経由して保持容器11に導入される。保持容器11は、大気と連通した配管と接続しており、その配管は、弁20で大気開放と密閉を切り替えることができる。より具体的には、保持容器11は、耐圧容器の周囲を加熱ジャケットで覆ってあり、耐圧容器内部の温度を測定する温度測定器からの信号により、温度コントローラーが加熱ジャケットの発熱量をコントロールして、耐熱容器内の熱水温度を一定に保持できるよう設計されている。保持容器11には熱水を攪拌する攪拌器12が設置されている。さらに、保持容器11は、貯留した熱水が弁21、ポンプ26を備えた配管を経由して混合槽13へと導入されるように接続されている。また、保持容器11の底には、残余の熱水を廃棄するための配管と弁24が備えられている。図6の実施例では保持容器11を1つのみ用いているが、減少速度係数の計算をより正確にするために、保持容器セット100を複数設置してもよい。混合槽13は、大気に開放された容器である。なお、熱水が接する配管、保持容器11、混合槽13、攪拌器12,14などの接液部分は全てテフロン(登録商標)製とすることが望ましい。反応停止剤タンク16は、弁25とポンプ15を備えた配管を経由して混合槽13に接続されている。さらに、濃度計17は、混合槽13の液体を測定できるように設置されている。濃度計17の出力信号配線は、制御部30に接続されている。流量計6は、流路1に設置されており、流量データ配線は、制御部30に接続されている。制御部30の出力信号配線は、スケール抑制剤注入部5に接続されている。制御部30は、計算したスケール抑制剤の注入速度になるようにスケール抑制剤注入部5を制御して流路1内にスケール抑制剤を注入する。ここで、スケール抑制剤注入部5は、図7と同様に、スケール抑制剤タンク5−1とポンプ5−2と配管5−3から構成されている。混合槽13の底には、弁23を備えた配管が接続されており、残余の液体がこの配管を通して排出される。図示しないが、図中の弁18,19,20,21,23,24,25、ポンプ10,26,25,5−2、攪拌器12,15は、制御部30に配線でそれぞれ接続されており、制御部30で制御されている。   In FIG. 6, the block diagram of the scale suppression apparatus which concerns on the 3rd Embodiment of this invention is shown. The fluid flows in the flow path 1 in the direction indicated by the arrow 7. The fluid flowing through the flow path 1 is introduced into the holding container 11 via a pipe provided with the valve 18, the pump 10, and the valve 19. The holding container 11 is connected to a pipe that communicates with the atmosphere, and the pipe can be switched between open and closed with the valve 20. More specifically, the holding container 11 covers the periphery of the pressure vessel with a heating jacket, and the temperature controller controls the heat generation amount of the heating jacket by a signal from a temperature measuring device that measures the temperature inside the pressure vessel. The hot water temperature in the heat-resistant container is designed to be kept constant. The holding container 11 is provided with a stirrer 12 for stirring hot water. Furthermore, the holding container 11 is connected such that the stored hot water is introduced into the mixing tank 13 via a pipe having a valve 21 and a pump 26. Further, a pipe and a valve 24 for discarding the remaining hot water are provided at the bottom of the holding container 11. Although only one holding container 11 is used in the embodiment of FIG. 6, a plurality of holding container sets 100 may be installed in order to make the calculation of the reduction rate coefficient more accurate. The mixing tank 13 is a container opened to the atmosphere. In addition, it is desirable that the liquid contact parts such as the pipe, the holding container 11, the mixing tank 13, and the stirrers 12 and 14 with which hot water contacts are all made of Teflon (registered trademark). The reaction terminator tank 16 is connected to the mixing tank 13 via a pipe provided with a valve 25 and a pump 15. Furthermore, the densitometer 17 is installed so that the liquid in the mixing tank 13 can be measured. The output signal wiring of the densitometer 17 is connected to the control unit 30. The flow meter 6 is installed in the flow path 1, and the flow data wiring is connected to the control unit 30. The output signal wiring of the control unit 30 is connected to the scale inhibitor injection unit 5. The control unit 30 controls the scale inhibitor injection unit 5 to inject the scale inhibitor into the flow path 1 so that the calculated scale inhibitor injection speed is obtained. Here, the scale inhibitor injection part 5 is comprised from the scale inhibitor tank 5-1, the pump 5-2, and the piping 5-3 similarly to FIG. A pipe provided with a valve 23 is connected to the bottom of the mixing tank 13, and the remaining liquid is discharged through this pipe. Although not shown, the valves 18, 19, 20, 21, 23, 24, 25, the pumps 10, 26, 25, 5-2, and the stirrers 12, 15 in the figure are connected to the control unit 30 by wiring. And is controlled by the control unit 30.

次に、この装置の動作について説明する。制御部30は、弁21,24を閉じ、弁18,19,20を開いて、ポンプ10を作動させて流路1の熱水を保持容器11にサンプリングさせる。予め定めた量を保持容器11にサンプリング後、弁19、20を閉じて保持容器を密閉される。保持容器11内で熱水を保持している間は、攪拌器12で一定条件で攪拌することが望ましい。   Next, the operation of this apparatus will be described. The control unit 30 closes the valves 21 and 24, opens the valves 18, 19 and 20, operates the pump 10, and samples the hot water in the flow path 1 into the holding container 11. After sampling a predetermined amount in the holding container 11, the valves 19 and 20 are closed to seal the holding container. While the hot water is held in the holding container 11, it is desirable to stir with a stirrer 12 under a certain condition.

次いで、制御部30は、弁23を閉め、弁21を開け、ポンプ26で保持容器11の熱水の所定量を混合槽13に移動させる。そして、制御部30は、弁25を開け、ポンプ15を作動させて、反応停止剤タンク16に貯留された反応停止剤の所定量を混合槽13へ移動させる。その後、制御部30は、攪拌器14を作動させて熱水と反応停止剤を混合する。反応停止剤を熱水に混合することで、所定の希釈倍率となるように熱水が希釈されると共に、溶存成分の析出反応を停止させる。より具体的な例として、溶存成分濃度を溶存シリカ濃度とした場合、保持容器11から混合槽13に導入されたサンプル量1容積に対して、反応停止剤タンク16から純水と塩酸を1対98に希釈した希釈塩酸を99容積注入した後、攪拌器14で混合する。熱水と反応停止剤を混合する方法の別の形態としては、保持容器11から混合槽13に導入されたサンプル量1容積に対して純水98容積と12N塩酸1容積をこの順に注入した後、攪拌器14で混合する。こうすることで、最終的にサンプルは、溶存シリカ濃度および共存する影響成分濃度が100倍希釈されると共に希釈後サンプルのpHを1〜2としている。これによって、当該希釈後サンプルの測定期間中、シリカの重合を停止させることができる。   Next, the control unit 30 closes the valve 23, opens the valve 21, and moves a predetermined amount of hot water in the holding container 11 to the mixing tank 13 with the pump 26. Then, the control unit 30 opens the valve 25 and operates the pump 15 to move a predetermined amount of the reaction stopper stored in the reaction stopper tank 16 to the mixing tank 13. Then, the control part 30 operates the stirrer 14 and mixes hot water and a reaction terminator. By mixing the reaction terminator with hot water, the hot water is diluted so as to have a predetermined dilution ratio, and the precipitation reaction of dissolved components is stopped. As a more specific example, when the dissolved component concentration is the dissolved silica concentration, one pair of pure water and hydrochloric acid is supplied from the reaction stopper tank 16 to one volume of sample introduced from the holding vessel 11 into the mixing vessel 13. After injecting 99 volumes of diluted hydrochloric acid diluted to 98, the mixture is mixed with the stirrer 14. As another method of mixing the hot water and the reaction terminator, after injecting 98 volumes of pure water and 1 volume of 12N hydrochloric acid in this order with respect to 1 volume of sample introduced from the holding container 11 into the mixing tank 13. Mix with a stirrer 14. By doing so, the sample is finally diluted with dissolved silica concentration and coexisting influence component concentration 100 times, and the pH of the diluted sample is set to 1-2. Thereby, the polymerization of silica can be stopped during the measurement period of the diluted sample.

濃度計17は、この混合液の溶存成分濃度を測定する(1回目)。この測定結果は、信号配線を経由して制御部30に送られる。例えば、シリカ濃度計は、モリブデン黄法、あるいはモリブデン青法による市販の装置を用いればよく、その測定範囲と熱水性状に基づいて、上記の希釈倍率を設定すればよい。   The densitometer 17 measures the dissolved component concentration of this mixed solution (first time). The measurement result is sent to the control unit 30 via the signal wiring. For example, a silica densitometer may be a commercially available apparatus based on the molybdenum yellow method or the molybdenum blue method, and the above dilution ratio may be set based on the measurement range and the hot water state.

次に、上記と同様の手順で、保持容器11での熱水の保持時間を変更した条件での溶存成分濃度を測定する。例えば、攪拌器12で熱水を攪拌しながら60分間熱水を保持容器11に温度一定で保持させる。その後、上記と同様の手順で、濃度計17で溶存成分濃度を測定する(2回目)。この測定結果は、信号配線を経由して制御部30に送られる。また、制御部30は、1回目に混合槽13で熱水に反応停止剤を注入した時から、2回目の測定で反応停止剤を注入した時までの時間差Δtを記憶
する。濃度計17の測定が終了後、制御部30は、弁20,23,24を開き、保持容器11と混合槽14に残っている液体を各容器の底の配管から外部へ排出する。
Next, in the same procedure as described above, the dissolved component concentration under the condition where the holding time of the hot water in the holding container 11 is changed is measured. For example, hot water is held in the holding container 11 at a constant temperature for 60 minutes while stirring the hot water with the stirrer 12. Thereafter, the dissolved component concentration is measured with the densitometer 17 in the same procedure as described above (second time). The measurement result is sent to the control unit 30 via the signal wiring. Further, the control unit 30 stores a time difference Δt from when the reaction terminator is injected into the hot water in the mixing tank 13 for the first time to when the reaction terminator is injected in the second measurement. After the measurement by the densitometer 17, the control unit 30 opens the valves 20, 23 and 24, and discharges the liquid remaining in the holding container 11 and the mixing tank 14 to the outside from the piping at the bottom of each container.

流量計6で計測された流量(Ft1)は、制御部30に入力される。1回目および2回目に計測された溶存成分濃度(Ct1,Ct2)と、上記時間差Δtに基づいて、制御部30で溶存成分濃度の
減少速度係数が計算され、この減少速度係数に基づいてスケール抑制剤の注入速度が計算される。制御部30は、計算したスケール抑制剤の注入速度になるようにスケール抑制剤注入部を制御して流路内にスケール抑制剤を注入する。その後の制御部30の動作は、Δtの計算部分を除いて、図2の制
御フローと同じである。
The flow rate (Ft1) measured by the flow meter 6 is input to the control unit 30. Based on the dissolved component concentration (Ct1, Ct2) measured at the first time and the second time and the time difference Δt, the control unit 30 calculates the decreasing rate coefficient of the dissolved component concentration, and the scale suppression is based on the decreasing rate coefficient. The agent injection rate is calculated. The control unit 30 controls the scale inhibitor injection unit to inject the scale inhibitor into the flow path so that the calculated scale inhibitor injection rate is obtained. The subsequent operation of the control unit 30 is the same as the control flow of FIG. 2 except for the calculation part of Δt.

次に、図6の装置において、濃度計の計測データを2以上取得して、溶存成分濃度減少速度係数を求める場合の動作および制御フローを説明する。1つのサンプルにつき3回以上の溶存成分濃度データを取得する際には、装置構成を上述の図6のように保持容器セット100を1つのみ備えた構成とし、保持容器11から混合槽13へ熱水を取り出し、反応停止剤を注入し、濃度計17で測定し、混合槽13の熱水を排水する一連の操作を1つの保持容器11の熱水について行い、溶存成分濃度変化を経過時間を追って順次測定する制御手順としてもよい。または、保持容器セット100を複数備えて、各保持容器11毎に熱水を取り出す時刻をずらし、保持容器11から混合槽13へ熱水を取り出し、反応停止剤を注入し、濃度計17で測定し、混合槽13の熱水を排水する一連の操作を複数の保持容器11の熱水についてそれぞれ行い、溶存成分濃度を順次測定する制御手順としてもよい。   Next, the operation and control flow in the case of obtaining two or more measurement data of the densitometer and obtaining the dissolved component concentration reduction rate coefficient in the apparatus of FIG. 6 will be described. When acquiring dissolved component concentration data three times or more per sample, the apparatus is configured to have only one holding container set 100 as shown in FIG. Hot water is taken out, a reaction terminator is injected, measured with a concentration meter 17, a series of operations for draining the hot water in the mixing tank 13 is performed on the hot water in one holding container 11, and the dissolved component concentration change is elapsed time. It is good also as a control procedure which measures sequentially after this. Alternatively, a plurality of holding container sets 100 are provided, the time for taking out hot water for each holding container 11 is shifted, hot water is taken out from the holding container 11 into the mixing tank 13, a reaction terminator is injected, and the concentration meter 17 measures And it is good also as a control procedure which performs a series of operation which drains the hot water of the mixing tank 13 about the hot water of the some holding | maintenance container 11, respectively, and measures a dissolved component density | concentration sequentially.

図3に、サンプリングした流体の溶存シリカ濃度の経時変化の例を示す。条件1は正常運転時の測定結果であり、条件2は熱水温度が下がりシリカの過飽和度が上昇したときの測定結果であり、条件3は熱水のシリカ濃度が低くかつ熱水の温度が高くシリカの過飽和度が低下したときの測定結果である。条件1〜3について、保持時間0、60、120分の溶存シリカ濃度の変化を2次関数で近似し、最小自乗法により下記の式に基づいて係数kを算出した結果を表1に示す。近似した2次曲線を図3上に曲線で示した。   FIG. 3 shows an example of the change over time of the dissolved silica concentration of the sampled fluid. Condition 1 is the measurement result during normal operation, Condition 2 is the measurement result when the hot water temperature decreases and the supersaturation degree of silica increases, and Condition 3 is the silica concentration of hot water is low and the temperature of hot water is It is a measurement result when the supersaturation degree of silica is lowered. Table 1 shows the result of calculating the coefficient k based on the following equation using the least square method by approximating the change in dissolved silica concentration with retention times of 0, 60, and 120 minutes using the quadratic function. The approximated quadratic curve is shown as a curve in FIG.

C = C0 − k × t2 ・・・式5
(但し、Cは溶存シリカ濃度(mg/L)、C0は保持時間なしのときの溶存シリカ濃度(mg/L)、
tはC0の時を0として、そこからの経過時間(min)、kは溶存シリカ濃度減少速度係数(m
g/L/min2)である。)
C = C 0 −k × t 2 Formula 5
(However, C is the dissolved silica concentration (mg / L), C 0 is the dissolved silica concentration (mg / L) when there is no holding time,
t is the time when C 0 is 0 , the elapsed time (min) from there, and k is the dissolved silica concentration decreasing rate coefficient (m
g / L / min 2 ). )

Figure 2011251210
正常運転時である条件1のときのk値0.0030を標準的な値として設定し、正常運転時のk値よりもk値が大きい場合(すなわち、条件2の場合)は、スケール抑制剤注入速度を増加させる。逆に正常運転時のk値より小さくなる場合(すなわち、条件3の場合)は、スケール抑制剤注入速度を減少させる。一般に、溶存シリカ濃度減少速度係数は、溶存シリカ濃度が25%程度減少する時間まで徐々に増加して最大値となり、その後減少する。これはシリカ重合が起こる場所となる粒子の核や表面積が増加することによる影響と、原料となる溶存シリカ濃度が減少することによる影響があるためである。上記のこれら実施形態においては、この内、溶存シリカ濃度減少速度係数が増加する範囲内で溶存シリカ濃度減少速度係数の測定を行い、その溶存シリカ濃度減少速度係数の値に基づき制御を行う。このように制御を行うことにより、スケール析出量、スケール抑制剤注入速度の最適化を図ることが可能となる。この際、標準とするk値は、設計者が必要に応じて変更可能であることが望ましい。
Figure 2011251210
When the k value of 0.0030 in the condition 1 during normal operation is set as a standard value and the k value is larger than the k value in the normal operation (that is, in the case of condition 2), the scale inhibitor Increase infusion rate. On the contrary, when it becomes smaller than the k value during normal operation (that is, in the case of condition 3), the scale inhibitor injection rate is decreased. In general, the dissolved silica concentration decrease rate coefficient gradually increases until reaching a time when the dissolved silica concentration decreases by about 25%, and then decreases. This is because there is an influence due to an increase in the core and surface area of particles where silica polymerization occurs, and an influence due to a decrease in the concentration of dissolved silica as a raw material. In these embodiments, the dissolved silica concentration decrease rate coefficient is measured within the range in which the dissolved silica concentration decrease rate coefficient increases, and control is performed based on the value of the dissolved silica concentration decrease rate coefficient. By performing the control in this way, it is possible to optimize the amount of scale deposition and the scale inhibitor injection rate. At this time, it is desirable that the standard k value can be changed by the designer as necessary.

上記のこれら実施形態において、溶存成分をシリカとする場合、スケール抑制剤としては硫酸、反応停止剤としては塩酸を、それぞれ必要に応じて希釈した溶液が好適に用いられる。   In the above-described embodiments, when the dissolved component is silica, a solution obtained by diluting sulfuric acid as the scale inhibitor and hydrochloric acid as the reaction terminator as needed is preferably used.

また、図示しないが、本装置以外にpH計等、他の測定装置を同時に用い、その測定結果と組み合わせてスケール抑制剤注入部5を制御することも可能である。   Although not shown, it is also possible to control the scale inhibitor injecting unit 5 in combination with the measurement result by simultaneously using another measuring device such as a pH meter in addition to this device.

図7に、本発明の第1の実施形態に係るスケール抑制装置を地熱発電システムの一例であるバイナリー発電システムに用いた場合の構成図を示す。   In FIG. 7, the block diagram at the time of using the scale suppression apparatus which concerns on the 1st Embodiment of this invention for the binary power generation system which is an example of a geothermal power generation system is shown.

バイナリー発電システムは以下のような手順を経て発電を行っている。制御部4は、タンク5−1からポンプ5−2を経て流路1にpH調整剤としての硫酸を注入する。この注入速度は、濃度計2,3の測定結果に基づいて制御されている。熱水は、ケトル型のシェルアンドチューブ熱交換器(蒸発器33)により、低沸点媒体であるペンタンと熱交換する。蒸発したペンタンは、配管を経由してタービン35に供給され、タービン35を回転させる。タービンの回転エネルギーは、タービン35と接続された発電機36により電気エネルギーに変換される。タービン35を出たペンタンは、ペンタン通流配管39を通して凝縮器37へ入れられ、ペンタンが液体へ凝縮される。凝縮器37を出た液体ペンタンは、循環ポンプ38を経由して蒸発器33に戻ってくる。熱水の温度は、蒸発器入口から出口にかけて30℃程度低下した。蒸発器で温度が低下した熱水は、還元井内に還元する。還元井手前に濃度計3を設置し、この溶存成分濃度減少速度係数に基づいて、スケール抑制剤注入部5から注入するpH調整剤量を制御する。溶存シリカ濃度減少速度係数は、シリカ濃度、pH、温度、イオン強度等が影響し変化する。この減少速度係数に応じて、pH調整剤としての硫酸注入速度を制御する。制御の仕方は、許容されるシリカスケール析出速度係数や、硫酸注入速度のランニングコストなどにより、当業者が任意に決定することができる。流路1の流量がほとんど変化しない場合は、一度流量を測定した結果を定数として使用し、流量計6を省くことも可能である。   The binary power generation system generates power through the following procedure. The control unit 4 injects sulfuric acid as a pH adjusting agent from the tank 5-1 into the flow path 1 through the pump 5-2. This injection rate is controlled based on the measurement results of the densitometers 2 and 3. The hot water exchanges heat with pentane, which is a low-boiling point medium, using a kettle-type shell and tube heat exchanger (evaporator 33). The evaporated pentane is supplied to the turbine 35 via a pipe and rotates the turbine 35. The rotational energy of the turbine is converted into electrical energy by a generator 36 connected to the turbine 35. The pentane that exits the turbine 35 is fed into the condenser 37 through the pentane flow pipe 39, and the pentane is condensed into a liquid. The liquid pentane exiting the condenser 37 returns to the evaporator 33 via the circulation pump 38. The temperature of the hot water decreased by about 30 ° C. from the evaporator inlet to the outlet. The hot water whose temperature has been reduced by the evaporator is reduced into the reduction well. A concentration meter 3 is installed in front of the reduction well, and the amount of the pH adjusting agent injected from the scale inhibitor injection unit 5 is controlled based on the dissolved component concentration decrease rate coefficient. The dissolved silica concentration decrease rate coefficient varies depending on the silica concentration, pH, temperature, ionic strength, and the like. The sulfuric acid injection rate as a pH adjuster is controlled according to the decrease rate coefficient. The control method can be arbitrarily determined by those skilled in the art based on the allowable silica scale deposition rate coefficient, the running cost of the sulfuric acid injection rate, and the like. When the flow rate of the flow path 1 hardly changes, it is possible to omit the flow meter 6 by using the result of once measuring the flow rate as a constant.

1 流路
2,3,17 濃度計
4,8,30 制御部
5 スケール抑制剤注入部
5−1 スケール抑制剤タンク
5−2 ポンプ
5−3 配管
6 流量計
7 流体の流れる方向を示した矢印
10,15,26 ポンプ
11 保持容器
12,14 攪拌器
13 混合槽
16 反応停止剤タンク
18,19,20,21,22,23,24,25,32 弁
31 生産井
33 蒸発器
34 還元井
35 タービン
36 発電機
37 凝縮器
38 循環ポンプ
39 ペンタン通流配管
100 保持容器セット
DESCRIPTION OF SYMBOLS 1 Flow path 2,3,17 Densitometer 4,8,30 Control part 5 Scale inhibitor injection | pouring part 5-1 Scale inhibitor tank 5-2 Pump 5-3 Piping 6 Flow meter 7 Arrow which showed the direction through which fluid flows 10, 15, 26 Pump 11 Holding container 12, 14 Stirrer 13 Mixing tank 16 Reaction stopper tank 18, 19, 20, 21, 22, 23, 24, 25, 32 Valve 31 Production well 33 Evaporator 34 Reduction well 35 Turbine 36 Generator 37 Condenser 38 Circulation pump 39 Pentane flow pipe 100 Holding container set

Claims (8)

流体の溶存成分濃度を測定する濃度計と、
前記溶存成分の析出を抑制するスケール抑制剤を前記流体へ注入するスケール抑制剤注入部と、
前記濃度計で測定した時間の異なる前記流体の溶存成分濃度から計算した前記溶存成分濃度の減少速度または減少速度係数に基づいて前記スケール抑制剤の注入速度を制御する制御部
を備えることを特徴とするスケール抑制装置。
A densitometer that measures the dissolved component concentration of the fluid;
A scale inhibitor injecting section for injecting into the fluid a scale inhibitor that suppresses precipitation of the dissolved components;
A controller for controlling the injection rate of the scale inhibitor based on a decrease rate or a decrease rate coefficient of the dissolved component concentration calculated from the dissolved component concentration of the fluid at different times measured by the densitometer; Scale suppression device.
請求項1に記載のスケール抑制装置において、
前記流体を貯留する保持容器を備え、
前記濃度計は、前記保持容器に貯留された前記流体の溶存成分濃度を異なる時に測定することを特徴とするスケール抑制装置。
The scale suppression device according to claim 1,
A holding container for storing the fluid;
The concentration meter measures the dissolved component concentration of the fluid stored in the holding container at different times.
請求項1に記載のスケール抑制装置において、
前記濃度計は、前記流体の流路の複数の地点の前記溶存成分濃度を測定することを特徴とするスケール抑制装置。
The scale suppression device according to claim 1,
The concentration meter measures the concentration of the dissolved component at a plurality of points in the fluid flow path.
請求項3に記載のスケール抑制装置において、
前記流体の流量を計測する流量計を備え、いずれの前記濃度計の計測場所よりも下流の流路に、前記スケール抑制剤を注入することを特徴とするスケール抑制装置。
The scale suppression device according to claim 3,
A scale suppression device comprising a flow meter for measuring a flow rate of the fluid, and injecting the scale inhibitor into a flow path downstream of a measurement location of any of the concentration meters.
請求項2に記載のスケール抑制装置において、
前記保持容器内の温度を一定にするための保温部を備え、
複数の前記保持容器に貯留した前記流体へそれぞれ予め定めた時間に反応停止剤を注入する反応停止剤注入部
を備えることを特徴とするスケール抑制装置。
The scale suppression device according to claim 2,
A heat retaining unit for keeping the temperature in the holding container constant;
A scale suppression device comprising: a reaction terminator injecting unit that injects a reaction terminator into each of the fluids stored in a plurality of holding containers at predetermined times.
請求項1から5のいずれか1項に記載のスケール抑制装置において、
前記溶存成分がシリカであり、前記スケール抑制剤がpH調整剤、反応封止剤、分散剤、キレート剤から選ばれる薬剤の内、少なくとも1種類を含んでいることを特徴とするスケール抑制装置。
In the scale suppression apparatus of any one of Claim 1 to 5,
The scale inhibiting device, wherein the dissolved component is silica, and the scale inhibitor includes at least one agent selected from a pH adjuster, a reaction sealant, a dispersant, and a chelating agent.
請求項6に記載のスケール抑制装置において、
前記pH調整剤または反応封止剤または分散剤またはキレート剤は、カルボキシル基、スルホン基、アミノ基、ホスフィノ基から選ばれる官能基の内、少なくとも1つの官能基を分子内に含んでいることを特徴とするスケール抑制装置。
The scale suppression device according to claim 6,
The pH adjusting agent, the reaction sealing agent, the dispersing agent, or the chelating agent contains at least one functional group in the molecule among functional groups selected from a carboxyl group, a sulfone group, an amino group, and a phosphino group. A featured scale suppression device.
請求項1から7のいずれか1項に記載のスケール抑制装置を備えた地熱発電システム。 The geothermal power generation system provided with the scale suppression apparatus of any one of Claim 1 to 7.
JP2010124751A 2010-05-31 2010-05-31 Scale suppression device Active JP5372838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010124751A JP5372838B2 (en) 2010-05-31 2010-05-31 Scale suppression device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010124751A JP5372838B2 (en) 2010-05-31 2010-05-31 Scale suppression device

Publications (2)

Publication Number Publication Date
JP2011251210A true JP2011251210A (en) 2011-12-15
JP5372838B2 JP5372838B2 (en) 2013-12-18

Family

ID=45415598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010124751A Active JP5372838B2 (en) 2010-05-31 2010-05-31 Scale suppression device

Country Status (1)

Country Link
JP (1) JP5372838B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013043145A (en) * 2011-08-25 2013-03-04 Fuji Electric Co Ltd Scale suppression method and geothermal power generation apparatus
JP2013126619A (en) * 2011-12-19 2013-06-27 Fuji Electric Co Ltd Water treatment apparatus
JP2013202424A (en) * 2012-03-27 2013-10-07 Kyushu Univ Scale removing agent, scale removing method, and scale removing apparatus
WO2013161324A1 (en) * 2012-04-27 2013-10-31 富士電機株式会社 Scale suppressing device, geothermal power generation system using said device, and scale suppression method
JP5839030B2 (en) * 2011-04-19 2016-01-06 富士電機株式会社 Scale suppression method and geothermal power generator
JP2017047361A (en) * 2015-09-01 2017-03-09 栗田工業株式会社 Method and apparatus for measuring water quality
WO2017064962A1 (en) * 2015-10-14 2017-04-20 栗田工業株式会社 Water treatment device for boiler feed water and method for operating boiler
KR101756750B1 (en) * 2016-11-30 2017-07-12 코오롱환경서비스주식회사 A device of geothermal power generation with a scale prevention function
JP2020012456A (en) * 2018-07-20 2020-01-23 株式会社東芝 Scale suppression device, geothermal power generation facility and scale suppression method
WO2024057966A1 (en) * 2022-09-12 2024-03-21 富士電機株式会社 pH ESTIMATION DEVICE AND pH ESTIMATION METHOD FOR SILICA-OVERSATURATED FLUID

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051801A (en) * 1991-06-25 1993-01-08 Toshiba Corp Water conditioning device
JPH05104093A (en) * 1990-07-02 1993-04-27 Calgon Corp Method for controlling silica/silicate deposition in water system using 2-phosphonobutane-1,2,4- tricarboxylic acid and anionic polymer
JPH10332611A (en) * 1997-06-05 1998-12-18 Kurita Water Ind Ltd Control device for chemical injection and apparatus for estimation of adhesion of scale or slime
JP2001149953A (en) * 1999-12-01 2001-06-05 Mitsubishi Materials Corp Treating method and device for geothermal water
JP2003275779A (en) * 2002-03-20 2003-09-30 Mitsubishi Heavy Ind Ltd Apparatus and method for decomposing dioxins
JP2004085145A (en) * 2002-08-29 2004-03-18 Miura Co Ltd Method of preventing occurrence of scale in boiler device
JP2005200721A (en) * 2004-01-16 2005-07-28 Hakuto Co Ltd Treatment method for open circulating cooling water system
JP2007209942A (en) * 2006-02-13 2007-08-23 Fujita Corp Obtaining method of variation of concentration of dissolved calcium

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05104093A (en) * 1990-07-02 1993-04-27 Calgon Corp Method for controlling silica/silicate deposition in water system using 2-phosphonobutane-1,2,4- tricarboxylic acid and anionic polymer
JPH051801A (en) * 1991-06-25 1993-01-08 Toshiba Corp Water conditioning device
JPH10332611A (en) * 1997-06-05 1998-12-18 Kurita Water Ind Ltd Control device for chemical injection and apparatus for estimation of adhesion of scale or slime
JP2001149953A (en) * 1999-12-01 2001-06-05 Mitsubishi Materials Corp Treating method and device for geothermal water
JP2003275779A (en) * 2002-03-20 2003-09-30 Mitsubishi Heavy Ind Ltd Apparatus and method for decomposing dioxins
JP2004085145A (en) * 2002-08-29 2004-03-18 Miura Co Ltd Method of preventing occurrence of scale in boiler device
JP2005200721A (en) * 2004-01-16 2005-07-28 Hakuto Co Ltd Treatment method for open circulating cooling water system
JP2007209942A (en) * 2006-02-13 2007-08-23 Fujita Corp Obtaining method of variation of concentration of dissolved calcium

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5839030B2 (en) * 2011-04-19 2016-01-06 富士電機株式会社 Scale suppression method and geothermal power generator
JP2013043145A (en) * 2011-08-25 2013-03-04 Fuji Electric Co Ltd Scale suppression method and geothermal power generation apparatus
JP2013126619A (en) * 2011-12-19 2013-06-27 Fuji Electric Co Ltd Water treatment apparatus
JP2013202424A (en) * 2012-03-27 2013-10-07 Kyushu Univ Scale removing agent, scale removing method, and scale removing apparatus
US9815724B2 (en) 2012-04-27 2017-11-14 Fuji Electric Co., Ltd Scale suppression apparatus, geothermal power generation system using the same, and scale suppression method
JP2013230432A (en) * 2012-04-27 2013-11-14 Fuji Electric Co Ltd Scale suppressing device, geothermal power generation system using the device, and scale suppression method
WO2013161324A1 (en) * 2012-04-27 2013-10-31 富士電機株式会社 Scale suppressing device, geothermal power generation system using said device, and scale suppression method
JP2017047361A (en) * 2015-09-01 2017-03-09 栗田工業株式会社 Method and apparatus for measuring water quality
WO2017064962A1 (en) * 2015-10-14 2017-04-20 栗田工業株式会社 Water treatment device for boiler feed water and method for operating boiler
KR101756750B1 (en) * 2016-11-30 2017-07-12 코오롱환경서비스주식회사 A device of geothermal power generation with a scale prevention function
JP2020012456A (en) * 2018-07-20 2020-01-23 株式会社東芝 Scale suppression device, geothermal power generation facility and scale suppression method
JP7077169B2 (en) 2018-07-20 2022-05-30 株式会社東芝 Scale suppression device, geothermal power generation equipment and scale suppression method
WO2024057966A1 (en) * 2022-09-12 2024-03-21 富士電機株式会社 pH ESTIMATION DEVICE AND pH ESTIMATION METHOD FOR SILICA-OVERSATURATED FLUID

Also Published As

Publication number Publication date
JP5372838B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5372838B2 (en) Scale suppression device
US20030095471A1 (en) Apparatus and method for preparation and supply of polymerization inhibitor
CN109781779B (en) Method and device suitable for measuring specific constant pressure heat capacity of dissolved gas fluid
CN104458063B (en) A kind of energy-saving heat quantity flow calibrating installation and method
CN104316653A (en) Dynamic evaluation device and method for scale inhibition performances of reverse osmosis scale inhibitors
CN108469390B (en) Detachable loop type single-phase flow erosion test device
TW201927706A (en) Hydrophosphorylated polycarboxylic acids and their synergistic combinations as corrosion and scale inhibitors
BR112015014787B1 (en) Water treatment composition and method for mitigating corrosion or fouling of a surface in an aqueous system
WO2013027822A1 (en) Method for suppressing scale and geothermal power generating device
CN111551482B (en) Comprehensive dynamic water corrosion test device with high-temperature and high-pressure one-loop and two-loop linkage operation
CN102295354B (en) Dosing control method of phosphate in middle-low pressure boiler
CN208361916U (en) A kind of open cycle cooling water system
CN213517098U (en) Power plant water quality on-line instrument evaluation test device
JP5983310B2 (en) Boiler water quality management method and apparatus
CN117420044A (en) Industrial chemical cleaning dynamic simulation verification and evaluation method
WO2023240942A1 (en) Power plant water vapor simulation test device and method
CN107840434B (en) Automatic preparation method and device for soft and hard water in laboratory
CN203685151U (en) Heating constant-temperature device
Mikuž et al. Experimental observation of Taylor bubble disintegration in turbulent flow
KR200176691Y1 (en) Loop tester for Electr ochem ical Corrosion Potential Monitoring
CN214122219U (en) Mobile online silicon meter and phosphorus meter testing device
JP2011161369A (en) Proportional injection method of a plurality of liquids immiscible with each other to water system
CN209460224U (en) A kind of antisludging agent hardness tolerant fastness to alkali performance measuring and evaluating device
RU2705565C1 (en) Method of controlling corrosion rate of equipment of technological circuits of nuclear power plants
CN104898724A (en) Automatic pH value control device for sulfide stress cracking resistance test, and control method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130918

R150 Certificate of patent or registration of utility model

Ref document number: 5372838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250