JP2008230996A - Method for producing gel containing carboxymethylcellulose as main component, and gel - Google Patents

Method for producing gel containing carboxymethylcellulose as main component, and gel Download PDF

Info

Publication number
JP2008230996A
JP2008230996A JP2007070145A JP2007070145A JP2008230996A JP 2008230996 A JP2008230996 A JP 2008230996A JP 2007070145 A JP2007070145 A JP 2007070145A JP 2007070145 A JP2007070145 A JP 2007070145A JP 2008230996 A JP2008230996 A JP 2008230996A
Authority
JP
Japan
Prior art keywords
gel
acid
cmc
producing
main component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007070145A
Other languages
Japanese (ja)
Inventor
Machiko Takigami
眞知子 瀧上
Naotane Nagasawa
尚胤 長澤
Toshiaki Yagi
敏明 八木
Masao Tamada
正男 玉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GUNMA INDUSTRY SUPPORT ORGANIZ
GUNMA INDUSTRY SUPPORT ORGANIZATION
Japan Atomic Energy Agency
Original Assignee
GUNMA INDUSTRY SUPPORT ORGANIZ
GUNMA INDUSTRY SUPPORT ORGANIZATION
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GUNMA INDUSTRY SUPPORT ORGANIZ, GUNMA INDUSTRY SUPPORT ORGANIZATION, Japan Atomic Energy Agency filed Critical GUNMA INDUSTRY SUPPORT ORGANIZ
Priority to JP2007070145A priority Critical patent/JP2008230996A/en
Priority to GB0718000A priority patent/GB2445818B8/en
Priority to US11/855,335 priority patent/US8633254B2/en
Priority to CN2007101474876A priority patent/CN101157760B/en
Publication of JP2008230996A publication Critical patent/JP2008230996A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for inexpensively and readily producing gel being friendly to the environment having high elasticity and high strength, and to provide the gel obtained by the method. <P>SOLUTION: The method for producing the gel comprises simply mixing carboxymethylcellulose (CMC) as a main component with an acid or an aqueous solution of the acid, and a water-insoluble metallic compound, to gelatinize CMC. The gel obtained by the method has high elasticity and high strength, and can inexpensively and readily be obtained. The gel is friendly to the environment which is obtained by using CMC as a material originated from a plant. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はカルボキシメチルセルロースアルカリ金属塩(以下CMCと略記)をゲル化させて、高弾性で且つ強度が高い環境保全型のゲルを得るための製造方法及びその方法によって得られるゲルに関する。このようにして得られるゲルは家畜排泄物処理材、排水処理材、脱臭材、触媒担体、衝撃吸収材、医療用粘着材、医療用パテ材などに有用である。   The present invention relates to a production method for gelling a carboxymethylcellulose alkali metal salt (hereinafter abbreviated as CMC) to obtain a highly elastic and high-strength environmentally friendly gel and a gel obtained by the method. The gel thus obtained is useful for livestock excrement treatment materials, wastewater treatment materials, deodorizing materials, catalyst carriers, impact absorbing materials, medical adhesive materials, medical putty materials, and the like.

CMCは、現在最も一般的に使用されている水溶性高分子である。CMCの分子同士を架橋させて3次元の網目構造を形成させ、この網目構造の内部に水をしっかり捕捉させたゲルを得る方法が従来知られている。具体的にはCMCを多価金属イオンで架橋させてゲルを製造する方法(例えば、特許文献1及び2)、CMCに架橋剤を添加してゲルを製造する方法(例えば、特許文献3)がある。しかしながらこれらの製造方法は高弾性を有するゲルを製造することが困難という欠点を有する。また、CMCに水を加えペースト状に練り、放射線を照射することによってゲルを製造する方法(例えば、特許文献4)も知られている。しかしながらこの方法は、放射線照射装置という高価な設備が必要であり、従ってコスト高になる欠点を有するとともに、簡便性にかける欠点を有する。   CMC is the most commonly used water-soluble polymer at present. A method of obtaining a gel in which CMC molecules are cross-linked to form a three-dimensional network structure and water is firmly trapped in the network structure is conventionally known. Specifically, a method for producing a gel by crosslinking CMC with polyvalent metal ions (for example, Patent Documents 1 and 2), and a method for producing a gel by adding a crosslinking agent to CMC (for example, Patent Document 3). is there. However, these production methods have a drawback that it is difficult to produce a gel having high elasticity. Also known is a method for producing gel by adding water to CMC, kneading it into a paste, and irradiating it with radiation (for example, Patent Document 4). However, this method requires an expensive facility such as a radiation irradiation apparatus, and thus has the disadvantage of increasing the cost and the disadvantage of simplicity.

特開平7−90121JP-A-7-90121 特開2005−263858JP-A-2005-263858 特開平10−251447JP 10-251447 A 特開2005−82800JP 2005-82800 A

本発明者らは、最近、CMCに酸を加えるのみのゲルの製造方法、すなわち安価に、簡便にゲルを製造する方法も提案している(特願2006−250947)。しかしながらこの方法では、ゲルの強度及び弾性が高くならず、従って用途も限られるという欠点を有する。また、従来技術として述べた、多価金属イオンを使用し架橋させて製造する方法や架橋剤を使用して製造する方法では、高弾性を有するゲルを製造することが困難という欠点を有し、CMCに水を加えペースト状にしたものに放射線を照射し製造する方法は、放射線照射装置という高価な設備が必要であり、コスト高になると同時に簡便性に欠ける欠点を有する。   Recently, the present inventors have also proposed a method for producing a gel by simply adding an acid to CMC, that is, a method for producing a gel simply and inexpensively (Japanese Patent Application No. 2006-250947). However, this method has the disadvantage that the strength and elasticity of the gel are not increased and therefore the application is limited. In addition, in the method of manufacturing by using a polyvalent metal ion and a method of manufacturing by using a cross-linking agent as described in the prior art, it has a drawback that it is difficult to manufacture a gel having high elasticity, The method of irradiating a CMC with water and irradiating it with a radiation requires an expensive facility called a radiation irradiator, which has a drawback that it is expensive and lacks simplicity.

そこで本発明の目的は、高弾性で強度が高い環境保全型のゲルを安価に、簡便に得るための製造方法及びその方法によって得られるゲルを提供することにある。   Accordingly, an object of the present invention is to provide a production method for obtaining an environmentally friendly gel having high elasticity and high strength at low cost and a gel obtained by the method.

本発明の具体的且つ好適なゲルの製造方法は、主成分であるCMCと、酸または酸水溶液及び非水溶性の金属化合物とを単に混練してCMCをゲル化させることを特徴とする。CMC、酸または酸水溶液、非水溶性金属化合物の混練順は限定されない極めて簡便な方法である。   A specific and preferred method for producing a gel of the present invention is characterized in that CMC is gelled by simply kneading CMC as a main component, an acid or an acid aqueous solution and a water-insoluble metal compound. The kneading order of CMC, acid or acid aqueous solution, and water-insoluble metal compound is a very simple method without limitation.

好適にはCMCの重量は、得られるゲルの全体重量に対して65重量%未満であることが望ましい。CMC重量が65%以上であると均一に混練するのが困難であり、好ましくない。   Preferably the weight of CMC is less than 65% by weight relative to the total weight of the resulting gel. If the CMC weight is 65% or more, it is difficult to uniformly knead, which is not preferable.

酸または酸水溶液の使用量は得られるゲルの全体量に対して35重量%から95重量%が好ましい。35重量%未満だと不均一となり、また95重量%を超えるとゲル形成が困難となり好ましくない。また非水溶性金属化合物の使用量は、得られるゲルの全体量に対して1重量%から30重量%が好ましい。1重量%未満だと強度の増加がほとんど認められず、また30重量%を超えるとゲルが不均一となり好ましくない。また好適には、上述の製造方法において、酸または酸水溶液は塩酸または塩酸水溶液であり、非水溶性金属化合物は酸化アルミニウムであることが望ましい。CMC、上記塩酸または塩酸水溶液、水酸化アルミニウムの3者の混練により、強度が高く、且つ高弾性のゲルが、簡便に得られる。   The amount of acid or acid aqueous solution used is preferably 35% to 95% by weight based on the total amount of the gel obtained. If it is less than 35% by weight, it becomes non-uniform, and if it exceeds 95% by weight, gel formation becomes difficult, which is not preferable. The amount of the water-insoluble metal compound used is preferably 1% by weight to 30% by weight with respect to the total amount of the gel obtained. If it is less than 1% by weight, an increase in strength is hardly observed, and if it exceeds 30% by weight, the gel becomes non-uniform, which is not preferable. Preferably, in the above-described production method, the acid or the aqueous acid solution is hydrochloric acid or an aqueous hydrochloric acid solution, and the water-insoluble metal compound is aluminum oxide. A high strength and high elasticity gel can be easily obtained by kneading CMC, hydrochloric acid or hydrochloric acid aqueous solution, and aluminum hydroxide.

上述の製造方法によって製造されたゲルは、CMCを主成分として含み、酸または酸水溶液及び非水溶性金属化合物を含む。上述の酸は塩酸または塩酸水溶液であることが望ましい。また非水溶性金属化合物は酸化アルミニウムであることが望ましい。   The gel manufactured by the above-described manufacturing method contains CMC as a main component, and contains an acid or an acid aqueous solution and a water-insoluble metal compound. The above acid is preferably hydrochloric acid or an aqueous hydrochloric acid solution. The water-insoluble metal compound is preferably aluminum oxide.

本発明によれば多価金属イオンを使用し架橋させて製造する方法や架橋剤を使用して製造するゲルと異なり、高弾性のゲルが得られ、放射線を使用する方法のように、放射線照射装置という高価な設備が不必要であり、従って安価に、簡便に製造でき、さらにまた酸のみを使用して製造する方法と異なり強度の高いゲルを製造することができる。すなわち当該製造方法よって得られるゲルは高弾性で強度が高く、安価で簡便に得られ、CMCという植物由来の材料を原料とした環境保全型のゲルであり、家畜排泄物処理材、排水処理材、脱臭材、触媒担体、衝撃吸収材、医療用粘着材、医療用パテ材などに有用である。   According to the present invention, unlike a method using a polyvalent metal ion for crosslinking and a gel produced using a cross-linking agent, a highly elastic gel is obtained. An expensive equipment such as an apparatus is unnecessary, and therefore, it can be produced inexpensively and easily. Furthermore, unlike a method using only an acid, a gel having high strength can be produced. That is, the gel obtained by the production method is an environment-conserving gel made from plant-derived material called CMC, which is highly elastic, high in strength, inexpensive and easily obtained, and is a livestock excrement treatment material and wastewater treatment material. It is useful for deodorizing materials, catalyst carriers, impact absorbing materials, medical adhesive materials, medical putty materials, and the like.

本発明に係るゲルの製造方法について図1を用いて説明する。図1は、本発明に係るゲルの製造方法の概略構成を示すフローチャートである。   A method for producing a gel according to the present invention will be described with reference to FIG. FIG. 1 is a flowchart showing a schematic configuration of a method for producing a gel according to the present invention.

図1において、CMC、酸または酸水溶液、及び非水溶性金属化合物が、混練機により混練される。その結果、CMCゲルが製造される。   In FIG. 1, CMC, an acid or acid aqueous solution, and a water-insoluble metal compound are kneaded by a kneader. As a result, a CMC gel is produced.

ここで、使用するCMCのエーテル化度、粘度は問わない。また、ここでいう粘度とはCMCを1重量%水溶液とした場合の粘度であり、粘度の高低は分子量の高低を間接的に示す。CMCは粉末として使用しても水溶液としても良く、酸または酸水溶液と湿潤状態で混練できる範囲であれば限定されない。より簡便に混練りするには、好ましくは5重量%以上の濃度の溶液とすることが望ましい。酸は有機酸または無機酸のいずれであっても良く、その種類は問わない。例えば、塩酸、硫酸、リン酸、ポリリン酸、硝酸、蟻酸、酢酸、乳酸、コハク酸、イタコン酸、マレイン酸、シュウ酸、クエン酸などが使用できる。さらにまた、これらの酸水溶液の濃度は問わないが、0.1mol/l以上が、混練を簡便にするためには望ましい。   Here, the degree of etherification and viscosity of CMC used are not limited. Moreover, the viscosity here is a viscosity when CMC is a 1% by weight aqueous solution, and the level of the viscosity indirectly indicates the level of the molecular weight. CMC may be used as a powder or an aqueous solution, and is not limited as long as it can be kneaded with an acid or an aqueous acid solution in a wet state. In order to knead more easily, it is desirable to use a solution having a concentration of 5% by weight or more. The acid may be either an organic acid or an inorganic acid, and the kind thereof is not limited. For example, hydrochloric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, nitric acid, formic acid, acetic acid, lactic acid, succinic acid, itaconic acid, maleic acid, oxalic acid, citric acid and the like can be used. Furthermore, the concentration of these acid aqueous solutions is not limited, but 0.1 mol / l or more is desirable for easy kneading.

本発明で用いられる非水溶性金属化合物は水に不溶の金属化合物であれば特に限定されず酸化チタン、酸化鉄、酸化アルミニウム、酸化マンガン、二酸化マンガンなどの金属酸化物、硫酸バリウム、炭酸バリウム、リン酸バリウム、炭酸カルシウム、リン酸カルシウムなどの金属塩が使用できる。特に酸化アルミニウムが好ましい。   The water-insoluble metal compound used in the present invention is not particularly limited as long as it is a metal compound insoluble in water. Metal oxides such as titanium oxide, iron oxide, aluminum oxide, manganese oxide, manganese dioxide, barium sulfate, barium carbonate, Metal salts such as barium phosphate, calcium carbonate, calcium phosphate can be used. Aluminum oxide is particularly preferable.

さらに、CMCと酸または酸水溶液を混練するときの温度は問わない。一般的に、混練時の温度が高いほどゲル化は速やかに進行するが、CMCが加水分解を受けるほどの温度(約70℃)以上は避けるべきである。また、CMC、酸または酸水溶液及び非水溶性金属化合物を混練した後の放置する時間は問わない。CMCの水溶液濃度、酸水溶液の濃度が高い場合にはゲル化は瞬時に進行する。一般的に放置時間が長いほど、水に不溶な部分、すなわちゲルの部分の割合が高くなる。以下、本発明の好適な実施例について述べるが、本発明はこれらの実施例によって制限されるものではない。   Furthermore, the temperature at the time of kneading | mixing CMC and an acid or an acid aqueous solution does not ask | require. In general, the higher the temperature at the time of kneading, the faster the gelation proceeds, but a temperature above which CMC is subject to hydrolysis (about 70 ° C.) should be avoided. Moreover, the time to leave after kneading | mixing CMC, an acid or acid aqueous solution, and a water-insoluble metal compound is not ask | required. When the concentration of the aqueous solution of CMC and the concentration of the aqueous acid solution are high, gelation proceeds instantaneously. In general, the longer the standing time, the higher the proportion of water-insoluble parts, that is, gel parts. Hereinafter, preferred examples of the present invention will be described, but the present invention is not limited to these examples.

市販のCMC(ダイセル化学工業株式会社製、エーテル化度1.36、濃度1%溶液の25℃での粘度は1640mPa・s)20gと市販の酸化チタン アナターゼ型(和光純薬製202−01725)5gを1mol/l塩酸75gに加え、シンキー製スーパーミキサー泡とり練太郎を用いて2000rpmで20分間混練し、10分間脱泡した。混練し、ペースト状になった試料を直径20mm、厚さ10mmのテフロン(登録商標)製の枠に入れ成型した。成型した試料を30℃で7日間保存した後、島津製作所製小型卓上試験機EZTestで物性測定した。直径50mmのテフロン(登録商標)製圧縮治具で圧縮し、ゲルの破壊強度を測定した。破壊強度は0.88N/mm2であった。また同試験機で50%圧縮時の弾性率を測定した。弾性率は1.12N/mm2であり、50%圧縮を2回行ってもゲルは元の形状を保持し、高回復力、高弾性を示した。 Commercially available CMC (manufactured by Daicel Chemical Industries, Ltd., degree of etherification 1.36, viscosity of 1% concentration solution at 25 ° C. is 1640 mPa · s) 20 g and commercially available titanium oxide anatase type (Wako Pure Chemicals 202-01725) 5 g was added to 75 g of 1 mol / l hydrochloric acid, and kneaded at 2000 rpm for 20 minutes using a supermixer, Super Mixer Foaming Netaro, and degassed for 10 minutes. The kneaded and paste-like sample was placed in a Teflon (registered trademark) frame having a diameter of 20 mm and a thickness of 10 mm and molded. After the molded sample was stored at 30 ° C. for 7 days, the physical properties were measured with a small desktop tester EZTest manufactured by Shimadzu Corporation. The gel was compressed with a Teflon (registered trademark) compression jig having a diameter of 50 mm, and the breaking strength of the gel was measured. The breaking strength was 0.88 N / mm 2 . Further, the elastic modulus at 50% compression was measured with the same testing machine. The elastic modulus was 1.12 N / mm 2 , and the gel retained its original shape even after 50% compression twice, and showed high recovery force and high elasticity.

市販のCMC(ダイセル化学工業株式会社製、エーテル化度1.36、濃度1%溶液の25℃での粘度は1640mPa・s)40gと市販の酸化アルミニウム(和光純薬製012-01965)13.6gを1mol/l塩酸46.4gに加え、シンキー製スーパーミキサー泡とり練太郎を用いて2000rpmで20分間混練し、10分間脱泡した。混練し、ペースト状になった試料を厚さ10mmに展ばし、コルクボーラーで打ち抜き、試料とした。打ち抜いた試料を30℃で7日間保存した後、東洋精機製ストログラフVE5Dでゲルの破壊強度を測定した。破壊強度は5.87N/mm2であった。また、島津製作所製小型卓上試験機EZTestで50%圧縮時の弾性率を測定した。弾性率は7.99N/mm2であり、50%圧縮を2回行ってもゲルは元の形状を保持し、高回復力、高弾性を示した。 10. Commercially available CMC (manufactured by Daicel Chemical Industries, Ltd., degree of etherification 1.36, 1% strength solution with a viscosity at 25 ° C. of 1640 mPa · s) 40 g and commercially available aluminum oxide (Wako Pure Chemicals 012-01965) 6 g was added to 46.4 g of 1 mol / l hydrochloric acid, and kneaded at 2000 rpm for 20 minutes using a supermixer made by Shinky Super Mixer Foaming Netaro and defoamed for 10 minutes. The kneaded and paste-like sample was spread to a thickness of 10 mm and punched with a cork borer to obtain a sample. The punched sample was stored at 30 ° C. for 7 days, and then the breaking strength of the gel was measured with a Toyo Seiki Strograph VE5D. The breaking strength was 5.87 N / mm 2 . Moreover, the elastic modulus at the time of 50% compression was measured with a small tabletop tester EZTest manufactured by Shimadzu Corporation. The elastic modulus was 7.9 N / mm 2 , and the gel retained its original shape even after 50% compression twice, and showed high recovery force and high elasticity.

比較例1Comparative Example 1

市販のCMC(ダイセル化学工業株式会社製、エーテル化度1.36、濃度1%溶液の25℃での粘度は1640mPa・s)20gを1mol/l塩酸80gに加え、シンキー製スーパーミキサー泡とり練太郎を用いて2000rpmで20分間混練し、10分間脱泡した。混練し、ペースト状になった試料を直径20mm、厚さ10mmのテフロン(登録商標)製の枠に入れ、成型した。成型した試料を30℃で7日間保存した後、島津製作所製小型卓上試験機EZTestで物性測定した。直径50mmのテフロン(登録商標)製圧縮治具で圧縮し、ゲルの破壊強度を測定した。破壊強度は0.44N/mm2であった。また同試験機で50%圧縮時の弾性率を測定した。弾性率は0.16N/mm2であり、50%圧縮を2回行うと、ゲルは元の形状には戻らなかった。 20 g of commercially available CMC (manufactured by Daicel Chemical Industries, Ltd., degree of etherification 1.36, viscosity of 1% concentration solution at 25 ° C. at 1640 mPa · s) is added to 80 g of 1 mol / l hydrochloric acid, and a supermixer foam mixer made by Sinky Taro was kneaded for 20 minutes at 2000 rpm and defoamed for 10 minutes. The kneaded and paste-like sample was put into a Teflon (registered trademark) frame having a diameter of 20 mm and a thickness of 10 mm and molded. After the molded sample was stored at 30 ° C. for 7 days, the physical properties were measured with a small desktop tester EZTest manufactured by Shimadzu Corporation. The gel was compressed with a Teflon (registered trademark) compression jig having a diameter of 50 mm, and the breaking strength of the gel was measured. The breaking strength was 0.44 N / mm 2 . Further, the elastic modulus at 50% compression was measured with the same testing machine. The elastic modulus was 0.16 N / mm 2 , and the gel did not return to its original shape after 50% compression twice.

比較例2Comparative Example 2

市販のCMC(ダイセル化学工業株式会社製、エーテル化度1.36、濃度1%溶液の25℃での粘度は1640mPa・s)40gを1mol/l塩酸60gに加え、シンキー製スーパーミキサー泡とり練太郎を用いて2000rpmで20分間混練し、10分間脱泡した。混練してペースト状になった試料を厚さ10mmに展ばし、コルクボーラーで打ち抜き、試料とした。打ち抜いた試料を30℃で7日間保存した後、島津製作所製小型卓上試験機EZTestで物性測定した。直径50mmのテフロン(登録商標)製圧縮治具で圧縮し、ゲルの破壊強度を測定した。破壊強度は1.03N/mm2であった。 40 g of commercially available CMC (manufactured by Daicel Chemical Industries, Ltd., etherification degree 1.36, 1% concentration solution at 25 ° C. with a viscosity of 1640 mPa · s) is added to 60 g of 1 mol / l hydrochloric acid, and a supermixer foam mixer made by Sinky Taro was kneaded for 20 minutes at 2000 rpm and defoamed for 10 minutes. The kneaded paste-like sample was spread to a thickness of 10 mm, punched out with a cork borer, and used as a sample. After the punched sample was stored at 30 ° C. for 7 days, physical properties were measured with a small table tester EZTest manufactured by Shimadzu Corporation. The gel was compressed with a Teflon (registered trademark) compression jig having a diameter of 50 mm, and the breaking strength of the gel was measured. The breaking strength was 1.03 N / mm 2 .

上述の本発明の製造方法は、多価金属イオンや架橋剤を使用して製造する方法に比べ高弾性のゲルが得られ、放射線照射による方法のように、放射線照射装置という高価な設備が不必要であるため、安価に且つ簡便に製造でき、さらにまた酸のみを使用して製造する方法と異なり強度の高いゲルを製造することができる。すなわち当該製造方法よって得られるゲルは高弾性で且つ強度が高く、安価で簡便に得られるものであり、CMCという植物由来の材料を原料とした環境保全型のゲルである。   The production method of the present invention described above yields a highly elastic gel as compared with the production method using a polyvalent metal ion or a crosslinking agent, and there is no need for expensive equipment such as a radiation irradiation device, unlike the method using radiation irradiation. Since it is necessary, it can be produced inexpensively and easily, and further, a gel having high strength can be produced unlike a method of producing using only an acid. That is, the gel obtained by the production method is highly elastic, high in strength, inexpensive and easily obtained, and is an environmentally friendly gel made from a plant-derived material called CMC.

以上のようにして製造されたゲルは、高弾性、高強度で安価で簡便に製造されたものであり農業、工業、医療、食品等の広範囲の分野において利用可能で、例えば家畜排泄物処理材、排水処理材、脱臭材、触媒担体、衝撃吸収材、医療用粘着材、医療用パテ材などに有用である。   The gel produced as described above is easily produced with high elasticity, high strength, low cost, and can be used in a wide range of fields such as agriculture, industry, medicine, food, etc. It is useful for wastewater treatment materials, deodorizing materials, catalyst carriers, impact absorbing materials, medical adhesive materials, medical putty materials, and the like.

本発明に係るゲルの製造方法の概略構成を示すフローチャートである。It is a flowchart which shows schematic structure of the manufacturing method of the gel which concerns on this invention.

符号の説明Explanation of symbols

CMC カルボキシメチルセルロースアルカリ金属塩   CMC Carboxymethylcellulose alkali metal salt

Claims (5)

主成分であるカルボキシメチルセルロースアルカリ金属塩(CMC)に、酸または酸水溶液及び非水溶性金属化合物を混練し、前記カルボキシメチルセルロースアルカリ金属塩をゲル化させることを特徴とするカルボキシメチルセルロースアルカリ金属塩を主成分とするゲルの製造方法。   A carboxymethyl cellulose alkali metal salt characterized by kneading an acid or an acid aqueous solution and a water-insoluble metal compound with a carboxymethyl cellulose alkali metal salt (CMC) as a main component to gel the carboxymethyl cellulose alkali metal salt. The manufacturing method of the gel used as a component. 請求項1に記載のゲルの製造方法において、前記カルボキシメチルセルロースアルカリ金属塩(CMC)の、前記カルボキシメチルセルロースアルカリ金属塩を主成分とするゲルの全体重量に対する重量が、65%未満であることを特徴とするカルボキシメチルセルロースアルカリ金属塩を主成分とするゲルの製造方法。   2. The method for producing a gel according to claim 1, wherein the weight of the carboxymethyl cellulose alkali metal salt (CMC) with respect to the total weight of the gel mainly composed of the carboxymethyl cellulose alkali metal salt is less than 65%. The manufacturing method of the gel which has the carboxymethylcellulose alkali metal salt as a main component. 請求項1または2に記載のゲルの製造方法において、前記酸または酸水溶液が塩酸または塩酸水溶液であって前記非水溶性金属化合物が酸化アルミニウムであることを特徴とするカルボキシメチルセルロースアルカリ金属塩(CMC)を主成分とするゲルの製造方法。   The method for producing a gel according to claim 1 or 2, wherein the acid or the aqueous acid solution is hydrochloric acid or an aqueous hydrochloric acid solution, and the water-insoluble metal compound is aluminum oxide (CMC). ) As a main component. カルボキシメチルセルロースアルカリ金属塩(CMC)を主成分として含み、さらに酸または酸水溶液及び非水溶性金属化合物を含むことを特徴とするゲル。   A gel comprising carboxymethylcellulose alkali metal salt (CMC) as a main component, and further comprising an acid or an aqueous acid solution and a water-insoluble metal compound. 請求項4に記載のゲルにおいて、前記酸または酸水溶液が塩酸または塩酸水溶液であって、前記非水溶性金属化合物が酸化アルミニウムであることを特徴とするゲル。   The gel according to claim 4, wherein the acid or the aqueous acid solution is hydrochloric acid or an aqueous hydrochloric acid solution, and the water-insoluble metal compound is aluminum oxide.
JP2007070145A 2006-09-15 2007-03-19 Method for producing gel containing carboxymethylcellulose as main component, and gel Pending JP2008230996A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007070145A JP2008230996A (en) 2007-03-19 2007-03-19 Method for producing gel containing carboxymethylcellulose as main component, and gel
GB0718000A GB2445818B8 (en) 2006-09-15 2007-09-14 Preparation of gels derived from carboxymethyl cellulose alkali metal salt
US11/855,335 US8633254B2 (en) 2006-09-15 2007-09-14 Preparation of gels derived from carboxymethyl cellulose alkali metal salt
CN2007101474876A CN101157760B (en) 2006-09-15 2007-09-15 Preparation of gels derived from carboxymethyl cellulose alkali metal salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007070145A JP2008230996A (en) 2007-03-19 2007-03-19 Method for producing gel containing carboxymethylcellulose as main component, and gel

Publications (1)

Publication Number Publication Date
JP2008230996A true JP2008230996A (en) 2008-10-02

Family

ID=39904235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007070145A Pending JP2008230996A (en) 2006-09-15 2007-03-19 Method for producing gel containing carboxymethylcellulose as main component, and gel

Country Status (1)

Country Link
JP (1) JP2008230996A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280800A (en) * 2008-04-21 2009-12-03 Machiko Takigami Method for producing gel of carboxymethyl cellulose alkali metal salt
WO2010122687A1 (en) 2009-04-20 2010-10-28 独立行政法人日本原子力研究開発機構 Method for producing gel of carboxymethyl cellulose alkali metal salt
JP2012029588A (en) * 2010-07-29 2012-02-16 Fujita:Kk Method for growing sedum kamtschaticum

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001122771A (en) * 1999-10-25 2001-05-08 Lion Corp Method for producing hydrous paste
JP2002179935A (en) * 2000-10-02 2002-06-26 Daicel Chem Ind Ltd Transparent hydrogel and its manufacturing method
JP2002293987A (en) * 2001-03-30 2002-10-09 Kobayashi Pharmaceut Co Ltd Water gel composition
JP2003155377A (en) * 2001-11-21 2003-05-27 Kobayashi Pharmaceut Co Ltd Aqueous gel composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001122771A (en) * 1999-10-25 2001-05-08 Lion Corp Method for producing hydrous paste
JP2002179935A (en) * 2000-10-02 2002-06-26 Daicel Chem Ind Ltd Transparent hydrogel and its manufacturing method
JP2002293987A (en) * 2001-03-30 2002-10-09 Kobayashi Pharmaceut Co Ltd Water gel composition
JP2003155377A (en) * 2001-11-21 2003-05-27 Kobayashi Pharmaceut Co Ltd Aqueous gel composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280800A (en) * 2008-04-21 2009-12-03 Machiko Takigami Method for producing gel of carboxymethyl cellulose alkali metal salt
WO2010122687A1 (en) 2009-04-20 2010-10-28 独立行政法人日本原子力研究開発機構 Method for producing gel of carboxymethyl cellulose alkali metal salt
JP2012029588A (en) * 2010-07-29 2012-02-16 Fujita:Kk Method for growing sedum kamtschaticum

Similar Documents

Publication Publication Date Title
JP4288618B2 (en) Method for producing carboxymethylcellulose gel
Song et al. Keratin-based biocomposites reinforced and cross-linked with dual-functional cellulose nanocrystals
Liu et al. Radiation crosslinking of CMC-Na at low dose and its application as substitute for hydrogel
US11365293B2 (en) Xylan-based dual network nanocomposite hydrogel, preparation method thereof and use therefor
JP2018512109A5 (en)
JP2017505366A5 (en)
JP2012526889A5 (en)
CN104258461B (en) A kind of preparation method of chitosan/oxidized Graphene/hydroxyapatite/Polyacrylamide Composite
CN103627010A (en) Preparation method of amide alginate medical dressing
CN101215389B (en) Chitosan hydrogel and preparation method thereof
CN110157010B (en) Polyelectrolyte complex hydrogel hemostatic based on polysaccharide/polypeptide
JP2008230996A (en) Method for producing gel containing carboxymethylcellulose as main component, and gel
JP5071766B2 (en) Method for producing gel using polysaccharide as raw material
CN103739855A (en) Preparation method of high-strength physical chitosan hydrogel
KR102308186B1 (en) Process for producing low endotoxin chitosan
US8633254B2 (en) Preparation of gels derived from carboxymethyl cellulose alkali metal salt
JP5340093B2 (en) Method for producing crosslinked hyaluronic acid
CN104028116B (en) A kind of method of modifying of antipollution hydrophilicity kynoar film
CN110152631A (en) A kind of preparation method of adsorptivity graphene oxide hydrogel
JP5030219B2 (en) Process for producing gel of carboxymethylcellulose alkali salt and gel of carboxymethylcellulose alkali salt obtained thereby
RU2012147195A (en) METHOD FOR PRODUCING COMPOSITE RESORABLE MATERIALS BASED ON CHITOSAN AND POLYLACTIDE
WO2010122687A1 (en) Method for producing gel of carboxymethyl cellulose alkali metal salt
CN108976443B (en) Carbon nanotube reinforced carboxymethyl xylan/polyacrylic acid composite hydrogel and preparation method thereof
KR102308191B1 (en) Process for producing low endotoxin chitosan
KR20180064715A (en) Highly densified microparticles composed of low cross-linked hyaluronic acid and process for preparing thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20091224

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091224

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111020

A521 Written amendment

Effective date: 20111020

Free format text: JAPANESE INTERMEDIATE CODE: A821

A131 Notification of reasons for refusal

Effective date: 20120911

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20121112

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305