JP2008230882A - Fine aggregate for concrete or mortar, method for controlling alkali-aggregate reaction in concrete or mortar, method for controlling alkali-aggregate reaction of fine aggregate for concrete or mortar and granular blast furnace slag for mixing fine aggregate - Google Patents

Fine aggregate for concrete or mortar, method for controlling alkali-aggregate reaction in concrete or mortar, method for controlling alkali-aggregate reaction of fine aggregate for concrete or mortar and granular blast furnace slag for mixing fine aggregate Download PDF

Info

Publication number
JP2008230882A
JP2008230882A JP2007071395A JP2007071395A JP2008230882A JP 2008230882 A JP2008230882 A JP 2008230882A JP 2007071395 A JP2007071395 A JP 2007071395A JP 2007071395 A JP2007071395 A JP 2007071395A JP 2008230882 A JP2008230882 A JP 2008230882A
Authority
JP
Japan
Prior art keywords
aggregate
mortar
concrete
alkali
fine aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007071395A
Other languages
Japanese (ja)
Other versions
JP5484655B2 (en
Inventor
Nobukazu Futado
信和 二戸
Kiyoshi Koibuchi
清 鯉渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DC Co Ltd
Original Assignee
DC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DC Co Ltd filed Critical DC Co Ltd
Priority to JP2007071395A priority Critical patent/JP5484655B2/en
Publication of JP2008230882A publication Critical patent/JP2008230882A/en
Application granted granted Critical
Publication of JP5484655B2 publication Critical patent/JP5484655B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/60Agents for protection against chemical, physical or biological attack
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2023Resistance against alkali-aggregate reaction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

<P>PROBLEM TO BE SOLVED: To propose a fine aggregate for concrete or mortar, by which an alkali-aggregate reaction can be controlled effectively, in which the fine aggregate, which is hardly used up to now and judged to be not harmless, can be used, by which a destruction problem of the environment due to collection of river sand or sea sand can be avoided and in which blast furnace slag to be produced as a by-product in large quantities when pig iron is manufactured can be used effectively. <P>SOLUTION: The fine aggregate for concrete or mortar contains the fine aggregate, which is judged to be not harmless when tested in the alkali-aggregate reaction according to the alkali-silica reactivity test methods (JIS A 1145 and JIS A 1146), and 5-40 wt.% granular blast furnace slag having ≤0.3 mm particle size. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、コンクリート或いはモルタルに使用した場合にアルカリ骨材反応が起こる危険性を抑制したコンクリート或いはモルタル用細骨材に関し、特に、コンクリート或いはモルタル用に使われる一般的な細骨材に特定粒径の高炉スラグ粉粒体を特定量混和してなるコンクリート或いはモルタル用細骨材に関するものである。   The present invention relates to a fine aggregate for concrete or mortar that suppresses the risk of alkali-aggregate reaction when used in concrete or mortar, and in particular, to specific fine aggregates used for concrete or mortar. The present invention relates to a fine aggregate for concrete or mortar obtained by mixing a specific amount of blast furnace slag powder particles having a diameter.

コンクリート或いはモルタルは、砕石等の骨材を含んだセメント硬化体よりなる複合材料であるが、骨材の特性如何によりいわゆるアルカリ骨材反応が生じるという問題がある。このアルカリ骨材反応とは、コンクリート或いはモルタルを構成する材料中に含まれるアルカリ(主にセメント中のアルカリ)と、反応性の高い骨材とが反応してコンクリート或いはモルタルに異常な膨張を引き起す現象をいう。   Concrete or mortar is a composite material made of a hardened cement containing aggregate such as crushed stone, but there is a problem that so-called alkali aggregate reaction occurs depending on the characteristics of the aggregate. This alkali-aggregate reaction means that the alkali (mainly alkali in cement) contained in the material constituting the concrete or mortar reacts with the highly reactive aggregate to cause abnormal expansion in the concrete or mortar. A phenomenon that occurs.

上記アルカリ骨材反応を避ける方法として、従来、アルカリシリカ反応性の試験法(JIS A 1145及びJIS A 1146)に基づいてアルカリ骨材反応に関して「無害でない」と判定された骨材を使用しない、つまり「無害である」と判定された骨材のみを使用することが原則とされている。   As a method of avoiding the alkali aggregate reaction, conventionally, an aggregate that is determined to be “non-hazardous” with respect to the alkali aggregate reaction based on the alkali silica reactivity test method (JIS A 1145 and JIS A 1146) is not used. In other words, it is a principle to use only aggregates determined to be “innocuous”.

しかしながら、日本の地質的要因などから「無害でない」と判定された骨材をすべて排除することは難しく、止むを得ず「無害でない」と判定された骨材を使用する場合には、従来、JIS A 5308 付属書2に記載されている方法、即ち、
(1) コンクリート中のアルカリ総量を規制する、
(2) アルカリシリカ反応を抑制する効果のある混合セメントなどを使用する、
などの方法が主として採用されている。
However, it is difficult to eliminate all aggregates that are determined to be “non-harmful” due to geological factors in Japan. When using aggregates that are inevitably determined to be “non-harmful”, The method described in Annex 2 of JIS A 5308, that is,
(1) Regulate the total amount of alkali in concrete,
(2) Use mixed cement that has the effect of suppressing the alkali-silica reaction,
Such a method is mainly adopted.

一方、高炉スラグ等の素材産業で発生する副産物を細骨材として利用する方法が研究開発されている。例えば、特許文献1には、高炉スラグ細骨材とその製造方法が開示されている。特許文献2には、高炉スラグ細骨材と石灰石砕砂を含有するコンクリートが開示されている。特許文献3には、特定の高炉スラグ細骨材用分散剤を使用した高炉スラグ細骨材含有コンクリートが開示されている。   On the other hand, methods for utilizing by-products generated in the material industry such as blast furnace slag as fine aggregates are being researched and developed. For example, Patent Document 1 discloses a blast furnace slag fine aggregate and a manufacturing method thereof. Patent Document 2 discloses concrete containing blast furnace slag fine aggregate and limestone crushed sand. Patent Document 3 discloses blast furnace slag fine aggregate-containing concrete using a specific dispersant for blast furnace slag fine aggregate.

特開2005−219958号公報JP 2005-219958 A 特開2000−302499号公報JP 2000-302499 A 特開2001−322853号公報JP 2001-322853 A

アルカリ骨材反応を避ける方法として、上記「無害でない」と判定された骨材を使用しない方法による場合には、川砂や海砂等が主に使用されることとなるが、最近ではこれらの天然資源枯渇の問題や、川砂や海砂の採取による地形の変化や生息生物の固体数の減少、及び濁りの拡散という環境破壊の問題があり、今後、川砂や海砂の採取には大きな制約が生じると考えられる。   As a method of avoiding the alkali aggregate reaction, river sand and sea sand are mainly used in the case of not using the aggregate determined to be “non-hazardous”, but recently these natural sands are used. There is a problem of resource depletion, environmental changes such as changes in topography due to the collection of river sand and sea sand, a decrease in the number of living organisms, and diffusion of turbidity. It is thought to occur.

また、高炉セメントやフライアッシュセメント等の混合セメントを用いてアルカリ骨材反応を抑制する方法では、強度発現性、耐久性、経済性等の面で汎用性のある方法ではないといった問題がある。また、高炉スラグ微粉末がアルカリ骨材反応による膨張を抑制することも広く知られているが、高炉セメントを使用した場合と同様の問題がある。
いずれにしても、上記した従来の技術は、セメント側からアルカリ骨材反応を抑制するという技術思想に基づくものであり、骨材側からアルカリ骨材反応を抑制するというものではない。上記特許文献1〜3に開示された高炉スラグ細骨材を含有するコンクリート等においても、何らアルカリ骨材反応抑制効果については考慮されていない。
In addition, there is a problem that the method of suppressing alkali-aggregate reaction using a mixed cement such as blast furnace cement or fly ash cement is not a versatile method in terms of strength development, durability, economy, and the like. Moreover, although it is widely known that the blast furnace slag fine powder suppresses expansion due to the alkali aggregate reaction, there is a problem similar to the case where blast furnace cement is used.
In any case, the above-described conventional technique is based on the technical idea of suppressing the alkali aggregate reaction from the cement side, and does not suppress the alkali aggregate reaction from the aggregate side. Also in the concrete containing the blast furnace slag fine aggregate disclosed in Patent Documents 1 to 3, no consideration is given to the alkali aggregate reaction suppression effect.

一方、細骨材のJIS規格に定められている粒度分布は0.15〜5mmである。ポルトランドセメント、高炉セメント、フライアッシュセメント等のセメントの粒度は0.09mm残分が1.0%以下であり、0.032mm残分で15〜20%程度である。また、上記のように高炉スラグ微粉末をアルカリ骨材反応の抑制に用いたとしても、例えば、ブレーン4000級の高炉スラグ微粉末の粒度は0.09mm残分が1.0%以下であり、0.032mm残分で5%程度である。したがって、これらを材料として用いてコンクリート或いはモルタルとした場合、0.032〜0.09mmの粒子が不足し、コンクリート或いはモルタルのフレッシュ性状がよくないという課題も存在した。   On the other hand, the particle size distribution defined in the JIS standard for fine aggregate is 0.15 to 5 mm. As for the particle size of cement such as Portland cement, blast furnace cement, fly ash cement and the like, 0.09 mm residue is 1.0% or less, and 0.032 mm residue is about 15 to 20%. Moreover, even if the blast furnace slag fine powder is used for the suppression of the alkali aggregate reaction as described above, for example, the grain size of the Blaine 4000 grade blast furnace slag fine powder is 1.09% or less in the balance of 0.09 mm, The remaining 0.032 mm is about 5%. Therefore, when these are used as materials or concrete or mortar, 0.032 to 0.09 mm particles are insufficient, and there is a problem that the fresh properties of concrete or mortar are not good.

本発明は、上述した背景技術の実状に鑑みて骨材側からアルカリ骨材反応を抑制する観点に立って成されたものであって、アルカリ骨材反応を効果的に抑制でき、従来使用不可能とされてきたアルカリ骨材反応において「無害でない」と判定された骨材をも使用可能なものとし、川砂や海砂の採取による問題を回避できると共に、銑鉄生産時に大量に副生する高炉スラグの有効利用を図ったコンクリート或いはモルタル用細骨材、コンクリート或いはモルタルのアルカリ骨材反応抑制方法、コンクリート或いはモルタル用細骨材のアルカリ骨材反応抑制方法、および細骨材混和用高炉スラグ粉粒体を提供することを目的とする。
また、付随的にコンクリート或いはモルタルに不足する0.032〜0.09mmの粒子を補充し、コンクリート或いはモルタルのフレッシュ性状の改善を図ることも目的とする。
The present invention has been made from the viewpoint of suppressing alkali-aggregate reaction from the aggregate side in view of the actual state of the background art described above, and can effectively suppress alkali-aggregate reaction. Blast furnaces that can be used with aggregates that have been determined to be "non-hazardous" in the alkaline aggregate reaction that has been made possible, avoid problems due to the collection of river sand and sea sand, and produce a large amount of byproduct during pig iron production Concrete or mortar fine aggregate for effective use of slag, alkali aggregate reaction suppression method for concrete or mortar, alkali aggregate reaction suppression method for concrete or mortar fine aggregate, and blast furnace slag powder for mixing fine aggregate The object is to provide granules.
Another object of the present invention is to supplement the 0.032 to 0.09 mm particles that are incidental to the concrete or mortar to improve the fresh properties of the concrete or mortar.

本発明者等は、上記した目的を達成すべく鋭意研究を進めた結果、特定の粒径の高炉スラグ粉粒体が、優れたアルカリ骨材反応抑制効果があることを見出し、本発明を完成させた。即ち、本発明は、
〔1〕 粒径0.3mm以下の高炉スラグ粉粒体を5〜40重量%含み、残りは通常コンクリート或いはモルタルに用いられる細骨材であることを特徴とする、コンクリート或いはモルタル用細骨材。
〔2〕 上記高炉スラグ粉粒体と、上記残りの細骨材中にアルカリシリカ反応性の試験法(JIS A 1145及びJIS A 1146)に基づいてアルカリ骨材反応に関して無害でないと判定される細骨材を含むことを特徴とする、上記〔1〕に記載のコンクリート或いはモルタル用細骨材。
〔3〕 上記〔1〕〜〔2〕のいずれかに記載のコンクリート或いはモルタル用細骨材を用いることを特徴とする、コンクリート或いはモルタルのアルカリ骨材反応抑制方法。 〔4〕 アルカリシリカ反応性の試験法(JIS A 1145及びJIS A 1146)に基づいてアルカリ骨材反応に関して無害でないと判定される細骨材を含むコンクリート或いはモルタル用細骨材がアルカリ骨材反応を引き起こすことを抑制するアルカリ骨材反応抑制方法であって、該細骨材中に細骨材混和用高炉スラグ粉粒体を混和してアルカリ骨材反応を抑制した細骨材とすることを特徴とする、コンクリート或いはモルタル用細骨材のアルカリ骨材反応抑制方法。
〔5〕 上記細骨材混和用高炉スラグ粉粒体中には粒径0.3mm以下のものが50重量%以上含まれていることを特徴とする、上記〔4〕に記載のコンクリート或いはモルタル用細骨材のアルカリ骨材反応抑制方法。
〔6〕 上記細骨材混和用高炉スラグ粉粒体と共に、アルカリシリカ反応性の試験法(JIS A 1145及びJIS A 1146)に基づいてアルカリ骨材反応に関して無害と判定される細骨材を混和することを特徴とする、上記〔4〕又は〔5〕に記載のコンクリート或いはモルタル用細骨材のアルカリ骨材反応抑制方法。
〔7〕 上記〔4〕〜〔6〕のいずれかに記載のコンクリート或いはモルタル用細骨材のアルカリ骨材反応抑制方法に使用される細骨材混和用高炉スラグ粉粒体。
As a result of intensive studies to achieve the above-mentioned object, the present inventors have found that a blast furnace slag powder having a specific particle size has an excellent alkaline aggregate reaction inhibitory effect and completed the present invention. I let you. That is, the present invention
[1] Fine aggregate for concrete or mortar, characterized in that it contains 5 to 40% by weight of blast furnace slag powder particles having a particle size of 0.3 mm or less, and the remainder is fine aggregate usually used for concrete or mortar. .
[2] The fine blast furnace slag granular material and the remaining fine aggregate are determined to be non-hazardous with respect to the alkali aggregate reaction based on the alkali silica reactivity test method (JIS A 1145 and JIS A 1146). The fine aggregate for concrete or mortar according to the above [1], comprising an aggregate.
[3] A method of suppressing alkali aggregate reaction of concrete or mortar, characterized by using the concrete or fine aggregate for mortar according to any one of [1] to [2]. [4] Concrete or mortar fine aggregates that are determined to be non-hazardous with respect to alkali aggregate reaction based on alkali silica reactivity test methods (JIS A 1145 and JIS A 1146) are alkali aggregate reactions. A method for suppressing alkali aggregate reaction, wherein a fine aggregate containing a blast furnace slag powder for mixing fine aggregate is mixed into the fine aggregate to obtain a fine aggregate that suppresses alkali aggregate reaction. A method for suppressing alkali-aggregate reaction of concrete or mortar fine aggregate.
[5] The concrete or mortar according to [4], wherein the fine aggregate-mixed blast furnace slag powder contains 50% by weight or more of particles having a particle size of 0.3 mm or less. For suppressing alkali-aggregate reaction of fine aggregates.
[6] Along with fine blast furnace slag powder for mixing fine aggregates, fine aggregate that is judged harmless with respect to alkali aggregate reaction based on alkali silica reactivity test method (JIS A 1145 and JIS A 1146) is mixed. The method for suppressing alkali-aggregate reaction of fine aggregate for concrete or mortar according to the above [4] or [5].
[7] A blast furnace slag granule for mixing fine aggregates, which is used in the method for inhibiting alkali aggregate reaction of concrete or mortar fine aggregates according to any one of [4] to [6].

上記した本発明によれば、セメントの種類や高炉スラグ微粉末等によるセメント混和材を考慮しなくても、コンクリート或いはモルタルのアルカリ骨材反応を効果的に抑制できるため、従来使用不可能とされてきたアルカリ骨材反応において「無害でない」と判定された骨材をも使用可能となり、また、銑鉄生産時に副生する高炉スラグを資源として有効に利用することができる。
より具体的には、高価なセメントやセメント混和材を使用することなく、粒径0.3mm以下の高炉スラグ粉粒体を、従来、アルカリ骨材反応が起るとして使用が躊躇されてきた細骨材に混和すれば、アルカリ骨材反応が生じ難いコンクリート或いはモルタル用細骨材として使用可能となることから、安価なコンクリート或いはモルタルが製造可能となる。特に、しらす砂や火山灰砂、火山岩等が細骨材として利用可能になることから、無用の廃棄物を有用な資源へと転換でき、自然環境保全コストや社会コストについても低減可能となる。また、0.3mm以下の高炉スラグ粉粒体に0.032〜0.09mmの粒子を多く含ませておき、それを混和することによって、コンクリート或いはモルタルに不足する0.032〜0.09mmの粒子を補充でき、コンクリート或いはモルタルのフレッシュ性状を改善できる効果も期待できる。
According to the present invention described above, the alkali aggregate reaction of concrete or mortar can be effectively suppressed without considering the cement admixture due to the type of cement, blast furnace slag fine powder, etc. Aggregates that are determined to be “non-hazardous” in the alkali-aggregate reaction can be used, and blast furnace slag produced as a by-product during pig iron production can be used effectively as a resource.
More specifically, without using expensive cement or cement admixture, blast furnace slag powder particles having a particle size of 0.3 mm or less have conventionally been considered to be used as an alkali aggregate reaction. If mixed with aggregate, it can be used as a fine aggregate for concrete or mortar where alkali-aggregate reaction is unlikely to occur, so that inexpensive concrete or mortar can be produced. In particular, since shirasu sand, volcanic ash sand, volcanic rocks, and the like can be used as fine aggregates, useless waste can be converted into useful resources, and natural environment conservation costs and social costs can be reduced. Moreover, 0.032-0.09mm of 0.032-0.09mm which is insufficient in concrete or mortar by making it contain many 0.032-0.09mm particle | grains in the blast furnace slag granular material of 0.3 mm or less, and mixing it. Particles can be replenished, and the effect of improving the fresh properties of concrete or mortar can also be expected.

以下、上記した本発明の実施の形態を、詳細に説明する。   Hereinafter, the above-described embodiment of the present invention will be described in detail.

高炉スラグ粒は、銑鉄生産時に鉱石から金属を取り出す際に副生されるスラグを空冷或いは水冷等の手段により急速冷却することにより製造されたもので、粒径が約7mm以下のガラス質の固形スラグである。本発明の粒径0.3mm以下の高炉スラグ粉粒体は、この高炉スラグ粒を、適宜粉砕・分級して調整したものである。   Blast furnace slag grains are produced by rapidly cooling slag produced as a by-product during extraction of metal from ore during pig iron production by means of air cooling or water cooling, and a glassy solid having a particle size of about 7 mm or less. It is slag. The blast furnace slag granule having a particle size of 0.3 mm or less according to the present invention is prepared by appropriately pulverizing and classifying the blast furnace slag granules.

本発明に係るコンクリート或いはモルタル用細骨材は、上記高炉スラグ粉粒体、特に、粒径0.3mm以下の高炉スラグ粉粒体を5〜40重量%含むものであり、残りは、通常コンクリート或いはモルタルに用いられる細骨材であり、特に限定されるものではない。 なお、高炉スラグ粉粒体の下限の粒径値は特には限定されないが、0.032〜0.09mmの粉粒体を含むことが好ましく、この粒径の粉粒体の割合は0.3mm以下の高炉スラグ粉粒体中30〜60重量%程度あることが好ましい。これによって、コンクリート或いはモルタルにおけるセメントから細骨材の粒度分布が連続的となり、コンクリート或いはモルタルのフレッシュ性状は改善される。残りは、主として、0.09mmを超え、0.3mm以下の高炉スラグ粉粒体である。   The fine aggregate for concrete or mortar according to the present invention contains 5 to 40% by weight of the above blast furnace slag powder, in particular, blast furnace slag powder having a particle size of 0.3 mm or less, and the rest is usually concrete. Or it is a fine aggregate used for mortar, and is not specifically limited. In addition, the particle size value of the lower limit of the blast furnace slag powder is not particularly limited, but it is preferable to include 0.032 to 0.09 mm powder, and the ratio of the powder of this particle size is 0.3 mm. It is preferable that it is about 30 to 60 weight% in the following blast furnace slag granular material. Thereby, the particle size distribution of the fine aggregate from the cement in the concrete or mortar becomes continuous, and the fresh property of the concrete or mortar is improved. The remainder is mainly blast furnace slag powder particles exceeding 0.09 mm and 0.3 mm or less.

本発明において、特に粒径0.3mm以下の高炉スラグ粉粒体の配合量を規定することとしたのは、細骨材中におけるこの粒径の高炉スラグ粉粒体の存在が、特にアルカリ骨材反応の抑制に効果があることが後述する試験により判明したためである。また、この粒径の高炉スラグ粉粒体の配合量を5〜40重量%としたのは、5重量%に満たない量ではアルカリ骨材反応の抑制効果が十分ではなく、逆に40重量%を超える量存在すると、全体としての細骨材の粒度分布が著しく小径に片寄ったものとなり、該細骨材をそのまま用いたコンクリート或いはモルタルの流動性等のフレッシュ性状や硬化体の性状に支障が生じるためである。   In the present invention, the amount of the blast furnace slag powder particles having a particle size of 0.3 mm or less is particularly defined because the presence of the blast furnace slag powder particles of this particle size in the fine aggregate is particularly alkaline bone. It is because it became clear by the test mentioned later that it was effective in suppression of a material reaction. Further, the blending amount of the blast furnace slag powder having this particle size is 5 to 40% by weight. If the amount is less than 5% by weight, the effect of suppressing the alkali aggregate reaction is not sufficient, and conversely 40% by weight. If the amount exceeds the above, the particle size distribution of the fine aggregate as a whole is remarkably shifted to the small diameter, and there is a problem in the fresh properties such as the fluidity of concrete or mortar using the fine aggregate as it is and the properties of the hardened body. This is because it occurs.

また、本発明に係るコンクリート或いはモルタル用細骨材は、上記粒径の高炉スラグ粉粒体と、他の細骨材、例えば粒径が異なる他の高炉スラグ細骨材、川砂,海砂,陸砂などの天然細骨材、岩石や玉石などを破砕して作った人工細骨材、廃コンクリート塊から得られる再生細骨材などを含むものとすることができ、特にアルカリシリカ反応性の試験法(JIS A 1145及びJIS A 1146)に基づいてアルカリ骨材反応に関して無害でないと判定される細骨材(反応性細骨材)をも含むものとすることができる。これは、使用する細骨材中に反応性細骨材を含んでいても、上記所定粒径の高炉スラグ粉粒体を含むことにより、該細骨材を用いたコンクリート或いはモルタルのアルカリ骨材反応が抑制されるためである。このように、使用する細骨材中に反応性細骨材を含む場合、特に本発明の効果が顕著に現れる。   Further, the fine aggregate for concrete or mortar according to the present invention includes a blast furnace slag fine particle having the above particle size and another fine aggregate, for example, other blast furnace slag fine aggregate having a different particle size, river sand, sea sand, It can contain natural fine aggregates such as land sand, artificial fine aggregates made by crushing rocks and cobblestones, regenerated fine aggregates obtained from waste concrete blocks, etc., especially alkali silica reactivity test method Fine aggregates (reactive fine aggregates) that are determined not to be harmless with respect to the alkali aggregate reaction based on (JIS A 1145 and JIS A 1146) can also be included. Even if reactive fine aggregate is included in the fine aggregate to be used, concrete or mortar alkali aggregate using the fine aggregate can be obtained by including the blast furnace slag powder particles having the predetermined particle size. This is because the reaction is suppressed. Thus, when a reactive fine aggregate is included in the fine aggregate to be used, the effects of the present invention are particularly prominent.

上記アルカリシリカ反応(アルカリ骨材反応)を生じる可能性がある物質としては、シリカ質鉱物(石英,クリストバライト,トリジマイト,オパール)、ガラス(火山ガラス)、シリケート鉱物(雲母,粘土鉱物)などが挙げられるが、これらの鉱物を含む細骨材、例えば、しらす砂や火山灰砂、火山岩の破砕物なども本発明においては細骨材として利用可能になることから、無用の廃棄物を有用な資源へと転換でき、川砂,海砂などの良質な天然細骨材の枯渇の問題にも対処することが可能となる。また、廃コンクリート塊を破砕して作った再生細骨材はアルカリ骨材反応を生じる可能性が高いが、このような再生細骨材に本発明を適用して高炉スラグ粉粒体を混和することによって、そのアルカリ骨材反応を抑制できるため、今後大量に発生する再生細骨材の高度利用に有効である。   Examples of substances that may cause the alkali-silica reaction (alkali-aggregate reaction) include siliceous minerals (quartz, cristobalite, tridymite, opal), glass (volcanic glass), silicate minerals (mica, clay minerals), etc. However, fine aggregates containing these minerals, such as shirasu sand, volcanic ash sand, and crushed volcanic rocks, can be used as fine aggregates in the present invention. It is possible to cope with the problem of depletion of high-quality natural fine aggregates such as river sand and sea sand. In addition, recycled fine aggregate made by crushing waste concrete block is highly likely to cause an alkali-aggregate reaction, but the present invention is applied to such recycled fine aggregate to mix blast furnace slag powder particles. Therefore, the alkali aggregate reaction can be suppressed, which is effective for advanced utilization of recycled fine aggregates that will be generated in large quantities in the future.

上記細骨材中の粒径0.3mm以下の高炉スラグ粉粒体の配合量は、上記5〜40重量%の範囲内において、該高炉スラグ粉粒体を混和する他の細骨材のアリカル骨材反応性の程度を予備調査することによって調整することが好ましい。この調整方法としては、例えば、使用する他の細骨材を用いてJIS A 1146に記載された「骨材のアルカリ反応性試験方法(モルタルバー法)」に準拠した試験、或いは更に簡易な促進試験を行ない、使用する他の細骨材がアリカル骨材反応を起こし易いか否かを予測し、この予測結果に基づき、該細骨材への高炉スラグ粉粒体の配合量を決定すればよい。   The blending amount of the blast furnace slag powder particles having a particle size of 0.3 mm or less in the fine aggregate is within the range of 5 to 40% by weight, and the arical of other fine aggregates into which the blast furnace slag powder particles are mixed. Preferably, the degree of aggregate reactivity is adjusted by preliminary investigation. As this adjustment method, for example, using other fine aggregates to be used, a test in accordance with “Aggregate Alkali Reactivity Test Method (Mortar Bar Method)” described in JIS A 1146, or a simpler acceleration Perform a test, predict whether other fine aggregates to be used are likely to cause an aliquot aggregate reaction, and based on this prediction result, determine the blending amount of blast furnace slag granules into the fine aggregate Good.

また、必要に応じて行われるコンクリート或いはモルタル用細骨材の粒度分布の調整は、公知の種々の方法を採用することができるが、該調整に用いる細骨材は、高炉スラグ細骨材或いはアルカリシリカ反応性の試験法(JIS A 1145及びJIS A 1146)に基づいてアルカリ骨材反応に関して無害と判定される細骨材(無害細骨材)がよい。即ち、例えば使用する反応性細骨材に粒径0.3mm以下の高炉スラグ粉粒体を所定量混和した後の細骨材の粒度分布を調べるか、事前に求めた該反応性細骨材と該高炉スラグ粉粒体の粒度分布をもとに粒度分布の設計をし、例えばJIS規格粒度分布に適合しない粒度範囲について、別途、粒度調整した高炉スラグ細骨材或いは無害細骨材を適合する量まで加えて調整すればよい。   Moreover, the adjustment of the particle size distribution of the concrete or mortar fine aggregate performed as necessary may employ various known methods. The fine aggregate used for the adjustment may be a blast furnace slag fine aggregate or Fine aggregates (harmless fine aggregates) determined to be harmless with respect to the alkali aggregate reaction based on the alkali silica reactivity test method (JIS A 1145 and JIS A 1146) are preferable. That is, for example, the particle size distribution of the fine aggregate after mixing a predetermined amount of a blast furnace slag powder having a particle size of 0.3 mm or less into the reactive fine aggregate to be used or the reactive fine aggregate obtained in advance is examined. The particle size distribution is designed based on the particle size distribution of the blast furnace slag powder and the blast furnace slag fine aggregate or harmless fine aggregate adjusted separately for the particle size range that does not conform to the JIS standard particle size distribution, for example. Add up to the amount you want to adjust.

また、0.3mm以下の高炉スラグ粉粒体を5〜40重量%含むコンクリート或いはモルタル用細骨材を得るには、予め、別途用意した粒径0.3mm以下のものが50重量%以上含まれている高炉スラグ粉粒体(本発明においては、これを『細骨材混和用高炉スラグ粉粒体』という)を、使用する反応性細骨材に粒径0.3mm以下の高炉スラグ粉粒体が5〜40重量%になるよう所定量混和することにより行ってもよい。前記細骨材混和用高炉スラグ粉粒体中には、0.3mm以下のものが50重量%以上含まれていないと、細骨材混和用高炉スラグ粉粒体として実用に供し難い。残りは0.3mmを超え、5mm以下のものである。また前述の通り、この細骨材混和用高炉スラグ粉粒体中に、粒径0.032〜0.09mmのものを含有させておくことは好ましい。更に、細骨材混和用高炉スラグ粉粒体の粒度分布等の品質を一定範囲のものにしておくことは、実用面からして好ましい。   In addition, in order to obtain a concrete or mortar fine aggregate containing 5 to 40% by weight of blast furnace slag powder particles of 0.3 mm or less, 50% by weight or more of particles prepared in advance with a particle size of 0.3 mm or less is included. The blast furnace slag powder having a particle size of 0.3 mm or less is used as a reactive fine aggregate in which the blast furnace slag powder granular material (in the present invention, this is called “blast furnace slag powder granule for mixing fine aggregate”) is used. You may carry out by mixing predetermined amount so that a granule may be 5 to 40 weight%. If the fine blast furnace slag powder for mixing fine aggregates does not contain 50% by weight or more of 0.3 mm or less, it is difficult to put it into practical use as a fine aggregate mixed blast furnace slag powder. The remainder exceeds 0.3 mm and is 5 mm or less. Further, as described above, it is preferable that the blast furnace slag powder for mixing fine aggregates contains particles having a particle size of 0.032 to 0.09 mm. Furthermore, it is preferable from the practical aspect to keep the quality such as the particle size distribution of the blast furnace slag powder for mixing fine aggregates within a certain range.

このように粒度分布等の品質のわかった細骨材混和用高炉スラグ粉粒体を用いれば、使用する反応性細骨材を本発明のコンクリート或いはモルタル用細骨材に変えたりJIS規格粒度分布に適合するように粒度調整したりし易くなる。また、高炉スラグ粉粒体と共に、アルカリシリカ反応性の試験法(JIS A 1145及びJIS A 1146)に基づいてアルカリ骨材反応に関して無害と判定される無害細骨材、例えば、ケイ石、石灰石などを用いて、反応性細骨材の性状及び粒度分布の調整を行ってもよい。   In this way, if the blast furnace slag granule for mixing fine aggregate with known quality such as particle size distribution is used, the reactive fine aggregate used can be changed to the fine aggregate for concrete or mortar of the present invention, or the JIS standard particle size distribution. It is easy to adjust the particle size so that Further, together with blast furnace slag powder particles, harmless fine aggregates judged to be harmless with respect to alkali aggregate reaction based on alkali silica reactivity test method (JIS A 1145 and JIS A 1146), for example, silica stone, limestone, etc. May be used to adjust the properties and particle size distribution of the reactive fine aggregate.

上記した本発明に係るコンクリート或いはモルタル用細骨材を用いたコンクリートやモルタルの調整は、一般のコンクリート、モルタルと同様に行うことができる。即ち、使用目的に合わせてスランプ、空気量、水セメント比、細骨材率を設定し、該設定値を満たすように所定量のセメント、本発明に係る0.3mm以下の高炉スラグ粉粒体を所定量含む細骨材、粗骨材及び減水剤を混合し、更には必要に応じて分散剤、充填材、消泡剤等の一般的に用いられる混和剤を一般的な量添加し、所定の水セメント比となるように水を加えたものを混練して製造することができる。混合方法、混練方法は特に限定されるものではなく、一般的な方法が何ら問題なく使用できる。混練後のコンクリート又はモルタルは、型枠に充填し、脱型、養生を経る一般的な製法で、コンクリート或いはモルタルの構造物、二次製品等を得ることができる。   Adjustment of concrete or mortar using the above-described concrete according to the present invention or fine aggregate for mortar can be performed in the same manner as general concrete and mortar. That is, slump, air amount, water cement ratio, fine aggregate ratio are set according to the purpose of use, and a predetermined amount of cement to satisfy the set values, blast furnace slag powder granules of 0.3 mm or less according to the present invention Is mixed with fine aggregates, coarse aggregates and water-reducing agents containing a predetermined amount, and if necessary, commonly used admixtures such as dispersants, fillers, antifoaming agents and the like are added, It can be produced by kneading what is added water so as to have a predetermined water cement ratio. The mixing method and kneading method are not particularly limited, and general methods can be used without any problem. Concrete or mortar after kneading can be filled into a mold, demolded and cured by a general manufacturing method to obtain a concrete or mortar structure, a secondary product, or the like.

本発明に係るコンクリート或いはモルタル用細骨材を用いたコンクリートやモルタルの構造物或いは二次製品等は、含有されている所定粒径の高炉スラグ粉粒体の存在により、アルカリ骨材反応が効果的に抑制され、この点で耐久性を維持したものとなる。   The concrete or mortar structure or secondary product using the concrete or mortar fine aggregate according to the present invention has an effect of alkali aggregate reaction due to the presence of the blast furnace slag powder having a predetermined particle size. In this respect, durability is maintained.

以上、本発明に係るコンクリート或いはモルタル用細骨材、コンクリート或いはモルタルのアルカリ骨材反応抑制方法などの実施の形態について説明したが、本発明は、何ら既述の実施の形態に限定されるものではなく、特許請求の範囲に記載した本発明の技術的思想の範囲内において、更に種々の変形、変更を加えたコンクリート或いはモルタル用細骨材、コンクリート或いはモルタルのアルカリ骨材反応抑制方法、コンクリート或いはモルタル用細骨材のアルカリ骨材反応抑制方法及び細骨材混和用高炉スラグ粉粒体とすることができることは当然である。   The embodiments of the present invention, such as concrete or mortar fine aggregate, concrete or mortar alkali aggregate reaction suppression method, etc. have been described above, but the present invention is not limited to the embodiments described above. Rather, within the scope of the technical idea of the present invention described in the claims, concrete or mortar fine aggregate, concrete or mortar alkali aggregate reaction suppression method, concrete, Or it is natural that it can be set as the alkali aggregate reaction suppression method of the fine aggregate for mortar, and the blast furnace slag granular material for fine aggregate mixing.

試験例Test example

次に、参考として本発明を見出した試験例(モデル試験)につき記載する。
なお各試験例は、JIS A 1146に記載された「骨材のアルカリ反応性試験方法(モルタルバー法)」に準拠して行った。
Next, it describes about the test example (model test) which discovered this invention as reference.
Each test example was conducted in accordance with “Aggregate Alkali Reactivity Test Method (Mortar Bar Method)” described in JIS A1146.

−使用材料−
反応性細骨材(陸砂)
ケイ石細骨材
高炉スラグ粉粒体
−粒度調整−
上記各使用材料を、表1に示す粒度分布になるように粉砕、篩い分けを行ない粒度を調整した。なお、粒度は、通常、コンクリート或いはモルタル用細骨材の粒度範囲として定められたものとした。

Figure 2008230882
−モルタルの配合−
・モルタルの配合は、重量比でセメント1,水0.5,細骨材2.25とした。
・1回に練り混ぜるセメント,細骨材,水の量は、次のものとした。
水+NaOH水溶液 : 300ml
セメント : 600g
細骨材(表乾) : 1350g
・NaOH水溶液の量は、セメントの全アルカリがNa2 O換算で1.2%となるように計算して定めた。
−モルタルの練混ぜ,供試体の作成,養生,長さ変化の測定−
モルタルの練混ぜ、供試体の作成、養生、および長さ変化の測定は、JIS A 1146に記載された「骨材のアルカリ反応性試験方法(モルタルバー法)」に準拠して行った。 -Materials used-
Reactive fine aggregate (land sand)
Quartzite Fine Aggregate Blast Furnace Slag Powder-Particle Size Adjustment-
Each of the above materials used was pulverized and sieved so as to have a particle size distribution shown in Table 1 to adjust the particle size. The particle size was usually determined as the particle size range of concrete or mortar fine aggregate.
Figure 2008230882
-Mortar formulation-
-The mortar was blended in a weight ratio of cement 1, water 0.5, and fine aggregate 2.25.
・ The amount of cement, fine aggregate and water to be mixed at one time was as follows.
Water + NaOH aqueous solution: 300 ml
Cement: 600g
Fine aggregate (surface dry): 1350g
The amount of NaOH aqueous solution was determined by calculating so that the total alkali of the cement was 1.2% in terms of Na 2 O.
-Mortar mixing, specimen preparation, curing, length change measurement-
Mixing of mortar, preparation of specimens, curing, and measurement of change in length were performed in accordance with “Aggregate Alkali Reactivity Test Method (Mortar Bar Method)” described in JIS A1146.

〔試験例1〜9〕
高炉スラグ粉粒体のアルカリ骨材反応抑制効果を確認するため、細骨材として、反応性細骨材を100重量%用いたもの、反応性細骨材の一部(25,50,75,100重量%)をケイ石細骨材或いは高炉スラグ粉粒体で置換した細骨材について、それぞれ作成したモルタルの膨張量を測定した。
表2及び表3に各試験例における細骨材の配合割合を記載する。なお、表中、最初の数値が「反応性細骨材」の割合、真中の数値が「ケイ石細骨材」の割合、最後の数値が「高炉スラグ粉粒体」の配合割合をそれぞれ示す。
また、図1に表2に示した配合割合の細骨材をそれぞれ用いたモルタルの膨張量の測定結果を示す。また図2に表3に示した配合割合の細骨材をそれぞれ用いたモルタルの膨張量の測定結果を示す。

Figure 2008230882
Figure 2008230882
[Test Examples 1 to 9]
In order to confirm the alkaline aggregate reaction inhibitory effect of the blast furnace slag granule, 100% by weight of the reactive fine aggregate as a fine aggregate, a part of the reactive fine aggregate (25, 50, 75, 100% by weight) was measured for the amount of expansion of each mortar produced for the fine aggregate in which quartzite fine aggregate or blast furnace slag powder was replaced.
Tables 2 and 3 list the proportions of fine aggregate in each test example. In the table, the first numerical value indicates the ratio of “reactive fine aggregate”, the central numerical value indicates the ratio of “silica fine aggregate”, and the final numerical value indicates the mixing ratio of “blast furnace slag granule”. .
Moreover, the measurement result of the expansion amount of the mortar which each used the fine aggregate of the mixture ratio shown in Table 2 in FIG. 1 is shown. Moreover, the measurement result of the expansion amount of the mortar which each used the fine aggregate of the mixture ratio shown in Table 3 in FIG. 2 is shown.
Figure 2008230882
Figure 2008230882

図1から、反応性細骨材の一部を無害な細骨材であるケイ石細骨材で置換した場合、25重量%、50重量%とケイ石細骨材に置換した方が、6ヵ月の膨張量は反応性細骨材が100重量%の場合に比べて大きいことがわかる。これはアルカリ骨材反応特有のペシマム現象によるものである。75重量%置換した場合でも6ヵ月で0.32%と、『無害』の判断基準0.10%を上回る。
一方、図2から、高炉スラグ粉粒体の場合、置換割合が増加するにつれて、膨張量は確実に減少していることがわかる。50重量%置換した場合で膨張量は半減するが、ペシマム現象を考慮すると希釈効果以上の効果を発揮していることがわかる。そして、75重量%置換した時と反応性細骨材が0重量%の場合には、ほとんど膨張しないことがわかる。 上記の試験結果から、高炉スラグ粉粒体は、単なる希釈効果以上のアルカリ骨材反応による膨張抑制に効果があることがわかった。
From FIG. 1, when a part of reactive fine aggregate is replaced with quartzite fine aggregate, which is harmless fine aggregate, 25% by weight and 50% by weight are replaced with quartzite fine aggregate. It can be seen that the amount of expansion per month is larger than when the reactive fine aggregate is 100% by weight. This is due to a pessimum phenomenon peculiar to the alkali aggregate reaction. Even when 75% by weight is replaced, it is 0.32% in 6 months, exceeding the 0.10% criterion for “no harm”.
On the other hand, it can be seen from FIG. 2 that in the case of the blast furnace slag granular material, the expansion amount surely decreases as the replacement ratio increases. When the amount is 50% by weight, the amount of expansion is halved. However, considering the pessimum phenomenon, it can be seen that the effect more than the dilution effect is exhibited. And when 75 weight% substitution is carried out and when a reactive fine aggregate is 0 weight%, it turns out that it hardly expands. From the above test results, it was found that the blast furnace slag powder was effective in suppressing expansion due to an alkali aggregate reaction more than a simple dilution effect.

〔試験例10〜14〕
高炉スラグ粉粒体のどの粒径のものがアルカリ骨材反応による膨張抑制に大きく寄与しているかを確認するため、反応性細骨材の50重量%をケイ石細骨材で置換したものをベースに、さらに各粒径のケイ石細骨材を高炉スラグ粉粒体で順次置換した配合の細骨材について、それぞれ作成したモルタルの膨張量を測定した。
表4に各試験例における細骨材の配合割合を記載する。
また、図3に表4に示した配合割合の細骨材をそれぞれ用いたモルタルの膨張量の測定結果を示す。

Figure 2008230882
[Test Examples 10 to 14]
In order to confirm which particle size of blast furnace slag granular material greatly contributes to the suppression of expansion by alkali-aggregate reaction, 50% by weight of reactive fine aggregate was replaced with quartzite fine aggregate. Further, the expansion amount of each mortar was measured for fine aggregates in which silica stone fine aggregates of various particle sizes were sequentially replaced with blast furnace slag powder granules.
Table 4 shows the proportions of fine aggregates in each test example.
Moreover, the measurement result of the expansion amount of the mortar which each used the fine aggregate of the mixture ratio shown in Table 4 in FIG. 3 is shown.
Figure 2008230882

〔試験例10,15〜17,7〕
前記試験と同様に、高炉スラグ粉粒体のどの粒径のものがアルカリ骨材反応による膨張抑制に大きく寄与しているかを確認するため、反応性細骨材の50重量%をケイ石細骨材で置換したものをベースに、さらに小粒径のケイ石細骨材のものから順次累積的に高炉スラグ粉粒体で置換した配合の細骨材について、それぞれ作成したモルタルの膨張量を測定した。
表5に各試験例における細骨材の配合割合を記載する。
また、図4に表5に示した配合割合の細骨材をそれぞれ用いたモルタルの膨張量の測定結果を示す。

Figure 2008230882
[Test Examples 10, 15 to 17, 7]
Similar to the above test, in order to confirm which particle size of the blast furnace slag powder particles greatly contributes to the suppression of the expansion by the alkali aggregate reaction, 50% by weight of the reactive fine aggregate is quartzite fine bone. Measure the amount of expansion of the mortar created for each of the fine aggregates that were replaced with the blast furnace slag powder in order from the ones with small particle size quartzite fine aggregates, based on the ones that were replaced with the aggregates. did.
Table 5 lists the proportions of fine aggregate in each test example.
Moreover, the measurement result of the expansion amount of the mortar which each used the fine aggregate of the mixture ratio shown in Table 5 in FIG. 4 is shown.
Figure 2008230882

〔試験例14,18〜20,7〕
前記試験と同様に、高炉スラグ粉粒体のどの粒径のものがアルカリ骨材反応による膨張抑制に大きく寄与しているかを確認するため、反応性細骨材の50重量%をケイ石細骨材で置換したものをベースに、さらに大粒径のケイ石細骨材のものから順次累積的に高炉スラグ粉粒体で置換した配合の細骨材について、それぞれ作成したモルタルの膨張量を測定した。
表6に各試験例における細骨材の配合割合を記載する。
また、図5に表6に示した配合割合の細骨材をそれぞれ用いたモルタルの膨張量の測定結果を示す。

Figure 2008230882
[Test Examples 14, 18 to 20, 7]
Similar to the above test, in order to confirm which particle size of the blast furnace slag powder particles greatly contributes to the suppression of the expansion by the alkali aggregate reaction, 50% by weight of the reactive fine aggregate is quartzite fine bone. Measure the amount of expansion of the mortar created for each of the fine aggregates that were replaced with the blast furnace slag powder in order from the ones with the finer quartzite fine aggregates. did.
Table 6 shows the proportion of fine aggregate in each test example.
Moreover, the measurement result of the expansion amount of the mortar which each used the fine aggregate of the mixture ratio shown in Table 6 in FIG. 5 is shown.
Figure 2008230882

図3から、0.15〜0.3mmの高炉スラグ粉粒体を混和した場合には、顕著なアルカリ骨材反応の抑制効果が認められるが、他の粒径範囲の高炉スラグ粉粒体には、ほとんどアルカリ骨材反応の抑制効果がないことがわかる。
図4から、0.15〜0.3mmの高炉スラグ粉粒体以外の粒径範囲の高炉スラグ粉粒体をいくら混和しても、アルカリ骨材反応の抑制効果は向上しないことがわかる。
図5から、粒径の小さな高炉スラグ粉粒体を混和するほど、アルカリ骨材反応の抑制効果は高まることがわかる。
以上の試験結果から、0.3mm以下の高炉スラグ粉粒体には、顕著なアルカリ骨材反応の抑制効果があるが、0.3mmを超える粒径範囲の高炉スラグ細骨材にはほとんど抑制効果がないことがわかった。このことは、高炉スラグ粒をアルカリ骨材反応の抑制に使用する上で極めて意義のある知見である。
From FIG. 3, when 0.15 to 0.3 mm blast furnace slag granules are mixed, a remarkable effect of suppressing the alkali-aggregate reaction is recognized. It can be seen that there is almost no inhibitory effect on the alkali-aggregate reaction.
From FIG. 4, it can be seen that no matter how much blast furnace slag powder particles having a particle size range other than 0.15 to 0.3 mm are mixed, the effect of suppressing the alkali aggregate reaction is not improved.
FIG. 5 shows that the inhibitory effect of alkali-aggregate reaction increases as the blast furnace slag powder having a smaller particle size is mixed.
From the above test results, blast furnace slag granule of 0.3 mm or less has a remarkable effect of suppressing alkali-aggregate reaction, but almost no suppression of blast furnace slag fine aggregate with a particle size range exceeding 0.3 mm. It turns out that there is no effect. This is a very significant finding in using blast furnace slag grains for suppressing alkali-aggregate reaction.

表2に示した配合割合の細骨材をそれぞれ用いたモルタルの膨張量の測定結果を示したグラフである。It is the graph which showed the measurement result of the expansion amount of the mortar which each used the fine aggregate of the mixture ratio shown in Table 2. FIG. 表3に示した配合割合の細骨材をそれぞれ用いたモルタルの膨張量の測定結果を示したグラフである。It is the graph which showed the measurement result of the expansion amount of the mortar which each used the fine aggregate of the mixture ratio shown in Table 3. FIG. 表4に示した配合割合の細骨材をそれぞれ用いたモルタルの膨張量の測定結果を示したグラフである。It is the graph which showed the measurement result of the expansion amount of the mortar which each used the fine aggregate of the mixture ratio shown in Table 4. 表5に示した配合割合の細骨材をそれぞれ用いたモルタルの膨張量の測定結果を示したグラフである。It is the graph which showed the measurement result of the expansion amount of the mortar which each used the fine aggregate of the mixture ratio shown in Table 5. 表6に示した配合割合の細骨材をそれぞれ用いたモルタルの膨張量の測定結果を示したグラフである。It is the graph which showed the measurement result of the expansion amount of the mortar which each used the fine aggregate of the mixture ratio shown in Table 6. FIG.

Claims (7)

粒径0.3mm以下の高炉スラグ粉粒体を5〜40重量%含み、残りは通常コンクリート或いはモルタルに用いられる細骨材であることを特徴とする、コンクリート或いはモルタル用細骨材。   A fine aggregate for concrete or mortar, characterized in that it contains 5 to 40% by weight of blast furnace slag powder particles having a particle size of 0.3 mm or less, and the rest is fine aggregate generally used for concrete or mortar. 上記高炉スラグ粉粒体と、上記残りの細骨材中にアルカリシリカ反応性の試験法(JIS A 1145及びJIS A 1146)に基づいてアルカリ骨材反応に関して無害でないと判定される細骨材を含むことを特徴とする、請求項1に記載のコンクリート或いはモルタル用細骨材。   Fine aggregate determined to be harmless with respect to the alkali aggregate reaction based on the alkali silica reactivity test method (JIS A 1145 and JIS A 1146) in the blast furnace slag granular material and the remaining fine aggregate. The fine aggregate for concrete or mortar according to claim 1, comprising: 上記請求項1〜2のいずれかに記載のコンクリート或いはモルタル用細骨材を用いることを特徴とする、コンクリート或いはモルタルのアルカリ骨材反応抑制方法。   A method for inhibiting alkali aggregate reaction of concrete or mortar, wherein the concrete or mortar fine aggregate according to any one of claims 1 to 2 is used. アルカリシリカ反応性の試験法(JIS A 1145及びJIS A 1146)に基づいてアルカリ骨材反応に関して無害でないと判定される細骨材を含むコンクリート或いはモルタル用細骨材がアルカリ骨材反応を引き起こすことを抑制するアルカリ骨材反応抑制方法であって、該細骨材中に細骨材混和用高炉スラグ粉粒体を混和してアルカリ骨材反応を抑制した細骨材とすることを特徴とする、コンクリート或いはモルタル用細骨材のアルカリ骨材反応抑制方法。   Concrete or mortar fine aggregates that are determined to be non-hazardous with respect to alkali-aggregate reaction based on alkali silica reactivity test methods (JIS A 1145 and JIS A 1146) cause alkali-aggregate reaction A method for suppressing alkali-aggregate reaction that suppresses alkali-aggregate reaction by mixing blast furnace slag powder for mixing fine aggregate into the fine aggregate. , Method for suppressing alkali aggregate reaction of fine aggregate for concrete or mortar. 上記細骨材混和用高炉スラグ粉粒体中には粒径0.3mm以下のものが50重量%以上含まれていることを特徴とする、請求項4に記載のコンクリート或いはモルタル用細骨材のアルカリ骨材反応抑制方法。   5. The fine aggregate for concrete or mortar according to claim 4, wherein the blast furnace slag powder for mixing fine aggregate contains 50 wt% or more of particles having a particle size of 0.3 mm or less. Of suppressing alkali-aggregate reaction. 上記細骨材混和用高炉スラグ粉粒体と共に、アルカリシリカ反応性の試験法(JIS
A 1145及びJIS A 1146)に基づいてアルカリ骨材反応に関して無害と判定される細骨材を混和することを特徴とする、請求項4又は5に記載のコンクリート或いはモルタル用細骨材のアルカリ骨材反応抑制方法。
Together with the above-mentioned fine aggregate blast furnace slag powder, alkali silica reactivity test method (JIS
A fine aggregate determined to be harmless with respect to the alkali aggregate reaction based on A 1145 and JIS A 1146) is mixed, and the alkali bone of the fine aggregate for concrete or mortar according to claim 4 or 5 Material reaction suppression method.
上記請求項4〜6のいずれかに記載のコンクリート或いはモルタル用細骨材のアルカリ骨材反応抑制方法に使用される細骨材混和用高炉スラグ粉粒体。   A blast furnace slag powder for mixing fine aggregates, which is used in the method for suppressing alkali aggregate reaction of concrete or mortar fine aggregates according to any one of claims 4 to 6.
JP2007071395A 2007-03-19 2007-03-19 Method for suppressing alkali-aggregate reaction in concrete or mortar Active JP5484655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007071395A JP5484655B2 (en) 2007-03-19 2007-03-19 Method for suppressing alkali-aggregate reaction in concrete or mortar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007071395A JP5484655B2 (en) 2007-03-19 2007-03-19 Method for suppressing alkali-aggregate reaction in concrete or mortar

Publications (2)

Publication Number Publication Date
JP2008230882A true JP2008230882A (en) 2008-10-02
JP5484655B2 JP5484655B2 (en) 2014-05-07

Family

ID=39904133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007071395A Active JP5484655B2 (en) 2007-03-19 2007-03-19 Method for suppressing alkali-aggregate reaction in concrete or mortar

Country Status (1)

Country Link
JP (1) JP5484655B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018251789A1 (en) 2018-12-28 2020-07-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Test method for determining the hazard potential for alkali-silica reaction in mineral building materials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04260645A (en) * 1991-02-12 1992-09-16 Nkk Corp Production of hydraulic composition and cured product
JP2002087857A (en) * 2000-09-18 2002-03-27 Takenaka Komuten Co Ltd Production process of recycled aggregate
JP2002362960A (en) * 2001-06-08 2002-12-18 Taiheiyo Cement Corp Concrete composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04260645A (en) * 1991-02-12 1992-09-16 Nkk Corp Production of hydraulic composition and cured product
JP2002087857A (en) * 2000-09-18 2002-03-27 Takenaka Komuten Co Ltd Production process of recycled aggregate
JP2002362960A (en) * 2001-06-08 2002-12-18 Taiheiyo Cement Corp Concrete composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012050054; 岡田研介: '高炉スラグの諸性質がアルカリ骨材反応抑制に及ぼす影響' セメント技術年報 40 , 198612, 332-335, 社団法人セメント協会 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018251789A1 (en) 2018-12-28 2020-07-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Test method for determining the hazard potential for alkali-silica reaction in mineral building materials
WO2020136152A1 (en) 2018-12-28 2020-07-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Test method for determining the risk potential for an alkali-silica reaction in mineral construction materials

Also Published As

Publication number Publication date
JP5484655B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
JP5453440B2 (en) Pozzolanic cement blend with high early strength development
Sua-iam et al. Incorporation of high-volume fly ash waste and high-volume recycled alumina waste in the production of self-consolidating concrete
Almuwbber et al. The influence of variation in cement characteristics on workability and strength of SCC with fly ash and slag additions
CN106587843A (en) High-strength highly-permeable inorganic concrete and preparation method thereof
Chen et al. Packing optimization of paste and aggregate phases for sustainability and performance improvement of concrete
WO2009142029A1 (en) Heavy aggregates and heavy concrete
JP2018100204A (en) Method of producing cement composition
JP2011132111A (en) Hydraulic composition
JP2009173498A (en) Hydraulic composition and hardened body
JP7369849B2 (en) cement composition
JP5484655B2 (en) Method for suppressing alkali-aggregate reaction in concrete or mortar
CN113321457B (en) Method for preparing ultra-high performance concrete by doping oyster shell powder and metakaolin
CN115432951A (en) Preparation method of mineral admixture for commercial concrete
JP2020001954A (en) Cement composition
JP3970616B2 (en) High performance concrete
JP2009161385A (en) Crushed shell material for concrete admixture and concrete containing the same
JP2010120798A (en) Cement composition
JP2004299912A (en) Concrete for port and method for producing the same
JP4979365B2 (en) Concrete using concrete admixture
JP2011020883A (en) Autoclaved lightweight cellular concrete and method for producing the same
JP6207992B2 (en) Cement admixture and cement composition-hardened cement using the same
JP2003146732A (en) Method of producing slag hardened body
JP5582901B2 (en) Method for producing finely divided cement and method for producing cement composition
JP7185508B2 (en) cement composition
JP5605235B2 (en) Concrete composition and concrete molded article using the composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140219

R150 Certificate of patent or registration of utility model

Ref document number: 5484655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250