JP2009173498A - Hydraulic composition and hardened body - Google Patents

Hydraulic composition and hardened body Download PDF

Info

Publication number
JP2009173498A
JP2009173498A JP2008015613A JP2008015613A JP2009173498A JP 2009173498 A JP2009173498 A JP 2009173498A JP 2008015613 A JP2008015613 A JP 2008015613A JP 2008015613 A JP2008015613 A JP 2008015613A JP 2009173498 A JP2009173498 A JP 2009173498A
Authority
JP
Japan
Prior art keywords
siliceous shale
powder
hydraulic composition
strength
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008015613A
Other languages
Japanese (ja)
Inventor
Shinkichi Tanabe
進吉 田辺
Norimasa Nishijima
規允 西島
Norio Iyoda
紀夫 伊興田
Masahiro Hachiman
正弘 八幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Prefecture
Taiheiyo Cement Corp
Original Assignee
Hokkaido Prefecture
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Prefecture, Taiheiyo Cement Corp filed Critical Hokkaido Prefecture
Priority to JP2008015613A priority Critical patent/JP2009173498A/en
Publication of JP2009173498A publication Critical patent/JP2009173498A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively utilize the fine powder of a siliceous shale which has not been particularly effectively used, and also to provide a hydraulic composition obtaining a hardened body excellent in strength developability and stable in characteristics. <P>SOLUTION: The hydraulic composition is obtained by mixing 1 to 20 mass pts. of the fine powder of siliceous shale with the average particle diameter of 0.5 to 20.0 μm and a BET specific surface area of ≥60 m<SP>2</SP>/g into 100 pts.mass of cement. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、珪質頁岩の微粉末を用いた水硬性組成物及び該水硬性組成物の硬化体に関するものである。   The present invention relates to a hydraulic composition using fine powder of siliceous shale and a cured body of the hydraulic composition.

従来、セメント混和材として、ポゾラン活性を有するアッシュ類、例えばパルプスラッジ焼却灰、フライアッシュなどのアッシュ類をスラリー状の超微粉としたセメント混和材が提案されている(特許文献1参照)。こうしたアッシュ類は、セメント混和材として混合が容易であると共に、強度を向上させる効果がある。
また、セメントに、シリカフューム、シリカダストなどのポゾラン質微粉末を添加し、強度を改善した水硬性組成物が提案されている(特許文献2参照)。この方法によれば、セメント、ポゾラン質微粉末、細骨材、水を含有する組成物を加圧振動成形することにより、高強度の硬化体が作製できる。
Conventionally, as a cement admixture, a cement admixture in which ashes having pozzolanic activity, for example, ashes such as pulp sludge incineration ash and fly ash, are used as a slurry ultrafine powder has been proposed (see Patent Document 1). Such ashes are easy to mix as cement admixtures and have the effect of improving strength.
Moreover, the hydraulic composition which added pozzolanic fine powders, such as a silica fume and a silica dust, to cement, and improved the intensity | strength is proposed (refer patent document 2). According to this method, a high-strength cured body can be produced by pressure vibration molding of a composition containing cement, pozzolanic fine powder, fine aggregate, and water.

特開2002−321952号1公報JP 2002-321852 A1 特開2004−339043号公報JP 2004-339043 A

しかしながら、上記特許文献1に開示されたような、パルプスラッジ焼却灰、フライアッシュなどのアッシュ類をセメント混和材として用いた技術にあっては、アッシュ類は特性のバラツキが大きく、その強度改善と特性の安定性の点では、必ずしも満足のいくものではなかった。
また、上記特許文献2に開示された、セメントにシリカフュームなどのポゾラン質微粉末を添加する技術にあっては、シリカフュームはその大半が海外からの輸入品であり、高価であると共に、化学組成や分散性の点で、安定した品質のものを確保しにくいという課題があった。
However, in the technique using ashes such as pulp sludge incinerated ash and fly ash as cement admixture as disclosed in the above-mentioned Patent Document 1, ashes have a large variation in characteristics, and their strength is improved. In terms of stability of characteristics, it was not always satisfactory.
In addition, in the technology disclosed in the above-mentioned Patent Document 2 in which pozzolanic fine powder such as silica fume is added to cement, most of the silica fume is imported from overseas and is expensive and has a chemical composition and In terms of dispersibility, there was a problem that it was difficult to ensure a stable quality.

一方、珪質頁岩は、珪藻プランクトンの遺骸が堆積して形成された珪藻土が地圧と地熱の影響による地質的変化を受けてできた頁岩状の岩石であり、多孔質構造をもち比表面積と細孔容量が一般珪藻土と比較して非常に大きい(3倍以上)ことから、高い調湿機能を有し、床下や室内壁面などの調湿材及び塩基性ガスの吸着消臭材として広く用いられている。この珪質頁岩の採掘の際には、調湿剤に使用される粗粒分とともに微粉末も発生するが、微粉末については有効な活用手段がなかった。このため、従来は、粗粒分に微粉末を混ぜて消費される場合が多く見られた。   Siliceous shale, on the other hand, is a shale-like rock made of diatomaceous earth formed by the accumulation of diatom plankton remains, and has undergone geological changes due to the effects of earth pressure and geothermal heat. Since the pore volume is very large (more than 3 times) compared to general diatomaceous earth, it has a high humidity control function and is widely used as a humidity control material for underfloor and indoor walls, and as a basic gas adsorption deodorant. It has been. When this siliceous shale is mined, fine powder is generated together with the coarse particles used in the humidity control agent, but there was no effective means for utilizing the fine powder. For this reason, in the past, there were many cases where fine particles were mixed with coarse particles and consumed.

本発明は、上述した背景技術が有する実状に鑑みてなされたものであって、その目的は、特に有効な用途がなかった珪質頁岩の微粉末の有効利用を図ると共に、強度発現性に優れ、特性の安定した硬化体が得られる水硬性組成物及び該水硬性組成物の硬化体を提供することにある。   The present invention has been made in view of the actual state of the background art described above, and its purpose is to achieve effective utilization of fine powder of siliceous shale, which has no particularly effective use, and is excellent in strength development. Another object of the present invention is to provide a hydraulic composition capable of obtaining a cured product having stable characteristics and a cured product of the hydraulic composition.

本発明者等は、上記した課題を解決すべく鋭意研究を重ねた結果、セメントに対して所定量の珪質頁岩の微粉末を添加混合した場合、アッシュ類を用いた場合に比して特性のバラツキが少なく、しかも高価なシリカフュームを用いた場合と遜色のない強度発現性を示す水硬性組成物が得られることを見出し、本発明を完成した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have added and mixed a predetermined amount of fine powder of siliceous shale to the cement, compared with the case of using ashes. As a result, it was found that a hydraulic composition exhibiting strength development comparable to that obtained when an expensive silica fume was used was obtained, and the present invention was completed.

すなわち本発明は、次の[1]〜[6]の水硬性組成物及び硬化体を提供するものである。
[1]セメント100質量部に対し、珪質頁岩の微粉末を1〜20質量部混合してなることを特徴とする、水硬性組成物。
[2]上記珪質頁岩の微粉末が、平均粒径0.5〜20.0μmであることを特徴とする、上記[1]に記載の水硬性組成物。
[3]上記珪質頁岩の微粉末が、BET比表面積60m2/g以上であることを特徴とする、上記[1]に記載の水硬性組成物。
[4]上記珪質頁岩の微粉末が、ポゾラン反応性迅速判定法(API法)によるAPI値が40〜80%の範囲であることを特徴とする、上記[1]に記載の水硬性組成物。
[5]上記珪質頁岩が、稚内層珪質頁岩であることを特徴とする、上記[1]〜[4]のいずれかに記載の水硬性組成物。
[6]上記[1]〜[5]のいずれかに記載の水硬性組成物を用いて得られた硬化体。
That is, the present invention provides the following hydraulic compositions and cured bodies [1] to [6].
[1] A hydraulic composition comprising 1 to 20 parts by mass of fine siliceous shale powder with respect to 100 parts by mass of cement.
[2] The hydraulic composition according to [1], wherein the fine powder of the siliceous shale has an average particle size of 0.5 to 20.0 μm.
[3] The hydraulic composition as described in [1] above, wherein the fine powder of siliceous shale has a BET specific surface area of 60 m 2 / g or more.
[4] The hydraulic composition according to the above [1], wherein the fine powder of siliceous shale has an API value in the range of 40 to 80% according to a pozzolanic reactive rapid judgment method (API method). object.
[5] The hydraulic composition as described in any one of [1] to [4] above, wherein the siliceous shale is Wakkanai layer siliceous shale.
[6] A cured product obtained using the hydraulic composition according to any one of [1] to [5].

上記した本発明によれば、特に有効な用途がなかった珪質頁岩の微粉末の有効利用を図ることができる。すなわち、該珪質頁岩の微粉末を配合した水硬性組成物は、アッシュ類の場合のような特性のバラツキが少なく、強度発現性に優れ、また安定した特性の硬化体が得られる。また珪質頁岩の微粉末は、シリカフュームより安定的に供給でき安価であり、かつ本発明の珪質頁岩の微粉末を添加した水硬性組成物は、シリカフュームを添加したものと同等以上の強度発現性を示す。   According to the present invention described above, it is possible to effectively utilize the fine powder of siliceous shale, which has no particularly effective use. That is, the hydraulic composition containing the fine powder of siliceous shale has little variation in characteristics as in the case of ashes, has excellent strength development, and provides a cured product having stable characteristics. In addition, the fine powder of siliceous shale can be supplied more stably than silica fume and is inexpensive, and the hydraulic composition to which the fine powder of siliceous shale of the present invention is added exhibits strength equal to or higher than that to which silica fume is added. Showing gender.

以下、上記した本発明に係る水硬性組成物及び該水硬性組成物の硬化体を、詳細に説明する。   Hereinafter, the hydraulic composition according to the present invention and the cured body of the hydraulic composition will be described in detail.

本発明で使用するセメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメントなどの各種ポルトランドセメントが挙げられる。
これらのセメントのブレーン比表面積は、2500〜5000cm2/gが好ましく、3000〜4500cm2/gがより好ましい。該値が2500cm2/g未満であると、水和反応が不活発になって、硬化後の強度や耐久性が低下するなどの欠点がある。逆に該値が5000cm2/gを超えると、セメントの粉砕に時間がかかり、また、水量が多くなるため、硬化後の強度や耐久性が低下するなどの欠点がある。
Examples of the cement used in the present invention include various Portland cements such as ordinary Portland cement, early-strength Portland cement, medium heat Portland cement, and low heat Portland cement.
Blaine specific surface area of these cements is preferably 2500~5000cm 2 / g, 3000~4500cm 2 / g is more preferable. If the value is less than 2500 cm 2 / g, the hydration reaction becomes inactive, and there are disadvantages such as reduced strength and durability after curing. On the other hand, if the value exceeds 5000 cm 2 / g, it takes time to grind the cement, and the amount of water increases, so that there are disadvantages such as reduced strength and durability after curing.

本発明においては、上記セメント100質量部に対し、珪質頁岩の微粉末を1〜20質量部、好ましくは5〜15質量部混合する。珪質頁岩の配合量が1質量部に満たない場合には、廃棄物の有効利用、また、硬化体の強度向上などの初期の目的を達成できない。一方、珪質頁岩の配合量が20質量部を超える場合には、水硬性組成物の充填率が低下するので、硬化後の強度や耐久性が低下するなどの欠点がある。   In the present invention, 1 to 20 parts by mass, preferably 5 to 15 parts by mass of fine siliceous shale powder is mixed with 100 parts by mass of the cement. When the amount of siliceous shale is less than 1 part by mass, the initial purpose such as effective use of waste and improvement of strength of the cured product cannot be achieved. On the other hand, when the compounding amount of siliceous shale exceeds 20 parts by mass, the filling rate of the hydraulic composition is lowered, so that there are disadvantages such as reduced strength and durability after curing.

本発明においてセメントに混合する上記珪質頁岩の微粉末は、平均粒径が0.5〜20.0μmであることが好ましく、更には0.5〜10.0μmであることが好ましく、特には0.5〜5.0μmであることが好ましい。該値が20.0μmを超える場合には、珪質頁岩の反応性が低下して強度発現の効果が得にくくなると共に、アルカリシリカ反応が発生し、硬化体が膨張、破壊するおそれがある。該値が小さいほど反応性が上昇して高い強度発現が得られるが、0.5μmに満たない場合には、水量が多くなるため、硬化後の強度や耐久性が低下するなどの欠点がある。なお、本明細書においていう上記平均粒径は、レーザー回折散乱式粒度分布測定装置で測定した50%累積体積の粒径をいう。また、上記粒径への珪質頁岩の調整は、特に限定されるものではなく、必要に応じてジェットミル、クロスビーターミル、ボールミルなどの超微粉砕機を用いて通常の粉砕により行えばよい。   In the present invention, the fine powder of the siliceous shale to be mixed with the cement preferably has an average particle size of 0.5 to 20.0 μm, more preferably 0.5 to 10.0 μm, particularly It is preferable that it is 0.5-5.0 micrometers. When the value exceeds 20.0 μm, the reactivity of siliceous shale is lowered and it becomes difficult to obtain the effect of strength development, and an alkali silica reaction occurs, and the cured product may expand and break. The smaller the value, the higher the reactivity and the higher the expression of strength. However, when the value is less than 0.5 μm, the amount of water increases, and thus there is a drawback that the strength and durability after curing are reduced. . In addition, the said average particle diameter as used in this specification means the particle diameter of a 50% cumulative volume measured with the laser diffraction scattering type particle size distribution measuring apparatus. Further, the adjustment of the siliceous shale to the above particle diameter is not particularly limited, and may be carried out by ordinary pulverization using an ultrafine pulverizer such as a jet mill, a cross beater mill, a ball mill, etc., if necessary. .

また、上記セメントに混合する珪質頁岩の微粉末は、BET比表面積が60m2/g以上であることが好ましく、更には80m2/g以上であることが好ましく、特には100m2/g以上であることが好ましい。該値が60m2/gに満たない場合には、強度発現の効果が得にくいために好ましくない。 The fine powder of siliceous shale to be mixed with the cement preferably has a BET specific surface area of 60 m 2 / g or more, more preferably 80 m 2 / g or more, and particularly 100 m 2 / g or more. It is preferable that When the value is less than 60 m 2 / g, it is not preferable because the effect of strength development is difficult to obtain.

また、上記セメントに混合する珪質頁岩の微粉末は、SiO2含有率が65質量%以上であることが好ましい。SiO2含有率が65質量%に満たない珪質頁岩である場合には、やはり強度発現の効果が得にくいため好ましくない。 Further, the fine powder of siliceous shale mixed with the cement preferably has a SiO 2 content of 65% by mass or more. A siliceous shale having a SiO 2 content of less than 65% by mass is not preferable because it is difficult to obtain the effect of strength.

また、本発明において、上記セメントに混合する珪質頁岩の微粉末は、構成鉱物としてオパールCTを含むことが好ましく、さらには、Cu−Kα線による粉末X線回折において、石英の2θ=26.6degのピーク頂部の回折強度に対するオパールCTの2θ=21.5〜21.9degの回折強度が、石英を1とした場合の比率が0.2〜2.0の範囲であることが好ましく、更には0.4〜1.8の範囲であることが好ましく、特には0.5〜1.5の範囲であることが好ましい。該値が0.2に満たない場合には、反応性に富むオパールCTの量が少なく、強度発現の効果が得にくいため好ましくない。逆に該値が2.0を超えるものである場合には、オパールCTの量が石英よりはるかに多くなり、このような珪質頁岩は資源的に少く、経済性が乏しくなる。   In the present invention, the fine powder of siliceous shale mixed with the cement preferably contains opal CT as a constituent mineral. Further, in powder X-ray diffraction by Cu-Kα rays, 2θ = 26. It is preferable that the diffraction intensity of 2θ = 21.5 to 21.9 deg of opal CT with respect to the diffraction intensity at the peak top of 6 deg is in the range of 0.2 to 2.0 when quartz is 1. Is preferably in the range of 0.4 to 1.8, and particularly preferably in the range of 0.5 to 1.5. If the value is less than 0.2, the amount of opal CT rich in reactivity is small, and it is difficult to obtain the effect of strength development. On the other hand, when the value exceeds 2.0, the amount of opal CT is much larger than that of quartz, and such siliceous shale is less resource and less economical.

また、上記珪質頁岩のCu−Kα線による粉末X線回折において、オパールCTの2θ=21.5〜21.9degのピークの半値幅は0.5〜3.5°の範囲が好ましく、より好ましくは1.0〜3.0°である。該値が0.5°未満であると、オパールCTの結晶の結合力が増大し、反応性が低下するため好ましくない。逆に該値が3.5°を超える場合には、オパールCTの結晶子の成長が未発達であり、高い比表面積が得られず、やはり反応性が低下するため好ましくない。一方、該値が1.0〜3.0°の範囲であると、高い比表面積となる傾向があり、反応性が高くなるため、強度発現に効果があるので特に好ましい。   Moreover, in the powder X-ray diffraction by the Cu-Kα ray of the siliceous shale, the half width of the peak of 2θ = 21.5 to 21.9 deg of the opal CT is preferably in the range of 0.5 to 3.5 °, more Preferably it is 1.0-3.0 degrees. If the value is less than 0.5 °, the bonding strength of the opal CT crystals increases and the reactivity decreases, which is not preferable. Conversely, when the value exceeds 3.5 °, the growth of crystallites of opal CT is undeveloped, a high specific surface area cannot be obtained, and the reactivity is lowered, which is not preferable. On the other hand, when the value is in the range of 1.0 to 3.0 °, there is a tendency to have a high specific surface area, and the reactivity is increased.

また、本発明において、上記セメントに混合する珪質頁岩の微粉末は、20質量%水酸化ナトリウムに対する溶解率が30質量%以上であることが好ましく、より好ましくは35質量%以上70質量%以下である。該値が30質量%に満たないものである場合には、ポゾラン反応性が低下し、強度発現が得にくいため好ましくない。   In the present invention, the fine powder of siliceous shale to be mixed with the cement preferably has a solubility with respect to 20% by mass of sodium hydroxide of 30% by mass or more, more preferably 35% by mass to 70% by mass. It is. When the value is less than 30% by mass, the pozzolanic reactivity is lowered, and it is difficult to obtain strength, which is not preferable.

本発明において用いる珪質頁岩の微粉末が、高いポゾラン反応性を有する理由は定かではないが、大きな比表面積がポゾラン反応性を促進していると推察される。
フライアッシュなどのポゾラン反応性を迅速に判定する方法としてAPI法が提案されている。これは、普通ポルトランドセメントとフライアッシュを純水に混合した懸濁液を反応させ、Ca2+イオン消費率API(Assessed Pozzolanic-activity Index)を以下の式により算出する方法である。

API(%)=(([Ca(C)]−[Ca(F+C)])/[Ca(c)])×100
[Ca(c)]:標準試料のCa2+濃度 (mg/L)
[Ca(F+C)]:評価試料のCa2+濃度(mg/L)

上記式を用いて珪質頁岩のAPI値を求めた場合、本発明において使用する珪質頁岩の微粉末は、該値が40〜80%の範囲であることが好ましい。該値が40%未満である場合には、強度発現の効果が得にくいため好ましくない。逆に該値が80%を超える珪質頁岩は資源的に少なく、経済性に乏しくなる。
さらにこれら珪質頁岩には、北海道北部に産出する、稚内層珪質頁岩がより好ましく使用できる。稚内層珪質頁岩は、粉砕性及びアルカリ可溶性に優れており、本発明の上記した粒度範囲と反応性を得るために特に好ましい。
The reason why the fine powder of siliceous shale used in the present invention has high pozzolanic reactivity is not clear, but it is presumed that a large specific surface area promotes pozzolanic reactivity.
An API method has been proposed as a method for rapidly determining pozzolanic reactivity such as fly ash. This is a method of reacting a suspension obtained by mixing ordinary Portland cement and fly ash in pure water, and calculating the Ca 2+ ion consumption rate API (Assessed Pozzolanic-activity Index) by the following formula.

API (%) = (([Ca (C)] − [Ca (F + C)]) / [Ca (c)]) × 100
[Ca (c)]: Ca 2+ concentration of standard sample (mg / L)
[Ca (F + C)]: Ca 2+ concentration (mg / L) of the evaluation sample

When the API value of siliceous shale is obtained using the above formula, the value of the fine powder of siliceous shale used in the present invention is preferably in the range of 40 to 80%. When the value is less than 40%, it is difficult to obtain an effect of strength development, which is not preferable. Conversely, siliceous shale with a value exceeding 80% is scarce in resources and poor in economic efficiency.
Furthermore, Wakkanai siliceous shale produced in the northern part of Hokkaido can be more preferably used as these siliceous shale. Wakkanai siliceous shale is excellent in grindability and alkali solubility, and is particularly preferable for obtaining the above-mentioned particle size range and reactivity of the present invention.

本発明に係る上記セメントと珪質頁岩の微粉末とからなる水硬性組成物には、細骨材をさらに混合することができる。細骨材としては、川砂、陸砂、海砂、砕砂、珪砂など又はこれらの混合物を使用することができる。
細骨材の配合量は、硬化後の強度や耐久性の観点から、セメント100質量部に対し、50〜400質量部が好ましい。
Fine aggregate can be further mixed in the hydraulic composition comprising the cement according to the present invention and fine powder of siliceous shale. As the fine aggregate, river sand, land sand, sea sand, crushed sand, silica sand and the like or a mixture thereof can be used.
The blending amount of the fine aggregate is preferably 50 to 400 parts by mass with respect to 100 parts by mass of cement from the viewpoint of strength after hardening and durability.

また、水量は、セメント100質量部に対し、20〜60質量部が好ましい。水量が20質量部未満では、混練が困難になると共に、水硬性組成物の充填率が低下して強度や耐久性が低下するなどの欠点がある。逆に水量が60質量部を超えると、硬化後の強度や耐久性が低下するなどの欠点がある。   Moreover, 20-60 mass parts is preferable with respect to 100 mass parts of cements. If the amount of water is less than 20 parts by mass, kneading becomes difficult, and the filling rate of the hydraulic composition is reduced, resulting in a decrease in strength and durability. On the other hand, when the amount of water exceeds 60 parts by mass, there are disadvantages such as reduced strength and durability after curing.

本発明においては、水硬性組成物の充填率、強度や耐久性をさらに向上させる観点から、水硬性組成物に上記セメントより大きなプレーン比表面積を有する無機粒子をさらに混合してもよく、これも本発明に包含される。
上記無機粒子としては、スラグ、石灰石粉末、長石類、ムライト類、アルミナ粉末、炭化物粉末、窒化物粉末などが挙げられる。
また、シリカフューム、フライアッシュと併用することは問題ない。資源の枯渇の観点からは、これらポゾラン物質を原料して、資源活用の観点から本発明を併用することはより好ましい。
In the present invention, from the viewpoint of further improving the filling rate, strength and durability of the hydraulic composition, the hydraulic composition may be further mixed with inorganic particles having a plain specific surface area larger than that of the cement. Included in the present invention.
Examples of the inorganic particles include slag, limestone powder, feldspar, mullite, alumina powder, carbide powder, and nitride powder.
Moreover, there is no problem in using together with silica fume and fly ash. From the viewpoint of depletion of resources, it is more preferable to use these pozzolanic materials as raw materials and use the present invention in combination from the viewpoint of resource utilization.

本発明の水硬性組成物の混練方法は、特に限定されるものではなく、例えば、各材料を一括してミキサに投入して混練する方法、水以外の材料をミキサに投入して空練りした後、水を投入して混練する方法などで行うことができる。また、混練に用いるミキサも、通常のモルタル又はコンクリートの混練に用いられるどのタイプのものでもよく、例えば、揺動型ミキサ、パンタイプミキサ、二軸練りミキサなどが用いられる。また、成形方法も特に限定されず、例えば、所定の型枠に混練物を投入して振動成形などを行えばよい。また、養生条件も特に限定するものではなく、例えば、気中養生、蒸気養生などを行えばよい。   The kneading method of the hydraulic composition of the present invention is not particularly limited, for example, a method in which each material is put into a mixer in a lump and kneaded, materials other than water are put in a mixer and kneaded empty. Thereafter, water can be added and kneaded. The mixer used for kneading may be of any type used for kneading ordinary mortar or concrete. For example, an oscillating mixer, a pan type mixer, a biaxial kneading mixer, or the like is used. Also, the molding method is not particularly limited, and for example, the kneaded material may be put into a predetermined mold and vibration molding may be performed. Further, the curing conditions are not particularly limited, and for example, air curing, steam curing or the like may be performed.

本発明の水硬性組成物により得られる硬化体は、安定した強度特性を有するものとなり、インターロッキングブロック等のブロック類、平板、グレーチング、組立土止め、U形、L形、無筋・RC管、卵形管、マンホール、下水ます、トラフ、まくらぎ等に好適に使用することができる。   The cured product obtained by the hydraulic composition of the present invention has stable strength characteristics, such as blocks such as interlocking blocks, flat plates, gratings, assembled soil stoppers, U-shapes, L-shapes, non-muscle / RC tubes It can be suitably used for oval tubes, manholes, sewage troughs, troughs, sleepers and the like.

試験例Test example

以下、本発明を見出した試験例を記載するが、本発明は、何らこれらの試験例によって限定されるものではない。   Hereinafter, although the test example which discovered this invention is described, this invention is not limited by these test examples at all.

[1.使用材料]
以下に示す材料を使用した。
(1)セメント;普通ポルトランドセメント(太平洋セメント株式会社製、ブレーン比表面積3,500cm2/g)
(2)珪質頁岩;北海道北部地域産の稚内層珪質頁岩
(3)シリカフューム;中国産(平均粒径0.4μm)
(4)フライアッシュ;オーストラリア産(平均粒径20μm)
(5)砂;標準砂(JIS R 5201 規定品)
(6)水;水道水
[1. Materials used]
The following materials were used.
(1) Cement: Ordinary Portland cement (manufactured by Taiheiyo Cement Co., Ltd., Blaine specific surface area 3,500 cm 2 / g)
(2) Silica shale; Wakkanai siliceous shale from northern Hokkaido (3) Silica fume; Chinese (average particle size 0.4μm)
(4) Fly ash; Australian (average particle size 20 μm)
(5) Sand; Standard sand (JIS R 5201 specified product)
(6) Water; tap water

[2.珪質頁岩のX線回折及び粉末の調整]
材料として使用した北海道北部地域産の稚内層珪質頁岩について、Cu−Kα線による粉末X線の回折強度、オパールCTの半値幅を、粉末X線回折装置(株式会社リガク製、RINT2000)を用いて測定した。回折強度を図1に、半値幅を図2にそれぞれ示す。使用した北海道北部地域産の稚内層珪質頁岩は、石英の2θ=26.6degのピーク頂部の回折強度に対するオパールCTの2θ=21.5〜21.9degのピーク頂部の回折強度は、1:0.68であった。また、オパールCTの半値幅は、1.4°であった。
上記北海道北部地域産の稚内層珪質頁岩を、粉砕機及び粉砕条件を種々変え、粒径の異なる5種類の珪質頁岩粉末A〜Eに調整した。
珪質頁岩粉末A,B及びDは、北海道北部地域産の稚内層珪質頁岩をジェットミル(株式会社セイシン企業製、シングルトラック・ジェットミルSTJ−200)で粉砕した。珪質頁岩粉末Aの粉砕条件は5kg/h(1時間あたり5kgの粉砕量)、珪質頁岩粉末Bの粉砕条件は14kg/h、珪質頁岩粉末Dの粉砕条件は0.5kg/hとした。また、珪質頁岩粉末C及びEは、北海道北部地域産の稚内層珪質頁岩をクロスビーターミル(株式会社レッチェ社製、FCP80−2)で粉砕した。珪質頁岩粉末C及びEは、1.0mmスクリーンの条件で粉砕し、100μm篩下品を珪質頁岩粉末C、150μm篩上品を珪質頁岩粉末Eとした。
[2. Preparation of X-ray diffraction and powder of siliceous shale]
Using the powder X-ray diffractometer (RINT2000, Rigaku Co., Ltd.) for the diffraction intensity of powder X-rays by Cu-Kα rays and the half-value width of opal CT for Wakkanai layer siliceous shale from northern Hokkaido used as a material Measured. The diffraction intensity is shown in FIG. 1, and the half width is shown in FIG. The Wakkanai layer siliceous shale from the northern Hokkaido region used has a peak intensity of 2θ = 21.5 to 21.9 deg of opal CT with respect to the diffraction intensity of 2θ = 26.6 deg of quartz. It was 0.68. The half width of the opal CT was 1.4 °.
The Wakkanai layer siliceous shale produced in the northern Hokkaido region was adjusted to five types of siliceous shale powders A to E having different particle sizes by changing the grinding machine and grinding conditions.
The siliceous shale powders A, B, and D were obtained by pulverizing Wakkanai-layer siliceous shale from the northern Hokkaido region with a jet mill (manufactured by Seishin Enterprise Co., Ltd., single-track jet mill STJ-200). The grinding condition of the siliceous shale powder A is 5 kg / h (amount of grinding of 5 kg per hour), the grinding condition of the siliceous shale powder B is 14 kg / h, and the grinding condition of the siliceous shale powder D is 0.5 kg / h. did. Moreover, the siliceous shale powders C and E were obtained by pulverizing Wakkanai-layer siliceous shale from the northern Hokkaido region with a cross beater mill (manufactured by Lecce Co., Ltd., FCP80-2). The siliceous shale powders C and E were pulverized under the condition of a 1.0 mm screen, and the 100 μm sieved product was siliceous shale powder C, and the 150 μm sieved product was siliceous shale powder E.

[3.平均粒径及びBTE比表面積の測定]
粉砕により得られた各珪質頁岩粉末A〜Eについて、その平均粒径を測定した。平均粒径の測定は、レーザー回折・散乱式粒度分布測定装置(日機装株式会社製、マイクロトラックMode19320−X100)を用い、測定した50%累積体積の粒径を平均粒径とした。
また、それぞれの珪質頁岩粉末A〜Eについて、BET比表面積を株式会社島津製作所製のFlowsorb2300を用いて測定した。各測定値を表1に示す。
[3. Measurement of average particle size and BTE specific surface area]
About each siliceous shale powder AE obtained by grinding | pulverization, the average particle diameter was measured. The average particle size was measured using a laser diffraction / scattering type particle size distribution measuring device (manufactured by Nikkiso Co., Ltd., Microtrac Mode 19320-X100), and the measured particle size of 50% cumulative volume was taken as the average particle size.
Moreover, about each siliceous shale powder AE, the BET specific surface area was measured using Flowsorb2300 by Shimadzu Corporation. Table 1 shows the measured values.

Figure 2009173498
Figure 2009173498

[4.API値の測定]
ポルトランドセメント(1.5g)と珪質頁岩粉末A(l.5g)を純水(50ml)と混合し、80℃の状態で18時間保持して反応させた。反応液中のCa2+イオン濃度をICP(プラズマ発光分光分析装置)を用いて測定した。得られた値から算出したAPI値を、表2に示す(試験例1)。
珪質頁岩粉末Aの代わりに珪質頁岩粉末Bを用いた以外は、上記試験例1と同様の方法及び手段により算出したAPI値を、表2にあわせて示す(試験例2)。
珪質頁岩粉末Aの代わりに珪質頁岩粉末Cを用いた以外は、上記試験例1と同様の方法及び手段により算出したAPI値を、表2にあわせて示す(試験例3)。
珪質頁岩粉末Aの代わりに珪質頁岩粉末Eを用いた以外は、上記試験例1と同様の方法及び手段により算出したAPI値を、表2にあわせて示す(試験例4)。
珪質頁岩粉末Aの代わりにフライアッシュを用いた以外は、上記試験例1と同様の方法及び手段により算出したAPI値を、表2にあわせて示す(試験例5)。
珪質頁岩粉末Aの代わりにシリカフュームを用いた以外は、上記試験例1と同様の方法及び手段により算出したAPI値を、表2にあわせて示す(試験例6)。
[4. Measurement of API value]
Portland cement (1.5 g) and siliceous shale powder A (1.5 g) were mixed with pure water (50 ml) and reacted at 80 ° C. for 18 hours. The Ca 2+ ion concentration in the reaction solution was measured using ICP (plasma emission spectroscopic analyzer). The API values calculated from the obtained values are shown in Table 2 (Test Example 1).
Except for using siliceous shale powder B instead of siliceous shale powder A, API values calculated by the same methods and means as in Test Example 1 are shown in Table 2 (Test Example 2).
Except for using siliceous shale powder C instead of siliceous shale powder A, the API values calculated by the same methods and means as in Test Example 1 are shown in Table 2 (Test Example 3).
Except for using siliceous shale powder E instead of siliceous shale powder A, the API values calculated by the same method and means as in Test Example 1 are shown in Table 2 (Test Example 4).
Except for using fly ash instead of siliceous shale powder A, the API values calculated by the same methods and means as in Test Example 1 are shown in Table 2 (Test Example 5).
Table 2 shows the API values calculated by the same method and means as in Test Example 1 except that silica fume was used instead of siliceous shale powder A (Test Example 6).

Figure 2009173498
Figure 2009173498

表2から、フライアッシュを用いた試験例5ではAPI値は45%と低くなった。これに対し珪質頁岩粉末A〜C、Eを用いた試験例1〜4ではAPI値は55〜63%と高く、シリカフュームのAPI値65%とほぼ同等の値となった。   From Table 2, in Test Example 5 using fly ash, the API value was as low as 45%. On the other hand, in Test Examples 1 to 4 using siliceous shale powders A to C and E, the API value was as high as 55 to 63%, which was almost the same as the API value of silica fume of 65%.

[5.モルタル強度の測定]
普通ポルトランドセメント100質量部(405g)、珪質頁岩粉末A11質量部(45g)、標準砂333質量部(1350g)、水道水56質量部(225g)をホバートミキサーに投入し、混練した。
上記混練物を断面40mm×40mm、長さ160mmの型枠内に投入し、20℃で7日間、及び28日間養生し硬化体を得た。
得られた硬化体の圧縮強度をJISに規定された試験方法に準拠して測定した。また、硬化体の寸法、質量より密度を算出し、圧縮強度を密度で除した比強度も算出した。結果をあわせて表3に示す(試験例7)。
珪質頁岩粉末Aの代わりに珪質頁岩粉末Bを用いた以外は、上記試験例7と同様の方法及び手段により算出した圧縮強度、密度及び比強度の値を、表3にあわせて示す(試験例8)。
珪質頁岩粉末Aの代わりに珪質頁岩粉末Bを用い、珪質頁岩粉末Bの配合量を25質量部(100g)とした以外は、上記試験例7と同様の方法及び手段により算出した圧縮強度、密度及び比強度の値を、表3にあわせて示す(試験例9)。
珪質頁岩粉末Aの代わりに珪質頁岩粉末Dを用い、混練が困難であったことから水道水の配合量を67質量部(270g)とした以外は、上記試験例7と同様の方法及び手段により算出した圧縮強度、密度及び比強度の値を、表3にあわせて示す(試験例10)。
珪質頁岩粉末Aの代わりに珪質頁岩粉末Eを用いた以外は、上記試験例7と同様の方法及び手段により算出した圧縮強度、密度及び比強度の値を、表3にあわせて示す(試験例11)。
珪質頁岩粉末Aの代わりにフライアッシュを用いた以外は、上記試験例7と同様の方法及び手段により算出した圧縮強度、密度及び比強度の値を、表3にあわせて示す(試験例12)。
珪質頁岩粉末Aの代わりにシリカフュームを用いた以外は、上記試験例7と同様の方法及び手段により算出した圧縮強度、密度及び比強度の値を、表3にあわせて示す(試験例13)。
[5. Measurement of mortar strength]
100 parts by mass (405 g) of ordinary Portland cement, 11 parts by mass of siliceous shale powder A (45 g), 333 parts by mass of standard sand (1350 g), and 56 parts by mass of tap water (225 g) were charged into a Hobart mixer and kneaded.
The kneaded product was put into a mold having a cross section of 40 mm × 40 mm and a length of 160 mm, and cured at 20 ° C. for 7 days and 28 days to obtain a cured product.
The compression strength of the obtained cured product was measured in accordance with a test method specified in JIS. Further, the density was calculated from the size and mass of the cured body, and the specific strength obtained by dividing the compressive strength by the density was also calculated. The results are shown in Table 3 (Test Example 7).
Table 3 shows the values of compressive strength, density and specific strength calculated by the same method and means as in Test Example 7 except that siliceous shale powder B was used instead of siliceous shale powder A ( Test Example 8).
Compression calculated by the same method and means as in Test Example 7 except that siliceous shale powder B was used in place of siliceous shale powder A and the blending amount of siliceous shale powder B was 25 parts by mass (100 g). The values of strength, density, and specific strength are shown in Table 3 (Test Example 9).
The same method as in Test Example 7 above, except that the siliceous shale powder D was used instead of the siliceous shale powder A, and kneading was difficult, so that the blending amount of tap water was 67 parts by mass (270 g). The values of compressive strength, density and specific strength calculated by the means are shown together in Table 3 (Test Example 10).
Except for using siliceous shale powder E instead of siliceous shale powder A, the values of compressive strength, density and specific strength calculated by the same method and means as in Test Example 7 are shown in Table 3 ( Test Example 11).
Table 3 shows the values of compressive strength, density and specific strength calculated by the same method and means as in Test Example 7 except that fly ash was used instead of siliceous shale powder A (Test Example 12). ).
Except for using silica fume instead of siliceous shale powder A, the values of compressive strength, density and specific strength calculated by the same method and means as in Test Example 7 are shown in Table 3 (Test Example 13). .

Figure 2009173498
Figure 2009173498

表3から、フライアッシュを用いた試験例12では、圧縮強度は33N/mm2(7日間強度)、比強度は15.0(N/mm2)/(g/cm3)と低くなった。これに対し、珪質頁岩粉末A,Bを用いた試験例7,8では、圧縮強度は44〜47N/mm2(7日間強度)、比強度は20.6〜21.9(N/mm2)/(g/cm3)と高く、シリカフュームを用いた試験例13と同等以上の圧縮強度、比強度が得られた。
但し、珪質頁岩粉末Bの配合量が多い試験例9では、圧縮強度、比強度が低くなった。また、小さい粒径の珪質頁岩粉末Dを用いた試験例10では、水量が多くなり、硬化体の圧縮強度、比強度が低くなった。大きい粒径の珪質頁岩粉末Eを用いた試験例11では、アルカリシリカ反応により、圧縮強度、比強度が低くなった。
From Table 3, in Test Example 12 using fly ash, the compressive strength was 33 N / mm 2 (7-day strength), and the specific strength was as low as 15.0 (N / mm 2 ) / (g / cm 3 ). . On the other hand, in Test Examples 7 and 8 using the siliceous shale powders A and B, the compressive strength is 44 to 47 N / mm 2 (7-day strength), and the specific strength is 20.6 to 21.9 (N / mm). 2 ) / (g / cm 3 ), which was high, and a compressive strength and specific strength equal to or higher than those of Test Example 13 using silica fume were obtained.
However, in Test Example 9 in which the amount of siliceous shale powder B was large, the compressive strength and specific strength were low. Moreover, in Test Example 10 using the siliceous shale powder D having a small particle size, the amount of water was increased, and the compressive strength and specific strength of the cured product were reduced. In Test Example 11 using the siliceous shale powder E having a large particle size, the compressive strength and the specific strength were lowered due to the alkali silica reaction.

試験に使用した北海道北部地域産の珪質頁岩について、Cu−Kα線による粉末X線回折結果を示した図である。It is the figure which showed the powder X-ray-diffraction result by a Cu-K alpha ray about the siliceous shale from the Hokkaido northern region used for the test. 図1に示したCu−Kα線による粉末X線回折において、オパールCTの半値幅を示した図である。It is the figure which showed the half value width of opal CT in the powder X-ray diffraction by the Cu-K alpha ray shown in FIG.

Claims (6)

セメント100質量部に対して、珪質頁岩の微粉末を1〜20質量部混合してなることを特徴とする、水硬性組成物。   A hydraulic composition comprising 1 to 20 parts by mass of fine siliceous shale powder with respect to 100 parts by mass of cement. 上記珪質頁岩の微粉末が、平均粒径0.5〜20.0μmであることを特徴とする、請求項1に記載の水硬性組成物。   The hydraulic composition according to claim 1, wherein the siliceous shale fine powder has an average particle size of 0.5 to 20.0 µm. 上記珪質頁岩の微粉末が、BET比表面積60m2/g以上であることを特徴とする、請求項1に記載の水硬性組成物。 The hydraulic composition according to claim 1, wherein the siliceous shale fine powder has a BET specific surface area of 60 m 2 / g or more. 上記珪質頁岩の微粉末が、ポゾラン反応性迅速判定法(API法)によるAPI値が40〜80%の範囲であることを特徴とする、請求項1に記載の水硬性組成物。   2. The hydraulic composition according to claim 1, wherein the fine siliceous shale powder has an API value in a range of 40 to 80% according to a pozzolanic reactivity rapid determination method (API method). 上記珪質頁岩が、稚内層珪質頁岩であることを特徴とする、請求項1〜4のいずれかに記載の水硬性組成物。   The hydraulic composition according to any one of claims 1 to 4, wherein the siliceous shale is Wakkanai layer siliceous shale. 請求項1〜5のいずれかに記載の水硬性組成物を用いて得られた硬化体。   The hardening body obtained using the hydraulic composition in any one of Claims 1-5.
JP2008015613A 2008-01-25 2008-01-25 Hydraulic composition and hardened body Pending JP2009173498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008015613A JP2009173498A (en) 2008-01-25 2008-01-25 Hydraulic composition and hardened body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008015613A JP2009173498A (en) 2008-01-25 2008-01-25 Hydraulic composition and hardened body

Publications (1)

Publication Number Publication Date
JP2009173498A true JP2009173498A (en) 2009-08-06

Family

ID=41029032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008015613A Pending JP2009173498A (en) 2008-01-25 2008-01-25 Hydraulic composition and hardened body

Country Status (1)

Country Link
JP (1) JP2009173498A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031019A (en) * 2010-07-30 2012-02-16 Taiheiyo Cement Corp Cement composition for road
JP2012041247A (en) * 2010-08-23 2012-03-01 Taiheiyo Cement Corp High-temperature curing cement additive and cement cured body using the same
JP2014163730A (en) * 2013-02-22 2014-09-08 Taiheiyo Cement Corp Immobilization material for radioactive substance and radioactive contaminant treatment method
CN104844088A (en) * 2015-04-28 2015-08-19 陈莹 Method for producing hollow building block by taking shale as raw material
JP2020164388A (en) * 2019-03-29 2020-10-08 住友大阪セメント株式会社 Cement composition
WO2021157283A1 (en) * 2020-02-07 2021-08-12 太平洋セメント株式会社 Cement additive and method for producing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176960A (en) * 1984-02-23 1985-09-11 松下電工株式会社 Manufacture of inorganic cured body
JPS63240942A (en) * 1986-12-10 1988-10-06 Nitto Sekko Board Kk Treating agent for excrement
JPH10506876A (en) * 1995-07-28 1998-07-07 エムビーティ・ホールディング・アクチエンゲゼルシャフト Compact unit for cement admixture
JP2001219059A (en) * 2000-02-08 2001-08-14 Natl Inst Of Advanced Industrial Science & Technology Meti Moisture conditioning/deodorizing material using siliceous shale
JP2002201057A (en) * 2000-12-28 2002-07-16 Toagosei Co Ltd Adiabatic mortar
JP2002211967A (en) * 2001-01-15 2002-07-31 Bridgestone Corp Temperature conditioning and moisture conditioning material and temperature conditioning and moisture conditioning foam
JP2004090585A (en) * 2002-09-04 2004-03-25 Kamei Seito Kk Method for manufacturing block

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176960A (en) * 1984-02-23 1985-09-11 松下電工株式会社 Manufacture of inorganic cured body
JPS63240942A (en) * 1986-12-10 1988-10-06 Nitto Sekko Board Kk Treating agent for excrement
JPH10506876A (en) * 1995-07-28 1998-07-07 エムビーティ・ホールディング・アクチエンゲゼルシャフト Compact unit for cement admixture
JP2001219059A (en) * 2000-02-08 2001-08-14 Natl Inst Of Advanced Industrial Science & Technology Meti Moisture conditioning/deodorizing material using siliceous shale
JP2002201057A (en) * 2000-12-28 2002-07-16 Toagosei Co Ltd Adiabatic mortar
JP2002211967A (en) * 2001-01-15 2002-07-31 Bridgestone Corp Temperature conditioning and moisture conditioning material and temperature conditioning and moisture conditioning foam
JP2004090585A (en) * 2002-09-04 2004-03-25 Kamei Seito Kk Method for manufacturing block

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6012013449; M.ASHRAF et al.: 'An evaluation of the effectiveness of shale, slate, phyllite and volcanic ash as pozzolanas' 日本砂丘学会誌 vol.51, no.3, 2005, 145-153 *
JPN6012013450; ОЛЬГИНСКИЙ А Г: 'Процессы гидратации портландцемента с минеральной пы' Izv Vyssh Uchebnykh Zaved Stroit no.12, 1991, 50-53頁 *
JPN6012013451; N.Q.FENG et al.: 'Shale ash concrete' Cement and concrete research vol.27, no.2, 1997, 279-291 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031019A (en) * 2010-07-30 2012-02-16 Taiheiyo Cement Corp Cement composition for road
JP2012041247A (en) * 2010-08-23 2012-03-01 Taiheiyo Cement Corp High-temperature curing cement additive and cement cured body using the same
JP2014163730A (en) * 2013-02-22 2014-09-08 Taiheiyo Cement Corp Immobilization material for radioactive substance and radioactive contaminant treatment method
CN104844088A (en) * 2015-04-28 2015-08-19 陈莹 Method for producing hollow building block by taking shale as raw material
JP2020164388A (en) * 2019-03-29 2020-10-08 住友大阪セメント株式会社 Cement composition
JP7095642B2 (en) 2019-03-29 2022-07-05 住友大阪セメント株式会社 Cement composition
WO2021157283A1 (en) * 2020-02-07 2021-08-12 太平洋セメント株式会社 Cement additive and method for producing same

Similar Documents

Publication Publication Date Title
EP2801559B1 (en) Method of enhancing the latent hydraulic and/or pozzolanic reactivity of materials
JP5453440B2 (en) Pozzolanic cement blend with high early strength development
KR101137717B1 (en) Concrete composition making method with milling stone
US20100006010A1 (en) Matrix for masonry elements and method of manufacture thereof
JP6947501B2 (en) Cement composition
JP2009173498A (en) Hydraulic composition and hardened body
US7537653B2 (en) Microsilica materials with improved pozzolanic activity
JP2014094877A (en) Earthwork material composition and method of reducing fluorine elution amount in the same
JP2012188308A (en) Cement composition, and manufacturing method therefor
JP4520106B2 (en) concrete
JP5430478B2 (en) Quick setting agent, spraying material and spraying method using the same
JP2010059640A (en) Method of producing solidification-treated soil
JP6316576B2 (en) Cement composition
JP5269628B2 (en) Cement composition
JP6042246B2 (en) Earthwork material composition and method for reducing fluorine elution amount in the composition
JP2754138B2 (en) Cement, method for producing the same, and ground improvement material containing the same
KR100580583B1 (en) Concrete products with high-strength using reclaimed coal ash and waste stone powder as fine aggregates and its manufacturing method
JP6867801B2 (en) Cement composition
JP2004115291A (en) Solidified body using coal ash, and method of producing the same
JP5102502B2 (en) Cement additive and cement composition
JP2011020883A (en) Autoclaved lightweight cellular concrete and method for producing the same
JP5484655B2 (en) Method for suppressing alkali-aggregate reaction in concrete or mortar
JP2019052073A (en) Cement additive and cement composition
JP2009126717A (en) Calcium silicate hydrate-based material and calcium silicate hydrate-based building material
JP5645380B2 (en) Ground improvement soil and ground improvement method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20100601

Free format text: JAPANESE INTERMEDIATE CODE: A712

A621 Written request for application examination

Effective date: 20101201

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Effective date: 20110207

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

A977 Report on retrieval

Effective date: 20120307

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120705

RD02 Notification of acceptance of power of attorney

Effective date: 20120705

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130129