JP2008230223A - Manufacturing method of foamed resin laminated board - Google Patents

Manufacturing method of foamed resin laminated board Download PDF

Info

Publication number
JP2008230223A
JP2008230223A JP2007296878A JP2007296878A JP2008230223A JP 2008230223 A JP2008230223 A JP 2008230223A JP 2007296878 A JP2007296878 A JP 2007296878A JP 2007296878 A JP2007296878 A JP 2007296878A JP 2008230223 A JP2008230223 A JP 2008230223A
Authority
JP
Japan
Prior art keywords
layer
far
foamed resin
infrared
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007296878A
Other languages
Japanese (ja)
Other versions
JP5096882B2 (en
Inventor
Hironobu Nakanishi
裕信 中西
Akio Sugimoto
明男 杉本
Naoki Kikuchi
直樹 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007296878A priority Critical patent/JP5096882B2/en
Publication of JP2008230223A publication Critical patent/JP2008230223A/en
Application granted granted Critical
Publication of JP5096882B2 publication Critical patent/JP5096882B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a foamed resin laminated board capable of applying a heating method using an far-infrared ray heating as a heating method for a not-yet-foamed layer between a hard layer and another hard layer, on manufacturing a foamed resin laminated board with a foaming resin layer between the hard layer and the hard layer and capable of foaming the foamable resin described above by the far-infrared ray heating. <P>SOLUTION: (1) The manufacturing method comprises preparing a laminated board 20 with a foamable resin layer in a state not yet foamed between the hard layers, bringing a far-infrared absorbing and heat conducting layer 21 and 22 with far-infrared ray absorbing and conductive properties by contacting 21 and 22 into contact with the surface of the hard layer on the one side or both sides of the laminated board 20 and then forming the foaming resin layer by carrying out the far-infrared ray heating to make the foamable resin layer described before. (2) In the manufacturing method of the foamable resin laminated board described before, a weight of the far-infrared absorbing and heat conducting layer 21 is 0.1-10 mg/mm<SP>2</SP>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、発泡樹脂積層板の製造方法に関する技術分野に属するものであり、より詳細には、硬質層と硬質層との間に発泡樹脂層を有する発泡樹脂積層板の製造方法に関する技術分野に属するものである。   The present invention belongs to a technical field related to a method for manufacturing a foamed resin laminate, and more specifically, to a technical field related to a method for manufacturing a foamed resin laminate having a foamed resin layer between a hard layer and a hard layer. It belongs to.

特開平5−38776号公報には、金属板に未発泡状態の発泡可能樹脂を塗布し、恒温槽にて加熱して前記発泡可能樹脂を発泡させて発泡樹脂層と成し、これにより防火性複合断熱パネルを得ることが記載されている。   In JP-A-5-38776, an unfoamable foamable resin is applied to a metal plate and heated in a thermostatic bath to foam the foamable resin to form a foamed resin layer. It is described to obtain a composite insulation panel.

特開平5−293918号公報には、基材シート上に発泡剤を含有する熱可塑性樹脂のペーストを塗布し加熱して化粧用シートを得、これを金属板上にラミネートして積層板を得、この積層板をオーブンで加熱して前記熱可塑性樹脂を発泡させて発泡樹脂層と成し、これにより化粧金属板を得ることが記載されている。   In JP-A-5-293918, a paste of a thermoplastic resin containing a foaming agent is applied on a base sheet and heated to obtain a cosmetic sheet, which is laminated on a metal plate to obtain a laminate. The laminated plate is heated in an oven to foam the thermoplastic resin to form a foamed resin layer, thereby obtaining a decorative metal plate.

特開2004−42649号公報には、加熱により発泡温度にて発泡される未発泡状態の発泡可能樹脂と硬質板とを積層し、これを加熱して前記発泡可能樹脂を発泡させて発泡樹脂層と成し、これにより発泡樹脂積層防音板を得ることが記載されている。
特開平5−38776号公報 特開平5−293918号公報 特開2004−42649号公報
In JP-A-2004-42649, a foamable resin layer is prepared by laminating an unfoamable foamable resin that is foamed at a foaming temperature by heating and a hard plate, and heating the foamed resin to foam the foamable resin. In this way, it is described that a foamed resin laminated soundproof board is obtained.
JP-A-5-38776 JP-A-5-293918 JP 2004-42649 A

前記公報に記載の方法においては、金属板上に未発泡状態の発泡可能樹脂を有する積層体を恒温槽やオーブンで加熱して前記熱可塑性樹脂を発泡させて発泡樹脂層と成すようにしている。このように恒温槽やオーブンで加熱する場合、時間がかかり、また、加熱雰囲気の分布によって発泡状態にもバラツキが生じやすい。遠赤外線加熱により加熱すると、所要加熱時間を短縮し得、また、発泡状態のバラツキが生じ難くなる。即ち、所要加熱時間(発泡時間)を短縮すると共に、均一に発泡させるために、発泡のための加熱方法として遠赤外線加熱による加熱方法の適用が好適と考えられる。   In the method described in the publication, a laminate having an unfoamed foamable resin on a metal plate is heated in a thermostatic bath or oven to foam the thermoplastic resin to form a foamed resin layer. . Thus, when heating with a thermostat or oven, it takes time, and the foamed state is likely to vary due to the distribution of the heating atmosphere. When heated by far-infrared heating, the required heating time can be shortened, and variations in the foamed state are less likely to occur. That is, in order to shorten the required heating time (foaming time) and uniformly foam, it is considered preferable to apply a heating method by far-infrared heating as a heating method for foaming.

このような金属板上に未発泡状態の発泡可能樹脂を有する積層体の場合は、樹脂が熱線吸収率を適度に有するため、遠赤外線加熱により該発泡可能樹脂を発泡させることができると考えられる。しかしながら、アルミニウム板などの金属板と金属板との間に未発泡状態の発泡可能樹脂の層を有する積層板の場合は、表面の熱線吸収率が極めて小さいため、遠赤外線加熱により該発泡可能樹脂を発泡させることは難しい。   In the case of a laminate having an unfoamed foamable resin on such a metal plate, it is considered that the foamable resin can be foamed by far-infrared heating because the resin has a moderate heat ray absorption rate. . However, in the case of a laminated plate having an unfoamed foamable resin layer between a metal plate such as an aluminum plate and the metal plate, the heat ray absorptance of the surface is extremely small. It is difficult to foam.

なお、このような積層板の場合、恒温槽やオーブンで加熱すると発泡させることはできるが、加熱雰囲気の分布によって発泡状態にもバラツキが生じやすい。   In addition, in the case of such a laminated board, it can be foamed when heated in a thermostatic bath or oven, but the foamed state is likely to vary depending on the distribution of the heating atmosphere.

本発明はこのような事情に鑑みてなされたものであって、その目的は、硬質層と硬質層との間に発泡樹脂層を有する発泡樹脂積層板の製造に際し、硬質層と硬質層との間にある未発泡状態の発泡可能樹脂の層の加熱方法として遠赤外線加熱による加熱方法を適用でき、この遠赤外線加熱により前記発泡可能樹脂を発泡させることができる発泡樹脂積層板の製造方法を提供しようとするものである。   The present invention has been made in view of such circumstances. The purpose of the present invention is to manufacture a foamed resin laminate having a foamed resin layer between the hard layer and the hard layer. A heating method by far-infrared heating can be applied as a heating method for an unfoamed foamable resin layer in between, and a method for producing a foamed resin laminate capable of foaming the foamable resin by this far-infrared heating is provided. It is something to try.

本発明者らは、上記目的を達成するため、鋭意検討した結果、本発明を完成するに至った。本発明によれば上記目的を達成することができる。   As a result of intensive studies to achieve the above object, the present inventors have completed the present invention. According to the present invention, the above object can be achieved.

このようにして完成され上記目的を達成することができた本発明は、発泡樹脂積層板の製造方法に係わり、請求項1〜7記載の発泡樹脂積層板の製造方法(第1〜7発明に係る発泡樹脂積層板の製造方法)であり、それは次のような構成としたものである。   The present invention, which has been completed in this way and has achieved the above object, relates to a method for producing a foamed resin laminate, and a method for producing a foamed resin laminate according to claims 1 to 7 (inventions 1 to 7). This is a method for producing a foamed resin laminate, and has the following configuration.

即ち、請求項1記載の発泡樹脂積層板の製造方法は、硬質層と硬質層との間に発泡樹脂層を有する発泡樹脂積層板の製造方法であって、硬質層と硬質層との間に未発泡状態の発泡可能樹脂の層を有する積層板を作製し、この積層板の片方または両方の硬質層の表面に遠赤外線吸収性および伝熱性を有する遠赤外線吸収伝熱層を接触させて設け、遠赤外線加熱を行って前記発泡可能樹脂を発泡させて発泡樹脂層と成すことを特徴とする発泡樹脂積層板の製造方法である〔第1発明〕。   That is, the method for producing a foamed resin laminate according to claim 1 is a method for producing a foamed resin laminate having a foamed resin layer between a hard layer and a hard layer, and the method is provided between the hard layer and the hard layer. A laminated board having a foamable resin layer in an unfoamed state is prepared, and a far-infrared absorbing heat transfer layer having a far-infrared absorbing property and a heat transferring property is provided in contact with the surface of one or both hard layers of the laminated board. A method for producing a foamed resin laminate, wherein the foamable resin is foamed by far infrared heating to form a foamed resin layer [first invention].

請求項2記載の発泡樹脂積層板の製造方法は、前記遠赤外線吸収伝熱層が樹脂シート、ゴムシートまたは遠赤外線吸収性のある金属板またはこれらの複合板からなる請求項1記載の発泡樹脂積層板の製造方法である〔第2発明〕。   The method for producing a foamed resin laminate according to claim 2, wherein the far-infrared absorbing heat transfer layer is made of a resin sheet, a rubber sheet, a far-infrared absorbing metal plate or a composite plate thereof. It is a manufacturing method of a laminated board [2nd invention].

請求項3記載の発泡樹脂積層板の製造方法は、前記硬質層がアルミニウム板または鋼板よりなる請求項1または2記載の発泡樹脂積層板の製造方法である〔第3発明〕。   The method for producing a foamed resin laminate according to claim 3 is the method for producing a foamed resin laminate according to claim 1 or 2, wherein the hard layer is made of an aluminum plate or a steel plate [third invention].

請求項4記載の発泡樹脂積層板の製造方法は、前記遠赤外線吸収伝熱層の重量が0.1 〜10mg/mm2 である請求項1〜3のいずれかに記載の発泡樹脂積層板の製造方法である〔第4発明〕。請求項5記載の発泡樹脂積層板の製造方法は、前記遠赤外線吸収伝熱層を硬質層に接触させる前に帯電させ、しかる後、硬質層に接触させる請求項1〜4のいずれかに記載の発泡樹脂積層板の製造方法である〔第5発明〕。 Method for manufacturing a foamed resin laminate according to claim 4 wherein the method for manufacturing a foamed resin laminate according to any one of claims 1 to 3 wt of the far-infrared-absorbing heat transfer layer is 0.1 to 10 mg / mm 2 [Fourth Invention] 5. The method for producing a foamed resin laminate according to claim 5, wherein the far-infrared absorption heat transfer layer is charged before contacting the hard layer and then brought into contact with the hard layer. [5th invention].

請求項6記載の発泡樹脂積層板の製造方法は、遠赤外線加熱を行って前記発泡可能樹脂を発泡させて発泡樹脂層と成した後、前記遠赤外線吸収伝熱層を除去する請求項1〜5のいずれかに記載の発泡樹脂積層板の製造方法である〔第6発明〕。   The manufacturing method of the foaming resin laminated board of Claim 6 removes the said far-infrared absorptive heat-transfer layer, after performing far-infrared heating and foaming the said foamable resin to make a foamed resin layer. 5. A method for producing a foamed resin laminate according to any one of 5 [6th invention].

請求項7記載の発泡樹脂積層板の製造方法は、前記硬質層表面の波長4500nmでの反射率が0.85〜1.0である請求項1〜6のいずれかに記載の発泡樹脂積層板の製造方法である〔第7発明〕。   The foamed resin laminate according to any one of claims 1 to 6, wherein the foamed resin laminate has a reflectance of 0.85 to 1.0 at a wavelength of 4500 nm on the surface of the hard layer. [7th invention].

本発明に係る発泡樹脂積層板の製造方法によれば、硬質層と硬質層との間に発泡樹脂層を有する発泡樹脂積層板の製造に際し、硬質層と硬質層との間にある未発泡状態の発泡可能樹脂の層の加熱方法として遠赤外線加熱による加熱方法を適用でき、この遠赤外線加熱により前記発泡可能樹脂を発泡させることができる。つまり、本発明によると、硬質層表面が遠赤外線吸収率の極めて小さいアルミニウム板であっても、好適に発泡させることができ、また、遠赤外線吸収伝熱層は発泡樹脂積層板を加熱発泡後、取り外し可能に設けることができるため、発泡樹脂積層板の表面を赤外線吸収率の極めて小さい状態に簡単に容易に戻すことができる。このため、例えば、発泡樹脂積層板を自動車のエンジン排気管などの熱源近傍の部材に用いる場合においても、本発明の発泡樹脂積層板は、赤外線吸収率の極めて小さいものとでき、熱源からの輻射熱による加熱劣化を抑えることができる。   According to the method for producing a foamed resin laminate according to the present invention, when producing a foamed resin laminate having a foamed resin layer between the hard layer and the hard layer, an unfoamed state between the hard layer and the hard layer is present. As the heating method of the foamable resin layer, a heating method by far infrared heating can be applied, and the foamable resin can be foamed by this far infrared heating. That is, according to the present invention, even if the hard layer surface is an aluminum plate having an extremely low far-infrared absorptivity, it can be suitably foamed, and the far-infrared absorbing heat transfer layer can be obtained after heating and foaming the foamed resin laminate. Since it can be detachably provided, the surface of the foamed resin laminate can be easily and easily returned to a state where the infrared absorption rate is extremely small. For this reason, for example, even when the foamed resin laminate is used as a member near a heat source such as an engine exhaust pipe of an automobile, the foamed resin laminate of the present invention can have an extremely low infrared absorptivity and radiant heat from the heat source. Heat deterioration due to can be suppressed.

本発明に係る発泡樹脂積層板の製造方法は、前述のように、硬質層と硬質層との間に発泡樹脂層を有する発泡樹脂積層板の製造方法であって、硬質層と硬質層との間に未発泡状態の発泡可能樹脂の層を有する積層板を作製し、この積層板の片方または両方の硬質層の表面に遠赤外線吸収性および伝熱性を有する遠赤外線吸収伝熱層を接触させて設け、遠赤外線加熱を行って前記発泡可能樹脂を発泡させて発泡樹脂層と成すことを特徴とする発泡樹脂積層板の製造方法である。   As described above, the method for producing a foamed resin laminate according to the present invention is a method for producing a foamed resin laminate having a foamed resin layer between a hard layer and a hard layer. A laminate having an unfoamed foamable resin layer in between is produced, and a far-infrared absorbing heat transfer layer having far-infrared absorption and heat transfer is brought into contact with the surface of one or both hard layers of the laminate. And a far-infrared heating is performed to foam the foamable resin to form a foamed resin layer.

上記遠赤外線吸収伝熱層は遠赤外線吸収性および伝熱性を有しており、積層板の硬質層の表面に接触している。よって、上記遠赤外線加熱の際、上記遠赤外線吸収伝熱層は遠赤外線を吸収し、硬質層へ伝熱し、硬質層から未発泡状態の発泡可能樹脂の層に伝熱し、これにより該発泡可能樹脂を加熱して発泡させることができる。なお、硬質層と未発泡状態の発泡可能樹脂の層との間に上記以外の層がある場合には、この層を介して未発泡状態の発泡可能樹脂の層に伝熱する。   The far-infrared absorption heat transfer layer has far-infrared absorption and heat transfer, and is in contact with the surface of the hard layer of the laminate. Therefore, during the far-infrared heating, the far-infrared absorption heat transfer layer absorbs far-infrared rays, transfers heat to the hard layer, and transfers heat from the hard layer to the unfoamed foamable resin layer, thereby enabling foaming. The resin can be heated to foam. When there is a layer other than the above between the hard layer and the unfoamed foamable resin layer, heat is transferred to the unfoamable foamable resin layer through this layer.

従って、本発明に係る発泡樹脂積層板の製造方法によれば、硬質層と硬質層との間に発泡樹脂層を有する発泡樹脂積層板の製造に際し、硬質層と硬質層との間にある未発泡状態の発泡可能樹脂の層の加熱方法として遠赤外線加熱による加熱方法を適用でき、この遠赤外線加熱により前記発泡可能樹脂を発泡させることができる。   Therefore, according to the method for producing a foamed resin laminate according to the present invention, in the production of a foamed resin laminate having a foamed resin layer between the hard layer and the hard layer, an unexposed portion between the hard layer and the hard layer is used. As a heating method of the foamable resin layer in the foamed state, a heating method by far infrared heating can be applied, and the foamable resin can be foamed by this far infrared heating.

なお、上記遠赤外線吸収伝熱層は遠赤外線加熱による発泡後は外す。これにより、発泡樹脂積層板が得られる。遠赤外線加熱による発泡の際、上記遠赤外線吸収伝熱層は積層板の硬質層の表面に伝熱可能な程度に接触していればよく、塗装等のように強力に密着している必要はない。上記遠赤外線吸収伝熱層が積層板の硬質層表面に強力に密着しておらず、積層板の硬質層表面に伝熱可能な程度に接触している場合、遠赤外線加熱による発泡後は簡単に外すことができ、このため、硬質層の素地をそのまま生かした発泡樹脂積層板が得られる。   The far infrared absorbing heat transfer layer is removed after foaming by far infrared heating. Thereby, a foamed resin laminate is obtained. When foaming by far-infrared heating, the far-infrared absorbing heat transfer layer only needs to be in contact with the surface of the hard layer of the laminate so that heat can be transferred, and it is necessary to have a strong adhesion such as painting. Absent. If the far-infrared absorbing heat transfer layer is not firmly attached to the hard layer surface of the laminate and is in contact with the hard layer surface of the laminate so that heat can be transferred, it is easy after foaming by far-infrared heating. For this reason, a foamed resin laminate is obtained in which the substrate of the hard layer is utilized as it is.

硬質層と硬質層との間に未発泡状態の発泡可能樹脂の層を有する積層板を恒温槽やオーブンで加熱する場合に比較すると、本発明に係る発泡樹脂積層板の製造方法の場合は、熱吸収+伝熱効果が高いため、所要加熱時間(発泡時間)を短縮し得、また、温度のバラツキが小さくて発泡状態のバラツキが生じ難くなる。   In the case of the method for producing a foamed resin laminate according to the present invention, when compared with a case where a laminate having an unfoamable foamable resin layer between a hard layer and a hard layer is heated in a thermostatic bath or oven, Since the heat absorption + heat transfer effect is high, the required heating time (foaming time) can be shortened, and the variation in temperature is small and the variation in the foamed state is difficult to occur.

本発明に係る発泡樹脂積層板の製造方法において、遠赤外線吸収伝熱層とは、遠赤外線吸収性および伝熱性を有する層のことである。この遠赤外線吸収伝熱層としては、樹脂シート、ゴムシートまたは遠赤外線吸収性のある金属板またはこれらの複合板を挙げることができる〔第2発明〕。この遠赤外線吸収伝熱層としては、例えば、耐熱ゴムシートや塗装したアルミ板(例えば黒色)を挙げることができ、また、遠赤外線吸収伝熱層に粘着性と耐久性を与えるために両者を併せて積層したものを挙げることができる。更に、強化繊維で補強したゴムシートも挙げることができる。より具体的には、樹脂系の遠赤外線吸収伝熱層としては、フッ素系、アクリル系、シリコン系の耐熱性高分子シート、発泡温度以上の融点をもつ樹脂、耐熱性マスキングテープなどの耐熱性を有したものがあり、また、密着性を高めるために更に粘着性を有したものを挙げることができる。金属系の遠赤外線吸収伝熱層としては、耐熱塗料の塗装やブラスト処理、アルマイト処理等による粗面化をしたアルミ板、鋼板、銅板等がある。また、剛性と密着性を付与するために金属表面に耐熱高分子層を有したものも挙げることができる。なお、遠赤外線吸収伝熱層の遠赤外線吸収性および伝熱性は優れているほど望ましいが、そのレベルは特には限定されず、上記例示の遠赤外線吸収伝熱層と同等もしくはその前後のレベルの遠赤外線吸収性および伝熱性を有するものであれば充分である。   In the method for producing a foamed resin laminate according to the present invention, the far infrared absorption heat transfer layer is a layer having far infrared absorption and heat transfer. Examples of the far infrared absorbing heat transfer layer include a resin sheet, a rubber sheet, a far infrared absorbing metal plate, or a composite plate thereof [second invention]. Examples of the far-infrared absorbing heat transfer layer include a heat-resistant rubber sheet and a coated aluminum plate (for example, black), and in order to give the far-infrared absorbing heat transfer layer both adhesive and durable. The thing laminated | stacked together can be mentioned. Furthermore, a rubber sheet reinforced with reinforcing fibers can also be mentioned. More specifically, as the resin-based far-infrared absorbing heat transfer layer, heat-resistant materials such as fluorine-based, acrylic-based, silicon-based heat-resistant polymer sheets, resins having a melting point higher than the foaming temperature, heat-resistant masking tape, etc. In addition, there may be mentioned those having adhesiveness in order to improve the adhesion. Examples of the metal-based far-infrared absorbing heat transfer layer include an aluminum plate, a steel plate, a copper plate and the like roughened by coating with a heat-resistant paint, blasting, anodizing, or the like. Moreover, in order to give rigidity and adhesiveness, what has the heat-resistant polymer layer on the metal surface can also be mentioned. The far-infrared absorption heat transfer layer is more excellent in far-infrared absorptivity and heat transfer, but the level is not particularly limited. Any material having far infrared absorptivity and heat conductivity is sufficient.

本発明に係る発泡樹脂積層板の製造方法において、硬質層としては、金属板に限定されず、樹脂板を用いることができる。この金属板としては、アルミニウム板または鋼板を挙げることができる〔第3発明〕。アルミニウム板とは、純アルミニウム板に限定されず、各種アルミニウム合金板などを含み、鋼板とは、ステンレス、めっき鋼板などを含む。なお、硬質層が金属板の場合、本発明に係る発泡樹脂積層板の製造方法での発泡樹脂積層板は発泡樹脂積層金属板ともいうことができる。   In the method for producing a foamed resin laminate according to the present invention, the hard layer is not limited to a metal plate, and a resin plate can be used. Examples of the metal plate include an aluminum plate and a steel plate [third invention]. The aluminum plate is not limited to a pure aluminum plate, and includes various aluminum alloy plates, and the steel plate includes stainless steel, plated steel plate and the like. In addition, when a hard layer is a metal plate, the foamed resin laminated plate in the manufacturing method of the foamed resin laminated plate which concerns on this invention can also be called a foamed resin laminated metal plate.

遠赤外線加熱による発泡の際には、硬質層と硬質層との間の発泡可能樹脂が軟化しているため、遠赤外線吸収伝熱層が重すぎると、発泡を阻害し、発泡倍率の低下や気泡の破壊を招く恐れがある。このため、発泡を阻害しない重量であることが望ましい。また、逆に重量が軽すぎても硬質層表面への密着性が低下して遠赤外線吸収伝熱層から硬質層への伝熱量が低下する。かかる点から、遠赤外線吸収伝熱層の重量は0.1 〜10mg/mm2 であることが望ましい〔第4発明〕。この場合、発泡が阻害されることなく、発泡をより良好に行うことができ、また、硬質層表面への密着性がよくて遠赤外線吸収伝熱層から硬質層への伝熱をより良好に行うことができる。 When foaming by far-infrared heating, the foamable resin between the hard layer and the hard layer is softened, so if the far-infrared absorption heat transfer layer is too heavy, the foaming is inhibited and the expansion ratio is reduced. There is a risk of destroying the bubbles. For this reason, it is desirable that the weight does not hinder foaming. On the other hand, even if the weight is too light, the adhesion to the hard layer surface is lowered, and the heat transfer amount from the far-infrared absorbing heat transfer layer to the hard layer is reduced. From this point, it is desirable that the weight of the far-infrared absorbing heat transfer layer is 0.1 to 10 mg / mm 2 [fourth invention]. In this case, foaming can be performed better without hindering foaming, and the adhesion to the hard layer surface is good, so that heat transfer from the far-infrared absorbing heat transfer layer to the hard layer is better. It can be carried out.

遠赤外線吸収伝熱層から硬質層へ効率よく熱を伝えるためには、遠赤外線吸収伝熱層と硬質層との密着性を高める方がよい。そこで、硬質層と硬質層との間に未発泡状態の発泡可能樹脂の層を有する積層板を作製する前に遠赤外線吸収伝熱層を硬質層に貼り付けてもよく、また、積層板を作製すると同時に遠赤外線吸収伝熱層を硬質層に貼り付けてもよい。   In order to efficiently transfer heat from the far-infrared absorbing heat transfer layer to the hard layer, it is better to improve the adhesion between the far-infrared absorbing heat transfer layer and the hard layer. Therefore, the far-infrared absorbing heat transfer layer may be attached to the hard layer before producing a laminate having an unfoamed foamable resin layer between the hard layer and the hard layer. The far-infrared absorbing heat transfer layer may be attached to the hard layer simultaneously with the production.

遠赤外線吸収伝熱層を硬質層に接触させる前に帯電させ、しかる後、硬質層に接触させると、遠赤外線吸収伝熱層と硬質層との密着性が増し、ひいては、発泡時間を短縮できる〔第5発明〕。また、加熱発泡後には遠赤外線吸収伝熱層を容易に取り除くことができ、硬質層の表面を汚染することがなく、硬質層の素地をそのまま生かした発泡樹脂積層板が得られる。このように遠赤外線吸収伝熱層を帯電させる方法、即ち、静電気を用いた方法であれば、遠赤外線吸収伝熱層が軽量であってもよく、遠赤外線吸収伝熱層の重量としては0.1 mg/mm2 以上である必要はない。ただし、上記方法では遠赤外線吸収伝熱層が帯電する必要があるため、遠赤外線吸収伝熱層は電気抵抗値が充分に高いことが必要である。遠赤外線吸収伝熱層として金属を用いた場合や、樹脂であってもカーボン等の電気抵抗値を下げる顔料が添加されて電気抵抗値が低い場合、上記方法は利用できない。 If the far-infrared absorbing heat transfer layer is charged before contacting the hard layer, and then contacted with the hard layer, the adhesion between the far-infrared absorbing heat transfer layer and the hard layer increases, and in turn the foaming time can be shortened. [Fifth Invention]. Further, after heating and foaming, the far-infrared absorbing heat transfer layer can be easily removed, and the surface of the hard layer is not contaminated, and a foamed resin laminate using the base of the hard layer as it is can be obtained. In this way, if the far-infrared absorbing heat transfer layer is charged, that is, a method using static electricity, the far-infrared absorbing heat transfer layer may be light, and the weight of the far-infrared absorbing heat transfer layer is 0.1. mg / mm need not be greater than or equal to 2. However, since the far infrared absorption heat transfer layer needs to be charged in the above method, the far infrared absorption heat transfer layer needs to have a sufficiently high electric resistance value. When a metal is used for the far-infrared absorption heat transfer layer, or even if it is a resin, a pigment that lowers the electric resistance value such as carbon is added and the electric resistance value is low, the above method cannot be used.

遠赤外線吸収伝熱層は必要な箇所のみに設けて部分的に発泡を促すような方法も採用することができる。また、積層板の両方の硬質層に遠赤外線吸収伝熱層を設けてもよいし、片方の硬質層のみに遠赤外線吸収伝熱層を設けてもよい。片方の硬質層のみに遠赤外線吸収伝熱層を設けた場合は、片面からの遠赤外線加熱を行えばよい。遠赤外線加熱とは狭義には波長が4000nm以上の電磁波を用いることを指すが、これに限定されるものではなく赤外線のうち波長の比較的長い電磁波による加熱全般をいう。   It is also possible to employ a method in which the far-infrared absorbing heat transfer layer is provided only at a necessary location to partially promote foaming. Moreover, a far-infrared absorption heat-transfer layer may be provided in both the hard layers of a laminated board, and a far-infrared absorption heat-transfer layer may be provided only in one hard layer. When the far infrared absorption heat transfer layer is provided only on one of the hard layers, the far infrared heating from one side may be performed. Far-infrared heating refers to the use of an electromagnetic wave having a wavelength of 4000 nm or more in a narrow sense, but is not limited to this, and refers to heating in general using an electromagnetic wave having a relatively long wavelength among infrared rays.

未発泡状態の発泡可能樹脂は、マトリックスの樹脂と発泡性成分(発泡剤)を含有するものである。このマトリックスの樹脂としては、ポリオレフィン系、ポリスチレン系、ポリウレタン系等があるが、その他、ポリエステル系、EVA 系、PVC 系等もある。このポリオレフィン系の樹脂としては、ポリエチレン樹脂、ポリオレフィン樹脂、EPR 、EPDM等がある。ポリスチレン系の樹脂としては、ポリスチレン樹脂、熱可塑性エラストマー、ABS 樹脂、AS樹脂等がある。これらの樹脂は熱可塑性樹脂であり、加熱により軟化し、可塑性が高くなる性質がある。なお、未発泡状態の発泡可能樹脂は、より詳細には、加熱により発泡温度にて発泡される未発泡状態の発泡可能樹脂ということができる。   The unfoamable foamable resin contains a matrix resin and a foamable component (foaming agent). The matrix resin includes polyolefin, polystyrene, polyurethane, and the like, but also includes polyester, EVA, and PVC. Examples of the polyolefin resin include polyethylene resin, polyolefin resin, EPR, and EPDM. Examples of polystyrene resins include polystyrene resins, thermoplastic elastomers, ABS resins, and AS resins. These resins are thermoplastic resins and have the property of being softened by heating and having high plasticity. The foamable resin in an unfoamed state can be more specifically referred to as an unfoamable foamable resin that is foamed at the foaming temperature by heating.

発泡性成分(発泡剤)としては、有機発泡剤、無機発泡剤のいずれも使用可能である。有機発泡剤としては、例えば、アゾ化合物、ニトロソ化合物、スルホニルヒドラジド化合物、その他の化合物などの使用が可能であり、具体的には、アゾジカルボンアミド、アゾジカルボン酸バリウム、アゾビスイソブチロニトリル、N,N’−ジニトロソペンタメチレンテトラミン、p−トルエンスルホニルヒドラジド、p,p’−オキシビス(ベンゼンスルホニルヒドラジド)、ヒドラゾジカルボンアミド、ジフェニルスルホン−3,3−ジスルホニルヒドラジド、p−トルエンスルホニルセミカルバジド、トリヒドラジノトリアジン、ビウレアなどが挙げられる。無機発泡剤としては、炭酸水素ナトリウム、炭酸亜鉛など、さらには熱膨張性マイクロカプセルなどが挙げられる。これらの発泡性成分の中でも、120℃以上、より好ましくは150℃以上に加熱することにより発泡するものが好ましい。マトリクスポリマーには、積層板の使用環境温度より十分高い温度に融点を持つ者が選択されるが、この融点よりも20℃程度高い温度に発泡剤の発泡温度を設定する必要があるためである。なお、上記発泡性成分は1種を単独で使用してもよく、また、2種以上を組み合わせて使用してもよい。   As the foamable component (foaming agent), either an organic foaming agent or an inorganic foaming agent can be used. As the organic foaming agent, for example, an azo compound, a nitroso compound, a sulfonyl hydrazide compound, and other compounds can be used. Specifically, azodicarbonamide, barium azodicarboxylate, azobisisobutyronitrile, N, N'-dinitrosopentamethylenetetramine, p-toluenesulfonyl hydrazide, p, p'-oxybis (benzenesulfonyl hydrazide), hydrazodicarbonamide, diphenylsulfone-3,3-disulfonyl hydrazide, p-toluenesulfonyl semicarbazide , Trihydrazinotriazine, biurea and the like. Examples of the inorganic foaming agent include sodium hydrogen carbonate and zinc carbonate, and further thermally expandable microcapsules. Among these foamable components, those that foam by heating to 120 ° C. or higher, more preferably 150 ° C. or higher are preferable. For the matrix polymer, a person having a melting point at a temperature sufficiently higher than the use environment temperature of the laminated board is selected, but it is necessary to set the foaming temperature of the foaming agent to a temperature about 20 ° C. higher than the melting point. . In addition, the said foamable component may be used individually by 1 type, and may be used in combination of 2 or more type.

本発明に係る発泡樹脂積層板の製造方法において、硬質層と硬質層との間に発泡樹脂層を有する発泡樹脂積層板は、硬質層と硬質層との間に発泡樹脂層のみを有する発泡樹脂積層板に限定されず、硬質層と硬質層との間に発泡樹脂層および該発泡樹脂層以外の層を有する発泡樹脂積層板も含まれる。後者の発泡樹脂層以外の層を有する発泡樹脂積層板の場合、発泡樹脂層以外の層は一層に限定されず、二層以上の場合も含まれ、また、発泡樹脂層は一層に限定されず、二層以上の場合も含まれる。発泡樹脂層以外の層としては、硬質層と発泡樹脂層を熱融着させるための接着フィルムなどが例示される。   In the method for producing a foamed resin laminate according to the present invention, the foamed resin laminate having a foamed resin layer between the hard layer and the hard layer is a foamed resin having only the foamed resin layer between the hard layer and the hard layer. It is not limited to a laminated board, The foamed resin laminated board which has layers other than a foamed resin layer and this foamed resin layer between a hard layer and a hard layer is also contained. In the case of a foamed resin laminate having a layer other than the latter foamed resin layer, the layer other than the foamed resin layer is not limited to a single layer, including cases of two or more layers, and the foamed resin layer is not limited to a single layer. Also, the case of two or more layers is included. Examples of the layer other than the foamed resin layer include an adhesive film for thermally fusing the hard layer and the foamed resin layer.

本発明に係る発泡樹脂積層板の製造方法において、遠赤外線加熱を行って前記発泡可能樹脂を発泡させて発泡樹脂層と成した後、前記遠赤外線吸収伝熱層を除去することができる。   In the method for producing a foamed resin laminate according to the present invention, after the far infrared heating is performed to foam the foamable resin to form a foamed resin layer, the far infrared absorbing heat transfer layer can be removed.

また、本発明に係る発泡樹脂積層板の製造方法は、前記伝熱層を発泡樹脂積層板から加熱発泡後容易に取り除くことができるため、例えば、硬質層の反射率が0.85〜1.0であるような、遠赤外線加熱では極めて加熱しにくいものにも適用できる。このような反射率であるものは、伝熱層を取り除いた後、熱源近傍の部材へ利用できるため、本発明の効果が得やすい発泡樹脂積層板である。   Moreover, since the manufacturing method of the foamed resin laminated board which concerns on this invention can remove the said heat-transfer layer from a foamed resin laminated board easily after heat foaming, the reflectance of a hard layer is 0.85-1. It can also be applied to those that are extremely difficult to heat by far infrared heating, such as 0. What has such a reflectance is a foamed resin laminate that is easy to obtain the effects of the present invention because it can be used for a member near the heat source after removing the heat transfer layer.

本発明の実施例および比較例を以下説明する。なお、本発明はこの実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Examples of the present invention and comparative examples will be described below. The present invention is not limited to this embodiment, and can be implemented with appropriate modifications within a range that can be adapted to the gist of the present invention, all of which are within the technical scope of the present invention. include.

〔例1〕
例1に係る発泡樹脂積層板の製造方法を図1に示す。この図1からわかるように、3種類の製造方法〔(A), (B), (C) 〕により発泡樹脂積層板を製造した。
[Example 1]
A method for producing a foamed resin laminate according to Example 1 is shown in FIG. As can be seen from FIG. 1, a foamed resin laminate was produced by three types of production methods [(A), (B), (C)].

製造方法(A) は、アルミニウム板(硬質層の一種に相当)1とアルミニウム板2との間に未発泡状態の発泡可能樹脂の層3を有する積層板4を作製し、この積層板4をそのまま遠赤外線により加熱して前記発泡可能樹脂を発泡させようとする方法である。この場合、発泡温度に達するのに大変長時間を要する。   The manufacturing method (A) is to produce a laminated plate 4 having an unfoamed foamable resin layer 3 between an aluminum plate (corresponding to a kind of hard layer) 1 and the aluminum plate 2, and In this method, the foamable resin is foamed by heating with far infrared rays. In this case, it takes a very long time to reach the foaming temperature.

製造方法(B) は、上記と同様の積層板4の両方(アルミニウム板1およびアルミニウム板2)の表面に、塗料を塗布して遠赤外線吸収性および伝熱性を有する遠赤外線吸収伝熱層5を形成した後、遠赤外線加熱を行って前記発泡可能樹脂を発泡させようとする方法である。この場合、製造方法(A) の場合よりも、発泡温度に達するまでの時間が短く、また、温度バラツキが小さくて発泡状態のムラが小さい。しかし、積層板の用途が熱源近傍に設置するものの場合は、発泡の後、塗料を剥がす必要があり、塗料を剥がすとアルミニウム素地の光沢が失われてしまう。また、塗料を塗布や塗料を剥がす工程が必要であると共に、それら工程によるコスト上昇を招く。なお、付番の6は発泡樹脂層を示すものである。   In the production method (B), a far-infrared absorbing heat transfer layer 5 having a far-infrared absorbing property and a heat-transmitting property by applying a paint to the surfaces of both the laminated plates 4 (the aluminum plate 1 and the aluminum plate 2) as described above. After forming, the far-infrared heating is performed to foam the foamable resin. In this case, the time to reach the foaming temperature is shorter than in the case of the production method (A), and the variation in temperature is small and the foamed state is less uneven. However, in the case where the laminated plate is used near the heat source, it is necessary to remove the paint after foaming. If the paint is removed, the luster of the aluminum substrate is lost. In addition, a process of applying a paint or removing a paint is necessary, and the cost increases due to these processes. The number 6 indicates a foamed resin layer.

製造方法(C) は、上記と同様の積層板4の両方(アルミニウム板1およびアルミニウム板2)の表面に、遠赤外線吸収伝熱層として黒色耐熱ゴム7及び8を接触させて設けた後、遠赤外線加熱を行って前記発泡可能樹脂を発泡させようとする方法である。この場合、製造方法(A) の場合よりも、発泡温度に達するまでの時間が短く、また、温度バラツキが小さくて発泡状態のムラが小さい。また、発泡の後、黒色耐熱ゴムを外すと、アルミニウム素地の光沢があり、製造方法(B) の場合のようなアルミニウム素地の光沢が失われてしまうことはない。なお、付番の9は発泡樹脂層を示すものである。   In the production method (C), the black heat-resistant rubbers 7 and 8 are provided as the far-infrared absorbing heat transfer layers on the surfaces of both the laminated plates 4 (the aluminum plate 1 and the aluminum plate 2) as described above, In this method, the foamable resin is foamed by performing far infrared heating. In this case, the time to reach the foaming temperature is shorter than in the case of the production method (A), and the variation in temperature is small and the foamed state is less uneven. Further, when the black heat-resistant rubber is removed after foaming, the aluminum substrate has gloss, and the gloss of the aluminum substrate as in the production method (B) is not lost. The number 9 indicates a foamed resin layer.

〔例2〕
例2に係る発泡樹脂積層板の製造方法を図2に示す。この図2からわかるように、アルミニウム板1とアルミニウム板2との間に未発泡状態の発泡可能樹脂の層3を有する積層板4を作製すると同時に、アルミニウム板1およびアルミニウム板2の表面に遠赤外線吸収伝熱層10及び11を粘着テープにより貼り付け、しかる後、遠赤外線加熱を行って前記発泡可能樹脂を発泡させた。この場合、例1の製造方法(C) の場合と同様、発泡温度に達するまでの時間が短く、また、温度バラツキが小さくて発泡状態のムラが小さい。また、発泡の後、遠赤外線吸収伝熱層10及び11は簡単に外すことができ、これを外すとアルミニウム素地の光沢があり、製造方法(B) の場合のようなアルミニウム素地光沢が失われてしまうことはない。なお、付番の12は発泡樹脂層を示すものである。図中での伝熱層は遠赤外線吸収伝熱層のことである。
[Example 2]
A method for producing a foamed resin laminate according to Example 2 is shown in FIG. As can be seen from FIG. 2, a laminated plate 4 having a foamable resin layer 3 in an unfoamed state between the aluminum plate 1 and the aluminum plate 2 is produced, and at the same time, the surfaces of the aluminum plate 1 and the aluminum plate 2 are distant. Infrared absorbing heat transfer layers 10 and 11 were affixed with an adhesive tape, and then far infrared heating was performed to foam the foamable resin. In this case, as in the case of the production method (C) of Example 1, the time until the foaming temperature is reached is short, the temperature variation is small, and the unevenness of the foamed state is small. Further, after foaming, the far-infrared absorbing heat transfer layers 10 and 11 can be easily removed. If this is removed, the gloss of the aluminum base is lost, and the gloss of the aluminum base as in the manufacturing method (B) is lost. There is no end to it. Reference numeral 12 denotes a foamed resin layer. The heat transfer layer in the figure is a far infrared absorption heat transfer layer.

〔例3〕
硬質層と硬質層との間に未発泡状態の発泡可能樹脂の層を有する積層板を作製し、この積層板の両方の硬質層の表面に遠赤外線吸収伝熱層を接触させて設けた後、遠赤外線加熱を行って前記発泡可能樹脂を発泡させて発泡樹脂層と成し、この後、遠赤外線吸収伝熱層を外して発泡樹脂積層板を得た。
[Example 3]
After producing a laminate having an unfoamed foamable resin layer between the hard layer and the hard layer, and providing a far-infrared absorbing heat transfer layer in contact with the surface of both hard layers of the laminate Then, far-infrared heating was performed to foam the foamable resin to form a foamed resin layer, and then the far-infrared absorbing heat transfer layer was removed to obtain a foamed resin laminate.

このとき、硬質板としてアルミニウム板(1200-O, t0.15) を用い、未発泡状態の発泡可能樹脂層として常圧2次発泡ポリプロピレン(シート状)を用い、遠赤外線吸収伝熱層としてフッソ系耐熱ゴム(t0.3)で黒色のもの、白色のもの、あるいは、黒色塗装アルミニウム板(t0.15 )を用いた。硬質板と前記発泡可能樹脂層とは熱融着フィルムにより接着した。   At this time, an aluminum plate (1200-O, t0.15) is used as the hard plate, a normal-pressure secondary expanded polypropylene (sheet-like) is used as the foamable resin layer in an unfoamed state, and a fluorine is used as the far-infrared absorbing heat transfer layer A black heat-resistant rubber (t0.3), a white heat-resistant rubber, or a black painted aluminum plate (t0.15) was used. The hard plate and the foamable resin layer were bonded with a heat-sealing film.

遠赤外線加熱は次のようにして行った。図3に示すように、硬質層(アルミニウム板)と硬質層(アルミニウム板)との間に未発泡状態の発泡可能樹脂の層(常圧2次発泡ポリプロピレンのシート)を有する積層板20の上面および下面に遠赤外線吸収伝熱層21,22を接触させて設けたものの上方および下方に遠赤外線セラミックヒーター(坂口電熱株式会社製)23,24を設けて遠赤外線加熱を行った。遠赤外線セラミックヒーターの遠赤外線セラミック板と加熱対象物との距離は図3に示す通りである。   Far-infrared heating was performed as follows. As shown in FIG. 3, the upper surface of the laminated board 20 which has the layer of foamable resin (sheet | seat of a normal pressure secondary foaming polypropylene) of a non-foamed state between a hard layer (aluminum board) and a hard layer (aluminum board). In addition, far-infrared ceramic heaters (manufactured by Sakaguchi Electric Heat Co., Ltd.) 23 and 24 were provided above and below what was provided with the far-infrared absorption heat transfer layers 21 and 22 in contact with the lower surface, and far-infrared heating was performed. The distance between the far-infrared ceramic plate of the far-infrared ceramic heater and the object to be heated is as shown in FIG.

一方、上記と同様の積層板を作製し、この積層板のいずれの面にも遠赤外線吸収伝熱層を設けない状態で、上記と同様の方法により遠赤外線加熱を行って前記発泡可能樹脂を発泡させて発泡樹脂層と成し、発泡樹脂積層板を得た。   On the other hand, a laminated board similar to the above was prepared, and the far-infrared heat transfer layer was not provided on any side of the laminated board, and far-infrared heating was performed by the same method as described above to obtain the foamable resin. Foaming was performed to form a foamed resin layer to obtain a foamed resin laminate.

この遠赤外線吸収伝熱層を設けない状態で遠赤外線加熱を行った場合は、発泡させるのに大変長時間を要し、また、発泡状態のムラが大きい。これに対し、前記の遠赤外線吸収伝熱層を設けた状態で遠赤外線加熱を行った場合は、短時間で発泡させることができ、また、均一に発泡し、発泡状態のムラが小さかった。   When far-infrared heating is performed in a state where this far-infrared absorbing heat transfer layer is not provided, it takes a very long time for foaming, and the foamed state is highly uneven. On the other hand, when far-infrared heating was performed with the far-infrared absorbing heat transfer layer provided, foaming was possible in a short time, and foaming was uniform and the foamed state was less uneven.

〔例4〕
図4に示すように、A4サイズのアルミニウム板(t0.15)2枚(付番25,26)の間に熱電対27を挟んだ状態で取り付け、このアルミニウム板25の上面およびアルミニウム板26の下面に遠赤外線吸収伝熱層を接触させて設け、遠赤外線加熱を行ってアルミニウム板の温度の径時変化(平均値とバラツキ)を調べた。このとき、遠赤外線加熱は例3の場合と同様の遠赤外線セラミックヒーターを用いて行った。遠赤外線セラミックヒーターの遠赤外線セラミック板23とアルミニウム板25の上面との距離、遠赤外線セラミック板24とアルミニウム板26の下面との距離は、いずれも、50mmとした。遠赤外線吸収伝熱層としては、フッソ系耐熱ゴム(t0.3)で黒色のもの、白色のもの、あるいは、黒色塗装アルミニウム板(t0.15 )を用いた。
[Example 4]
As shown in FIG. 4, a thermocouple 27 is attached between two A4 size aluminum plates (t0.15) (numbers 25 and 26), and the upper surface of the aluminum plate 25 and the aluminum plate 26 are attached. A far-infrared absorption heat transfer layer was provided in contact with the lower surface, and far-infrared heating was performed to examine the change in temperature of the aluminum plate over time (average value and variation). At this time, the far-infrared heating was performed using the same far-infrared ceramic heater as in Example 3. The distance between the far infrared ceramic plate 23 of the far infrared ceramic heater and the upper surface of the aluminum plate 25 and the distance between the far infrared ceramic plate 24 and the lower surface of the aluminum plate 26 were both 50 mm. As the far-infrared absorbing heat transfer layer, a black heat-resistant rubber (t0.3), white, or black painted aluminum plate (t0.15) was used.

また、上記と同様にA4サイズのアルミニウム板2枚の間に熱電対27を挟んだ状態で取り付け、遠赤外線吸収伝熱層を設けることなく、この状態で上記と同様の方法により遠赤外線加熱を行ってアルミニウム板の温度の径時変化(平均値とバラツキ)を調べた。   Also, in the same manner as described above, the thermocouple 27 is sandwiched between two A4 size aluminum plates, and far infrared heating is performed in the same manner as described above without providing a far infrared absorbing heat transfer layer. The temperature change of the aluminum plate over time (average value and variation) was examined.

上記アルミニウム板の温度の径時変化の測定結果を図5に示す。図5の(A) は、各位置での温度の平均値の径時変化を示すものである。図5の(B) は、各位置での温度の最大値と最小値との差(バラツキ)の径時変化を示すものである。   FIG. 5 shows the measurement results of the change in temperature of the aluminum plate with time. (A) of FIG. 5 shows the change with time of the average value of the temperature at each position. (B) of FIG. 5 shows the change with time of the difference (variation) between the maximum value and the minimum value of the temperature at each position.

この図5の(A) 、(B) からわかるように、前者の遠赤外線吸収伝熱層を設けた場合は、後者の遠赤外線吸収伝熱層を設けない場合に比較し、アルミニウム板の温度の上昇速度が極めて速くて、遠赤外線加熱の開始時点から230℃(発泡剤の分解温度に相当)になるまでの時間が著しく短く、また、230℃になった時点での温度のバラツキが極めて小さい。   As can be seen from FIGS. 5A and 5B, the temperature of the aluminum plate is higher when the former far infrared absorbing heat transfer layer is provided than when the latter far infrared absorbing heat transfer layer is not provided. The rate of increase in temperature is extremely fast, the time from the start of far-infrared heating to 230 ° C. (corresponding to the decomposition temperature of the blowing agent) is remarkably short, and the temperature variation at 230 ° C. is extremely high. small.

なお、前者の遠赤外線吸収伝熱層を設けた場合において、遠赤外線吸収伝熱層の種類によってアルミニウム板の温度の上昇速度も230℃になった時点での温度のバラツキの程度もほとんど差異がない。   In the case where the former far-infrared absorbing heat transfer layer is provided, there is almost no difference in the degree of temperature variation when the temperature of the aluminum plate rises to 230 ° C. depending on the type of the far-infrared absorbing heat transfer layer. Absent.

〔例5〕
遠赤外線吸収伝熱層として、中興化成工業製のテフロンシート(t0.1mm)、または、前記テフロンシートを帯電させたものを用いた。(なお、テフロンは登録商標である。以下、同様。)
[Example 5]
As the far-infrared absorbing heat transfer layer, a Teflon sheet (t0.1 mm) manufactured by Chuko Kasei Kogyo Co., Ltd. or a charged Teflon sheet was used. (Teflon is a registered trademark. The same shall apply hereinafter.)

前記テフロンシートの帯電は、SIMCO 社製の直流高電圧発生装置CH-20 を使用して行った。このとき、帯電条件としては電圧を20kVとし、チャージングバーと対象物(テフロンシート)との距離は60mmとした。   The Teflon sheet was charged using a direct current high voltage generator CH-20 manufactured by SIMCO. At this time, as charging conditions, the voltage was 20 kV, and the distance between the charging bar and the object (Teflon sheet) was 60 mm.

硬質層と硬質層との間に未発泡状態の発泡可能樹脂の層を有する積層板の両方の硬質層の表面に、上記遠赤外線吸収伝熱層(テフロンシート、または、帯電させたテフロンシート)を接触させて設けた後、遠赤外線加熱を行って前記発泡可能樹脂を発泡させた。そして、発泡層(0.9mm )が3倍(2.7mm )になった時点までの時間を測定した。このとき、遠赤外線加熱は遠赤外線セラミックヒーターを用いて行った。遠赤外線セラミックヒーターの遠赤外線セラミック板と積層板の硬質層表面との距離は100mm である。遠赤外線セラミックヒーターの電圧は250 Vである。   The far-infrared absorbing heat transfer layer (Teflon sheet or charged Teflon sheet) on the surface of both hard layers of the laminate having an unfoamed foamable resin layer between the hard layer and the hard layer After being provided in contact with each other, far-infrared heating was performed to foam the foamable resin. Then, the time until the time when the foamed layer (0.9 mm) was tripled (2.7 mm) was measured. At this time, far infrared heating was performed using a far infrared ceramic heater. The distance between the far-infrared ceramic plate of the far-infrared ceramic heater and the hard layer surface of the laminate is 100 mm. The voltage of the far-infrared ceramic heater is 250V.

上記測定の結果、遠赤外線吸収伝熱層としてテフロンシート(帯電させていない)を用いた場合、発泡層が3倍になるのに必要な時間は8分間であり、これに対し、遠赤外線吸収伝熱層として帯電させたテフロンシートを用いた場合、発泡層が3倍になるのに必要な時間は6分30秒間であり、発泡時間が短縮された。これは、遠赤外線吸収伝熱層として帯電させたテフロンシートを用いた場合、遠赤外線吸収伝熱層と積層板の硬質層との密着性が増し、ひいては、遠赤外線吸収伝熱層から硬質層へ効率よく熱を伝えることができるようになったからである。なお、いずれの場合も、発泡の後、遠赤外線吸収伝熱層を容易に取り除くことができ、硬質層の表面を汚染することがなく、硬質層の素地をそのまま生かした発泡樹脂積層板が得られた。   As a result of the above measurement, when a Teflon sheet (uncharged) is used as the far-infrared absorbing heat transfer layer, the time required for the foamed layer to triple is 8 minutes. When a charged Teflon sheet was used as the heat transfer layer, the time required to triple the foamed layer was 6 minutes 30 seconds, and the foaming time was shortened. This is because when a charged Teflon sheet is used as the far-infrared absorbing heat transfer layer, the adhesion between the far-infrared absorbing heat transfer layer and the hard layer of the laminate increases, and as a result, the far-infrared absorbing heat transfer layer to the hard layer This is because it has become possible to conduct heat efficiently to In either case, after foaming, the far-infrared absorbing heat transfer layer can be easily removed, and the foamed resin laminate is obtained without contaminating the surface of the hard layer and using the substrate of the hard layer as it is. It was.

本発明に係る発泡樹脂積層板の製造方法によれば、硬質層と硬質層との間に発泡樹脂層を有する発泡樹脂積層板の製造に際し、硬質層と硬質層との間にある未発泡状態の発泡可能樹脂の層の加熱方法として遠赤外線加熱による加熱方法を適用でき、この遠赤外線加熱により発泡可能樹脂を発泡させることができるので、発泡のための加熱時間が短く、また、加熱の際の温度のバラツキが小さくて発泡状態のバラツキが生じ難くなる。更に、高い反射率を有する硬質層であっても適用でき、且つ、加熱発泡後、遠赤外線吸収伝熱層を容易に取り除くことにより、容易に元の高い反射率を有する硬質層に戻すことができるため、熱源近傍に利用する発泡樹脂積層体の製造に有用である。従って、本発明に係る発泡樹脂積層板の製造方法は、効率よく、品質に優れた発泡樹脂積層板を製造することができて極めて有用である。   According to the method for producing a foamed resin laminate according to the present invention, when producing a foamed resin laminate having a foamed resin layer between the hard layer and the hard layer, an unfoamed state between the hard layer and the hard layer is present. As the heating method of the foamable resin layer, a heating method by far infrared heating can be applied, and the foamable resin can be foamed by this far infrared heating, so that the heating time for foaming is short, The variation in temperature is small, and the variation in the foamed state is difficult to occur. Furthermore, even a hard layer having a high reflectance can be applied, and after heating and foaming, the far infrared absorption heat transfer layer can be easily removed to easily return to the original hard layer having a high reflectance. Therefore, it is useful for producing a foamed resin laminate used near the heat source. Therefore, the method for producing a foamed resin laminate according to the present invention is very useful because it can produce a foamed resin laminate that is efficient and excellent in quality.

例1に係る発泡樹脂積層板の製造方法を示す模式図である。5 is a schematic view showing a method for manufacturing a foamed resin laminate according to Example 1. FIG. 例2に係る発泡樹脂積層板の製造方法を示す模式図である。6 is a schematic diagram showing a method for manufacturing a foamed resin laminate according to Example 2. FIG. 例3に係る遠赤外線加熱方法を示す模式図である。6 is a schematic diagram illustrating a far infrared heating method according to Example 3. FIG. 例4に係るアルミニウム板とこのアルミニウム板の間に挟み込んだ熱電対を示す模式図である。It is a schematic diagram which shows the thermocouple pinched | interposed between the aluminum plate which concerns on Example 4, and this aluminum plate. 例4に係るアルミニウム板の温度の径時変化(平均値とバラツキ)を示す図であって、図4の(A) は各測定位置での温度の平均値の径時変化を示すものであり、図4の(B) は各測定位置での温度の最大値と最小値との差(バラツキ)の径時変化を示すものである。It is a figure which shows the time change (average value and dispersion | variation) of the temperature of the aluminum plate which concerns on Example 4, Comprising: (A) of FIG. 4 shows the time change of the average value of the temperature in each measurement position. FIG. 4B shows the change with time in the difference (variation) between the maximum value and the minimum value of the temperature at each measurement position.

符号の説明Explanation of symbols

1--アルミニウム板、2--アルミニウム板、3--未発泡状態の発泡可能樹脂の層、
4--アルミニウム板1とアルミニウム板2との間に未発泡状態の発泡可能樹脂の層3を有する積層板、 5--遠赤外線吸収伝熱層、6--発泡樹脂層、7--黒色耐熱ゴム、8--黒色耐熱ゴム、9--発泡樹脂層、10--遠赤外線吸収伝熱層、11--遠赤外線吸収伝熱層、12--発泡樹脂層、20--硬質層と硬質層との間に未発泡状態の発泡可能樹脂の層を有する積層板、21--遠赤外線吸収伝熱層、22--遠赤外線吸収伝熱層、23--遠赤外線セラミックヒーター、24--遠赤外線セラミックヒーター、25--アルミニウム板、26--アルミニウム板、27--熱電対。
1--aluminum plate, 2--aluminum plate, 3--layer of foamable resin in an unfoamed state,
4—Laminated plate having an unfoamed foamable resin layer 3 between the aluminum plate 1 and the aluminum plate 2, 5—Far infrared absorption heat transfer layer, 6—Foamed resin layer, 7—Black Heat-resistant rubber, 8--black heat-resistant rubber, 9--foam resin layer, 10--far infrared absorption heat transfer layer, 11--far infrared absorption heat transfer layer, 12--foam resin layer, 20--hard layer Laminate with unfoamed foamable resin layer between hard layer, 21--far infrared absorbing heat transfer layer, 22--far infrared absorbing heat transfer layer, 23--far infrared ceramic heater, 24- -Far infrared ceramic heater, 25--aluminum plate, 26--aluminum plate, 27--thermocouple.

Claims (7)

硬質層と硬質層との間に発泡樹脂層を有する発泡樹脂積層板の製造方法であって、硬質層と硬質層との間に未発泡状態の発泡可能樹脂の層を有する積層板を作製し、この積層板の片方または両方の硬質層の表面に遠赤外線吸収性および伝熱性を有する遠赤外線吸収伝熱層を接触させて設け、遠赤外線加熱を行って前記発泡可能樹脂を発泡させて発泡樹脂層と成すことを特徴とする発泡樹脂積層板の製造方法。   A method for producing a foamed resin laminate having a foamed resin layer between a hard layer and a hard layer, wherein a laminate having an unfoamable foamable resin layer between the hard layer and the hard layer is produced. A far-infrared absorption heat transfer layer having far-infrared absorption and heat transfer is provided in contact with the surface of one or both hard layers of this laminate, and the foamable resin is expanded by foaming the far-infrared heat. A method for producing a foamed resin laminate, characterized by comprising a resin layer. 前記遠赤外線吸収伝熱層が、樹脂シート、ゴムシートまたは遠赤外線吸収性のある金属板またはこれらの複合板からなる請求項1記載の発泡樹脂積層板の製造方法。   The method for producing a foamed resin laminate according to claim 1, wherein the far-infrared absorbing heat transfer layer is made of a resin sheet, a rubber sheet, a far-infrared absorbing metal plate, or a composite plate thereof. 前記硬質層がアルミニウム板または鋼板よりなる請求項1または2記載の発泡樹脂積層板の製造方法。   The method for producing a foamed resin laminate according to claim 1 or 2, wherein the hard layer is made of an aluminum plate or a steel plate. 前記遠赤外線吸収伝熱層の重量が0.1 〜10mg/mm2 である請求項1〜3のいずれかに記載の発泡樹脂積層板の製造方法。 Method for manufacturing a foamed resin laminate according to any one of claims 1 to 3 wt of the far-infrared-absorbing heat transfer layer is 0.1 ~10mg / mm 2. 前記遠赤外線吸収伝熱層を硬質層に接触させる前に帯電させ、しかる後、硬質層に接触させる請求項1〜4のいずれかに記載の発泡樹脂積層板の製造方法。   The method for producing a foamed resin laminate according to any one of claims 1 to 4, wherein the far-infrared absorbing heat transfer layer is charged before being brought into contact with the hard layer and then brought into contact with the hard layer. 遠赤外線加熱を行って前記発泡可能樹脂を発泡させて発泡樹脂層と成した後、前記遠赤外線吸収伝熱層を除去する請求項1〜5のいずれかに記載の発泡樹脂積層板の製造方法。   The method for producing a foamed resin laminate according to any one of claims 1 to 5, wherein after the far-infrared heating is performed to foam the foamable resin to form a foamed resin layer, the far-infrared absorption heat transfer layer is removed. . 前記硬質層表面の波長4500nmでの反射率が0.85〜1.0である請求項1〜6のいずれかに記載の発泡樹脂積層板の製造方法。   The method for producing a foamed resin laminate according to any one of claims 1 to 6, wherein the reflectance of the hard layer surface at a wavelength of 4500 nm is 0.85 to 1.0.
JP2007296878A 2007-02-19 2007-11-15 Manufacturing method of foamed resin laminate Expired - Fee Related JP5096882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007296878A JP5096882B2 (en) 2007-02-19 2007-11-15 Manufacturing method of foamed resin laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007038360 2007-02-19
JP2007038360 2007-02-19
JP2007296878A JP5096882B2 (en) 2007-02-19 2007-11-15 Manufacturing method of foamed resin laminate

Publications (2)

Publication Number Publication Date
JP2008230223A true JP2008230223A (en) 2008-10-02
JP5096882B2 JP5096882B2 (en) 2012-12-12

Family

ID=39903565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007296878A Expired - Fee Related JP5096882B2 (en) 2007-02-19 2007-11-15 Manufacturing method of foamed resin laminate

Country Status (1)

Country Link
JP (1) JP5096882B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010027081A1 (en) 2008-09-08 2010-03-11 学校法人東京理科大学 Spheroid composite, spheroid-containing hydrogel and processes for production of same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04358830A (en) * 1991-06-05 1992-12-11 Daido Steel Sheet Corp Manufacture of heat insulation panel and method for fixing and applying the same
JPH07244461A (en) * 1994-03-03 1995-09-19 Kimoto & Co Ltd Electrostatic attracting body
JPH10235674A (en) * 1997-02-28 1998-09-08 Nec Corp Lead frame heating device
JP2000062068A (en) * 1998-08-24 2000-02-29 Sekisui Chem Co Ltd Production of expandable composite sheet and composite foam
JP2004042500A (en) * 2002-07-12 2004-02-12 Sekisui Chem Co Ltd Laminated foam, its manufacturing method and swimming pool using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04358830A (en) * 1991-06-05 1992-12-11 Daido Steel Sheet Corp Manufacture of heat insulation panel and method for fixing and applying the same
JPH07244461A (en) * 1994-03-03 1995-09-19 Kimoto & Co Ltd Electrostatic attracting body
JPH10235674A (en) * 1997-02-28 1998-09-08 Nec Corp Lead frame heating device
JP2000062068A (en) * 1998-08-24 2000-02-29 Sekisui Chem Co Ltd Production of expandable composite sheet and composite foam
JP2004042500A (en) * 2002-07-12 2004-02-12 Sekisui Chem Co Ltd Laminated foam, its manufacturing method and swimming pool using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010027081A1 (en) 2008-09-08 2010-03-11 学校法人東京理科大学 Spheroid composite, spheroid-containing hydrogel and processes for production of same

Also Published As

Publication number Publication date
JP5096882B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
US20120328889A1 (en) Thermally foamable resin composition, thermally foamable resin sheet, thermally foamable laminate, and foamed material and process for production thereof
JP5699428B2 (en) Foam wallpaper
JP2014173217A (en) Foamed wallpaper and method for manufacturing the same
JP2006306069A (en) Wall covering decorative sheet raw material and wall covering decorative sheet
JP5792695B2 (en) Manufacturing method and manufacturing apparatus for foamed resin metal laminate
JP6318398B2 (en) Laminate
JP5096882B2 (en) Manufacturing method of foamed resin laminate
JP4667151B2 (en) Foam wallpaper
JP2002317064A (en) Thermoconductive material
JP6318814B2 (en) Foamed laminated sheet and method for producing the same
JP2001277354A (en) Method for manufacturing embossed sheet and embossed sheet
JP2017166096A (en) Method for manufacturing foamed wallpaper
JP2012254607A (en) Laminated plate and composite molded body obtained by using the laminated plate
JPH04221636A (en) Decorative sheet
JP2009154314A (en) Transfer sheet and decorative material
JP4614805B2 (en) Decorative sheet for wallpaper
JP2010006294A (en) Sponge for applying wax
JP4962457B2 (en) Method for producing a raw material for foam wallpaper
JP4671878B2 (en) Foam wallpaper
JP7201039B2 (en) Modeled article manufacturing method and thermally expandable sheet manufacturing method
JP5028778B2 (en) Foam wallpaper
JPH06134909A (en) Surface modified polyolefinic resin foam, self-adhesive polyolefinic resin foam and production thereof
JPH11320733A (en) Foam wall paper with protrusion and recess
JP2000218744A (en) Foamed polyolefin sheet and its production
JP2002219763A (en) Insulating member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110411

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120921

R150 Certificate of patent or registration of utility model

Ref document number: 5096882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees