JP2008225075A - 電気光学装置および電子機器 - Google Patents

電気光学装置および電子機器 Download PDF

Info

Publication number
JP2008225075A
JP2008225075A JP2007063497A JP2007063497A JP2008225075A JP 2008225075 A JP2008225075 A JP 2008225075A JP 2007063497 A JP2007063497 A JP 2007063497A JP 2007063497 A JP2007063497 A JP 2007063497A JP 2008225075 A JP2008225075 A JP 2008225075A
Authority
JP
Japan
Prior art keywords
layer
dielectric layer
dielectric
substrate
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007063497A
Other languages
English (en)
Inventor
Tomoyuki Okuyama
智幸 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2007063497A priority Critical patent/JP2008225075A/ja
Publication of JP2008225075A publication Critical patent/JP2008225075A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

【課題】TFTのチャネル領域に光が到達することを防止して、トランジスタ特性が良好で、画像不良を防止することができる反射型電気光学装置、および、その反射型電気光学装置を備えた電子機器を提供する。
【解決手段】TFT30の下層側および上層側を含む周囲を覆うように第一誘電体層11,34,12,13,14が形成され、少なくとも第一誘電体層14の上面を覆いTFT30に平面的に重なるように画素電極23(反射電極)が形成され、画素同士の間隙に第一誘電体層11,34,12,13,14と屈折率の異なる第二誘電体層15が第一誘電体層14の側面に接するように形成され、画素電極23(反射電極)が設けられた領域に第一誘電体層14と第二誘電体層15の境界面Bが位置していることを特徴とする
【選択図】図5

Description

この発明は、電気光学装置および電子機器に関するものである。
従来から、複数の画素がマトリクス状に配置され、複数の画素の各々に対応して薄膜トランジスタが設けられた基板を備えた電気光学装置が知られている。このような電気光学装置として、WSi(タングステンシリサイド)ターゲットを用いたスパッタリングにより形成されたWSiからなる遮光層上に、フォトリソグラフィにより遮光層のパターンに対応するマスクを形成した後、ケミカルドライエッチングを行うことによりテーパー状のWSi遮光層を形成したアクティブマトリクス駆動方式の液晶表示パネルが開示されている(例えば、特許文献1参照)。
また、基板を不活性ガス雰囲気中で且つ所定温度でアニール後に、基板上に高融点金属シリサイドから形成された遮光層と、遮光層上に850℃以下のプロセスによりシリケートガラスから形成され、不活性ガス雰囲気中で且つ所定温度でアニールされた層間絶縁層と、層間絶縁層上に所定温度のプロセスにより形成された複数のスイッチング素子と、複数のスイッチング素子に対応して設けられた複数の画素電極を設けた液晶表示パネルが開示されている(例えば、特許文献2参照)。
上述の特許文献1では、熱膨張率の差などに起因した応力の発生を抑えつつ遮光層を形成することにより、TFT(薄膜トランジスタ)等のスイッチング素子の下側からの戻り光等の光に対する遮光性能が高く、スイッチング素子のスイッチング特性が高い液晶表示パネルを得ることができる。また、特許文献2では、薄膜トランジスタへのコンタミネーションや熱膨張率の差などに起因した応力の発生を低く抑えつつ、スイッチング素子の下側からの戻り光等の光に対する遮光性能が高く、スイッチング素子のスイッチング特性が高い液晶表示パネルを得ることができる。
また、反射型の電気光学装置として、反射画素電極の下部にドレイン電極を延在させ、ドレイン電極、ゲート電極およびソース配線とを形成することで、樹脂層による平坦性の確保を容易にするものが知られている(例えば、特許文献3参照)。
一般に、反射電極は金属等の遮光性を有する材料によって形成され、画素領域内に比較的大きな面積で形成されるため、TFTに直接入射しようとする光を反射電極によって、より大きな面積で遮光できる。したがって、反射電極を有する電気光学装置は上述の特許文献1および特許文献2よりも入射光に対する遮光の面では有利である。
特許第3374717号公報 特許第3674260号公報 特開平10−268340号公報
しかしながら、上記従来の電気光学装置では、上述の特許文献1および特許文献2においては、TFTの上層側および下層側に配置された遮光層によって入射光をある程度遮蔽することができるが、基板上に設けられた層間絶縁層の境界面や配線層等によって反射された一部の光がTFTの上層側および下層側に配置された遮光層の間から入り込み、反射を繰り返してTFTのチャネル領域に到達してしまうという課題がある。また、上述の特許文献3においては、上述の特許文献1および特許文献2よりも入射光に対する遮光の面では有利であるものの、層間絶縁層の境界面や配線層等によって反射された光に対しては同様の課題がある。TFTのチャネル領域に光が到達すると、光電効果によるリーク電流が発生してトランジスタ特性が劣化したり、素子不良による画像不良が生じたりするという問題がある。
そこで、この発明は、TFTのチャネル領域に光が到達することを防止して、トランジスタ特性が良好で、画像不良を防止することができる反射型電気光学装置、および、その反射型電気光学装置を備えた電子機器を提供するものである。
上記の課題を解決するために、本発明の電気光学装置は、複数の画素がマトリクス状に配置され、前記複数の画素の各々に対応して反射電極と薄膜トランジスタとが設けられた基板を備えた電気光学装置であって、前記薄膜トランジスタの下層側および上層側を含む周囲を覆うように第一誘電体層が形成され、少なくとも前記第一誘電体層の上面を覆い前記薄膜トランジスタに平面的に重なるように前記反射電極が形成され、前記画素同士の間隙に前記第一誘電体層と屈折率の異なる第二誘電体層が前記第一誘電体層の側面に接するように形成され、前記反射電極が設けられた領域に前記第一誘電体層と前記第二誘電体層の境界面が位置していることを特徴とする。
このように構成することで、薄膜トランジスタの上層側(反射電極側)から基板の垂線方向に沿って薄膜トランジスタの形成領域に入射しようとする光は反射電極によって遮断される。また、薄膜トランジスタの上層側から基板の垂線方向と交差するように角度を持って入射し、反射電極の下層側の薄膜トランジスタが形成された領域に入射しようとする光は、まず画素同士の間隙に配置された第二誘電体層に入射して第二誘電体層を透過する。第二誘電体層を透過した光は、薄膜トランジスタの形成領域を含む第一誘電体層と第二誘電体層との境界面に到達する。ここで、第二誘電体は第一誘電体と屈折率の異なる誘電体によって形成されているので、第一誘電体層と第二誘電体層との境界面に達した光は境界面によって反射される。
したがって、本発明によれば、画素に入射し、薄膜トランジスタが形成された領域に基板の垂線方向と交差するように角度を持って入射しようとする光を、第一誘電体層と第二誘電体層の境界面によって反射させ、薄膜トランジスタのチャネル領域に光が到達することを防止できる。よって、電気光学装置のトランジスタ特性が劣化することを防止し、画像不良を防止することができる。
また、本発明の電気光学装置では、前記第一誘電体層の屈折率は前記第二誘電体層の屈折率よりも小さいことが望ましい。
このように構成することで、屈折率の大きい第二誘電体層に入射し、第二誘電体層を透過して屈折率の小さい第一誘電体層との境界面に達する光の入射角の範囲に応じて、各誘電体層の屈折率を調整することで、当該光を当該境界面によって全反射させることができる。したがって、薄膜トランジスタのチャネル領域に光が到達することをより効果的に防止できる。
また、本発明の電気光学装置では、前記画素同士の間隙に少なくとも前記第二誘電体層の下面を覆うように遮光層が形成され、前記遮光層は前記薄膜トランジスタの上層側でかつ前記反射電極の下層側に配置され、前記遮光層上に前記境界面が位置していることを特徴とする。
このように構成することで、遮光層を薄膜トランジスタの上層側を覆う遮光層として機能させることができるだけでなく、遮光層によって入射光を反射させることができる。また、遮光層上に境界面が位置しているので、薄膜トランジスタの形成領域に上層側から入射しようとする光が上述の境界面と遮光層との隙間から薄膜トランジスタの形成領域を含む第一誘電体層に入射することを防止できる。したがって、薄膜トランジスタの形成領域に上層側から入射しようとする光をより効果的に遮蔽および反射し、薄膜トランジスタのチャネル領域に光が到達することをより効果的に防止できる。
また、本発明の電気光学装置では、前記第一誘電体層は上層側の幅が下層側の幅よりも小さくなるように側面に斜面が形成されていてもよい。
このように構成することで、第一誘電体層と第二誘電体層との境界に形成される境界面も同様に傾斜した状態となる。これにより、反射電極の下層の薄膜トランジスタの形成領域に基板の下層側から上層側に向かって入射しようとする反射光が、上述の境界面により大きい入射角で到達する。したがって、薄膜トランジスタの形成領域に入射しようとする反射光を、上述の境界面によってより確実に反射させ、薄膜トランジスタのチャネル領域に光が到達することをより効果的に防止できる。
また、本発明の電気光学装置は、前記斜面が前記基板となす角の角度をθ、前記基板の上側から前記境界面に入射する入射光が前記基板の垂線となす角の角度をθ、前記第一誘電体層の屈折率をN1、前記第二誘電体層の屈折率をN2とした場合に下記式(I)を満たす関係が成立することを特徴とする。
N2>N1/sin(θ−θ)…(I)
このように構成することで、基板の上側から画素領域に入射して薄膜トランジスタの形成領域の上層側から薄膜トランジスタの形成領域に入射しようとする入射光が基板の垂線となす角の角度θの範囲に応じて、θ、N1、N2を最適化することができる。これにより、基板の垂線となす角の角度θが所定の範囲の入射光を上述の境界面によって全反射させ、薄膜トランジスタのチャネル領域に光が到達することをより効果的に防止できる。
また本発明の電気光学装置は、前記斜面が前記基板となす角の角度をθ、前記基板の下側から前記境界面に入射する反射光が前記基板の垂線となす角の角度をθ、前記第一誘電体層の屈折率をN1、前記第二誘電体層の屈折率をN2とした場合に下記式(II)を満たす関係が成立することを特徴とする。
N2>N1/sin(θ+θ)…(II)
このように構成することで、反射電極の下層の薄膜トランジスタの形成領域に基板の下層側から上層側に向かって入射しようとする反射光が基板の垂線となす角の角度θの範囲に応じて、θ、N1、N2を最適化することができる。これにより、基板の垂線となす角の角度θが所定の範囲の反射光を上述の境界面によって全反射させ、薄膜トランジスタのチャネル領域に光が到達することをより効果的に防止できる。また、上述の式(I)と式(II)を同時に満たすようにθ、N1、N2を最適化することで、入射光と反射光の両者を全反射させることができ、薄膜トランジスタのチャネル領域に光が到達することをより効果的に防止できる。
また、本発明の電子機器は、上述の電気光学装置を備えたことを特徴とする。
このように、本発明の電子機器は、トランジスタ特性が良好で、画像不良を防止することができる電気光学装置を備えているので、応答性、信頼性に優れ、画像表示性能の良好な高性能の電子機器となる。
次に、この発明の実施の形態を図面に基づいて説明する。尚、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等が異なっている。
<第一実施形態>
[液晶装置]
図1に示すように、アクティブマトリクス基板1の中央には画像表示領域2が形成されている。画像表示領域2の周縁部にはシール材3が配設され、このシール材3によりアクティブマトリクス基板1と対向基板4とが貼り合わされている。また、両基板1,4とシール材3とに囲まれる領域内には液晶層(不図示)が封止されている。シール材3の外側には、後述する走査線に走査信号を供給する走査線駆動回路5と、後述するデータ線に画像信号を供給するデータ線駆動回路6とが実装されている。アクティブマトリクス基板1の端部には外部回路に接続する複数の接続端子7が設けられており、この接続端子7には駆動回路5,6から延びる配線が接続されている。シール材3の四隅にはアクティブマトリクス基板1と対向基板4とを電気的に接続する基板間導通部8が設けられており、基板間導通部8も配線を介して接続端子7と電気的に接続されている。
アクティブマトリクス基板1の画像表示領域2には、図2に示すように、複数のデータ線21と、データ線21と交差する方向に延びる複数の走査線22とが形成されている。また、隣接する2本のデータ線21と隣接する2本の走査線22とに囲まれた矩形状の領域に対応して画素電極23が配置されている。画像表示領域2全体では画素電極23が平面視マトリクス状に配列されている。各画素電極23には、画素電極23への通電制御を行うためのスイッチング素子であるTFT30が接続されている。TFT30のソースにはデータ線21が接続されている。各データ線21には、前述したデータ線駆動回路6から画像信号S1、S2、…、Snが供給されるようになっている。
また、TFT30のゲートには走査線22が接続されている。走査線22には、前述した走査線駆動回路5から所定のタイミングでパルス的に走査信号G1、G2、…、Gmが供給される。一方、TFT30のドレインには画素電極23が接続されている。そして、走査線22から供給された走査信号G1、G2、…、GmによりTFT30を一定期間だけオンすることで、データ線21から供給された画像信号S1、S2、…、Snが、画素電極23を介して各画素の液晶に所定のタイミングで書き込まれるようになっている。
液晶に書き込まれた所定レベルの画像信号S1、S2、…、Snは、画素電極23と後述する共通電極との間に形成される液晶容量で一定期間保持される。なお、保持された画像信号S1、S2、…、Snがリークするのを防止するため、画素電極23と容量線24との間に蓄積容量25が液晶容量と並列に接続されている。
アクティブマトリクス基板1上には、図3に示すように、例えば、Al等の導電性を有する金属材料からなる矩形状の画素電極23がマトリクス状に配列形成されている。画素電極23は光反射性を有し、反射電極としても機能するように構成されている。この画素電極23の形成領域が液晶装置100の画素の平面領域に対応しており、マトリクス状に配列された画素毎に表示動作が行われるようになっている。画素電極23同士の間隙には、例えば、SiON等の透明な誘電体からなる表層誘電体層15(第二誘電体層)が形成されている。表層誘電体層15の下層側には、例えば、Al等の導電性を有する金属材料からなる反射層16が画素の縦横の境界に沿って格子状に形成されている。反射層16も画素電極23と同様に光反射性を有し、反射電極としても機能するように構成されている。
図4に示すように、画素電極23および表層誘電体層15の下層側に形成された反射層16のさらに下層側には、複数のデータ線21および複数の走査線22が互いに交差するように設けられている。なお、図4において、容量線24は省略して表している。データ線21と走査線22の交差点近傍にはTFT30が設けられている。TFT30は、ポリシリコン膜等からなる半導体層31を備えている。半導体層31のソース領域(後述)には、コンタクトホール32を介してデータ線21が接続されている。また、半導体層31のドレイン領域(後述)には、コンタクトホール33を介して、画素電極23が電気的に接続されている。また、TFT30は画素電極23と平面的に重なるように、画素電極23の形成領域の略中央部付近に形成されている。
液晶装置100は、図5に示すように、アクティブマトリクス基板1と、これに対向配置された対向基板4と、これらの間に挟持された液晶層9とを備えて構成されている。アクティブマトリクス基板1は、絶縁材料からなる基板本体10、及びその内側(液晶層9側)に形成されたTFT30や反射電極としても機能する画素電極23、さらにこれを覆う配向下地膜26及び無機配向膜27などを備えている。一方の対向基板4は、ガラスや石英等の透光性材料からなる基板本体40、およびその内側(液晶層9側)に形成された遮光層44、共通電極41、さらにこれを覆う配向下地膜42、無機配向膜43などを備えている。
基板本体10の上層側(液晶層9側)には、例えば、SiO等の第一の誘電体からなる下地絶縁層11が設けられている。下地絶縁層11上には島状の半導体層31が形成されている。半導体層31を覆うようにゲート絶縁膜34が形成されており、ゲート絶縁膜34上に走査線22が形成されている。ゲート絶縁膜34も下地絶縁層11と同様にSiO等の第一の誘電体によって形成されている。半導体層31の走査線22と対向する部分にチャネル領域31cが形成されている。走査線22のうちチャネル領域31cとの対向部分はTFT30のゲート電極を構成している。
チャネル領域31cを挟んでソース領域およびドレイン領域が形成されている。TFT30はLDD(Lightly Doped Drain)構造を採用しており、ソース領域およびドレイン領域に、それぞれ不純物濃度が相対的に高い高濃度領域と、相対的に低い低濃度領域(LDD領域)とが形成されている。チャネル領域31c側から順に形成された低濃度ソース領域31dと高濃度ソース領域31eとがソース領域を構成し、チャネル領域31c側から順に形成された低濃度ドレイン領域31bと高濃度ドレイン領域31aとがドレイン領域を構成している。
ゲート絶縁膜34及び走査線22を覆って第一層間絶縁層12が形成されている。第一層間絶縁層12はゲート絶縁膜34と同様に、SiO等の第一の誘電体によって形成されている。これにより、TFT30は下層側および上層側を含む周囲がSiO等の第一の誘電体によって形成された下地絶縁層11、ゲート絶縁膜34、および第一層間絶縁層12によって覆われた状態となっている。
第一層間絶縁層12上には、例えばAl等の導電性を有する金属材料からなるデータ線21が形成されている。データ線21は、第一層間絶縁層12およびゲート絶縁膜34を貫通するコンタクトホール32を介して半導体層31の高濃度ソース領域31eに接続されている。第一層間絶縁層12およびデータ線21を覆って、第二層間絶縁層13が形成されている。さらに、第二層間絶縁層13上には第三層間絶縁層14が形成されている。第二層間絶縁層13および第三層間絶縁層14も第一層間絶縁層12と同様に、SiO等の第一の誘電体によって形成されている。
第三層間絶縁層14上には、例えばAl等の導電性を有する金属材料からなる画素電極23がTFT30の形成領域と平面的に重なるように形成されている。本実施形態では、TFT30は画素電極23の形成領域の略中央部に形成されている。画素電極23はゲート絶縁膜34、第一層間絶縁層12、第二層間絶縁層13および第三層間絶縁層14を貫通するコンタクトホール33を介して半導体層31の高濃度ドレイン領域31aに接続されている。画素電極23の形成領域の外側には、画素電極23の下層に設けられた第三層間絶縁層14の側面に接するように、表層誘電体層15が断面視で楔状に形成されている。表層誘電体層15は例えば、SiON等の第二の誘電体によって形成されている。
ここで、SiO等の第一の誘電体の屈折率と、SiON等の第二の誘電体の屈折率とが異なるように構成されている。各誘電体層の屈折率は、後述するように、アクティブマトリクス基板1に入射する入射光L、反射層16等による反射光Lが基板本体10の垂線となす角の角度等に応じて調整される。本実施形態では、第一の誘電体であるSiOの屈折率は、例えば、約1.45となるように調整されている。また、第二の誘電体であるSiONの屈折率は、例えば、約1.54となるように調整されている。
すなわち、第一の誘電体(SiO)によって形成された第一誘電体層(下地絶縁層11、ゲート絶縁膜34、第一層間絶縁層12、第二層間絶縁層13および第三層間絶縁層14)の屈折率(約1.45)が、第二の誘電体(SiON)によって形成された第二誘電体層(表層誘電体層15)の屈折率(約1.54)よりも小さくなるように構成されている。
表層誘電体層15の下層には、表層誘電体層15の下面を覆うように反射層16が形成されている。反射層16上には、SiO等の第一の誘電体からなる第三層間絶縁層14(第一誘電体層)と、SiON等の第二の誘電体からなる表層誘電体層15(第二誘電体層)との境界面Bが形成されている。また、画素電極23の下層側の第三層間絶縁層14には、上層側の幅W1が下層側の幅W2よりも小さくなるように側面に斜面が形成されている。この斜面が基板本体10および反射層16となす角θの角度は、後述するようにアクティブマトリクス基板1に入射する入射光L、反射層16による反射光Lが基板本体10の垂線となす角の角度等に応じて調整され、本実施形態では、例えば、約80°に形成されている
また、図6に示すように、第三層間絶縁層14(第一誘電体層)と、表層誘電体層15(第二誘電体層)との境界面Bが、基板本体10および反射層16となす角の角度をθ、アクティブマトリクス基板1の上側(液晶層9側)から境界面Bに入射する入射光Lが基板本体10の垂線Pとなす角の角度をθ、第三層間絶縁層14を構成する第一の誘電体SiOの屈折率をN1、表層誘電体層15を構成する第二の誘電体SiONの屈折率をN2とした場合に、下記式(I)を満たす関係が成立するように、各パラメータが設定されている。
N2>N1/sin(θ−θ)…(I)
また、図7に示すように、画素電極23の下層側の反射層16に反射してアクティブマトリクス基板1の下層側(液晶層9の反対側)から境界面Bに入射する反射光Lが基板本体10の垂線Pとなす角の角度をθとした場合に、下記式(II)を満たす関係が成立するように、上述した各パラメータが設定されている。
N2>N1/sin(θ+θ)…(II)
また、図5に示すように、画素電極23および表層誘電体層15を覆って、配向下地膜26が形成され、配向下地膜26上に無機配向膜27が形成されている。
無機配向膜27は、例えば、シリコン酸化物によって好適に構成されるが、シリコン酸化物に限らず、アルミニウム酸化物、亜鉛酸化物、マグネシウム酸化物、インジウム錫酸化物、あるいはシリコン窒化物、チタン窒化物などにより形成してもよい。後述する無機配向膜43についても同様である。
また、図示は省略するが、半導体層31を延設して第一蓄積容量電極が形成されている。さらに、ゲート絶縁膜34を延設して誘電体膜が形成されており、かかる領域のゲート絶縁膜34を介して第一蓄積容量電極と対向する位置に第二蓄積容量電極を構成する容量線24(図2参照)が配置されている。これにより、第一蓄積容量電極と容量線24とが平面的に重なる位置に前述の蓄積容量が形成されている。
一方、対向基板4における基板本体40上には、遮光層44が形成されている。遮光層44は、対向基板4側からの光が半導体層31のチャネル領域31cや低濃度ソース領域31d、低濃度ドレイン領域31b等に入射するのを防止するとともに、画素を区画するブラックマトリクスとして機能するものである。この遮光層44の非形成領域で、画素電極23が形成された領域が、液晶装置100の光反射領域となっている。遮光層44を覆う対向基板4のほぼ全面にはITO等の透明導電材料からなる共通電極41が形成されている。そして、共通電極41を覆って配向下地膜42が形成され、配向下地膜42上に無機配向膜43が形成されている。
アクティブマトリクス基板1と対向基板4との間には、ネマチック液晶等からなる液晶層9が挟持されている。ネマチック液晶分子は、正の誘電率異方性を有するものであり、非選択電圧印加時には基板に沿って水平配向し、選択電圧印加時には電界方向に沿って垂直配向する。アクティブマトリクス基板1側の無機配向膜27による配向規制方向と、対向基板4側の無機配向膜43による配向規制方向とはねじれた状態に設定されている。対向基板4の基板本体40の外側(液晶層9と反対側)には、位相差板45、偏光板46が配置されている。
従って、本実施形態の液晶装置100では、捻れ配向した液晶の旋光性を利用した白表示と、電圧印加により垂直配向させた液晶の透過性を利用した黒表示との間で階調表示を行うものとなっている。
なお、本実施形態の液晶装置100をプロジェクタのライトバルブとして用いる場合には、位相差板45、偏光板46については、サファイヤガラスや水晶等の高熱伝導率材料からなる支持基板上に装着して、液晶装置100から離間して配置することが望ましい。
次に、本実施形態の作用について説明する。
図5に示すように、液晶装置100の対向基板4側から入射し、対向基板4、液晶層9を透過し、アクティブマトリクス基板1の画素電極23と反射層16との間からTFT30が形成された領域(第一誘電体層)に入射しようとする入射光Lは、画素電極23同士の間隙に配置された表層誘電体層15(第二誘電体層)に入射して表層誘電体層15を透過する。表層誘電体層15を透過した入射光Lは、TFT30の上層側(液晶層9側)に形成された第三層間絶縁層14(第一誘電体層)との境界面Bに到達する。
このとき、第三層間絶縁層14を構成する第一誘電体の屈折率N1が表層誘電体層15を構成する第二誘電体の屈折率N2よりも小さいので、図6に示すように、入射光Lが境界面Bに対して入射する入射角θの臨界角θminと屈折率N1および屈折率N2との間には、以下の式(III)を満たす関係が成立する。
θmin=sin−1(N1/N2)…(III)
また、入射角θと臨界角θminとの間に以下の式(IV)を満たす関係が成立すれば入射光Lは境界面Bによって全反射される。
θ>θmin…(IV)
また、入射角θ、入射光Lが基板本体10の垂線Pとなす角の角度θ、境界面Bが基板本体10となす角の角度θとの間には、以下の式(V)を満たす関係が成立する。
θ=θ−θ…(V)
以上の式(III)〜(V)により、上述の式(I)が導かれる。
上述の式(I)を用いることで、角度θの範囲に応じて、角度θ、屈折率N1、および屈折率N2の値を最適化することができる。入射光Lが基板本体10の垂線Pとなす角の角度θの範囲は、装置の構成等によって多少異なるが、例えば、±約9°の範囲となる。本実施形態では、この角度θに対応して、上述の式(I)を満たすように、各パラメータが設定されている。
すなわち、表層誘電体層15(第二誘電体層)は屈折率N2が約1.54の第二誘電体SiONによって形成され、第三層間絶縁層14(第一誘電体層)は屈折率N1が約1.45の第一誘電体SiOによって形成されている。また、境界面Bが基板本体10となす角の角度θは約80°に形成されている。これにより、角度θが約9.6°以下の範囲の入射光Lを境界面Bによって全反射させることができるように構成されている。
したがって、画素電極23の下層側のTFT30が形成された領域(第一誘電体層)に入射しようとする入射光Lを、第三層間絶縁層14(第一誘電体層)と表層誘電体層15(第二誘電体層)との境界面Bによって全反射させ、TFT30のチャネル領域31cに入射光Lの一部が到達することを防止できる。
一方、図5に示すように、反射層16によって反射され、アクティブマトリクス基板1の下側(液晶層9と反対側)から画素電極23と反射層16との間に入射し、TFT30が形成された領域(第一誘電体層)に入射しようとする反射光Lは、図7に示すように、反射層16によって反射した後、表層誘電体層15(第二誘電体層)を透過し、第三層間絶縁層14(第一誘電体層)との境界面Bに到達する。このように、反射層16は、表層誘電体層15に入射した光を表面で反射させて、表層誘電体層15を透過することを防止するための遮光膜としても機能している。
このとき、第三層間絶縁層14を構成する第一誘電体の屈折率N1が表層誘電体層を構成する第二誘電体の屈折率N2よりも小さいので、反射光Lが境界面Bに対して入射する入射角θ´の臨界角θ´minと屈折率N1,N2との間には、以下の式(VI)を満たす関係が成立する。
θ´min=sin−1(N1/N2)…(VI)
また、入射角θ´と臨界角θ´minとの間に以下の式(VII)を満たす関係が成立すれば反射光Lは境界面Bによって全反射される。
θ´>θ´min…(VII)
また、入射角θ´、反射光Lが基板本体10の垂線Pとなす角の角度θ、境界面Bが基板本体10となす角の角度θとの間には、以下の式(VII)を満たす関係が成立する。
θ´=180°−(θ+θ)…(VIII)
以上の式(VI)〜(VIII)により、上述の式(II)が導かれる。
上述の式(II)を用いることで、角度θの範囲に応じて、角度θ、屈折率N1、および屈折率N2の値を最適化することができる。反射光Lが基板本体10の垂線Pとなす角の角度θの範囲は、装置の構成等によって多少異なるが、例えば、約29°以下の範囲となる。本実施形態では、この角度θに対応して、上述の式(II)を満たすように、各パラメータが設定されている。
すなわち、表層誘電体層15(第二誘電体層)は屈折率N2が約1.54の第二誘電体SiONによって形成され、第三層間絶縁層14(第一誘電体層)は屈折率N1が約1.45の第一誘電体SiOによって形成されている。また、境界面Bが基板本体10となす角の角度θは約80°に形成されている。これにより、角度θが約29.6°以下の範囲の反射光Lを境界面Bによって全反射させることができるように構成されている。
したがって、TFT30が形成された領域(第一誘電体層)に入射しようとする反射光Lを、第三層間絶縁層14(第一誘電体層)と表層誘電体層15(第二誘電体層)の境界面Bによって全反射させ、TFT30のチャネル領域31cに反射光Lの一部が到達することを防止できる。
以上のように、境界面Bに対して、それぞれ所定の値の入射角θおよび入射角θ´を有する入射光Lおよび反射光Lの両者に対して、上述の式(I)および式(II)を同時に満たすように角度θ、屈折率N1,N2が設定されているので、入射光Lと反射光Lの両者を同時に全反射させることができ、TFT30のチャネル領域31cに入射光Lまたは反射光Lの一部が到達することをより効果的に防止できる。
また、反射層16は、図5に示すように、少なくとも表層誘電体層15の下面を覆い、反射層16上に境界面Bが位置するように形成されている。また、TFT30は画素電極23に平面的に重なるように画素電極23の略中央部付近に形成され、画素電極23の形成領域、すなわち画素電極23の下面に境界面Bが位置している。
これにより、アクティブマトリクス基板1の上側(液晶層9側)からTFT30の形成領域(第一誘電体層)に入射しようとする入射光Lが画素電極23および反射層16によって遮蔽されると共に、画素電極23および反射層16の表面で反射され、入射光Lの一部がTFT30のチャネル領域31cに到達することを防止できる。また、境界面Bと画素電極23、境界面Bと反射層16との間に隙間ができることを防止して、TFT30のチャネル領域31cに入射光Lの一部が到達することを防止できる。
また、図5に示すように、第一誘電体からなる第三層間絶縁層14(第一誘電体層)は上層側の幅W1が下層側の幅W2よりも小さくなるように側面に斜面が形成されているので、第一誘電体SiOと第二誘電体SiONとの境界面BもTFT30の形成領域の上層側から下層側に傾斜した状態となる。
これにより、図7に示すように、反射層16の表面で反射して、画素電極23と反射層16との間からTFT30の形成領域に入射しようとする反射光Lを、境界面Bが上述のように傾斜していない場合と比較して、境界面Bにより大きい入射角θ´で到達させることができる。したがって、TFT30の形成領域に入射しようとする反射光Lを、上述の境界面Bによってより確実に反射させ、TFT30のチャネル領域31cに反射光Lの一部が到達することをより効果的に防止できる。
また、反射層16はAl等の導電性を有する金属材料で形成されているので、反射層を接地電位の配線と接続し、反射層16を電界遮蔽用のシールドとしても用いることができる。
以上説明したように、本実施形態によれば、画素電極23と反射層16との間からTFT30が形成された領域(第一誘電体層)に入射しようとする入射光Lおよび反射光Lを、第三層間絶縁層14(第一誘電体層)と表層誘電体層15(第二誘電体層)との境界面Bによって全反射させ、TFT30のチャネル領域31cに入射光Lおよび反射光Lの一部が到達することを防止できる。よって、液晶装置100のトランジスタ特性が劣化することを防止し、画像不良を防止することができる。
[液晶装置の製造方法]
次に、図8(a)〜図8(d)を用いて液晶装置100の製造方法を説明する。図8(a)〜図8(d)では表層誘電体層15の形成工程を中心に説明し、その他の工程の説明は適宜省略する。なお、表層誘電体層15の形成工程以外の工程については、公知のものを採用することができる。
図8(a)に示すように、基板本体10上に、SiO等の第一の誘電体からなる下地絶縁層11を形成し、画素電極23、データ線21および容量線24(図示省略)を除いて上述のTFT30および蓄積容量25(図示省略)を形成する。次いで、ゲート絶縁膜34、走査線22および容量線24を覆って、SiO等の第一の誘電体からなる第一層間絶縁層12を形成する。次いで、第一層間絶縁層12を貫通し半導体層31の高濃度ソース領域31eに達するコンタクトホール32を形成する。次いで、第一層間絶縁層12上にデータ線21を形成すると共に、コンタクトホール32を介して半導体層31の高濃度ソース領域31eにデータ線21を接続する。さらに、データ線21および第一層間絶縁層12を覆うように、SiO等の第一の誘電体からなる第二層間絶縁層13を形成し、第二層間絶縁層13表面にAl等の金属材料からなる反射層16を形成する。
次に、図8(b)に示すように、反射層16および第二層間絶縁層13を覆って、SiO等の第一の誘電体からなる第三層間絶縁層14を形成し、第三層間絶縁層14、第二層間絶縁層13、第一層間絶縁層12およびゲート絶縁膜34を貫通し、半導体層31の高濃度ドレイン領域に到達するコンタクトホール33を形成する。次いで、図8(c)に示すように、第三層間絶縁層14上にAl等の導電性を有する金属材料からなる金属層を形成し、半導体層31の高濃度ドレイン領域31aにコンタクトホール33を介して金属層を接続する。
次に、図8(d)に示すようにフォトリソグラフィ法等により、金属層をパターニングして画素電極23を形成すると共に、第三層間絶縁層14に溝Dを形成し、反射層16に表面を露出させる。このとき、第三層間絶縁層14および画素電極23は画素の間隙に対応して平面視で格子状に形成された溝Dによって画素毎に分割され、第三層間絶縁層14は上層側(液晶層9側)の幅W1が下層側(液晶層9の反対側)の幅W2よりも小さくなるように側面が傾斜した状態に形成される。このとき、溝Dの形成によって露出した第三層間絶縁層14の側面は反射層16上に位置し、反射層16および基板本体10と角度θをなすように傾斜した状態で形成される。
次いで、例えば、スパッタリング法等により、溝Dに第二の誘電体であるSiONを充填し、溝Dによって露出した第三層間絶縁層14の側面に接し、下面が反射層16によって覆われるように、表層誘電体層15を形成する。これにより、第三層間絶縁層14の側面が、第三層間絶縁層14(第一誘電体層)と表層誘電体層15(第二誘電体層)との境界面Bとなり、境界面Bが反射層16上に位置した状態となる。次いで、表層誘電体層15表面および画素電極23の表面を、例えば、CMP(化学機械研磨)によって平坦化した後、表層誘電体層15および画素電極23を覆って配向下地膜26および無機配向膜27を形成することで、図5に示したアクティブマトリクス基板1が形成される。
以上説明したように、本実施形態の製造方法によれば、第三層間絶縁層14(第一誘電体層)と表層誘電体層15(第二誘電体層)との境界面Bを、基板本体10および反射層16に対して所定の角度θだけ傾斜させることができる。また、境界面Bの上層側(液晶層9側)を画素電極23の形成領域でかつ境界面Bの下層側(液晶層9の反対側)を反射層16上に配置することができる。
[電子機器]
次に、上述の実施形態において説明した液晶装置100を備えた電子機器の例について説明する。
図9(a)に示すように、携帯電話500は上述の実施形態において説明した液晶装置100を用いた液晶表示部501を備えている。また、図9(b)に示すようにワープロ、パソコン等の情報処理装置600はキーボード601等の入力部、情報処理装置本体603および上述の実施形態において説明した液晶装置100を用いた液晶表示部602を備えている。また、図9(c)に示すように腕時計700は上述の実施形態において説明した液晶装置100を用いた液晶表示部701を備えている。
このように図9(a)〜図9(c)に示す電子機器は、表示部に上述の実施形態において説明した液晶装置100を備えているので、表示部のトランジスタ特性が良好で、表示部の画像不良を防止することができる。したがって、上述の各電子機器500,600,700はトランジスタ特性が良好で、画像不良を防止することができる表示部を備えているので、応答性、信頼性に優れ、画像表示性能の良好な高性能の電子機器となる。
なお、本発明の技術的範囲は、前述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、前述した実施形態に種々の変更を加えたものを含む。例えば、前記実施形態ではスイッチング素子としてTFTを備えた液晶装置を例にして説明したが、スイッチング素子として薄膜ダイオード(Thin Film Diode)等の二端子型素子を備えた液晶装置に本発明を適用することも可能である。また、前記実施形態では透過型液晶装置を例にして説明したが、反射型液晶装置に本発明を適用することも可能である。
また、上述の実施形態では、遮光層として反射性を有する材料を使用し、反射層を形成する場合を説明したが、反射層の代わりに光を吸収する材料を使用し、吸収層を形成してもよい。この場合、吸収層をブラックマトリクスとして機能させることができる。
また、上述の実施形態ではTN(Twisted Nematic)モードで機能する液晶装置を例にして説明したが、VA(Vertical Alignment)モードで機能する液晶装置に本発明を適用することも可能である。また、実施形態では3板式の投射型表示装置(プロジェクタ)を例にして説明したが、単板式の投射型表示装置や直視型表示装置に本発明を適用することも可能である。
また、本発明の液晶装置を、上述の実施形態で説明したもの以外の電子機器に適用することも可能である。その具体例として、例えばプロジェクタ、ICカード、ビデオカメラ、表示機能付きファックス装置、デジタルカメラのファインダ、携帯型TV、DSP装置、電光掲示盤、宣伝公告用ディスプレイ等が挙げられる。
本発明の実施形態における液晶装置の全体構成図である。 本発明の実施形態における液晶装置の等価回路図である。 本発明の実施形態における液晶装置の画素の詳細構成を示す図である。 本発明の実施形態における液晶装置の画素の詳細構成を示す図である。 図3および図4のA−A線に沿う断面構成図である。 図5の要部拡大図である。 図5の要部拡大図である。 本発明の実施形態における液晶装置の製造方法の説明図である。 本発明の実施形態における電子機器の一例を示す概略構成図である。
符号の説明
10 基板本体(基板)、11 下地絶縁層(第一誘電体層)、12 第一層間絶縁層(第一誘電体層)、13 第二層間絶縁層(第一誘電体層)、14 第三層間絶縁層(第一誘電体層)、15 表層誘電体層(第二誘電体層)、16 反射層(遮光層)、23 画素電極(反射電極)、30 TFT(薄膜トランジスタ)、100 液晶装置(電気光学装置)、500 携帯電話機(電子機器)、600 情報処理装置(電子機器)、700 腕時計(電子機器)、B 境界面、P 垂線、L 反射光、L 入射光、W 幅(上層側の幅)、W 幅(下層側の幅)、θ 角度、θ 角度、θ 角度

Claims (7)

  1. 複数の画素がマトリクス状に配置され、前記複数の画素の各々に対応して反射電極と薄膜トランジスタとが設けられた基板を備えた電気光学装置であって、
    前記薄膜トランジスタの下層側および上層側を含む周囲を覆うように第一誘電体層が形成され、少なくとも前記第一誘電体層の上面を覆い前記薄膜トランジスタに平面的に重なるように前記反射電極が形成され、前記画素同士の間隙に前記第一誘電体層と屈折率の異なる第二誘電体層が前記第一誘電体層の側面に接するように形成され、前記反射電極が設けられた領域に前記第一誘電体層と前記第二誘電体層の境界面が位置していることを特徴とする電気光学装置。
  2. 前記第一誘電体層の屈折率は前記第二誘電体層の屈折率よりも小さいことを特徴とする請求項1記載の電気光学装置。
  3. 前記画素同士の間隙に少なくとも前記第二誘電体層の下面を覆うように遮光層が形成され、前記遮光層は前記薄膜トランジスタの上層側でかつ前記反射電極の下層側に配置され、前記遮光層上に前記境界面が位置していることを特徴とする請求項1または請求項2に記載の電気光学装置。
  4. 前記第一誘電体層は上層側の幅が下層側の幅よりも小さくなるように側面に斜面が形成されていることを特徴とする請求項1ないし請求項3のいずれかに記載の電気光学装置。
  5. 前記斜面が前記基板となす角の角度をθ、前記基板の上側から前記境界面に入射する入射光が前記基板の垂線となす角の角度をθ、前記第一誘電体層の屈折率をN1、前記第二誘電体層の屈折率をN2とした場合に下記式(I)を満たす関係が成立することを特徴とする請求項4記載の電気光学装置。
    N2>N1/sin(θ−θ)…(I)
  6. 前記斜面が前記基板となす角の角度をθ、前記基板の下側から前記境界面に入射する反射光が前記基板の垂線となす角の角度をθ、前記第一誘電体層の屈折率をN1、前記第二誘電体層の屈折率をN2とした場合に下記式(II)を満たす関係が成立することを特徴とする請求項4または請求項5に記載の電気光学装置。
    N2>N1/sin(θ+θ)…(II)
  7. 請求項1ないし請求項6のいずれかに記載の電気光学装置を備えたことを特徴とする電子機器。
JP2007063497A 2007-03-13 2007-03-13 電気光学装置および電子機器 Withdrawn JP2008225075A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007063497A JP2008225075A (ja) 2007-03-13 2007-03-13 電気光学装置および電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007063497A JP2008225075A (ja) 2007-03-13 2007-03-13 電気光学装置および電子機器

Publications (1)

Publication Number Publication Date
JP2008225075A true JP2008225075A (ja) 2008-09-25

Family

ID=39843773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007063497A Withdrawn JP2008225075A (ja) 2007-03-13 2007-03-13 電気光学装置および電子機器

Country Status (1)

Country Link
JP (1) JP2008225075A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243629A (ja) * 2009-04-02 2010-10-28 Seiko Epson Corp 液晶装置および電子機器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243629A (ja) * 2009-04-02 2010-10-28 Seiko Epson Corp 液晶装置および電子機器

Similar Documents

Publication Publication Date Title
US7639331B2 (en) Liquid crystal display device
TWI291588B (en) Electro-optical device, substrate for electro-optical device, and projecting type display device
US20090128757A1 (en) Liquid crystal device and electronic apparatus
US6838697B2 (en) Electro-optical device and electronic equipment
KR100769069B1 (ko) 전기 광학 장치 및 그 제조 방법, 및 전자 기기
JP2007212815A (ja) 電気光学装置、電気光学装置用基板、及び電気光学装置の製造方法、並びに電子機器
JP2004226954A (ja) 電気光学装置及びその製造方法、並びに電子機器
JP5287100B2 (ja) 電気光学装置及び電子機器
US20030076460A1 (en) Electrooptic device, manufacturing method therefor, and electronic apparatus
JP2020060636A (ja) 電気光学装置、電子機器
JP5082518B2 (ja) 電気光学装置および電子機器
US11754892B2 (en) Electro-optical device and electronic apparatus
TW200844579A (en) Liquid crystal display device and electronic apparatus
US20110157506A1 (en) Electro-optical device and electronic apparatus
JP2007093859A (ja) 液晶装置および電子機器
JP2008225075A (ja) 電気光学装置および電子機器
JP2018097132A (ja) 液晶表示装置
JP2011123151A (ja) 液晶装置および電子機器
JP4078928B2 (ja) 電気光学装置および電子機器
JP5072530B2 (ja) 液晶装置及びそれを備えた電子機器
JP4462128B2 (ja) 電気光学装置及びその製造方法並びに電子機器
JP2020129617A (ja) 半導体装置および半導体装置の製造方法
US11624960B2 (en) Electro-optical device and electronic apparatus
US20240310671A1 (en) Electro-optical device and electronic apparatus
KR101108380B1 (ko) 액정표시장치 및 그 제조방법

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100601