JP2008223757A - Device for reducing pulsation in variable displacement compressor - Google Patents

Device for reducing pulsation in variable displacement compressor Download PDF

Info

Publication number
JP2008223757A
JP2008223757A JP2007299641A JP2007299641A JP2008223757A JP 2008223757 A JP2008223757 A JP 2008223757A JP 2007299641 A JP2007299641 A JP 2007299641A JP 2007299641 A JP2007299641 A JP 2007299641A JP 2008223757 A JP2008223757 A JP 2008223757A
Authority
JP
Japan
Prior art keywords
valve
chamber
pulsation
suction
refrigerant gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007299641A
Other languages
Japanese (ja)
Other versions
JP5050801B2 (en
Inventor
Shiro Hayashi
志郎 林
Suehiro Fukazawa
末広 深澤
Miyako Asagoe
都 淺越
Taro Ozeki
太郎 尾関
Sokichi Hibino
惣吉 日比野
Hideki Mizutani
秀樹 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2007299641A priority Critical patent/JP5050801B2/en
Priority to US12/069,276 priority patent/US8366407B2/en
Priority to AT08151384T priority patent/ATE478260T1/en
Priority to EP08151384A priority patent/EP1959139B1/en
Priority to DE200860002162 priority patent/DE602008002162D1/en
Publication of JP2008223757A publication Critical patent/JP2008223757A/en
Application granted granted Critical
Publication of JP5050801B2 publication Critical patent/JP5050801B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To sufficiently show pulsation reduction effect in a low flow rate state without causing enlargement of a variable displacement compressor by simplifying a pulsation reduction device. <P>SOLUTION: A back pressure valve 55 rises during low displacement operation. Rise of the back pressure valve 55 induces a spool valve to be pushed up by a compression spring 54 and to close an opening part 44. Consequently, an intake passage 32 is restricted and transmission of intake pulsation due to self-excited oscillation of an intake valve is prevented. Since a cavity is blocked by the back pressure valve 55 and a circulation hole 52 and the intake passage 32 are under a communication condition when intake pulsation of specific frequency is generated, a damper chamber 58 resonates with the intake pulsation transmitted to the intake passage 32 and Helmholtz resonance effect takes place. As a result, intake pulsation of the specific frequency is attenuated, high intake pulsation reduction effect due to synergy with restriction effect can be provided, and transmission of intake pulsation to an outside can be prevented. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本願発明は可変容量圧縮機において発生する脈動の低減装置に関する。   The present invention relates to a device for reducing pulsation generated in a variable capacity compressor.

可変容量圧縮機では、起動時及び可変容量運転時のような低流量運転時において、吸入弁の自励振動に起因する吸入脈動が発生し、その振動が圧縮機外に伝播して大きな振動や異音を発生し易いという問題がある。このため、従来から、吸入弁より上流側の吸入通路において冷媒ガスの流通面積を制御することにより低流量運転時における圧力変動を低減し、吸入脈動を低減する方法が種々提案されている。   In variable capacity compressors, suction pulsation due to self-excited vibration of the suction valve occurs during low flow rate operation such as startup and variable capacity operation, and the vibration propagates out of the compressor and causes large vibrations. There is a problem that abnormal noise is easily generated. For this reason, various methods have been proposed in the past for reducing the pressure fluctuation during low flow rate operation and reducing the suction pulsation by controlling the flow area of the refrigerant gas in the suction passage upstream of the suction valve.

例えば、特許文献1には、可変容量圧縮機の吸入ポート17にガス通路18の開孔面積を制御する開度制御弁22を設け、ガス通路18の開孔面積を吸入流量が少ないときは小さく、吸入流量が多いときは大きくして吸入弁の低流量時の自励振動によって生ずる吸入圧力の脈動を低減する構成が開示されている。   For example, in Patent Document 1, an opening control valve 22 for controlling the opening area of the gas passage 18 is provided in the suction port 17 of the variable capacity compressor, and the opening area of the gas passage 18 is reduced when the suction flow rate is small. A configuration is disclosed in which the pulsation of the suction pressure generated by the self-excited vibration at the time of a low flow rate of the suction valve is reduced when the suction flow rate is large.

具体的には、ガス通路18と吸入ポート17との間に弁室21が設けられ、弁室21に開度制御弁22が配置される。開度制御弁22はスプリング23によって吸入ポート17側へ付勢され、吸入室16と吸入ポート17との圧力差により上下に移動する。また、開度制御弁22は最も下降した時ガス通路18の開孔面積を最大にし、最も上昇した時ガス通路18の開孔面積を最小にするよう設定されている。弁室21は連通孔24を介して吸入室16に連通され、開度制御弁22に形成した弁孔25によって吸入ポート17に連通される。   Specifically, a valve chamber 21 is provided between the gas passage 18 and the suction port 17, and an opening degree control valve 22 is disposed in the valve chamber 21. The opening control valve 22 is urged toward the suction port 17 by the spring 23 and moves up and down due to a pressure difference between the suction chamber 16 and the suction port 17. The opening control valve 22 is set to maximize the opening area of the gas passage 18 when it is lowered most, and to minimize the opening area of the gas passage 18 when it is raised most. The valve chamber 21 communicates with the suction chamber 16 through the communication hole 24, and communicates with the suction port 17 through a valve hole 25 formed in the opening degree control valve 22.

低流量運転時では、吸入室16と吸入ポート17との圧力差が小さいため、開度制御弁22が上昇し、ガス通路18の開孔面積を小さくする。この時、冷媒ガスの一部は弁孔25から弁室21に入り、さらに連通孔24を通って吸入室16に流入する。低流量運転時に発生する冷媒ガスの圧力脈動は吸入室16から連通孔24に伝播し、さらに弁室21を通って弁孔25から吸入ポート17へと伝播し、この過程で圧力脈動が弱められ、整流されるので騒音発生の原因にならない。即ち、吸入室16の容積効果と弁孔25の絞り効果とにより、冷凍回路の低圧側への圧力変動の伝播が抑制される。   At the time of low flow operation, since the pressure difference between the suction chamber 16 and the suction port 17 is small, the opening degree control valve 22 is raised and the opening area of the gas passage 18 is reduced. At this time, a part of the refrigerant gas enters the valve chamber 21 through the valve hole 25 and further flows into the suction chamber 16 through the communication hole 24. The pressure pulsation of the refrigerant gas generated during the low flow rate operation propagates from the suction chamber 16 to the communication hole 24, further propagates through the valve chamber 21 from the valve hole 25 to the suction port 17, and the pressure pulsation is weakened in this process. Since it is rectified, it does not cause noise. That is, the propagation of pressure fluctuations to the low pressure side of the refrigeration circuit is suppressed by the volume effect of the suction chamber 16 and the throttling effect of the valve hole 25.

特許文献2の図4、図5には、以下に説明する可変容量圧縮機における脈動低減装置が開示されている。
即ち、吸入ポート20と吸入室15とを連通する吸入通路21には、吸入脈動を低減するためのマフラ22が形成されると共にマフラ22の上流側に吸入通路21の開度を調整する開度制御弁Vの弁室23が形成されている。開度制御弁Vの弁室23には有底円筒状の弁体29及び可動体30が移動自在に収容され、弁体29と可動体30との間にバネ31が配置されている。また、弁室23の内壁部には弁体25の移動を規制するストッパ23b及び可動体30の移動を規制するストッパ32が配設されている。弁体29の前面には吸入通路21を介して吸入口24を開く方向へ吸入圧力Psが、可動体30の後面には連通路26を介して吸入口24を閉じる方向へクランク室5の圧力Pcがそれぞれ作用している。
4 and 5 of Patent Document 2 disclose a pulsation reducing device in a variable capacity compressor described below.
That is, the suction passage 21 that connects the suction port 20 and the suction chamber 15 is formed with a muffler 22 for reducing suction pulsation, and an opening degree that adjusts the opening degree of the suction passage 21 upstream of the muffler 22. A valve chamber 23 of the control valve V is formed. A bottomed cylindrical valve body 29 and a movable body 30 are movably accommodated in the valve chamber 23 of the opening control valve V, and a spring 31 is disposed between the valve body 29 and the movable body 30. A stopper 23 b that restricts the movement of the valve body 25 and a stopper 32 that restricts the movement of the movable body 30 are disposed on the inner wall of the valve chamber 23. The suction pressure Ps is in the direction of opening the suction port 24 via the suction passage 21 on the front surface of the valve body 29, and the pressure of the crank chamber 5 is in the direction of closing the suction port 24 on the rear surface of the movable body 30 via the communication passage 26. Pc is acting respectively.

OFF容量運転からの起動時や可変容量運転時には、クランク室5の圧力Pcが吸入圧力Psより高くなるので、弁体29、可動体30及びバネ31が弁室23内を前進し、吸入口24を閉じる方向に作用する。可動体30がストッパ32に当接した状態で、弁体29はバネ31の付勢力を受けて吸入口24を若干開いた状態にまで絞るため、マフラ22の効果が生じ、圧力変動を抑制することができる。なお、弁体29と可動体30との間の空間を密閉状態とすることによりダンパー効果が得られ、吸入脈動により弁体29自体が振動することによる異音の発生を防止することができる。
特開2000−136776号公報 特開2006−207484号公報
At the time of start-up from the OFF capacity operation or the variable capacity operation, the pressure Pc of the crank chamber 5 becomes higher than the suction pressure Ps, so that the valve body 29, the movable body 30 and the spring 31 move forward in the valve chamber 23 and Acts in the direction of closing. In a state where the movable body 30 is in contact with the stopper 32, the valve body 29 receives the urging force of the spring 31 and restricts the suction port 24 to a slightly opened state. be able to. A damper effect can be obtained by sealing the space between the valve body 29 and the movable body 30, and the generation of noise due to the vibration of the valve body 29 itself due to suction pulsation can be prevented.
JP 2000-136776 A JP 2006-207484 A

特許文献1に開示された脈動低減装置は、低流量時にガス通路18を開度制御弁22によって絞ることによる吸入室16、ガス通路18及び吸入ポート17の間で生じるマフラー効果に加えて、弁室21を連通孔24及び弁孔25によってそれぞれ吸入室16及び吸入ポート17と連通することによって吸入室16、連通孔24、弁室21、弁孔25及び吸入ポート17の間に生じるマフラー効果を利用して脈動の低減を図ったものである。
しかし、マフラー効果の利用だけでは低流量時に発生する脈動を充分に抑制することができない。
The pulsation reducing device disclosed in Patent Document 1 includes a valve in addition to the muffler effect generated between the suction chamber 16, the gas passage 18 and the suction port 17 when the gas passage 18 is throttled by the opening control valve 22 at a low flow rate. By connecting the chamber 21 to the suction chamber 16 and the suction port 17 through the communication hole 24 and the valve hole 25, respectively, a muffler effect generated between the suction chamber 16, the communication hole 24, the valve chamber 21, the valve hole 25, and the suction port 17 is obtained. This is used to reduce pulsation.
However, the pulsation generated at low flow rate cannot be sufficiently suppressed only by utilizing the muffler effect.

特許文献2に開示された脈動低減装置は、吸入ポート20と吸入室15とを連通する吸入通路21にマフラ22を余分に形成し、低流量時に開度制御弁Vの弁体29によりマフラ22の吸入口24を絞ることによりより大きなマフラー効果を狙ったものである。しかし、マフラ22の追加形成は可変容量圧縮機の大型化を招き、例えば車両等のエンジンルームのように限られたスペースには対応できない問題がある。また、可変容量圧縮機の大型化というマイナス面に比較し、低流量時に発生する脈動の低減効果は充分なものを得ることができない。   In the pulsation reducing device disclosed in Patent Document 2, an extra muffler 22 is formed in the suction passage 21 that communicates the suction port 20 and the suction chamber 15, and the muffler 22 is operated by the valve element 29 of the opening control valve V when the flow rate is low. A larger muffler effect is aimed at by narrowing down the suction port 24. However, the additional formation of the muffler 22 causes an increase in the size of the variable capacity compressor, and there is a problem that it cannot cope with a limited space such as an engine room of a vehicle, for example. In addition, the effect of reducing the pulsation generated at a low flow rate cannot be obtained as compared with the downside of increasing the size of the variable capacity compressor.

本願発明は、脈動低減装置の簡素化を図り、可変容量圧縮機の大型化を招くことなく低流量時における脈動の低減効果を充分発揮できるようにすることを目的とする。   An object of the present invention is to simplify the pulsation reducing device so that the effect of reducing the pulsation at a low flow rate can be sufficiently exhibited without causing an increase in the size of the variable capacity compressor.

請求項1に記載の本願発明は、ピストンの往復動機構を設置したクランク室、シリンダボア内に冷媒ガスを供給する吸入室及び前記シリンダボア内の圧縮された冷媒ガスを吐出する吐出室を備え、前記クランク室の圧力制御により前記冷媒ガスの吐出容量を変更するとともに前記冷媒ガスの流通路を形成する配管系に少なくともスプール弁及びダンパ室から構成される制御弁を配置して前記冷媒ガスの流通を制御することにより脈動を抑制する可変容量圧縮機において、前記スプール弁に作用する冷媒ガスを流通孔により前記ダンパ室内に流通させるとともに前記流通孔の断面積及び長さを発生する脈動の中の特定周波数及び前記特定周波数の時の前記ダンパ室の体積を基に設定し、前記特定周波数の脈動発生時に前記ダンパ室にヘルムホルツ共鳴効果を醸成したことを特徴とする。   The invention of claim 1 includes a crank chamber provided with a piston reciprocating mechanism, a suction chamber for supplying refrigerant gas into the cylinder bore, and a discharge chamber for discharging compressed refrigerant gas in the cylinder bore, The refrigerant gas discharge capacity is changed by controlling the pressure in the crank chamber, and a control valve including at least a spool valve and a damper chamber is disposed in a piping system that forms the refrigerant gas flow passage to distribute the refrigerant gas. In a variable capacity compressor that suppresses pulsation by controlling, the refrigerant gas acting on the spool valve is circulated into the damper chamber through a flow hole and the cross-sectional area and length of the flow hole are identified. The frequency is set based on the frequency and the volume of the damper chamber at the specific frequency, and when the pulsation of the specific frequency occurs, And characterized in that foster resonance effect.

請求項1記載の本願発明によれば、簡単な構成により冷媒ガスの流通路の絞り効果に加えヘルムホルツ共鳴効果を醸成することができ、両効果により低流量運転時に発生する脈動の充分な低減を図ることができる。   According to the present invention of claim 1, the Helmholtz resonance effect can be cultivated in addition to the throttling effect of the refrigerant gas flow passage with a simple configuration, and both effects can sufficiently reduce the pulsation generated during low flow operation. Can be planned.

請求項2に記載の本願発明は、前記制御弁は前記吸入室への冷媒ガスの流通路である吸入通路に設置され、前記冷媒ガスの圧力を受けて変位する前記スプール弁と前記スプール弁に対向して配置され前記クランク室の圧力を受けて変位する背圧弁と前記スプール弁及び前記背圧弁の間に形成される前記ダンパ室と前記ダンパ室内に設けた圧縮ばねとから構成され、前記スプール弁に前記冷媒ガスの流通孔を形成し、前記ダンパ室に前記吸入室と連通する抜き孔を接続し、前記流通孔の断面積及び長さを発生する脈動の中の特定周波数及び前記特定周波数の時の前記ダンパ室、前記吸入室、前記抜き孔及び前記吸入室と前記抜き孔とを連絡する連絡通路を加えた体積を基に設定したことを特徴とするため、スプール弁に冷媒ガスの流通孔を形成すると言う簡単な構成により前記ダンパ室を利用したヘルムホルツ共鳴器を得ることができる。   According to a second aspect of the present invention, in the spool valve and the spool valve, the control valve is installed in a suction passage which is a flow passage of the refrigerant gas to the suction chamber, and is displaced by receiving the pressure of the refrigerant gas. The spool comprises a back pressure valve that is disposed oppositely and is displaced by receiving pressure from the crank chamber, the spool valve, the damper chamber formed between the back pressure valve, and a compression spring provided in the damper chamber, A specific frequency in the pulsation and a specific frequency in which a flow hole for the refrigerant gas is formed in a valve, a vent hole communicating with the suction chamber is connected to the damper chamber, and a cross-sectional area and a length of the flow hole are generated In this case, the volume of the damper chamber, the suction chamber, the vent hole, and the communication passage connecting the suction chamber and the vent hole is set based on the volume of the refrigerant gas to the spool valve. Formation of flow holes That can get a Helmholtz resonator that utilizes the damper chamber with a simple configuration to say.

請求項3に記載の本願発明は、前記ダンパ室に接続する前記抜き孔を前記背圧弁の移動経路に配設し、前記抜き孔の開口量を前記背圧弁の移動位置により全閉状態から全開状態の間で変更可能に構成したことを特徴とするため、特定の低流量時にのみダンパ室を閉鎖空間とすることができ、冷媒ガスの吸入通路を絞るために設置された制御弁のダンパ室を有効に利用してヘルムホルツ共鳴効果を得ることができる。   According to a third aspect of the present invention, the vent hole connected to the damper chamber is arranged in a movement path of the back pressure valve, and the opening amount of the vent hole is changed from a fully closed state to a fully opened state by the movement position of the back pressure valve. The damper chamber can be changed to a closed space only at a specific low flow rate, and the damper chamber of the control valve installed to throttle the refrigerant gas intake passage. The Helmholtz resonance effect can be obtained by effectively utilizing

本願発明は、簡単な構成により低流量時における脈動の低減を図ることができる。   The present invention can reduce the pulsation at a low flow rate with a simple configuration.

(第1の実施形態)
図1〜図3に基づき、第1の実施形態の構成を説明する。なお、図1に示した可変容量圧縮機は説明の便宜上、左側を前方、右側を後方とする。
図1に示すように、シリンダブロック11の一方の前端部にフロントハウジング12が接合され、他方の後端部にリヤハウジング13が接合されている。シリンダブロック11及びフロントハウジング12により区画形成される空間部はクランク室14を構成する。
(First embodiment)
The configuration of the first embodiment will be described with reference to FIGS. The variable capacity compressor shown in FIG. 1 has the left side as the front and the right side as the rear for convenience of explanation.
As shown in FIG. 1, a front housing 12 is joined to one front end of the cylinder block 11, and a rear housing 13 is joined to the other rear end. A space defined by the cylinder block 11 and the front housing 12 constitutes a crank chamber 14.

クランク室14を貫通する回転軸15はシリンダブロック11及びフロントハウジング12に回転自在に支持されている。回転軸15の前端は、突出端としてフロントハウジング12の外側へ突出されており、この突出端は車両のエンジンやモータ等の駆動源(図示せず)から回転力の伝達を受ける機構(図示せず)と連結されている。   A rotating shaft 15 that passes through the crank chamber 14 is rotatably supported by the cylinder block 11 and the front housing 12. The front end of the rotating shaft 15 protrudes to the outside of the front housing 12 as a protruding end, and this protruding end receives a rotational force transmitted from a driving source (not shown) such as an engine or a motor of the vehicle (not shown). Z)).

クランク室14内における回転軸15には、回転支持体16が固定されるとともに回転支持体16に係合される斜板17が備えられている。斜板17は、その中心部に形成された貫通孔18に回転軸15が貫通した状態にあり、斜板17に突出して形成されたガイドピン19が回転支持体16に形成されたガイド孔20にスライド可能に嵌入されている。斜板17は、ガイド孔20に対するガイドピン19の嵌入の関係に基づき、回転軸15と一体的に回転する。これら回転支持体16、斜板17、ガイドピン19及びガイド孔20は本願発明の往復動機構を構成する。なお、斜板17は、ガイド孔20に対するガイドピン19のスライドにより、回転軸15の軸方向にスライド可能であるほか傾動可能に回転軸15に支持されている。また、フロントハウジング12内の前部内壁にスラストベアリング21が備えられており、回転支持体16はスラストベアリング21によって軸受されている。   A rotating shaft 15 in the crank chamber 14 is provided with a swash plate 17 to which the rotating support 16 is fixed and engaged with the rotating support 16. The swash plate 17 is in a state in which the rotary shaft 15 passes through a through hole 18 formed at the center thereof, and a guide pin 19 formed to protrude from the swash plate 17 is formed in a guide hole 20 formed in the rotary support 16. It is slidably inserted in. The swash plate 17 rotates integrally with the rotary shaft 15 based on the relationship of the insertion of the guide pins 19 into the guide holes 20. The rotary support 16, the swash plate 17, the guide pin 19, and the guide hole 20 constitute a reciprocating mechanism according to the present invention. The swash plate 17 is supported by the rotary shaft 15 so as to be slidable in addition to being slidable in the axial direction of the rotary shaft 15 by sliding the guide pin 19 with respect to the guide hole 20. A thrust bearing 21 is provided on the front inner wall of the front housing 12, and the rotary support 16 is supported by the thrust bearing 21.

シリンダブロック11には、回転軸15の周りに形成された複数のシリンダボア22が配列されており、個々のシリンダボア22にはピストン23が摺動可能に収容されている。各ピストン23の前端はシュー24を介して斜板17の外周と係合されており、斜板17が回転軸15に連動して回転すると、各ピストン23はシュー24を介してシリンダボア22内を往復移動する。   A plurality of cylinder bores 22 formed around the rotation shaft 15 are arranged in the cylinder block 11, and pistons 23 are slidably accommodated in the individual cylinder bores 22. The front end of each piston 23 is engaged with the outer periphery of the swash plate 17 via a shoe 24. When the swash plate 17 rotates in conjunction with the rotary shaft 15, each piston 23 moves inside the cylinder bore 22 via the shoe 24. Move back and forth.

リヤハウジング13の中央部には、吸入弁及び吐出弁を含む弁形成体25に面して吸入室26が区画形成され、吸入室26の外周側には吸入室26を取り囲むように吐出室27が形成されている。吸入室26及び吐出室27は隔壁13aによって隔てられている。
シリンダブロック11とリヤハウジング13には、クランク室14と吐出室27とを連通する連通路28が形成され、連通路28の途中には電磁弁からなる容量制御弁29が配置されている。また、シリンダブロック11には、クランク室14と吸入室26を連通する抽気通路30が形成されている。
A suction chamber 26 is formed in the center of the rear housing 13 so as to face a valve forming body 25 including a suction valve and a discharge valve, and a discharge chamber 27 is formed on the outer peripheral side of the suction chamber 26 so as to surround the suction chamber 26. Is formed. The suction chamber 26 and the discharge chamber 27 are separated by a partition wall 13a.
In the cylinder block 11 and the rear housing 13, a communication path 28 that connects the crank chamber 14 and the discharge chamber 27 is formed, and a capacity control valve 29 that is an electromagnetic valve is disposed in the communication path 28. Further, the cylinder block 11 is formed with an extraction passage 30 that communicates the crank chamber 14 and the suction chamber 26.

リヤハウジング13には外部に露出し、外部冷媒回路と接続される吸入ポート31が形成されており、吸入ポート31と吸入室26は吸入通路32により連通されている。なお、吸入通路32は本願発明の配管系を構成する流通路に該当する。この吸入通路32の途中には吸入通路32の開度を調節する制御弁40が配置されている。
図2及び図3に詳細を示すように、制御弁40の母体となる筒状の弁ハウジング41は樹脂製材料からなり、ハウジング上部42及びハウジング下部43を有する。なお、説明の便宜上、ハウジング上部42側を制御弁40における上方とし、ハウジング下部43側を下方とする。
The rear housing 13 is formed with a suction port 31 exposed to the outside and connected to an external refrigerant circuit. The suction port 31 and the suction chamber 26 are communicated with each other through a suction passage 32. The suction passage 32 corresponds to a flow passage constituting the piping system of the present invention. A control valve 40 for adjusting the opening degree of the suction passage 32 is disposed in the middle of the suction passage 32.
As shown in detail in FIGS. 2 and 3, the cylindrical valve housing 41 that serves as a base of the control valve 40 is made of a resin material and has a housing upper part 42 and a housing lower part 43. For convenience of explanation, the housing upper part 42 side is the upper side of the control valve 40 and the housing lower part 43 side is the lower side.

ハウジング上部42は内外径共にハウジング下部43よりも大径の筒となるように設定され、ハウジング上部42の側面には吸入室26に連通する側の吸入通路32と接続する開口部44が形成されている。なお、ハウジング上部42とハウジング下部43との内外径についてはハウジング形状等を考慮して任意に設定することができる。また、ハウジング下部43の上部側面には開口部44よりも小径の抜き孔45aが形成され、吸入室26に連通する連絡通路59と接続する。   The housing upper part 42 is set so as to have a larger diameter than the housing lower part 43 in both inner and outer diameters, and an opening 44 connected to the suction passage 32 on the side communicating with the suction chamber 26 is formed on the side surface of the housing upper part 42. ing. The inner and outer diameters of the housing upper part 42 and the housing lower part 43 can be arbitrarily set in consideration of the housing shape and the like. Further, a hole 45 a having a smaller diameter than the opening 44 is formed on the upper side surface of the housing lower portion 43, and is connected to a communication passage 59 communicating with the suction chamber 26.

ハウジング上部42の内部には倒立状に配置された有底筒状のスプール弁50が上下に摺動可能に収容され、その底部51aが吸入ポート31側の吸入通路32に対向している。スプール弁50の底部51aには吸入ポート31側の吸入通路32と常時連通する流通孔52が形成され、また底部51aの外縁からは側壁51bが下方に延びている。従って、スプール弁50が吸入ポート31における冷媒ガスの最小流量時に弁ハウジング41の最上位に移動した時、側壁51bは開口部44を完全に閉鎖する。また、側壁51bは吸入ポートにおける冷媒ガスの最大流量時にスプール弁50が弁ハウジング41の最下位に移動した時、開口部44を完全に開放する。   A bottomed cylindrical spool valve 50 disposed upside down is accommodated inside the housing upper part 42 so as to be slidable in the vertical direction, and its bottom 51a faces the suction passage 32 on the suction port 31 side. A flow hole 52 that always communicates with the suction passage 32 on the suction port 31 side is formed in the bottom 51a of the spool valve 50, and a side wall 51b extends downward from the outer edge of the bottom 51a. Therefore, when the spool valve 50 moves to the uppermost position of the valve housing 41 at the minimum flow rate of the refrigerant gas at the suction port 31, the side wall 51b completely closes the opening 44. Further, the side wall 51b completely opens the opening 44 when the spool valve 50 moves to the lowest position of the valve housing 41 at the maximum flow rate of the refrigerant gas at the suction port.

ハウジング上部42の上方には、ハウジング上部42の内径に対応する筒状キャップ53が例えば圧入等により装着されている。筒状キャップ53はその上方開口端に形成したフランジが吸入ポート31側の吸入通路32の段差部及びハウジング上部42の上方開口端に係止されている。また、筒状キャップ53の下端部はスプール弁50が最上位に移動した時接触するストッパーを構成している。ハウジング上部42とハウジング下部43との接続部の内側に形成された環状突部45はスプール弁50が最下位に移動した時接触するストッパーを構成する。   A cylindrical cap 53 corresponding to the inner diameter of the housing upper part 42 is mounted above the housing upper part 42 by, for example, press fitting. A flange formed at the upper opening end of the cylindrical cap 53 is locked to the step portion of the suction passage 32 on the suction port 31 side and the upper opening end of the housing upper part 42. The lower end of the cylindrical cap 53 constitutes a stopper that contacts when the spool valve 50 moves to the uppermost position. An annular protrusion 45 formed inside the connecting portion between the housing upper portion 42 and the housing lower portion 43 constitutes a stopper that contacts when the spool valve 50 moves to the lowest position.

ハウジング下部43の内部にはスプール弁50に対向して配置された有底円筒状の背圧弁55が上下方向に摺動可能に収容されている。背圧弁55は、その底部56と、底部56の外縁から上方へ延びる側壁57とを有する。また、背圧弁55とスプール弁50との間に形成されるダンパ室58には、圧縮ばね54が介在されており、スプール弁50と背圧弁55を引き離す方向へ付勢している。ハウジング下部43の下方開口端には内径を拡大した拡径部46によって段差部48が形成されている。また、拡径部46の内周には環状の溝部47が形成されている。   A bottomed cylindrical back pressure valve 55 disposed facing the spool valve 50 is accommodated inside the housing lower portion 43 so as to be slidable in the vertical direction. The back pressure valve 55 has a bottom portion 56 and a side wall 57 extending upward from the outer edge of the bottom portion 56. Further, a compression spring 54 is interposed in a damper chamber 58 formed between the back pressure valve 55 and the spool valve 50, and urges the spool valve 50 and the back pressure valve 55 in a direction to separate them. A stepped portion 48 is formed at the lower opening end of the housing lower portion 43 by an enlarged diameter portion 46 having an enlarged inner diameter. An annular groove 47 is formed on the inner periphery of the enlarged diameter portion 46.

有底円筒状の弁座60は中央に通孔62が穿設された座部61と、座部61の外周縁から上方に延びる筒状の周壁63から構成されている。周壁63の上下方向の長さは、背圧弁55の側壁57の長さよりも短く設定されている。また、周壁63の外周には突起64が設けられている。なお、周壁63が弾性変形可能な材料で構成されていれば、突起64は周壁63の全周にわたって形成することも可能である。このように構成された弁座60はその周壁63の上端が段差部48と接触し、突起64が溝部47に嵌合された状態で拡径部46に装着される。
従って、背圧弁55は最上位に移動した時、弁ハウジング41の環状突部45下面に接触して移動を規制される。この状態では、背圧弁55の側壁57が抜き孔45aを完全に閉鎖している。また、背圧弁55は最下位に移動した時、弁座60の座部61上面に接触して移動を規制される。
The bottomed cylindrical valve seat 60 includes a seat portion 61 having a through hole 62 formed in the center thereof, and a cylindrical peripheral wall 63 extending upward from the outer peripheral edge of the seat portion 61. The length of the peripheral wall 63 in the vertical direction is set shorter than the length of the side wall 57 of the back pressure valve 55. Further, a protrusion 64 is provided on the outer periphery of the peripheral wall 63. If the peripheral wall 63 is made of an elastically deformable material, the protrusion 64 can be formed over the entire periphery of the peripheral wall 63. The valve seat 60 configured as described above is attached to the enlarged diameter portion 46 with the upper end of the peripheral wall 63 in contact with the stepped portion 48 and the protrusion 64 fitted in the groove portion 47.
Therefore, when the back pressure valve 55 moves to the uppermost position, the movement of the back pressure valve 55 is restricted by contacting the lower surface of the annular protrusion 45 of the valve housing 41. In this state, the side wall 57 of the back pressure valve 55 completely closes the hole 45a. Further, when the back pressure valve 55 moves to the lowest position, the movement is restricted by contacting the upper surface of the seat portion 61 of the valve seat 60.

弁座60の周壁63の内径はハウジング下部43の内径よりもやや大きく設定されている。このため、背圧弁55が座部61に接触する位置にある時、背圧弁55の側壁57外周と弁座60の周壁63内周との間に間隙Gが生じている。この間隙Gは、背圧弁55とハウジング下部43の摺動面に入り込んだ塵埃等の異物を取り除き、また上記摺動面に入り込み難くする機能を有する。   The inner diameter of the peripheral wall 63 of the valve seat 60 is set slightly larger than the inner diameter of the housing lower portion 43. For this reason, when the back pressure valve 55 is in a position in contact with the seat portion 61, a gap G is generated between the outer periphery of the side wall 57 of the back pressure valve 55 and the inner periphery of the peripheral wall 63 of the valve seat 60. The gap G has a function of removing foreign matters such as dust that have entered the sliding surfaces of the back pressure valve 55 and the housing lower portion 43 and making it difficult to enter the sliding surfaces.

スプール弁50及び背圧弁55を収容するとともに下端に弁座60を取り付けた弁ハウジング41がリヤハウジング13に装着されると、開口部44は吸入室26側の吸入通路32と接続し、抜き孔45aは連絡通路59と接続する。また、通孔62は連通路28を介してクランク室14に連通する分岐路33と接続する。   When the valve housing 41 containing the spool valve 50 and the back pressure valve 55 and having the valve seat 60 attached to the lower end is mounted on the rear housing 13, the opening 44 is connected to the suction passage 32 on the suction chamber 26 side, and a hole is formed. 45 a is connected to the communication passage 59. The through hole 62 is connected to the branch path 33 communicating with the crank chamber 14 via the communication path 28.

なお、拡径部46のやや上方位置にあたるハウジング下部43の外周には、環状溝49が設けられ、環状溝49内にOリング65が装着されている。Oリング65は、冷媒ガスがリヤハウジング13と弁ハウジング41の外周との間を通じて吸入室26側あるいはクランク室14側へ漏洩することを防止する。   An annular groove 49 is provided on the outer periphery of the housing lower portion 43, which is slightly above the enlarged diameter portion 46, and an O-ring 65 is mounted in the annular groove 49. The O-ring 65 prevents the refrigerant gas from leaking to the suction chamber 26 side or the crank chamber 14 side through between the rear housing 13 and the outer periphery of the valve housing 41.

以上の構成により、スプール弁50と背圧弁55は圧縮ばね54によって互いに離反する方向に付勢され、またスプール弁50は外部冷媒回路から供給される冷媒ガスによる吸入側圧力Psを受け、背圧弁55はクランク室14内の冷媒ガスによるクランク室圧力Pcを受ける。従って、制御弁40は吸入側圧力Psとクランク室圧力Pcとの差圧により上下方向に移動するように制御されている。例えば、高流量運転時には、スプール弁50及び圧縮ばね54を介して背圧弁55が下降し、制御弁40は開口部44及び抜き孔45aを開口する(図3参照)。逆に、低流量運転時には、背圧弁55及び圧縮ばね54を介してスプール弁50が上昇し、制御弁40は開口部44の一部を閉鎖して吸入通路32内の冷媒ガスの流れを大きく絞り込むとともに抜き孔45aも徐々に閉鎖してダンパ室58内の冷媒ガスの移動を制限し、開口部44における絞り効果を向上している(図2参照)。   With the above configuration, the spool valve 50 and the back pressure valve 55 are urged away from each other by the compression spring 54, and the spool valve 50 receives the suction side pressure Ps by the refrigerant gas supplied from the external refrigerant circuit, and receives the back pressure valve. 55 receives the crank chamber pressure Pc by the refrigerant gas in the crank chamber 14. Therefore, the control valve 40 is controlled to move in the vertical direction by the differential pressure between the suction side pressure Ps and the crank chamber pressure Pc. For example, during high flow operation, the back pressure valve 55 is lowered via the spool valve 50 and the compression spring 54, and the control valve 40 opens the opening 44 and the vent hole 45a (see FIG. 3). Conversely, during low flow operation, the spool valve 50 rises via the back pressure valve 55 and the compression spring 54, and the control valve 40 closes part of the opening 44 to increase the flow of refrigerant gas in the suction passage 32. While narrowing down, the vent hole 45a is also gradually closed to restrict the movement of the refrigerant gas in the damper chamber 58, thereby improving the throttling effect at the opening 44 (see FIG. 2).

本実施形態の構成では、低流量運転時に発生する吸入脈動の中で最も影響が大きい特定の脈動における周波数を選択し、この特定周波数での吸入脈動発生時におけるスプール弁50及び背圧弁55の位置関係を実験的に測定する。この測定結果からダンパ室58の体積を算出し、選択した周波数及び算出した体積を基にヘルムホルツ共鳴器の原理を表す下記数1を満足するように、流通孔52の断面積及び長さ(吸入通路32側からダンパ室58に至る長さ)を設定している。   In the configuration of the present embodiment, the frequency in a specific pulsation having the greatest influence among the suction pulsations generated during low flow rate operation is selected, and the positions of the spool valve 50 and the back pressure valve 55 when the suction pulsations are generated at this specific frequency. The relationship is measured experimentally. The volume of the damper chamber 58 is calculated from the measurement result, and the cross-sectional area and length (suction) of the flow hole 52 are satisfied so as to satisfy the following formula 1 representing the principle of the Helmholtz resonator based on the selected frequency and the calculated volume. The length from the passage 32 side to the damper chamber 58) is set.

Figure 2008223757
Figure 2008223757

なお、fは共鳴周波数、cは音速(350m/s20°C)、Sは流通孔52の断面積、Lは流通孔52の長さ、Vはダンパ室58の体積である。例えば、特定周波数を400Hzに設定し、400Hzにおける吸入脈動発生時のスプール弁50及び背圧弁55の位置関係を実験的に測定するとダンパ室58の体積は、2800mmであった。特定周波数である400Hz及びダンパ室58の体積である2800mmを基に上記数1を満足するように流通孔52の断面積及び長さを設定すると、流通孔52の断面積が0.785mm(Φ1に相当)、流通孔52の長さが1mmであった。なお、音速cは、吸入冷媒の温度を基に150m/sと設定した。このように設定することにより特定周波数である400Hzの脈動発生時にダンパ室58にヘルムホルツ共鳴効果が醸成される。 Here, f is the resonance frequency, c is the speed of sound (350 m / s 20 ° C.), S is the cross-sectional area of the flow hole 52, L is the length of the flow hole 52, and V is the volume of the damper chamber 58. For example, when the specific frequency is set to 400 Hz and the positional relationship between the spool valve 50 and the back pressure valve 55 when the suction pulsation occurs at 400 Hz is experimentally measured, the volume of the damper chamber 58 is 2800 mm 3 . When the cross-sectional area and the length of the flow hole 52 are set so as to satisfy the above formula 1 based on the specific frequency of 400 Hz and the volume of the damper chamber 58 of 2800 mm 3 , the cross-sectional area of the flow hole 52 is 0.785 mm 2. (Corresponding to Φ1), the length of the flow hole 52 was 1 mm. The speed of sound c was set to 150 m / s based on the temperature of the suction refrigerant. By setting in this way, a Helmholtz resonance effect is nurtured in the damper chamber 58 when a pulsation of a specific frequency of 400 Hz is generated.

また、前記特定周波数の吸入脈動が発生する時期に、背圧弁55の側壁57が抜き孔45aを完全に閉鎖するようにスプール弁50、圧縮ばね54及び背圧弁55の作動位置が設定されている。
従って、可変容量圧縮機の起動時あるいは可変容量運転中等の低流量運転時に特定周波数の吸入脈動が発生する時、流通孔52及びダンパ室58はヘルムホルツ共鳴効果を醸成し、共鳴振動を発生するため、特定周波数の吸入脈動を減衰する。
Further, the operation positions of the spool valve 50, the compression spring 54, and the back pressure valve 55 are set so that the side wall 57 of the back pressure valve 55 completely closes the extraction hole 45a when the suction pulsation of the specific frequency occurs. .
Therefore, when suction pulsation of a specific frequency occurs during low flow rate operation such as when the variable capacity compressor is started or during variable capacity operation, the flow hole 52 and the damper chamber 58 nurture the Helmholtz resonance effect and generate resonance vibration. , To attenuate the suction pulsation of a specific frequency.

次に、第1の実施形態の作用を説明する。
回転軸15の回転運動に伴うピストン23の往復運動に基づき、吸入室26の冷媒ガスは弁形成体25の吸入弁を開いてシリンダボア22内へ導かれ、シリンダボア22内で圧縮された冷媒ガスは吐出弁を開いて吐出室27へ吐出される。吐出室27の高圧の冷媒ガスは図示しない外部冷媒回路へ導かれる。
Next, the operation of the first embodiment will be described.
Based on the reciprocating motion of the piston 23 accompanying the rotational motion of the rotating shaft 15, the refrigerant gas in the suction chamber 26 is introduced into the cylinder bore 22 by opening the suction valve of the valve forming body 25, and the refrigerant gas compressed in the cylinder bore 22 is The discharge valve is opened and discharged into the discharge chamber 27. The high-pressure refrigerant gas in the discharge chamber 27 is guided to an external refrigerant circuit (not shown).

容量制御弁29は、弁の開度が変更されることより、吐出室27から連通路28を通してクランク室14へ導入される冷媒ガスの量と、クランク室14から抽気通路30を通して吸入室26へ導出される冷媒ガスの量とのバランスを制御する。従って、クランク室14内の冷媒ガス量のバランス制御によりクランク室圧力Pcが決定される。クランク室圧力Pcが変わると、ピストン23を介してクランク室14内とシリンダボア22内との差圧が変更され、斜板17の傾斜角度が変動する。このため、ピストン23のストロークが変更され、可変容量圧縮機の吐出容量が変化する。   The capacity control valve 29 changes the amount of refrigerant gas introduced into the crank chamber 14 from the discharge chamber 27 through the communication passage 28 and the suction passage 26 from the crank chamber 14 through the extraction passage 30 by changing the opening of the valve. The balance with the amount of refrigerant gas to be derived is controlled. Accordingly, the crank chamber pressure Pc is determined by balance control of the refrigerant gas amount in the crank chamber 14. When the crank chamber pressure Pc changes, the differential pressure between the crank chamber 14 and the cylinder bore 22 is changed via the piston 23, and the inclination angle of the swash plate 17 changes. For this reason, the stroke of the piston 23 is changed, and the discharge capacity of the variable capacity compressor is changed.

例えば、容量制御弁29が閉じた状態から全開状態へ至る過程では、斜板17の傾斜角度が徐々に小さくなり、吐出容量を減少して可変容量運転となる。その後、斜板17の傾斜角が最小状態となると、最小容量運転(OFF運転)となる。また、制御弁40は容量制御弁29の開閉動作に追従して動作する。   For example, in the process from the closed state of the capacity control valve 29 to the fully open state, the inclination angle of the swash plate 17 gradually decreases, and the discharge capacity is decreased to perform variable capacity operation. Thereafter, when the inclination angle of the swash plate 17 reaches the minimum state, the minimum capacity operation (OFF operation) is performed. The control valve 40 operates following the opening / closing operation of the capacity control valve 29.

即ち、可変容量運転や最小容量運転のような低容量運転では、背圧弁55が上昇する。背圧弁55の上昇は、圧縮ばね54の付勢力及び吸入側圧力Psとダンパ室58内の圧力との差圧の減少により、開口部44を閉じる方向にスプール弁50を押し上げ、最終的に開口部44はスプール弁50により閉じられる。開口部44の一部が閉じられると、吸入通路32側の冷媒ガスの流量に応じた絞りが設けられることとなり、この絞り効果により吸入室26の吸入弁の自励振動による吸入脈動の伝播が防止される。   That is, in the low capacity operation such as the variable capacity operation and the minimum capacity operation, the back pressure valve 55 rises. The back pressure valve 55 is lifted by pushing up the spool valve 50 in the direction to close the opening 44 due to the biasing force of the compression spring 54 and the pressure difference between the suction side pressure Ps and the pressure in the damper chamber 58, and finally the opening. The part 44 is closed by the spool valve 50. When a part of the opening 44 is closed, a throttle corresponding to the flow rate of the refrigerant gas on the suction passage 32 side is provided, and this throttling effect causes propagation of suction pulsation due to self-excited vibration of the suction valve of the suction chamber 26. Is prevented.

また、特定周波数の吸入脈動発生時では、背圧弁55により抜き孔45aが閉鎖された状態となる(図2参照)。流通孔52は吸入ポート31側の吸入通路32と連通状態に有るため、ダンパ室58は吸入通路32に伝播した吸入脈動により共鳴し、ヘルムホルツ共鳴効果を醸成する。この結果、特定周波数の吸入脈動が減衰され、外部への吸入脈動の伝播が防止される。特定周波数の吸入脈動の減衰はさらにその前後の周波数の吸入脈動をある程度抑える効果も生じ、前記した絞り効果との相乗により大きな吸入脈動低減効果を得ることができる。   Further, when the suction pulsation of the specific frequency is generated, the vent hole 45a is closed by the back pressure valve 55 (see FIG. 2). Since the circulation hole 52 is in communication with the suction passage 32 on the suction port 31 side, the damper chamber 58 resonates due to the suction pulsation propagated to the suction passage 32, thereby creating a Helmholtz resonance effect. As a result, the suction pulsation of a specific frequency is attenuated and the propagation of the suction pulsation to the outside is prevented. The attenuation of the suction pulsation at a specific frequency also has an effect of suppressing the suction pulsation at frequencies before and after that to some extent, and a great effect of reducing the suction pulsation can be obtained by synergy with the throttling effect.

次に、容量制御弁29が全開状態から閉じる過程では、斜板17の傾斜角度は徐々に大きくなり、吐出容量が増大して最大容量運転となる。この過程では、スプール弁50は吸入側圧力Psにより押し下げられ、圧縮ばね54を介して背圧弁55も下降する。従って、抜き孔45aの全開口によりダンパ室58内の冷媒ガスが吸入室26側へ流入し易くなり、スプール弁50が迅速に下降して開口部44が早期に全開口されるため、最大容量時の運転効率を確保することができる。   Next, in the process of closing the capacity control valve 29 from the fully open state, the inclination angle of the swash plate 17 gradually increases, the discharge capacity increases, and the maximum capacity operation is performed. In this process, the spool valve 50 is pushed down by the suction side pressure Ps, and the back pressure valve 55 is also lowered via the compression spring 54. Therefore, the refrigerant gas in the damper chamber 58 easily flows into the suction chamber 26 due to the full opening of the vent hole 45a, the spool valve 50 is quickly lowered, and the opening 44 is fully opened at an early stage. The driving efficiency at the time can be ensured.

背圧弁55は最下位まで下降すると、図3に示すように、弁座60の座部61に当接する。仮に、ハウジング下部43と背圧弁55との間に塵埃等の異物が入り込んだとしても、これらの塵埃は間隙Gの存在によって除去することができる。   When the back pressure valve 55 is lowered to the lowest position, the back pressure valve 55 comes into contact with the seat portion 61 of the valve seat 60 as shown in FIG. Even if foreign matter such as dust enters between the housing lower portion 43 and the back pressure valve 55, these dust can be removed by the presence of the gap G.

第1の実施形態では以下の効果を奏する。
(1)吸入脈動低減のために従来から使用されていた制御弁40のダンパ室58を利用し、低容量運転時に発生する吸入脈動のうち特定周波数の脈動を選択し、この特定周波数とその時のダンパ室58の体積を基に流通孔52の断面積及び長さを設定して制御弁40を形成するという簡単な構成で、吸入脈動を大幅に低減することができる。
(2)低流量運転において、ダンパ室58は特定周波数の吸入脈動発生時に流通孔52のみが吸入通路32と連通する密閉空間となり、ダンパ室58にヘルムホルツ共鳴効果を醸成することができ、これにより特定周波数の吸入脈動を減衰することができる。
The first embodiment has the following effects.
(1) Using the damper chamber 58 of the control valve 40 conventionally used for reducing the suction pulsation, the pulsation of a specific frequency is selected from the suction pulsations generated during the low-capacity operation. Suction pulsation can be greatly reduced with a simple configuration in which the control valve 40 is formed by setting the cross-sectional area and length of the flow hole 52 based on the volume of the damper chamber 58.
(2) In the low flow rate operation, the damper chamber 58 becomes a sealed space in which only the flow hole 52 communicates with the suction passage 32 when suction pulsation of a specific frequency is generated, and the Helmholtz resonance effect can be nurtured in the damper chamber 58. Inhalation pulsation at a specific frequency can be attenuated.

(3)特定周波数の吸入脈動の減衰は、その前後の周波数の吸入脈動にも影響し、減衰させることができるため、外部に影響を及ぼす吸入脈動全体の低減に繋げることができる。
(4)開口部44の一部閉鎖による絞り効果とダンパ室58のヘルムホルツ共鳴効果との相乗により吸入脈動の低減に大きく寄与することができる。
(3) The attenuation of the suction pulsation of a specific frequency also affects the suction pulsation of the frequency before and after that, and can be attenuated. Therefore, it is possible to reduce the entire intake pulsation that affects the outside.
(4) The synergistic effect of the throttling effect by partially closing the opening 44 and the Helmholtz resonance effect of the damper chamber 58 can greatly contribute to the reduction of suction pulsation.

本願発明は、前記した第1の実施形態に限定されるものではなく、発明の趣旨の範囲内で種々の変更が可能である。
(1)第1の実施形態では、低流量運転時に背圧弁55が抜き孔45aを完全に密閉してダンパ室58にヘルムホルツ共鳴効果を醸成するように説明したが、抜き孔45aを部分開口、あるいは全開口状態にしておいても実施することができる。即ち、抜き孔45aが開口状態であっても吸入室26がほぼ密閉状態にあるため、ダンパ室58の体積Vの算出時に吸入室26、連絡通路59及び抜き孔45aを加えた体積にして流通孔52の断面積及び長さを設定すればよい。
The present invention is not limited to the first embodiment described above, and various modifications can be made within the scope of the gist of the invention.
(1) In the first embodiment, it has been described that the back pressure valve 55 completely seals the vent hole 45a during the low flow rate operation and nurtures the Helmholtz resonance effect in the damper chamber 58. However, the vent hole 45a is partially opened. Alternatively, it can be carried out even in a fully opened state. That is, since the suction chamber 26 is almost hermetically sealed even when the vent hole 45a is open, when the volume V of the damper chamber 58 is calculated, the suction chamber 26, the communication passage 59, and the vent hole 45a are added in volume. What is necessary is just to set the cross-sectional area and length of the hole 52. FIG.

(2)図4及び図5に示した実施形態を採用することが可能である。この実施形態は第1の実施形態における抜き孔45aの配設位置を変更したものである。従って、第1の実施形態と同一の構成については同一の符号を付し、その説明を省略する。
抜き孔66はハウジング上部42とハウジング下部43の接続部に形成された環状突部45の位置に配設され、吸入室26と連通する連絡通路59に接続している。可変容量圧縮機の運転中、吸入側圧力Psによってスプール弁50が下降する時、ダンパ室58内の冷媒ガスを吸入室26側へ逃し、スプール弁50の移動を迅速に行わせるという抜き孔66の機能は第1の実施形態と同一である。しかし、本実施形態の抜き孔66はスプール弁50及び背圧弁55の上下動に関係なく、常時開口された状態である点が第1の実施形態の抜き孔45aと異なる。
本実施形態では、ダンパ室58にヘルムホルツ共鳴効果を醸成するために、低容量運転時における特定周波数の吸入脈動発生時のスプール弁50及び背圧弁55の位置関係を実験で測定し、この時のダンパ室58の体積を算出する。この場合に、ダンパ室58の体積は抜き孔66、連絡通路59及び吸入室26の体積を加算した総合体積としてもよい。このようにして得られた特定周波数及びダンパ室58の体積を基に前記数1を満足するように流通孔52の断面積S及び長さLを設定することによってヘルムホルツ共鳴効果を得ることができ、第1の実施形態とほぼ同様に低容量運転時の吸入脈動を低減することができる。
(2) The embodiment shown in FIGS. 4 and 5 can be employed. In this embodiment, the arrangement position of the hole 45a in the first embodiment is changed. Accordingly, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
The extraction hole 66 is disposed at a position of an annular protrusion 45 formed at a connection portion between the housing upper portion 42 and the housing lower portion 43, and is connected to a communication passage 59 communicating with the suction chamber 26. During operation of the variable capacity compressor, when the spool valve 50 is lowered by the suction side pressure Ps, the refrigerant gas in the damper chamber 58 is released to the suction chamber 26 side and the spool valve 50 is moved quickly. Is the same as that of the first embodiment. However, the hole 66 of this embodiment is different from the hole 45a of the first embodiment in that it is always open regardless of the vertical movement of the spool valve 50 and the back pressure valve 55.
In the present embodiment, in order to nurture the Helmholtz resonance effect in the damper chamber 58, the positional relationship between the spool valve 50 and the back pressure valve 55 at the time of occurrence of suction pulsation at a specific frequency during low-capacity operation is experimentally measured. The volume of the damper chamber 58 is calculated. In this case, the volume of the damper chamber 58 may be a total volume obtained by adding the volumes of the hole 66, the communication passage 59, and the suction chamber 26. Based on the specific frequency thus obtained and the volume of the damper chamber 58, the Helmholtz resonance effect can be obtained by setting the cross-sectional area S and the length L of the flow hole 52 so as to satisfy Equation 1 above. As in the first embodiment, the suction pulsation during the low-capacity operation can be reduced.

(3)本願発明は吐出室27側において実施することもできる。 (3) The present invention can also be implemented on the discharge chamber 27 side.

(4)上記実施形態において、特定周波数を400Hzと設定したが400Hz以外の特定周波数で設定しても良い。しかし、上記数1を満たさない実機を用いて実験した結果、特定周波数が200Hz〜600Hzの間の範囲で吸入脈動が上昇したため、特定周波数を上記範囲内で設定することが好ましい。また、上記実施形態において、ダンパ室58の体積、流入孔52の断面積及び長さ、吸入冷媒の温度を基に設定された音速も同様に、少なくとも上記数1を満足するものであれば、どのような値でも良い。 (4) In the above embodiment, the specific frequency is set to 400 Hz, but may be set to a specific frequency other than 400 Hz. However, as a result of an experiment using an actual machine that does not satisfy the above formula 1, since the suction pulsation increased in the range of the specific frequency between 200 Hz and 600 Hz, it is preferable to set the specific frequency within the above range. In the above embodiment, the sound velocity set based on the volume of the damper chamber 58, the cross-sectional area and length of the inflow hole 52, and the temperature of the suction refrigerant similarly satisfies at least the above formula 1. Any value is acceptable.

第1の実施形態における可変容量圧縮機を破断して示す側面図である。It is a side view which fractures | ruptures and shows the variable capacity compressor in 1st Embodiment. 第1の実施形態における低容量運転時の制御弁を示す拡大断面図である。It is an expanded sectional view showing a control valve at the time of low capacity operation in a 1st embodiment. 第1の実施形態における最大容量運転時の制御弁を示す拡大断面図である。It is an expanded sectional view showing a control valve at the time of maximum capacity operation in a 1st embodiment. 他の実施形態におけるリヤハウジング側を示す断面図である。It is sectional drawing which shows the rear housing side in other embodiment. 他の実施形態における低容量運転時の制御弁を示す拡大断面図である。It is an expanded sectional view showing a control valve at the time of low capacity operation in other embodiments.

符号の説明Explanation of symbols

11 シリンダブロック
13 リヤハウジング
15 回転軸
17 斜板
23 ピストン
26 吸入室
29 容量制御弁
31 吸入ポート
32 吸入通路
33 分岐路
40 制御弁
42 ハウジング上部
43 ハウジング下部
44 開口部
45a、66 抜き孔
50 スプール弁
52 流通孔
54 圧縮ばね
55 背圧弁
58 ダンパ室
G 間隙
11 Cylinder block 13 Rear housing 15 Rotating shaft 17 Swash plate 23 Piston 26 Suction chamber 29 Capacity control valve 31 Suction port 32 Suction passage 33 Branch path 40 Control valve 42 Housing upper part 43 Housing lower part 44 Opening parts 45a, 66 Extract hole 50 Spool valve 52 Flowing hole 54 Compression spring 55 Back pressure valve 58 Damper chamber G Gap

Claims (3)

ピストンの往復動機構を設置したクランク室、シリンダボア内に冷媒ガスを供給する吸入室及び前記シリンダボア内の圧縮された冷媒ガスを吐出する吐出室を備え、前記クランク室の圧力制御により前記冷媒ガスの吐出容量を変更するとともに前記冷媒ガスの流通路を形成する配管系に少なくともスプール弁及びダンパ室から構成される制御弁を配置して前記冷媒ガスの流通を制御することにより脈動を抑制する可変容量圧縮機において、前記スプール弁に作用する冷媒ガスを流通孔により前記ダンパ室内に流通させるとともに前記流通孔の断面積及び長さを発生する脈動の中の特定周波数及び前記特定周波数の時の前記ダンパ室の体積を基に設定し、前記特定周波数の脈動発生時に前記ダンパ室にヘルムホルツ共鳴効果を醸成したことを特徴とする可変容量圧縮機における脈動低減装置。 A crank chamber provided with a piston reciprocating mechanism, a suction chamber for supplying refrigerant gas into the cylinder bore, and a discharge chamber for discharging compressed refrigerant gas in the cylinder bore, and the refrigerant gas is controlled by pressure control of the crank chamber. A variable capacity that suppresses pulsation by changing the discharge capacity and controlling the flow of the refrigerant gas by disposing a control valve composed of at least a spool valve and a damper chamber in a piping system that forms the refrigerant gas flow passage. In the compressor, the refrigerant gas acting on the spool valve is circulated into the damper chamber through the flow hole, and the specific frequency in the pulsation that generates the cross-sectional area and the length of the flow hole and the damper at the specific frequency The volume is set based on the volume of the chamber, and the Helmholtz resonance effect is nurtured in the damper chamber when the pulsation of the specific frequency occurs. Ripple reducing device of the variable displacement compressor to. 前記制御弁は前記吸入室への冷媒ガスの流通路である吸入通路に設置され、前記冷媒ガスの圧力を受けて変位する前記スプール弁と前記スプール弁に対向して配置され前記クランク室の圧力を受けて変位する背圧弁と前記スプール弁及び前記背圧弁の間に形成される前記ダンパ室と前記ダンパ室内に設けた圧縮ばねとから構成され、
前記スプール弁に前記冷媒ガスの流通孔を形成し、
前記ダンパ室に前記吸入室と連通する抜き孔を接続し、
前記流通孔の断面積及び長さを発生する脈動の中の特定周波数及び前記特定周波数の時の前記ダンパ室、前記吸入室、前記抜き孔及び前記吸入室と前記抜き孔とを連絡する連絡通路を加えた体積を基に設定した
ことを特徴とする請求項1に記載の可変容量圧縮機における脈動低減装置。
The control valve is disposed in a suction passage which is a refrigerant gas flow passage to the suction chamber, and is disposed to face the spool valve that is displaced by the pressure of the refrigerant gas and the spool valve. And a back pressure valve that is displaced upon receiving, the spool valve, the damper chamber formed between the back pressure valve and a compression spring provided in the damper chamber,
Forming a circulation hole for the refrigerant gas in the spool valve;
A hole that communicates with the suction chamber is connected to the damper chamber;
A specific frequency in the pulsation that generates a cross-sectional area and a length of the flow hole, and the damper chamber, the suction chamber, the vent hole, and the communication passage connecting the suction chamber and the vent hole at the specific frequency. The pulsation reducing device for a variable capacity compressor according to claim 1, wherein the pulsation reducing device is set based on a volume obtained by adding a value.
前記ダンパ室に接続する前記抜き孔を前記背圧弁の移動経路に配設し、前記抜き孔の開口量を前記背圧弁の移動位置により全閉状態から全開状態の間で変更可能に構成したことを特徴とする請求項2に記載の可変容量圧縮機における脈動低減装置。 The vent hole connected to the damper chamber is disposed in the movement path of the back pressure valve, and the opening amount of the vent hole can be changed between a fully closed state and a fully open state depending on the movement position of the back pressure valve. The pulsation reducing device for a variable capacity compressor according to claim 2.
JP2007299641A 2007-02-16 2007-11-19 Pulsation reduction device in variable capacity compressor Active JP5050801B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007299641A JP5050801B2 (en) 2007-02-16 2007-11-19 Pulsation reduction device in variable capacity compressor
US12/069,276 US8366407B2 (en) 2007-02-16 2008-02-08 Device for reducing pulsation in a variable displacement compressor
AT08151384T ATE478260T1 (en) 2007-02-16 2008-02-13 DEVICE FOR REDUCING PULSATION IN A VARIABLE DISPLACEMENT COMPRESSOR
EP08151384A EP1959139B1 (en) 2007-02-16 2008-02-13 Device for reducing pulsation in a variable displacement compressor
DE200860002162 DE602008002162D1 (en) 2007-02-16 2008-02-13 Device for reducing the pulsation in a variable displacement compressor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007035566 2007-02-16
JP2007035566 2007-02-16
JP2007299641A JP5050801B2 (en) 2007-02-16 2007-11-19 Pulsation reduction device in variable capacity compressor

Publications (2)

Publication Number Publication Date
JP2008223757A true JP2008223757A (en) 2008-09-25
JP5050801B2 JP5050801B2 (en) 2012-10-17

Family

ID=39842640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007299641A Active JP5050801B2 (en) 2007-02-16 2007-11-19 Pulsation reduction device in variable capacity compressor

Country Status (3)

Country Link
JP (1) JP5050801B2 (en)
AT (1) ATE478260T1 (en)
DE (1) DE602008002162D1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086319A1 (en) * 2010-12-22 2012-06-28 サンデン株式会社 Compressor
KR20150004595A (en) * 2013-07-03 2015-01-13 한라비스테온공조 주식회사 Swash plate type compressor
KR20150081785A (en) * 2014-01-07 2015-07-15 한라비스테온공조 주식회사 Compressor check valve
WO2017130843A1 (en) * 2016-01-29 2017-08-03 サンデン・オートモーティブコンポーネント株式会社 Compressor
WO2017130844A1 (en) * 2016-01-29 2017-08-03 サンデン・オートモーティブコンポーネント株式会社 Compressor
KR20170137286A (en) * 2016-06-03 2017-12-13 주식회사 만도 Pulsation damping device of hydraulic brake system
KR20190100054A (en) * 2018-02-19 2019-08-28 한온시스템 주식회사 Device for damping pressure pulsations for a compressor of a gaseous fluid

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112018015699A2 (en) 2016-02-22 2018-12-26 Kabushiki Kaisha Toyota Jidoshokki Variable displacement type swash-plate compressor
JP2020159348A (en) * 2019-03-28 2020-10-01 株式会社豊田自動織機 Variable displacement swash plate compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000136776A (en) * 1998-08-24 2000-05-16 Sanden Corp Compressor
JP2000161219A (en) * 1998-11-27 2000-06-13 Sanden Corp Reciprocating compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000136776A (en) * 1998-08-24 2000-05-16 Sanden Corp Compressor
JP2000161219A (en) * 1998-11-27 2000-06-13 Sanden Corp Reciprocating compressor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132372A (en) * 2010-12-22 2012-07-12 Sanden Corp Compressor
WO2012086319A1 (en) * 2010-12-22 2012-06-28 サンデン株式会社 Compressor
KR20150004595A (en) * 2013-07-03 2015-01-13 한라비스테온공조 주식회사 Swash plate type compressor
KR101939217B1 (en) * 2013-07-03 2019-01-18 한온시스템 주식회사 Swash plate type compressor
KR102005745B1 (en) * 2014-01-07 2019-08-01 한온시스템 주식회사 Compressor check valve
KR20150081785A (en) * 2014-01-07 2015-07-15 한라비스테온공조 주식회사 Compressor check valve
WO2017130843A1 (en) * 2016-01-29 2017-08-03 サンデン・オートモーティブコンポーネント株式会社 Compressor
WO2017130844A1 (en) * 2016-01-29 2017-08-03 サンデン・オートモーティブコンポーネント株式会社 Compressor
KR20170137286A (en) * 2016-06-03 2017-12-13 주식회사 만도 Pulsation damping device of hydraulic brake system
KR102619005B1 (en) * 2016-06-03 2023-12-28 에이치엘만도 주식회사 Pulsation damping device of hydraulic brake system
KR20190100054A (en) * 2018-02-19 2019-08-28 한온시스템 주식회사 Device for damping pressure pulsations for a compressor of a gaseous fluid
KR102146670B1 (en) 2018-02-19 2020-08-21 한온시스템 주식회사 Device for damping pressure pulsations for a compressor of a gaseous fluid
US10935015B2 (en) 2018-02-19 2021-03-02 Hanon Systems Device for damping pressure pulsations for a compressor of a gaseous fluid

Also Published As

Publication number Publication date
JP5050801B2 (en) 2012-10-17
DE602008002162D1 (en) 2010-09-30
ATE478260T1 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP5050801B2 (en) Pulsation reduction device in variable capacity compressor
US8366407B2 (en) Device for reducing pulsation in a variable displacement compressor
KR100758170B1 (en) Variable displacement compressor
KR100899972B1 (en) Suction throttle valve of a compressor
JP4858409B2 (en) Variable capacity compressor
JP2008121514A (en) Suction throttle valve of compressor
JP4640351B2 (en) Suction throttle valve for variable displacement compressor
JP2005337232A (en) Variable capacity compressor
JP2009203888A (en) Variable displacement type swash plate compressor
JP2006207484A (en) Variable displacement compressor
JP4973066B2 (en) Compressor and operating method of compressor
JP2000345966A (en) Compressor
JP4640253B2 (en) Suction throttle valve in variable capacity compressor
JPWO2017115715A1 (en) Compressor
JP2009228497A (en) Compressor
JP4333238B2 (en) Compressor
JP2007315294A (en) Variable displacement compressor
JP2008106715A (en) Compression machine
JP6747813B2 (en) Compressor
JP6738152B2 (en) Compressor
JP5584476B2 (en) Compressor
JP2009257149A (en) Intake flow path changing adaptor
JP2018066290A (en) Compressor
JP2017172386A (en) Compressor
JP2007315189A (en) Capacity control valve of variable displacement compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

R151 Written notification of patent or utility model registration

Ref document number: 5050801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3