JP2008222467A - Ito powder, method for producing the same, coating material for transparent conductive material, and transparent conductive film - Google Patents
Ito powder, method for producing the same, coating material for transparent conductive material, and transparent conductive film Download PDFInfo
- Publication number
- JP2008222467A JP2008222467A JP2007060558A JP2007060558A JP2008222467A JP 2008222467 A JP2008222467 A JP 2008222467A JP 2007060558 A JP2007060558 A JP 2007060558A JP 2007060558 A JP2007060558 A JP 2007060558A JP 2008222467 A JP2008222467 A JP 2008222467A
- Authority
- JP
- Japan
- Prior art keywords
- hydroxide
- ito powder
- particles
- ito
- transparent conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 107
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 239000004020 conductor Substances 0.000 title claims description 7
- 238000000576 coating method Methods 0.000 title description 15
- 239000011248 coating agent Substances 0.000 title description 12
- 239000000463 material Substances 0.000 title description 8
- 238000010438 heat treatment Methods 0.000 claims abstract description 38
- 239000002245 particle Substances 0.000 claims description 107
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 63
- 239000000243 solution Substances 0.000 claims description 54
- 238000001556 precipitation Methods 0.000 claims description 33
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 claims description 19
- 239000002244 precipitate Substances 0.000 claims description 17
- 239000003973 paint Substances 0.000 claims description 15
- 239000002002 slurry Substances 0.000 claims description 13
- 239000012266 salt solution Substances 0.000 claims description 12
- 150000003839 salts Chemical class 0.000 claims description 12
- 239000000047 product Substances 0.000 claims description 11
- 230000001376 precipitating effect Effects 0.000 claims description 9
- 239000003795 chemical substances by application Substances 0.000 claims description 8
- 238000001354 calcination Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 24
- 230000008569 process Effects 0.000 abstract description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 239000000758 substrate Substances 0.000 description 16
- 239000011164 primary particle Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 238000010335 hydrothermal treatment Methods 0.000 description 11
- 239000006185 dispersion Substances 0.000 description 10
- 238000001228 spectrum Methods 0.000 description 10
- 229910002651 NO3 Inorganic materials 0.000 description 9
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 9
- 238000009826 distribution Methods 0.000 description 9
- 238000003917 TEM image Methods 0.000 description 8
- 239000012298 atmosphere Substances 0.000 description 8
- 239000011521 glass Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000003960 organic solvent Substances 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 230000000996 additive effect Effects 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 230000001603 reducing effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 229910021617 Indium monochloride Inorganic materials 0.000 description 1
- XURCIPRUUASYLR-UHFFFAOYSA-N Omeprazole sulfide Chemical compound N=1C2=CC(OC)=CC=C2NC=1SCC1=NC=C(C)C(OC)=C1C XURCIPRUUASYLR-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000003670 easy-to-clean Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- APHGZSBLRQFRCA-UHFFFAOYSA-M indium(1+);chloride Chemical compound [In]Cl APHGZSBLRQFRCA-UHFFFAOYSA-M 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Landscapes
- Non-Insulated Conductors (AREA)
- Manufacturing Of Electric Cables (AREA)
- Paints Or Removers (AREA)
Abstract
Description
本発明は、ITO(Sn酸化物を含有する酸化In(Indium−Tin−Oxide))粉末およびその製造方法、当該ITO粉末を含む透明導電材用塗料、並びに当該塗料を用いて製膜される透明導電膜に関する。 The present invention relates to ITO (indium-tin-oxide) powder containing ITO (Sn oxide) and a method for producing the same, a coating for transparent conductive material containing the ITO powder, and a transparent film formed using the coating The present invention relates to a conductive film.
ITOを含む透明導電膜は、可視光に対する高い透光性と、導電性とを示すことから、各種表示デバイスや太陽電池などの透明電極膜として用いられている。この透明導電膜の製膜方法としてはスパッタリング法等の物理蒸着法、ITO粒子の分散液または有機ITO化合物を塗布する塗布法が知られている。 A transparent conductive film containing ITO is used as a transparent electrode film for various display devices, solar cells, and the like because it exhibits high transparency to visible light and conductivity. As a method for forming the transparent conductive film, a physical vapor deposition method such as a sputtering method, or a coating method in which a dispersion of ITO particles or an organic ITO compound is applied is known.
一般的には、低電気抵抗性、高可視光透過率、化学的安定性の観点から、ITOターゲットを用いたスパッタリング法等の物理蒸着法によるITO成膜法が広く使用されている。しかしながら、成膜時のスパッタ装置内へのITOの付着ロス、配線形成時のエッチングロス等により、現行のスパッタリング成膜法では用いられるITOターゲットのうち、実際に透明電極として使用される量はわずかである。そして、使用後のITOターゲットの大部分は、リサイクルにより再資源化される。しかし、当該再資源化にはリードタイムが存在するため、実際の問題として、配線として使用されるより多くのIn原料の確保が必要となる。さらに、スパッタリング成膜法では、大型薄型テレビの急速な需要拡大にあわせて、その都度ITOターゲット、真空チャンバー等の大型化に伴う更新を必要とする In general, from the viewpoint of low electrical resistance, high visible light transmittance, and chemical stability, an ITO film forming method by physical vapor deposition such as sputtering using an ITO target is widely used. However, due to ITO adhesion loss in the sputtering equipment during film formation, etching loss during wiring formation, etc., only a small amount of the ITO target used in the current sputtering film formation method is actually used as a transparent electrode. It is. And most of the ITO target after use is recycled by recycling. However, since there is a lead time in the recycling, as an actual problem, it is necessary to secure more In raw materials used as wiring. Furthermore, the sputtering deposition method needs to be renewed as the ITO target, vacuum chamber, etc. increase in size as the demand for large thin TVs expands rapidly.
これに対して、塗布法により得られるITO膜は、スパッタリング法などの物理的方法により成膜されたITO膜に比べて導電性は多少低いものの、真空装置などの高価な装置を用いることなく大面積や複雑形状の製膜が可能であり、成膜コストを低減できる利点がある。さらにこの塗布法の中でも、ITO粒子を塗料化し基板上に直接塗布し大気中にて加熱することで成膜、配線化する技術が注目されつつある。この方法を用いると、In原料の使用効率を高めることが可能であると共に、印刷技術の応用により大面積の電極作成も可能であるため、注目されつつある技術である。 In contrast, an ITO film obtained by a coating method has a slightly lower conductivity than an ITO film formed by a physical method such as a sputtering method, but is large without using an expensive device such as a vacuum device. Film formation with an area or a complicated shape is possible, and there is an advantage that the film formation cost can be reduced. Further, among these coating methods, a technique for forming a film and wiring by drawing ITO particles into a paint and directly coating the substrate on the substrate and heating in the atmosphere is drawing attention. When this method is used, it is possible to increase the use efficiency of the In raw material, and it is possible to create a large-area electrode by applying a printing technique.
一方、微細なITO粉末の製造方法としては、Sn塩を含むIn塩水溶液にNaOH、NH4OH、NH4HCO3などの塩基性沈殿剤を添加してSn含有水酸化Inを得た後、この水酸化物を乾燥した後に大気中で焼成してITO粉末を製造する方法が知られている(例えば、特許文献1参照)。また、Sn含有水酸化In塩を水熱合成処理することによって、微細なITO粉末の製造も試みられている(非特許文献1参照)。さらに、有機溶媒中でSn含有水酸化In塩を加熱処理する方法も提案されている。これは、有機溶媒中で水酸化物を加熱処理することによって、当該ITO粒子を微細化する技術である(例えば、特許文献2参照)。 On the other hand, as a method for producing fine ITO powder, after adding a basic precipitating agent such as NaOH, NH 4 OH, NH 4 HCO 3 to an In salt aqueous solution containing Sn salt to obtain Sn-containing hydroxide In, A method is known in which the hydroxide is dried and then fired in the air to produce ITO powder (see, for example, Patent Document 1). In addition, production of fine ITO powder has also been attempted by hydrothermal synthesis treatment of Sn-containing hydroxide In salt (see Non-Patent Document 1). Furthermore, a method for heat-treating Sn-containing hydroxide In salt in an organic solvent has also been proposed. This is a technique for miniaturizing the ITO particles by heat-treating hydroxide in an organic solvent (see, for example, Patent Document 2).
上述したように、ITO粉末を塗料化し基板上に直接塗布後、大気中での加熱という比較的低温のプロセスで製膜・配線化する技術は、有望な技術である。
ところが、ITO粉末を塗料化するにあたり、当該ITO粉末が非常に微細でかつ高分散であることが求められる。これは当該ITO粒子を含む塗料中に、粗いITO粒子が存在すると、塗布時におけるムラの発生や、インクジェットにおける目詰まりの原因となり好ましくないからである。さらに、当該ITO粉末の分散性が悪く一次粒子が凝集し易い場合も、同様の問題点が起こる。その為、ITO粒子を微細化する技術、および、粒子形状や大きさ均一で、分散性の良いITO粉末が求められている。
As described above, a technique for forming a film and wiring by a relatively low-temperature process of heating in the air after coating ITO powder into a paint and directly applying it on the substrate is a promising technique.
However, when the ITO powder is made into a paint, the ITO powder is required to be very fine and highly dispersed. This is because if coarse ITO particles are present in the coating material containing the ITO particles, unevenness at the time of coating and clogging in the ink jet may be caused, which is not preferable. Further, the same problem occurs when the dispersibility of the ITO powder is poor and the primary particles tend to aggregate. Therefore, there is a demand for a technology for making ITO particles fine, and ITO powder having a uniform particle shape and size and good dispersibility.
さらに、上記基板として有機フィルムなどの耐熱温度に制限がある基板を用いる場合も考慮すると、より低温の焼成条件であっても均質な導電膜が形成され、かつ、より低温の加熱条件で結晶性が良く高い導電性を示す膜が形成されることが求められる。 Furthermore, in consideration of the case where a substrate having a limited heat resistance temperature such as an organic film is used as the substrate, a homogeneous conductive film is formed even under lower temperature baking conditions, and crystallinity can be obtained under lower temperature heating conditions. Therefore, it is required that a film having good conductivity and high conductivity be formed.
特許文献1や非特許文献1で提案された製造方法では、In塩およびSn塩を含んだ水溶液へNaOH、NH4OH、NH4HCO3などの塩基性沈殿剤を添加してSn含有水酸化Inを得た後、当該水酸化物を乾燥した後に大気中で焼成してITO粉末を製造している。この方法で得られるITO粉末は、粗粒も多く、均一な粒子を作製することが困難である。 In the production methods proposed in Patent Document 1 and Non-Patent Document 1, a basic precipitating agent such as NaOH, NH 4 OH, NH 4 HCO 3 is added to an aqueous solution containing an In salt and an Sn salt to add Sn-containing hydroxide. After obtaining In, the hydroxide is dried and then fired in the air to produce ITO powder. The ITO powder obtained by this method has many coarse particles, and it is difficult to produce uniform particles.
また、ITO粉末の分散性を向上させるため、一般的な方法としてビーズミル等を用いた分散工程を設けることも提案されている。しかし、ビーズミル等を用いた分散工程において、微細で分散性のよいITO粉末を得るのは困難である。さらに、ビーズミル等を用いた分散工程は、粉砕時間を必要とするので生産性が低下する上、ビーズ等のメディアからのコンタミにより不純物が混入することで、得られる導電膜の導電性特性が悪化するという問題がある。 In order to improve the dispersibility of the ITO powder, it has also been proposed to provide a dispersion step using a bead mill or the like as a general method. However, in a dispersion process using a bead mill or the like, it is difficult to obtain a fine ITO powder having good dispersibility. Furthermore, the dispersion process using a bead mill or the like requires a pulverization time, so that the productivity is lowered, and impurities are mixed in due to contamination from media such as beads, so that the conductive characteristics of the obtained conductive film are deteriorated. There is a problem of doing.
特許文献2では、Sn含有水酸化Inを有機溶媒に分散させることにより、粒子同士の凝集を低減させた分散液を提案している。しかし、分散に有機溶媒を使用することに起因して、焼成時に当該有機溶媒が残存した場合、成膜された導電膜において十分な導電性特性が得られないことや、有機溶媒の排水処理が必要となりコスト高に繋がる問題がある。 Patent Document 2 proposes a dispersion liquid in which aggregation of particles is reduced by dispersing Sn-containing hydroxide In in an organic solvent. However, due to the use of an organic solvent for dispersion, if the organic solvent remains at the time of firing, sufficient conductive properties cannot be obtained in the formed conductive film, and organic solvent wastewater treatment There is a problem that becomes necessary and leads to high costs.
本発明は、上述の問題点に鑑み、簡単な処理方法によって、微細な粒径の粒子に分散化するとともに、低い加熱温度であっても結晶性が良好な透明導電膜を得ることができるITO粉末およびその製造方法を提供することを目的とする。また、本発明は、当該ITO粉末を含む透明導電材用塗料並びに透明導電膜を提供することを目的とする。 In view of the above-mentioned problems, the present invention is an ITO that can be dispersed into fine particles by a simple processing method and that can obtain a transparent conductive film having good crystallinity even at a low heating temperature. An object is to provide a powder and a method for producing the same. Moreover, an object of this invention is to provide the coating material for transparent conductive materials containing the said ITO powder, and a transparent conductive film.
本発明者らは、上記課題を解決するために鋭意研究を行った。その結果、Sn含有In塩溶液へ、塩基性沈殿剤を添加し、Sn含有水酸化In沈殿溶液を作製した後、当該水酸化物へ高温を加える加熱工程を施すことによって、当該水酸化物の性状を調整することが出来ることを見出した。そして、当該性状を調整された水酸化物を前駆物質としてITO粉末を製造すると、当該性状調整の効果を引き継いだITO粒子により構成されたITO粉末を得ることが出来た。そして、本発明者らは、当該ITO粉末が上述の目的を達成することが出来るITO粉末であることを見出し、本発明を完成するに至った。 The inventors of the present invention have intensively studied to solve the above problems. As a result, after adding a basic precipitant to the Sn-containing In salt solution to prepare a Sn-containing hydroxide In precipitation solution, by applying a heating step of applying high temperature to the hydroxide, It has been found that the properties can be adjusted. And when ITO powder was manufactured using the hydroxide of which the said property was adjusted as a precursor, the ITO powder comprised by the ITO particle which inherited the effect of the said property adjustment was able to be obtained. The present inventors have found that the ITO powder is an ITO powder that can achieve the above-mentioned object, and have completed the present invention.
すなわち、上述の課題を解決するための第1の構成は、
粉末を構成する粒子が、立方体または直方体の形状であることを特徴とするITO粉末である。
That is, the first configuration for solving the above-described problem is:
The ITO powder is characterized in that the particles constituting the powder have a cubic or rectangular parallelepiped shape.
第2の構成は、
前記粉末を構成する粒子のうち、50vol%以上が立方体または直方体の形状であることを特徴とする第1の構成に記載のITO粉末である。
The second configuration is
Of the particles constituting the powder, 50 vol% or more is a cubic or rectangular parallelepiped shape, which is the ITO powder according to the first configuration.
第3の構成は、
粉末の平均粒径が、0.05μm以上、5.0μm以下であることを特徴とする第1または第2の構成に記載のITO粉末である。
The third configuration is
The ITO powder according to the first or second configuration, wherein the average particle size of the powder is 0.05 μm or more and 5.0 μm or less.
第4の構成は、
In塩溶液へ塩基性沈殿剤を添加して水酸化In沈殿溶液を得る工程と、
当該水酸化In沈殿溶液を50℃以上、110℃以下に加熱して30分間以上保ち、立方体または直方体の水酸化In結晶を生成させる工程と、
当該立方体または直方体の水酸化In結晶へSn塩を添加し、さらに塩基性沈殿剤を添加して水酸化In・水酸化Sn沈殿物を得る工程と
当該水酸化In・水酸化Sn沈殿物を110℃以上、300℃以下にて30分間以上水熱処理して水酸化In・水酸化Snスラリーを得る工程と、
当該水酸化In・水酸化Snスラリーを200℃以上、700℃以下にて10分間以上焼成して焼成物を得る工程と、
当該焼成物を粉砕してITO粉末を得る工程とを、
有することを特徴とする第1から第3の構成のいずれかに記載のITO粉末の製造方法である。
The fourth configuration is
Adding a basic precipitant to the In salt solution to obtain an In hydroxide hydroxide precipitation solution;
Heating the In hydroxide hydroxide solution to 50 ° C. or higher and 110 ° C. or lower and maintaining it for 30 minutes or more to generate cubic or cuboid In hydroxide crystals;
A step of adding Sn salt to the cubic or rectangular parallelepiped In hydroxide, and further adding a basic precipitating agent to obtain a hydroxide In / Sn hydroxide precipitate; A step of hydrothermally treating at 30 ° C. or higher and 30 ° C. or lower for 30 minutes or more to obtain a hydroxide In / Sn hydroxide slurry;
A step of calcining the hydroxide In / Sn hydroxide slurry at 200 ° C. or more and 700 ° C. or less for 10 minutes or more to obtain a calcined product;
Crushing the fired product to obtain ITO powder,
It is a manufacturing method of the ITO powder in any one of the 1st to 3rd structure characterized by having.
第5の構成は、
In塩溶液へ塩基性沈殿剤を添加して水酸化In沈殿溶液を得る工程と、
当該水酸化In沈殿溶液を50℃以上、110℃以下に加熱して30分間以上保ち、立方体または直方体の水酸化In結晶を生成させる工程と、
当該水酸化In結晶を110℃以上、300℃以下にて30分間以上水熱処理して水酸化Inスラリーを得る工程と、
当該水酸化InスラリーへSn塩を添加し、さらに塩基性沈殿剤を添加して水酸化In・水酸化Snスラリーを得る工程と
当該水酸化In・水酸化Snスラリーを200℃以上、700℃以下にて10分間以上焼成して焼成物を得る工程と、
当該焼成物を粉砕してITO粉末を得る工程とを、
有することを特徴とする第1から第3の構成のいずれかに記載のITO粉末の製造方法である。
The fifth configuration is
Adding a basic precipitant to the In salt solution to obtain an In hydroxide hydroxide precipitation solution;
Heating the In hydroxide hydroxide solution to 50 ° C. or higher and 110 ° C. or lower and maintaining it for 30 minutes or more to generate cubic or cuboid In hydroxide crystals;
A step of hydrothermally treating the In hydroxide hydroxide at 110 ° C. or more and 300 ° C. or less for 30 minutes or more to obtain an In hydroxide hydroxide slurry;
A step of adding an Sn salt to the In hydroxide hydroxide slurry and further adding a basic precipitating agent to obtain an In hydroxide hydroxide / Sn hydroxide slurry; And baking for 10 minutes or more to obtain a fired product,
Crushing the fired product to obtain ITO powder,
It is a manufacturing method of the ITO powder in any one of the 1st to 3rd structure characterized by having.
第6の構成は、
第1から第3の構成のいずれかに記載のITO粉末を含むことを特徴とする透明導電材用塗料。
The sixth configuration is
A transparent conductive material coating material comprising the ITO powder according to any one of the first to third configurations.
第7の構成は、
第6の構成に記載の透明導電材用塗料を用いて成膜されたことを特徴とする透明導電膜である。
The seventh configuration is
A transparent conductive film characterized by being formed using the transparent conductive material paint according to the sixth configuration.
本発明に係るITO粉末は、適宜な溶媒に分散させる際、簡単な処理方法によって、微細な粒径の粒子に分散化することが出来た。さらに当該ITO粉末を含む塗料を、適宜な基板等に塗布し加熱処理を行うことによって、低い加熱温度でも導電性の高い透明導電膜を得ることが出来た。 When the ITO powder according to the present invention was dispersed in an appropriate solvent, it could be dispersed into fine particles by a simple treatment method. Furthermore, a coating film containing the ITO powder was applied to an appropriate substrate or the like and subjected to heat treatment, whereby a transparent conductive film having high conductivity could be obtained even at a low heating temperature.
本発明に係るITO粉末を構成するITO粒子について説明する。
図1は、本発明に係るITO粉末を構成するITO粒子の1例(後述する実施例1)の
TEM像(175,000倍)である。また、図2は、従来の技術に相当するITO粉末を構成するITO粒子の1例(後述する比較例2)のTEM像(175,000倍)である。
両者を比較すると、その形状の差異は明確である。図1に示す本発明に係るITO粒子は、立方体または直方体の形状を有する粒子である。即ち、本発明に係るITO粒子は、単なる板状、多角形状、円盤状といった形状ではなく、各稜がほぼ直角を成した6面体構造を有している。
これに対し、図2に示す従来の技術に係るITO粒子は、各結晶の構造が不定型で且つ凝集している。
The ITO particles constituting the ITO powder according to the present invention will be described.
FIG. 1 is a TEM image (175,000 times) of one example (Example 1 described later) of ITO particles constituting the ITO powder according to the present invention. FIG. 2 is a TEM image (175,000 times) of one example (Comparative Example 2 to be described later) of ITO particles constituting ITO powder corresponding to the prior art.
When the two are compared, the difference in shape is clear. The ITO particles according to the present invention shown in FIG. 1 are particles having a cubic or cuboid shape. That is, the ITO particles according to the present invention have a hexahedral structure in which each ridge is substantially perpendicular, not a simple plate shape, polygonal shape, or disk shape.
On the other hand, in the ITO particles according to the prior art shown in FIG. 2, the structure of each crystal is indeterminate and aggregated.
本発明に係るITO粉末が、適宜な溶媒に分散させる際、簡単な処理方法によって、微細な粒径の粒子に分散化することが出来ることの詳細な理由は不明である。しかし、当該理由として、各粒子が立方体または直方体の形状を有し表面に無秩序な凹凸が無い為、凝集を起こしにくいこと、同じく表面に無秩序な凹凸が無い為、洗浄が容易で粘着性の不純物が残留し難いこと、などが推察される。
この為、本発明に係るITO粉末とは、上述したITO粒子(一次粒子)が数個から数十個程度凝集して0.05μm以上、5.0μm以下の平均粒子径となったものであると考えられる。従って、ITO粉末の平均粒径は、TEM像等で観察されるITO粒子(一次粒子)が凝集した二次粒子の平均粒子径を示している。
When the ITO powder according to the present invention is dispersed in an appropriate solvent, the detailed reason why it can be dispersed into particles having a fine particle diameter by a simple treatment method is unknown. However, the reason for this is that each particle has a cubic or rectangular parallelepiped shape, and there is no disordered unevenness on the surface, so that it is difficult to cause aggregation, and since there is no disordered unevenness on the surface, it is easy to clean and sticky impurities It is inferred that it is difficult to remain.
For this reason, the ITO powder according to the present invention is one in which the above-mentioned ITO particles (primary particles) are aggregated from several to several tens of particles to have an average particle diameter of 0.05 μm or more and 5.0 μm or less. it is conceivable that. Therefore, the average particle diameter of the ITO powder indicates the average particle diameter of secondary particles in which ITO particles (primary particles) observed in a TEM image or the like are aggregated.
さらに本発明者らは、図1で説明したITO粉末のXRDスペクトルを測定した。当該XRDスペクトルを図3に示す。図3から明らかなように、In2O3(222)のピークの半値幅が0.5°以下と非常にシャープであり、結晶子径は35nm程度である。これは、TEM像より測定したITO粒子(一次粒子)の平均粒子径とほぼ一致している。この結果からも、本発明に係るITO粒子(一次粒子)が単一の結晶粒子を示しており、優れた結晶性を有していることが裏付けられたと考えられる。 Furthermore, the present inventors measured the XRD spectrum of the ITO powder described in FIG. The XRD spectrum is shown in FIG. As is clear from FIG. 3, the half width of the peak of In 2 O 3 (222) is as sharp as 0.5 ° or less, and the crystallite diameter is about 35 nm. This substantially coincides with the average particle diameter of the ITO particles (primary particles) measured from the TEM image. From this result, it is considered that the ITO particles (primary particles) according to the present invention show single crystal particles and have excellent crystallinity.
この結果、本発明に係るITO粉末を適宜な溶媒に分散させた塗料は、通常の攪拌等の容易な操作で、ITO粒子が非常に微細かつ高分散した。この為、当該塗料を塗布時にムラの発生が無く、塗布方法としてインクジェットを用いた場合も目詰まりが発生しなかった。 As a result, in the paint in which the ITO powder according to the present invention was dispersed in an appropriate solvent, ITO particles were very fine and highly dispersed by an easy operation such as normal stirring. For this reason, there was no occurrence of unevenness when the paint was applied, and clogging did not occur when ink jet was used as the application method.
さらに、好ましいことに、本発明に係るITO粉末を含む塗料を用いて基板上に成膜された透明導電膜は、200℃程度の低温の加熱処理であっても高い導電性を発揮する。これは、基板上に成膜された段階においては、各粒子が立方体または直方体の形状を有しているため、接触面積を稼ぐことが出来る為ではないかと考えられる。 Furthermore, preferably, the transparent conductive film formed on the substrate using the coating material containing the ITO powder according to the present invention exhibits high conductivity even when the heat treatment is performed at a low temperature of about 200 ° C. This is thought to be because the contact area can be increased because each particle has a cubic or rectangular parallelepiped shape when it is formed on the substrate.
ここで本発明者らが、さらに検討を重ねた結果、本発明に係るITO粉末において、当該立方体または直方体の形状を有する粒子が当該ITO粉体の50vol%以上、好ましくは80vol%以上あれば上述の効果が発揮されることを見出した。 Here, as a result of further investigations by the present inventors, in the ITO powder according to the present invention, if the particles having the cubic or cuboid shape are 50 vol% or more, preferably 80 vol% or more of the ITO powder, the above-mentioned case is described. It was found that the effect of.
次に、本発明に係るITO粉末の製造方法について説明する。
まず、In濃度が0.1〜4.0mol/L、好ましくは0.3〜3.0mol/LのIn塩溶液を準備する。
ここで、当該In塩溶液は、In2(C2O4)3、InCl3、In(NO3)3およびIn2(SO4)3の群から選ばれる少なくとも1種のIn塩溶液であるのが好ましい。当該群は、InメタルをH2C2O4、HNO3、HCl、H2SO4などに溶解することによって得ることができるが、HNO3を使用するのが好ましい。
Next, the manufacturing method of the ITO powder according to the present invention will be described.
First, an In salt solution having an In concentration of 0.1 to 4.0 mol / L, preferably 0.3 to 3.0 mol / L is prepared.
Here, the In salt solution is at least one In salt solution selected from the group of In 2 (C 2 O 4 ) 3 , InCl 3 , In (NO 3 ) 3, and In 2 (SO 4 ) 3. Is preferred. The group can be obtained by dissolving In metal in H 2 C 2 O 4 , HNO 3 , HCl, H 2 SO 4, etc., but it is preferable to use HNO 3 .
当該In塩溶液中のIn濃度は、中和反応前において、0.1〜4.0mol/L、好
ましくは0.3〜3.0mol/Lになるように調整する。これは、In濃度が0.1mol/L以上であれば生産性の観点から好ましいからである。また、In濃度が4.0mol/L以下であれば、水酸化Inの粒子形状および粒度分布が均一となり、後述する加熱処理後の水酸化Inの粒子形状および粒度分布も均一となり、均一な粒径の粒子を作製することが容易になるからである。
The In concentration in the In salt solution is adjusted to 0.1 to 4.0 mol / L, preferably 0.3 to 3.0 mol / L before the neutralization reaction. This is because an In concentration of 0.1 mol / L or more is preferable from the viewpoint of productivity. In addition, if the In concentration is 4.0 mol / L or less, the particle shape and particle size distribution of In hydroxide are uniform, and the particle shape and particle size distribution of In hydroxide after heat treatment described later are also uniform. This is because it becomes easy to produce particles having a diameter.
次に、当該In塩溶液中の液温を、5℃〜95℃、好ましくは20℃〜70℃の範囲に維持する。そして、保温された当該In塩溶液へ、NaOH、KOH、NH4OH、NH3、NH4HCO3および(NH4)2CO3の群から選ばれる少なくとも1種の塩基性沈殿剤を、24時間以内、好ましくは1分間〜120分間の添加時間で添加する。尚、これら沈殿剤の群のうちでも、NaOH、NH4OHを使用することが好ましい。当該沈殿剤の添加量は、In塩の0.5〜100当量、好ましくは1.0〜20当量となるまで添加し、水酸化Inの沈殿溶液を作成する。当該塩基性沈殿剤の当量は、投入量が多いほど沈殿時のpH変動が急激に起こり、微細な粒子が生成する。つまり、0.5当量以上であると未沈殿量が少なくなり好ましい。一方、100当量以下であればアルカリ性が過剰にならず沈殿物の洗浄が容易である。 Next, the liquid temperature in the In salt solution is maintained in the range of 5 ° C to 95 ° C, preferably 20 ° C to 70 ° C. Then, at least one basic precipitant selected from the group of NaOH, KOH, NH 4 OH, NH 3 , NH 4 HCO 3 and (NH 4 ) 2 CO 3 is added to the In salt solution that has been kept warm. The addition is performed within an hour, preferably 1 minute to 120 minutes. Of these precipitants, it is preferable to use NaOH or NH 4 OH. The amount of the precipitating agent added is 0.5 to 100 equivalents, preferably 1.0 to 20 equivalents, of In salt to prepare a precipitation solution of In hydroxide. As the equivalent amount of the basic precipitant increases, the pH variation during precipitation occurs more rapidly as the input amount increases, and fine particles are generated. That is, the amount equal to or greater than 0.5 is preferable because the amount of unprecipitated material is reduced. On the other hand, if it is 100 equivalents or less, the alkalinity does not become excessive and the precipitate can be easily washed.
さらに、作製された上記水酸化Inの沈殿溶液に対し加熱処理を行う。加熱温度としては50℃以上110℃以下が好ましい。加熱温度が50℃以上であると均質な形状を有する水酸化In粒子を生成することが容易となるからである。加熱温度を110℃以下とすると、粒子の急激な成長が回避され、均質な形状の水酸化In粒子を作製することが出来る。但し、110℃以上の高温で処理を行う場合は、水分の蒸発を抑えるための圧力容器が必要となる。したがって、沈殿溶液の加熱温度は50℃〜100℃、さらに、好ましくは70℃〜100℃である。加熱時間は、長時間なほど結晶粒子の成長が起こるので、加熱温度が低いほど長時間必要である。尤も、所定時間を経過すると粒子成長の変化は少なくなるため、30分間以上100時間未満であればよい。 Furthermore, heat treatment is performed on the prepared precipitation solution of In hydroxide. The heating temperature is preferably 50 ° C. or higher and 110 ° C. or lower. This is because, when the heating temperature is 50 ° C. or higher, it is easy to produce In-hydroxylated In particles having a homogeneous shape. When the heating temperature is 110 ° C. or lower, rapid particle growth is avoided, and homogeneously shaped In hydroxide particles can be produced. However, when processing is performed at a high temperature of 110 ° C. or higher, a pressure vessel for suppressing the evaporation of moisture is required. Therefore, the heating temperature of the precipitation solution is 50 ° C to 100 ° C, more preferably 70 ° C to 100 ° C. The longer the heating time is, the longer the crystal grains grow, so the lower the heating temperature, the longer the time required. However, since the change in particle growth decreases after a predetermined time has elapsed, it may be 30 minutes or more and less than 100 hours.
加熱処理後の水酸化Inの沈殿溶液を、遠心分離または濾過等の方法により固液分離を行った後、固形分へ水を加えてスラリー状とする。ここで、さらに水洗を行い、固形分から不要なアルカリ分を除去する。当該水洗に際しては、当該スラリー量と同量以上の水で洗浄することが望ましい。 The In hydroxide hydroxide precipitated solution after the heat treatment is subjected to solid-liquid separation by a method such as centrifugation or filtration, and then water is added to the solid content to form a slurry. Here, further washing with water is performed to remove unnecessary alkali components from the solid content. In the water washing, it is desirable to wash with water equal to or more than the amount of the slurry.
このようにして、立方体形状または直方体形状を有する水酸化Inの粒子を得ることができる。当該粒子は、各稜がほぼ直角を成した6面体構造を有していた。 In this way, particles of In hydroxide having a cubic shape or a rectangular parallelepiped shape can be obtained. The particles had a hexahedral structure in which each ridge was substantially perpendicular.
次に、当該水酸化Inを純水に分散させ、Sn添加剤を添加する。Sn添加剤の添加量は、Inに対して5〜20mol%とする。当該Sn添加剤は、Sn(C2O4)、SnCl2、Sn(NO3)2およびSnSO4の群から選ばれる少なくとも1種のSn塩溶液であるのが好ましい。 Next, the In hydroxide is dispersed in pure water, and an Sn additive is added. The addition amount of Sn additive shall be 5-20 mol% with respect to In. The Sn additive is preferably at least one Sn salt solution selected from the group consisting of Sn (C 2 O 4 ), SnCl 2 , Sn (NO 3 ) 2 and SnSO 4 .
さらに、当該Sn添加剤が添加された水酸化In分散液へ、NaOH、KOH、NH4OH、NH3ガス、NH4HCO3および(NH4)2CO3の群から選ばれる少なくとも1種の塩基性沈殿剤を添加し、当該溶液のpHを4.0〜6.0とし、水酸化In−水酸化Sn沈殿物(以下、「Sn含有水酸化In」と記載する場合がある。)を含む沈殿溶液を生成させる。尚、当該沈殿剤の群のうち、NaOH、NH4OHを使用することが好ましい。沈殿時のpHが6.0以下であればSnの沈殿が起こり、4.0以上であれば水酸化Inの再溶解が回避できるため、沈殿時のpHは4.0〜6.0、好ましくはpH5.0付近とする。 Furthermore, at least one selected from the group consisting of NaOH, KOH, NH 4 OH, NH 3 gas, NH 4 HCO 3, and (NH 4 ) 2 CO 3 is added to the In hydroxide dispersion to which the Sn additive is added. A basic precipitant is added to adjust the pH of the solution to 4.0 to 6.0, and a hydroxylated In-hydroxylated Sn precipitate (hereinafter sometimes referred to as “Sn-containing hydroxylated In”). A precipitation solution containing is produced. Among the group of the precipitating agent, it is preferred to use NaOH, the NH 4 OH. If the pH at the time of precipitation is 6.0 or less, precipitation of Sn occurs, and if it is 4.0 or more, re-dissolution of hydroxylated In can be avoided. Therefore, the pH at the time of precipitation is preferably 4.0 to 6.0, preferably Is around pH 5.0.
尤も、当該Sn添加剤の添加時期は、上述した水酸化Inを生成する沈殿時に同時に行
っても良いし、後述する水熱工程後に行っても良い。ただし、生産性の観点からSn添加剤の添加は、当該加熱後の時点で行うのが、好ましい構成である。
However, the Sn additive may be added at the same time as the above-described precipitation for producing In hydroxide, or after the hydrothermal process described later. However, from the viewpoint of productivity, the Sn additive is preferably added at the time after the heating.
次に、当該生成したSn含有水酸化In粒子のさらなる結晶成長と均質化を目的として、得られたSn含有水酸化In沈殿溶液の、水熱処理を行う。水熱処理温度は110℃から300℃、水熱時間は30分間から10時間の範囲が好ましい。水熱処理を温度が110℃以上あれば、長時間の加熱を回避することが出来る。また、300℃以下であれば反応時の圧力が高くなり過ぎないので特殊な装置を必要とせず好ましい。当該水熱処理後に固液分離・水洗を行い、Sn含有水酸化Inスラリーを得る。 Next, for the purpose of further crystal growth and homogenization of the generated Sn-containing In hydroxideated particles, the obtained Sn-containing In hydroxide hydroxide precipitation solution is subjected to hydrothermal treatment. The hydrothermal treatment temperature is preferably 110 to 300 ° C., and the hydrothermal time is preferably 30 minutes to 10 hours. If the temperature of the hydrothermal treatment is 110 ° C. or higher, long-time heating can be avoided. Moreover, if it is 300 degrees C or less, since the pressure at the time of reaction does not become high too much, a special apparatus is not required and it is preferable. After the hydrothermal treatment, solid-liquid separation and water washing are performed to obtain an Sn-containing hydroxide hydroxide In slurry.
このようにして得られたスラリー状のSn含有水酸化Inを大気中で60℃〜200℃、好ましくは80℃〜150℃で乾燥する。当該水酸化物の乾燥方法としては大気中の加熱乾燥以外に、冷凍後減圧させながら乾燥させる凍結乾燥でも良い。さらに、乾燥後の当該水酸化物を、大気中において、200℃〜700℃、好ましくは200℃〜500℃で、10分間〜12時間、好ましくは30分間〜6時間焼成する。得られた焼成物を解砕することにより、ITO粉末を得ることができる。 The slurry-like Sn-containing hydroxide In thus obtained is dried in the atmosphere at 60 ° C. to 200 ° C., preferably 80 ° C. to 150 ° C. As a method for drying the hydroxide, lyophilization may be used in which drying is performed while the pressure is reduced after freezing, in addition to heat drying in the air. Furthermore, the hydroxide after drying is fired in the atmosphere at 200 ° C. to 700 ° C., preferably 200 ° C. to 500 ° C., for 10 minutes to 12 hours, preferably 30 minutes to 6 hours. An ITO powder can be obtained by crushing the fired product.
焼成により得られたITO粉末は、立方体形状または直方体形状を有し、各稜がほぼ直角を成した6面体構造を有している。これは、当該ITO粒子が、上述した水酸化In粒子の形状を保持したまま、成長した為であると考えられる。 The ITO powder obtained by baking has a cubic shape or a rectangular parallelepiped shape, and has a hexahedral structure in which each ridge is substantially perpendicular. This is considered to be because the ITO particles grew while maintaining the shape of the above-mentioned In hydroxide hydroxide particles.
上記で得られたITO粉末の導電性をさらに高める為、還元処理を行うことも好ましい構成である。当該還元処理の条件としては、窒素、水素、アンモニアガスおよび水蒸気のうち少なくとも1種を含む非酸化性雰囲気、好ましくはアンモニアガスと水蒸気とを含む不活性ガス雰囲気において、200℃〜800℃、好ましくは200℃〜500℃、10分間〜12時間、好ましくは30分間〜6時間焼成する。当該焼成後、焼成物を解砕することにより、還元処理されたITO粉末を得ることができる。雰囲気は、還元性ガスを含有するのが、さらに好ましい。当該雰囲気の還元性が強いほうが、当該還元処理されたITO粉末の導電性を上げることが出来好ましい。尚、雰囲気中の窒素を、ヘリウムやアルゴンなどの不活性ガスへ代替してもよい。 In order to further increase the conductivity of the ITO powder obtained above, it is also preferable to perform a reduction treatment. The conditions for the reduction treatment are 200 ° C. to 800 ° C., preferably in a non-oxidizing atmosphere containing at least one of nitrogen, hydrogen, ammonia gas and water vapor, preferably in an inert gas atmosphere containing ammonia gas and water vapor. Is baked at 200 ° C. to 500 ° C., 10 minutes to 12 hours, preferably 30 minutes to 6 hours. After the firing, the fired product is crushed to obtain a reduced ITO powder. More preferably, the atmosphere contains a reducing gas. A stronger reducing property of the atmosphere is preferable because the conductivity of the reduced ITO powder can be increased. Note that nitrogen in the atmosphere may be replaced with an inert gas such as helium or argon.
以上、説明した本発明に係る製造方法により製造されたITO粉末は、平均粒径D50が0.05〜0.7μm、BET比表面積(BET1点法より求めた比表面積)が10〜100m2/g、好ましくは50〜100m2/gであった。さらに、平均粒径D50(尚、本発明において平均粒径D50とは、所謂、中位径(D50)のことである。)は、ITO試料粉末0.05gを純水20ml中に分散させた分散液を、ベックマン・コールター社製 LS230(レーザー回折散乱法)により測定したD50粒径である。 As described above, the ITO powder produced by the production method according to the present invention has an average particle diameter D50 of 0.05 to 0.7 μm and a BET specific surface area (specific surface area determined by the BET 1-point method) of 10 to 100 m 2 /. g, preferably 50 to 100 m 2 / g. Furthermore, the average particle diameter D50 (in the present invention, the average particle diameter D50 is the so-called median diameter (D50)) was obtained by dispersing 0.05 g of ITO sample powder in 20 ml of pure water. It is the D50 particle size of the dispersion measured by LS230 (Laser Diffraction Scattering Method) manufactured by Beckman Coulter.
次に、本発明に係るITO粉末を用いた透明導電膜塗料の製造について説明する。
当該本発明に係る透明導電膜塗料は、本発明に係るITO粉末を純水中に分散させることで製造することが出来る。この際、当該透明導電膜塗料におけるITO粉末の濃度は、例えば5wt%とすればよい。
また、本発明に係るITO粉末を分散させる液状媒体としては、上述した純水の他に、アルコール、ケトン、エーテル、エステル、トルエン、シクロヘキサン等の有機溶媒でも良く、さらに界面活性剤またはカップリング剤などの分散剤を併用してもよい。
Next, production of a transparent conductive film paint using the ITO powder according to the present invention will be described.
The transparent conductive film paint according to the present invention can be produced by dispersing the ITO powder according to the present invention in pure water. At this time, the concentration of the ITO powder in the transparent conductive film paint may be, for example, 5 wt%.
In addition to the pure water described above, the liquid medium for dispersing the ITO powder according to the present invention may be an organic solvent such as alcohol, ketone, ether, ester, toluene, cyclohexane, and a surfactant or coupling agent. You may use together dispersing agents, such as.
本発明に係る透明導電膜塗料は、セラミック、ガラス等の基板、有機フィルム、等、様々な基板材に塗布可能であった。さらに、当該透明導電膜塗料の塗布時に、ムラの発生は見られなかった。 The transparent conductive film paint according to the present invention can be applied to various substrate materials such as ceramic and glass substrates and organic films. Furthermore, no unevenness was observed when the transparent conductive film paint was applied.
次に、本発明に係る透明導電膜塗料を用いた透明導電膜の成膜方法例について説明する。
例えば、ガラス基板上に成膜する場合は、当該ガラス基板をスピンコーターにより回転させる。そこへ、本発明に係る透明導電膜塗料を滴下してコートする。当該コート後、ガラス基板を取り出し乾燥させた後、再度、スピンコーターにより回転させ、オーバーコート材を滴下する。得られたオーバーコート後のガラス基板を乾燥後、窒素雰囲気で例えば200℃まで昇温させて、例えば1時間保持した後、自然冷却して透明導電膜が形成されたガラス基板を得ることが出来る。得られた透明導電膜が形成されたガラス基板は、加熱温度が200℃程度であるにも拘わらず、良好な導電性を示した。
Next, an example of a method for forming a transparent conductive film using the transparent conductive film paint according to the present invention will be described.
For example, when forming a film on a glass substrate, the glass substrate is rotated by a spin coater. There, the transparent conductive film paint according to the present invention is dropped and coated. After the coating, the glass substrate is taken out and dried, and then rotated again by a spin coater, and an overcoat material is dropped. The obtained glass substrate after overcoating is dried, then heated to, for example, 200 ° C. in a nitrogen atmosphere, and held for, for example, 1 hour, and then naturally cooled to obtain a glass substrate on which a transparent conductive film is formed. . The obtained glass substrate on which the transparent conductive film was formed showed good conductivity despite the heating temperature being about 200 ° C.
以下、本発明に係るITO粉末およびその製造方法について、実施例を詳細しながら説明する。 Hereinafter, the ITO powder and the manufacturing method thereof according to the present invention will be described in detail with reference to examples.
[実施例1]
硝酸Inに純水を加えてIn濃度が0.5mol/Lになるように硝酸In溶液を調製する。ここで液温が60℃を超えないようにしながら、当該硝酸In溶液20mlへ、塩基性沈殿剤として8.0mol/Lの水酸化ナトリウム水溶液20mlを添加して反応させ、水酸化Inの沈殿溶液40mlを得た。
この沈殿溶液を密閉容器に入れ、100℃で12時間加熱した。加熱後の沈殿溶液から遠心分離器を用いて沈殿物を分離採集した。そして採集した沈殿物を水洗した後、再び、当該沈殿物を20mlの純水溶液に分散させた。当該分散液中へ、Inに対してSnの濃度が5at%となるように、0.25mol/Lの塩化Sn溶液2.1mlを加え、さらに水酸化ナトリウム水溶液を添加してpH5.0になるように調整し、Sn含有水酸化Inを沈殿させた沈殿溶液とした。
[Example 1]
Pure water is added to In nitrate to prepare an In nitrate solution so that the In concentration is 0.5 mol / L. Here, while preventing the liquid temperature from exceeding 60 ° C., 20 ml of an 8.0 mol / L sodium hydroxide aqueous solution was added as a basic precipitating agent to 20 ml of the indium nitrate solution to cause a reaction. 40 ml was obtained.
This precipitation solution was put into a sealed container and heated at 100 ° C. for 12 hours. The precipitate was separated and collected from the heated precipitation solution using a centrifuge. The collected precipitate was washed with water and then again dispersed in 20 ml of pure aqueous solution. To the dispersion, 2.1 ml of a 0.25 mol / L Sn chloride solution is added so that the concentration of Sn is 5 at% with respect to In, and then an aqueous sodium hydroxide solution is added to reach pH 5.0. Thus, a precipitation solution in which Sn-containing hydroxide In was precipitated was prepared.
ここで当該沈殿溶液が40mlになるように純水を添加し、オートクレーブに設置して250℃で3時間水熱処理を施した。次に、当該水熱処理を施した沈殿溶液から遠心分離器を用いて沈殿物を分離、採集する。当該採集された沈殿物を水洗した後、80℃で空気中乾燥し、ITO粉末の前駆体であるSn含有水酸化Inを得た。得られたSn含有水酸化InのD50は1.99μmであった。 Here, pure water was added so that the precipitation solution became 40 ml, and it was placed in an autoclave and subjected to hydrothermal treatment at 250 ° C. for 3 hours. Next, the precipitate is separated and collected from the precipitation solution subjected to the hydrothermal treatment using a centrifuge. The collected precipitate was washed with water and then dried in air at 80 ° C. to obtain Sn-containing hydroxide In, which is a precursor of ITO powder. D50 of the obtained Sn-containing hydroxide In was 1.99 μm.
得られたSn含有水酸化Inを、空気中250℃で3時間加熱処理を行い、実施例1に係るITO粉末を得た。得られたITO粉末のBET比表面積は73.9m2/g、粒度分布測定においてD50は1.28μmであった。さらに粒子の個数統計値を取ったところ、最も個数の多い粒子の粒子径(最頻径)は0.067μmであった。
TEM(透過電子顕微鏡)で形状観察を行ったところ、生成した粒子の90vol%は、平均粒子径33nmの、立方体形状または直方体形状の粒子であった。当該ITO粒子のTEM像(175,000倍)を図1に示す。なお、粒子の平均粒子径は、TEM写真上の粒子の長さが最大となる部分測定し、その測定値を直径(粒径)とした。なお、測定対象とするITO粒子(一次粒子)の数は100個とした。
The obtained Sn-containing hydroxide In was subjected to heat treatment in air at 250 ° C. for 3 hours to obtain an ITO powder according to Example 1. The ITO powder obtained had a BET specific surface area of 73.9 m 2 / g and a D50 of 1.28 μm in the particle size distribution measurement. Further, when the number statistical value of the particles was taken, the particle diameter (mode) of the most numerous particles was 0.067 μm.
When the shape was observed with a TEM (transmission electron microscope), 90 vol% of the generated particles were cubic or cuboid particles having an average particle diameter of 33 nm. A TEM image (175,000 times) of the ITO particles is shown in FIG. In addition, the average particle diameter of particle | grains measured partially the length of the particle | grain on a TEM photograph, and the measured value was made into the diameter (particle diameter). The number of ITO particles (primary particles) to be measured was 100.
当該ITO粉末のXRDスペクトルを測定した結果を図3に示す。得られた回折パターンは酸化Inの回折パターンと一致しており、立方晶系を有する酸化Inの単一組成であることが判明した。さらに、2θ角で35.0°〜36.5°(CoKα1線源)にピークが現れる(222)回折ピークについて回折ピークの強度Int.(222)と、半価幅Bと、を算出し、シェラーの式Dx=0.9λ/Bcosθ(但し、Dxは結晶子の大きさ、λは測定に用いたX線の波長(CoKα1線源)、Bは回折ピークの半価幅、θは回折ピークのブラッグ角である。)より、実施例1に係る試料の結晶子径を求めたところ、38.5nmであった。 The result of measuring the XRD spectrum of the ITO powder is shown in FIG. The obtained diffraction pattern coincided with the diffraction pattern of In oxide, and it was found that it had a single composition of In oxide having a cubic system. Further, a peak appears at 35.0 ° to 36.5 ° (CoKα1 radiation source) at 2θ angle (222). The diffraction peak intensity Int. (222) and the half width B are calculated, and Scherrer's formula Dx = 0.9λ / Bcos θ (where Dx is the crystallite size, λ is the wavelength of the X-ray used for the measurement (CoKα1 source) ), B is the half width of the diffraction peak, and θ is the Bragg angle of the diffraction peak.) The crystallite diameter of the sample according to Example 1 was determined to be 38.5 nm.
[実施例2]
実施例1と同様に、0.5mol/Lの硝酸In溶液20mlに、8.0mol/Lの水酸化ナトリウム水溶液20mlを添加して反応させ、水酸化Inの沈殿溶液40mlを得た。
そして、当該沈殿溶液を密閉容器に入れ、100℃で12時間加熱した。
当該加熱後の沈殿溶液から遠心分離器を用いて沈殿物を分離し、当該沈殿物を水洗した後、再び沈殿物を20mlの純水溶液に分散させた。当該分散液中に0.25mol/Lの塩化Sn溶液2.1mlを加え、さらに水酸化ナトリウム水溶液を添加して、pH5.0になるように調整し、Sn含有水酸化Inを沈殿させた。得られた沈殿溶液は、水熱処理を行わずに、遠心分離器を用いて沈殿物を分離した。当該沈殿物を水洗した後、80℃で空気中乾燥した、ITO粉末の前駆体であるSn含有水酸化Inを得た。得られたSn含有水酸化In粉末のD50は3.19μmであった。
[Example 2]
In the same manner as in Example 1, 20 ml of an 8.0 mol / L sodium hydroxide aqueous solution was added to 20 ml of a 0.5 mol / L In nitrate solution to cause a reaction, thereby obtaining 40 ml of a precipitated solution of In hydroxide.
And the said precipitation solution was put into the airtight container, and it heated at 100 degreeC for 12 hours.
The precipitate was separated from the heated precipitation solution using a centrifuge, the precipitate was washed with water, and then the precipitate was dispersed again in 20 ml of a pure aqueous solution. To the dispersion, 2.1 ml of a 0.25 mol / L Sn chloride solution was added, and an aqueous sodium hydroxide solution was further added to adjust the pH to 5.0, thereby precipitating Sn-containing In hydroxide. The resulting precipitation solution was separated from the precipitate using a centrifuge without performing hydrothermal treatment. The precipitate was washed with water, and then dried in air at 80 ° C. to obtain Sn-containing hydroxide In, which is a precursor of ITO powder. D50 of the obtained Sn-containing hydroxide In powder was 3.19 μm.
得られたSn含有水酸化Inを、空気中250℃で3時間加熱処理を行い、実施例2に係るITO粉末を得た。
得られたITO粉末のBET比表面積は88.7m2/g、粒度分布測定においてD50は1.37μmで、粒子の個数統計値を取ったところ、最も個数の多い粒子の粒子径(最頻径)は0.067μmであった。さらにTEMで形状観察を行ったところ、実施例1と同様に、生成したITO粒子(一次粒子)の90vol%は、平均粒子径35nmの、立方体形状または直方体形状の粒子であった。さらにXRDスペクトルを測定したところ、酸化Inの単一組成であり、結晶子径は37.6nmであることが判明した。
The obtained Sn-containing hydroxide In was subjected to heat treatment in air at 250 ° C. for 3 hours to obtain an ITO powder according to Example 2.
The obtained ITO powder had a BET specific surface area of 88.7 m 2 / g and a D50 of 1.37 μm in the particle size distribution measurement. When the number statistics of the particles were taken, the particle diameter of the most numerous particles (mode diameter) ) Was 0.067 μm. When the shape was further observed with TEM, 90 vol% of the generated ITO particles (primary particles) were cubic or cuboid particles having an average particle diameter of 35 nm, as in Example 1. Further, when the XRD spectrum was measured, it was found that it had a single composition of In oxide and a crystallite diameter of 37.6 nm.
[比較例1]
実施例1と同様の操作を行って、40mlのSn含有水酸化In沈殿溶液を得た。
ここで、当該Sn含有水酸化In沈殿溶液を加熱処理することなく、オートクレーブに設置し、実施例1と同様の水熱処理を施した。得られた沈殿物を遠心分離器で沈殿物を分離・水洗した後、80℃で空気中乾燥し、Sn含有水酸化Inを得た。得られたSn含有水酸化In粉末の粒度分布測定を行ったところ、D50は5.41μmであった。
[Comparative Example 1]
The same operation as in Example 1 was performed to obtain 40 ml of Sn-containing In hydroxide hydroxide precipitation solution.
Here, the Sn-containing hydroxylated In precipitation solution was placed in an autoclave without heat treatment, and subjected to the same hydrothermal treatment as in Example 1. The resulting precipitate was separated and washed with water by a centrifuge, and then dried in air at 80 ° C. to obtain Sn-containing In hydroxide. When the particle size distribution of the obtained Sn-containing hydroxide In powder was measured, D50 was 5.41 μm.
さらに、当該Sn含有水酸化Inを、空気中250℃で3時間加熱処理を行い、比較例1に係るITO粉末を得た。得られたITO粉末のBET比表面積は78.3m2/g、粒度分布測定においてD50は6.58μmであった。さらに粒子の個数統計値を取ったところ、最も個数の多い粒子の粒子径(最頻径)は0.910μmであった。また、TEMにて形状観察を行ったところ、生成したITO粒子(一次粒子)の30〜40vol%が、平均粒子径40nmの平板状形状、立方体形状または直方体形状の粒子であった。さらにXRDスペクトルを測定したところ、酸化Inの単一組成であり、結晶子径は37.6nmであることが判明した。 Further, the Sn-containing hydroxide In was subjected to a heat treatment at 250 ° C. for 3 hours in the air to obtain an ITO powder according to Comparative Example 1. The obtained ITO powder had a BET specific surface area of 78.3 m 2 / g and a D50 of 6.58 μm in the particle size distribution measurement. Further, when the number statistics of the particles were taken, the particle diameter (mode) of the largest number of particles was 0.910 μm. Moreover, when shape observation was performed by TEM, 30-40 vol% of the produced | generated ITO particle | grains (primary particle | grains) were particle | grains of the flat plate shape, cube shape, or rectangular parallelepiped shape with an average particle diameter of 40 nm. Further, when the XRD spectrum was measured, it was found that it had a single composition of In oxide and a crystallite diameter of 37.6 nm.
[比較例2]
実施例1と同様の操作を行って、40mlのSn含有水酸化In沈殿溶液を得た。
ここで、当該Sn含有水酸化In沈殿溶液を、遠心分離器を用いて固液分離して沈殿物を採集した。当該沈殿物を水洗後、さらに0.25mol/L塩化Sn溶液2.1mlを加えpH5.0になるように調整し40mlのSn含有水酸化In沈殿溶液を得た。
得られたSn含有水酸化In沈殿溶液へ、加熱処理もオートクレーブによる水熱処理も施すことなく遠心分離器を用いて、沈殿物を分離採取した。採取した沈殿を水洗した後、80℃で空気中乾燥してSn含有水酸化Inを得た。得られたSn含有水酸化Inの粒度分布測定を行ったところ、D50は1.62μmであった。
[Comparative Example 2]
The same operation as in Example 1 was performed to obtain 40 ml of Sn-containing In hydroxide hydroxide precipitation solution.
Here, the Sn-containing hydroxylated In precipitation solution was subjected to solid-liquid separation using a centrifugal separator, and the precipitate was collected. The precipitate was washed with water, and further adjusted to pH 5.0 by adding 2.1 ml of a 0.25 mol / L Sn chloride solution to obtain 40 ml of Sn-containing hydroxide In precipitation solution.
The resulting Sn-containing In hydroxide hydroxide precipitation solution was separated and collected using a centrifuge without heat treatment or hydrothermal treatment by an autoclave. The collected precipitate was washed with water and then dried in air at 80 ° C. to obtain Sn-containing hydroxide In. When the particle size distribution of the obtained Sn-containing In hydroxide was measured, D50 was 1.62 μm.
当該Sn含有水酸化Inを、空気中250℃で3時間加熱処理を行い、比較例2に係る
ITO粉末を得た。得られたITO粉末のBET比表面積は40.8m2/g、粒度分布測定においてD50は3.63μmであった。さらに粒子の個数統計値を取ったところ、最も個数の多い粒子の粒子径(最頻径)は0.829μmであった。また、TEMにて形状観察を行ったところ、平均粒子径20nmの丸みをおびたITO粒子(一次粒子)が焼結した凝集体が見られた。さらにXRDスペクトルを測定したところ、ピークが非常にブロードな結果が得られた。当該ITO粒子のTEM像(175,000倍)を図2に示す。
The Sn-containing hydroxide In was subjected to heat treatment in air at 250 ° C. for 3 hours to obtain an ITO powder according to Comparative Example 2. The obtained ITO powder had a BET specific surface area of 40.8 m 2 / g and a D50 of 3.63 μm in the particle size distribution measurement. Further, when the number statistics of the particles were taken, the particle diameter (mode) of the most numerous particles was 0.829 μm. Further, when the shape was observed with a TEM, an aggregate in which rounded ITO particles (primary particles) having an average particle diameter of 20 nm were sintered was observed. Furthermore, when the XRD spectrum was measured, the peak was very broad. A TEM image (175,000 times) of the ITO particles is shown in FIG.
(実施例1、2、比較例1、2のまとめ)
実施例1、2および比較例1、2に係るITO粉末について、XRDスペクトルから求めた生成相、(222)回折ピークから求めた強度、結晶子径と、比表面積(BET)、平均粒径(D50)、最頻径についての測定結果を表1に示す。
(Summary of Examples 1 and 2 and Comparative Examples 1 and 2)
For the ITO powders according to Examples 1 and 2 and Comparative Examples 1 and 2, the production phase obtained from the XRD spectrum, the intensity obtained from the (222) diffraction peak, the crystallite diameter, the specific surface area (BET), the average particle diameter ( D50), the measurement results for the mode diameter are shown in Table 1.
表1の結果より、加熱処理を施さず、水熱処理のみ行っている比較例1に係るITO粉末は、生成相、結晶子径は、実施例1に係るITO粉末と変わらない。しかし平均粒径(D50)が5倍の値を示しており、個数分布で最も多い粒子径も10倍以上となっている。これは、ITO粒子のサイズは同等だが、粒子同士の焼結や凝集が起きていることを示している。つまり、実施例1に係るITO粉末は、ITO粒子(一次粒子)が数個から数十個程度凝集した粒子からなるのに対し、比較例1に係るITO粉末は、ITO粒子(一次粒子)が数百個程度凝集した粒子からなり、分散性に劣るものであると考えられる。
さらに、加熱処理も水熱処理も施していない比較例2に係るITO粉末は、XRDスペクトルの結果より結晶性の良い酸化In相が生成していないことが判明した。その上、ITO粒子(一次粒子)同士の焼結や凝集が顕著に起きており、分散性に劣るものであると考えられる。
From the results shown in Table 1, the ITO powder according to Comparative Example 1 that is not subjected to heat treatment and only subjected to hydrothermal treatment has the same generation phase and crystallite diameter as the ITO powder according to Example 1. However, the average particle diameter (D50) shows a value of 5 times, and the largest particle diameter in the number distribution is 10 times or more. This indicates that the ITO particles have the same size, but the particles are sintered and agglomerated. That is, the ITO powder according to Example 1 is composed of particles in which about several to several tens of ITO particles (primary particles) are aggregated, whereas the ITO powder according to Comparative Example 1 includes ITO particles (primary particles). It consists of particles aggregated by several hundreds, and is considered to be inferior in dispersibility.
Furthermore, it was found that the ITO powder according to Comparative Example 2 that was not subjected to heat treatment or hydrothermal treatment did not produce an oxidized In phase with good crystallinity from the result of XRD spectrum. In addition, sintering and aggregation of ITO particles (primary particles) are conspicuous, which is considered to be inferior in dispersibility.
[実施例3]
本実施例3においては、実施例1における初期のIn溶液濃度を変化させてITO粉末を調製した例である。
硝酸In溶液の濃度を0.1mol/Lとし、0.1mol/L硝酸In溶液20mlを、8.0mol/L水酸化ナトリウム溶液20mlを反応させ沈殿溶液を得た以外は、実施例1と同様にして、実施例3の試料1に係るITO粉末を調製した。
[Example 3]
In Example 3, ITO powder was prepared by changing the initial In solution concentration in Example 1.
Example 1 except that the concentration of In nitrate solution was 0.1 mol / L, 20 ml of 0.1 mol / L In nitrate solution was reacted with 20 ml of 8.0 mol / L sodium hydroxide solution to obtain a precipitation solution. Thus, an ITO powder according to Sample 1 of Example 3 was prepared.
硝酸In溶液の濃度を2.5mol/Lとし、0.5mol/L硝酸In溶液20mlを、8.0mol/L水酸化ナトリウム溶液20mlを反応させ沈殿溶液を得た以外は、実施例1と同様にして、実施例3の試料2に係るITO粉末を調製した。 Example 1 except that the concentration of In nitrate solution was 2.5 mol / L, and 20 ml of 0.5 mol / L In nitrate solution was reacted with 20 ml of 8.0 mol / L sodium hydroxide solution to obtain a precipitation solution. Thus, an ITO powder according to Sample 2 of Example 3 was prepared.
[実施例4]
本実施例4においては、実施例1における出発原料を変化させてITO粉末を調製した
例である。
塩基性沈殿剤を8.0mol/L水酸化ナトリウム溶液から8.0mol/Lアンモニア溶液に変更した以外は、実施例1と同様にして実施例4の試料1に係るITO粉末を調製した。
[Example 4]
In Example 4, ITO powder was prepared by changing the starting material in Example 1.
An ITO powder according to Sample 1 of Example 4 was prepared in the same manner as in Example 1 except that the basic precipitant was changed from the 8.0 mol / L sodium hydroxide solution to the 8.0 mol / L ammonia solution.
0.5mol/L硝酸In溶液を0.5mol/L塩化In溶液に変更した以外、実施例1と同様の方法で実施例4の試料2に係るITO粉末を調製した。 An ITO powder according to Sample 2 of Example 4 was prepared in the same manner as in Example 1 except that the 0.5 mol / L In nitrate solution was changed to a 0.5 mol / L In chloride solution.
0.5mol/L硝酸In溶液を0.5mol/L塩化In溶液に、塩基性沈殿剤を8.0mol/L水酸化ナトリウム溶液を8.0mol/Lアンモニア溶液に変更した以外、実施例1と同様の方法で実施例4の試料3に係るITO粉末を調製した。 Example 1 except that the 0.5 mol / L In nitrate solution was changed to a 0.5 mol / L In chloride solution and the basic precipitant was changed to an 8.0 mol / L sodium hydroxide solution to an 8.0 mol / L ammonia solution. An ITO powder according to Sample 3 of Example 4 was prepared in the same manner.
[実施例5]
本実施例5においては、実施例1における熱処理温度を変化させてITO粉末を調製した例である。
加熱工程の温度を70℃に変更した以外、実施例1と同様の方法で実施例5の試料1に係るITO粉末を調製した。
[Example 5]
In Example 5, ITO powder was prepared by changing the heat treatment temperature in Example 1.
An ITO powder according to Sample 1 of Example 5 was prepared in the same manner as in Example 1 except that the temperature of the heating process was changed to 70 ° C.
加熱工程の温度を50℃に変更した以外、実施例1と同様の方法で実施例5の試料2に係るITO粉末を調製した。 An ITO powder according to Sample 2 of Example 5 was prepared in the same manner as in Example 1 except that the temperature of the heating process was changed to 50 ° C.
(実施例3から5のまとめ)
実施例3から5に係るITO粉末について、XRDスペクトルから求めた生成相、(222)回折ピークから求めた強度、結晶子径と、比表面積(BET)について測定した結果を表2に示す。
(Summary of Examples 3 to 5)
Table 2 shows the measurement results of the ITO powder according to Examples 3 to 5 with respect to the product phase obtained from the XRD spectrum, the intensity obtained from the (222) diffraction peak, the crystallite diameter, and the specific surface area (BET).
実施例1、3のデータより、出発原料のIn濃度を高くすることで、より結晶性の良いITO粉体が調製できることが判明した。
また、実施例1、4のデータより、In塩を塩化物に、塩基性塩をアンモニアに変化させても、実施例1と同等の結晶性の良いITO粉末が得られることが判明した。
From the data of Examples 1 and 3, it was found that an ITO powder with better crystallinity can be prepared by increasing the In concentration of the starting material.
Further, from the data of Examples 1 and 4, it was found that even if the In salt was changed to chloride and the basic salt was changed to ammonia, an ITO powder having good crystallinity equivalent to that of Example 1 was obtained.
さらに、実施例1、5のデータより、加熱工程の温度が高いほど、調製されたITO粉体の回折ピークの強度が高く、結晶子径も増加しており、生成する粒子の結晶性が増していることが判明した。但し、実施例1と、実施例5に係る試料2とのデータにおける、当該回折ピーク強度の差は小さいことから、当該加熱工程の温度は70℃以上であれば十分
であると考えられる。
Furthermore, from the data of Examples 1 and 5, the higher the temperature of the heating process, the higher the intensity of the diffraction peak of the prepared ITO powder and the larger the crystallite diameter, and the higher the crystallinity of the generated particles. Turned out to be. However, since the difference in diffraction peak intensity in the data between Example 1 and Sample 2 according to Example 5 is small, it is considered sufficient that the temperature of the heating step is 70 ° C. or higher.
Claims (7)
当該水酸化In沈殿溶液を50℃以上、110℃以下に加熱して30分間以上保ち、立方体または直方体の水酸化In粒子を生成させる工程と、
当該立方体または直方体の水酸化In粒子へSn塩を添加し、さらに塩基性沈殿剤を添加して水酸化In・水酸化Sn沈殿物を得る工程と
当該水酸化In・水酸化Sn沈殿物を110℃以上、300℃以下にて30分間以上水熱処理して水酸化In・水酸化Snスラリーを得る工程と、
当該水酸化In・水酸化Snスラリーを200℃以上、700℃以下にて10分間以上焼成して焼成物を得る工程と、
当該焼成物を粉砕してITO粉末を得る工程とを、
有することを特徴とする請求項1から3のいずれかに記載のITO粉末の製造方法。 Adding a basic precipitant to the In salt solution to obtain an In hydroxide hydroxide precipitation solution;
Heating the hydroxide In precipitation solution to 50 ° C. or more and 110 ° C. or less and maintaining it for 30 minutes or more to generate cubic or rectangular parallelepiped hydroxide In particles;
A step of adding Sn salt to the cubic or cuboidal hydroxide In particles, and further adding a basic precipitant to obtain a hydroxide In / Sn hydroxide precipitate; A step of hydrothermally treating at 30 ° C. or higher and 30 ° C. or lower for 30 minutes or more to obtain a hydroxide In / Sn hydroxide slurry;
A step of calcining the hydroxide In / Sn hydroxide slurry at 200 ° C. or more and 700 ° C. or less for 10 minutes or more to obtain a calcined product;
Crushing the fired product to obtain ITO powder,
The method for producing an ITO powder according to any one of claims 1 to 3, comprising:
当該水酸化In沈殿溶液を50℃以上、110℃以下に加熱して30分間以上保ち、立方体または直方体の水酸化In粒子を生成させる工程と、
当該水酸化In粒子を110℃以上、300℃以下にて30分間以上水熱処理して水酸化Inスラリーを得る工程と、
当該水酸化InスラリーへSn塩を添加し、さらに塩基性沈殿剤を添加して水酸化In・水酸化Snスラリーを得る工程と
当該水酸化In・水酸化Snスラリーを200℃以上、700℃以下にて10分間以上焼成して焼成物を得る工程と、
当該焼成物を粉砕してITO粉末を得る工程とを、
有することを特徴とする請求項1から3のいずれかに記載のITO粉末の製造方法。 Adding a basic precipitant to the In salt solution to obtain an In hydroxide hydroxide precipitation solution;
Heating the hydroxide In precipitation solution to 50 ° C. or more and 110 ° C. or less and maintaining it for 30 minutes or more to produce cubic or cuboid hydroxide In particles;
A step of hydrothermally treating the hydroxide In particles at 110 ° C. or more and 300 ° C. or less for 30 minutes or more to obtain a hydroxide In slurry;
A step of adding an Sn salt to the In hydroxide hydroxide slurry and further adding a basic precipitating agent to obtain an In hydroxide hydroxide / Sn hydroxide slurry; And baking for 10 minutes or more to obtain a fired product,
Crushing the fired product to obtain ITO powder,
The method for producing an ITO powder according to any one of claims 1 to 3, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007060558A JP5233007B2 (en) | 2007-03-09 | 2007-03-09 | Paint for transparent conductive material and method for producing transparent conductive film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007060558A JP5233007B2 (en) | 2007-03-09 | 2007-03-09 | Paint for transparent conductive material and method for producing transparent conductive film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008222467A true JP2008222467A (en) | 2008-09-25 |
JP5233007B2 JP5233007B2 (en) | 2013-07-10 |
Family
ID=39841515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007060558A Active JP5233007B2 (en) | 2007-03-09 | 2007-03-09 | Paint for transparent conductive material and method for producing transparent conductive film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5233007B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008230872A (en) * | 2007-03-19 | 2008-10-02 | Tokyo Institute Of Technology | Cube-shaped nanoparticle and its manufacturing method |
WO2010004912A1 (en) | 2008-07-10 | 2010-01-14 | 国立大学法人 東北大学 | Process for producing ito particles, ito powder, coating material for transparent electroconductive material, and transparent electroconductive film |
WO2011108884A2 (en) * | 2010-03-05 | 2011-09-09 | 연세대학교 산학협력단 | Metal oxide thin film, preparation method thereof, and solution for metal oxide thin film |
KR101117309B1 (en) | 2009-06-03 | 2012-03-20 | 한양대학교 산학협력단 | Method for producing indium tin oxides fine powder |
WO2018030106A1 (en) * | 2016-08-10 | 2018-02-15 | 国立大学法人 熊本大学 | Nanoparticle assemblies and method for producing nanoparticle assemblies |
US10032923B2 (en) | 2010-03-05 | 2018-07-24 | Industry-Academic Cooperation Foundation, Yonsei University | Metal oxide thin film, method for manufacturing the same, and solution for metal oxide thin film |
JP2021146683A (en) * | 2020-03-23 | 2021-09-27 | 住友金属鉱山株式会社 | Heat-ray shielding laminated transparent base material |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06232586A (en) * | 1993-01-29 | 1994-08-19 | Sumitomo Cement Co Ltd | Electromagnetic-wave shielding film and manufacture thereof |
JP2000128698A (en) * | 1998-10-22 | 2000-05-09 | Toyota Motor Corp | Ito material, ito film and its formation, and el element |
JP2003040620A (en) * | 2001-07-25 | 2003-02-13 | Kisan Kinzoku Kk | Method for producing ito powder |
JP2003119023A (en) * | 2001-10-12 | 2003-04-23 | Mitsui Mining & Smelting Co Ltd | Method for producing ito powder, and ito powder |
JP2004143022A (en) * | 2001-11-16 | 2004-05-20 | Hitachi Maxell Ltd | Tin-containing indium oxide particle and its production method, conductive coating film, and conductive sheet |
JP2006521268A (en) * | 2003-03-14 | 2006-09-21 | デグサ アクチエンゲゼルシャフト | Nanoscale indium tin mixed oxide powder |
-
2007
- 2007-03-09 JP JP2007060558A patent/JP5233007B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06232586A (en) * | 1993-01-29 | 1994-08-19 | Sumitomo Cement Co Ltd | Electromagnetic-wave shielding film and manufacture thereof |
JP2000128698A (en) * | 1998-10-22 | 2000-05-09 | Toyota Motor Corp | Ito material, ito film and its formation, and el element |
JP2003040620A (en) * | 2001-07-25 | 2003-02-13 | Kisan Kinzoku Kk | Method for producing ito powder |
JP2003119023A (en) * | 2001-10-12 | 2003-04-23 | Mitsui Mining & Smelting Co Ltd | Method for producing ito powder, and ito powder |
JP2004143022A (en) * | 2001-11-16 | 2004-05-20 | Hitachi Maxell Ltd | Tin-containing indium oxide particle and its production method, conductive coating film, and conductive sheet |
JP2006521268A (en) * | 2003-03-14 | 2006-09-21 | デグサ アクチエンゲゼルシャフト | Nanoscale indium tin mixed oxide powder |
Non-Patent Citations (3)
Title |
---|
JPN6011037193; 澤田豊ほか: '酸化インジウム系透明導電性結晶の作製と評価' 新素材設計開発施設共同利用研究報告書 Vol.2003, 200406, Page.172-173 * |
JPN6011037195; 澤田豊ほか: '酸化インジウム系透明導電性結晶の作製と評価' 東北大学金属材料研究所金属ガラス総合研究センター共同利用研究報告書 Vol.2004, 200506, Page.177-178 * |
JPN6011037196; 澤田豊ほか: '酸化インジウム系透明導電性結晶の作製と評価' 東北大学金属材料研究所金属ガラス総合研究センター共同利用研究報告書 Vol.2005, 200606, Page.165-166 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008230872A (en) * | 2007-03-19 | 2008-10-02 | Tokyo Institute Of Technology | Cube-shaped nanoparticle and its manufacturing method |
WO2010004912A1 (en) | 2008-07-10 | 2010-01-14 | 国立大学法人 東北大学 | Process for producing ito particles, ito powder, coating material for transparent electroconductive material, and transparent electroconductive film |
US8524122B2 (en) | 2008-07-10 | 2013-09-03 | Tohoku University | Method of producing ITO particles |
KR101117309B1 (en) | 2009-06-03 | 2012-03-20 | 한양대학교 산학협력단 | Method for producing indium tin oxides fine powder |
US10032923B2 (en) | 2010-03-05 | 2018-07-24 | Industry-Academic Cooperation Foundation, Yonsei University | Metal oxide thin film, method for manufacturing the same, and solution for metal oxide thin film |
WO2011108884A2 (en) * | 2010-03-05 | 2011-09-09 | 연세대학교 산학협력단 | Metal oxide thin film, preparation method thereof, and solution for metal oxide thin film |
WO2011108884A3 (en) * | 2010-03-05 | 2012-03-22 | 연세대학교 산학협력단 | Metal oxide thin film, preparation method thereof, and solution for metal oxide thin film |
WO2018030106A1 (en) * | 2016-08-10 | 2018-02-15 | 国立大学法人 熊本大学 | Nanoparticle assemblies and method for producing nanoparticle assemblies |
KR20190025660A (en) * | 2016-08-10 | 2019-03-11 | 고꾸리쯔다이가꾸호오진 구마모또 다이가꾸 | Nanoparticle aggregates, and methods for producing nanoparticle aggregates |
CN109496202A (en) * | 2016-08-10 | 2019-03-19 | 国立大学法人熊本大学 | The manufacturing method of nano particle aggregate and nano particle aggregate |
KR102129721B1 (en) | 2016-08-10 | 2020-07-03 | 고꾸리쯔다이가꾸호오진 구마모또 다이가꾸 | Nanoparticle aggregate, and manufacturing method of nanoparticle aggregate |
CN109496202B (en) * | 2016-08-10 | 2021-10-29 | 国立大学法人熊本大学 | Nanoparticle aggregate and method for producing nanoparticle aggregate |
US11177399B2 (en) | 2016-08-10 | 2021-11-16 | National University Corporation Kumamoto University | Nanoparticle assemblies and method for producing nanoparticle assemblies |
JP2021146683A (en) * | 2020-03-23 | 2021-09-27 | 住友金属鉱山株式会社 | Heat-ray shielding laminated transparent base material |
JP7468036B2 (en) | 2020-03-23 | 2024-04-16 | 住友金属鉱山株式会社 | Heat-shielding transparent substrate |
Also Published As
Publication number | Publication date |
---|---|
JP5233007B2 (en) | 2013-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5618229B2 (en) | ITO powder, method for producing ITO particles, coating for transparent conductive material and transparent conductive film | |
JP5016993B2 (en) | Magnesium oxide particle aggregate and method for producing the same | |
JP5233007B2 (en) | Paint for transparent conductive material and method for producing transparent conductive film | |
JP5472589B2 (en) | Production method of ITO particles | |
EP0584672B1 (en) | Method of manufacturing an indium oxide powder useful as material of a high-density ITO sintered body | |
JP4018974B2 (en) | Tin oxide powder, method for producing the same, and method for producing high-density indium tin oxide target using the same | |
JP3936655B2 (en) | Indium oxide powder, method for producing the same, and method for producing high-density indium tin oxide target using the same | |
JP3314388B2 (en) | Method for producing indium hydroxide, indium oxide and ITO sintered body | |
JP5588815B2 (en) | Gallium oxide powder | |
JP4982691B2 (en) | Sn-containing In oxide, method for producing the same, paint using the same, and conductive coating film | |
JPH05193939A (en) | Indium oxide powder and production of ito sintered body | |
JP3324164B2 (en) | Indium oxide powder, method for producing the same, and method for producing ITO sintered body | |
JP4424582B2 (en) | Tin-containing indium oxide particles, method for producing the same, and conductive coating film and conductive sheet | |
JP2011256088A (en) | Gallium oxide powder | |
JP3878867B2 (en) | Indium hydroxide and oxide | |
JP2012184158A (en) | Low valence titanium oxide powder and zinc oxide-based sintered body | |
JP4251448B2 (en) | Aluminum-substituted tin-containing indium oxide particles and method for producing the same, and conductive paint, conductive coating film and conductive sheet using the particles | |
JPH0729770B2 (en) | Oxide powder and method for producing the same | |
KR101117309B1 (en) | Method for producing indium tin oxides fine powder | |
JP5615225B2 (en) | Method for producing lithium titanate nanoparticles using hydrothermal chemical reaction | |
JP2012041232A (en) | Aqueous dispersion liquid containing yttrium oxide particle | |
JP2004137102A (en) | Aluminum-substituted tin-containing indium oxide particle and its production method | |
WO2003042105A1 (en) | Indium particle containing tin, method for producing the same and electroconductive sheet comprising the same | |
JP2004307221A (en) | Tin, zinc, aluminum-containing indium oxide particle and method of manufacture the same | |
JP2003246965A (en) | Coating for transparent electrically conductive film and method for producing the coating, and transparent electrically conductive film and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100106 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110602 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110719 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120626 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120824 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130304 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5233007 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160405 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |