JP2008218248A - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP2008218248A
JP2008218248A JP2007054997A JP2007054997A JP2008218248A JP 2008218248 A JP2008218248 A JP 2008218248A JP 2007054997 A JP2007054997 A JP 2007054997A JP 2007054997 A JP2007054997 A JP 2007054997A JP 2008218248 A JP2008218248 A JP 2008218248A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
lithium secondary
electrode mixture
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007054997A
Other languages
Japanese (ja)
Other versions
JP5097415B2 (en
Inventor
Naotaka Kimura
尚貴 木村
Masanori Yoshikawa
正則 吉川
Yoshimi Yanai
吉美 矢内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2007054997A priority Critical patent/JP5097415B2/en
Publication of JP2008218248A publication Critical patent/JP2008218248A/en
Application granted granted Critical
Publication of JP5097415B2 publication Critical patent/JP5097415B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery applicable to a hybrid vehicle and the like, and capable of remarkably improving a load characteristic and input/output density. <P>SOLUTION: In this lithium secondary battery, a positive electrode capable of storing/releasing lithium, and a negative electrode capable of storing/releasing lithium are formed through an electrolyte. The lithium secondary battery is characterized in that a mix coating amount to both surfaces of a negative electrode collector of a negative electrode mix prepared by mixing a conductive agent, a negative electrode active material and a binder is 6-8 mg/cm<SP>2</SP>, and density of the negative electrode mix is 1.4-1.7 g/cm<SP>3</SP>. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、リチウム二次電池に関するものである。   The present invention relates to a lithium secondary battery.

近年、ハイブリッド自動車等への適用のため、リチウム二次電池あるいはキャパシタなどの電源装置の開発が盛んである。ハイブリッド自動車のような車載用途に適用するには、これら電源装置の高入出力密度化が重要な課題である。このような自動車分野への適用にはこれら電源装置のより一層の高出力化が重要である。さらには、回生によるエネルギーの有効利用を図るには、優れた入力特性も要求される。   2. Description of the Related Art In recent years, power source devices such as lithium secondary batteries or capacitors have been actively developed for application to hybrid vehicles and the like. In order to apply to in-vehicle applications such as hybrid vehicles, it is an important issue to increase the input / output density of these power supply devices. For the application to the automobile field, it is important to further increase the output of these power supply devices. Furthermore, excellent input characteristics are also required to effectively use energy by regeneration.

また、ハイブリッド自動車において、電気だけでの都市部の走行が可能な、いわゆるデュアルモードの要望も近年出てきている。このような要求に対応するには、入出力特性だけではなく、より大電流で良好な負荷特性が電池の特性として要求される。一般的にパソコン,携帯電話などの民生用機器に使用される電池は高容量が要求されるが、ハイレート特性は要求されず、負荷特性として要求されるのは高々1/3時間率(3C)程度である。一方、自動車の分野においては1/20程度の時間率(20C)、つまり、民生用機器に適用される電池の約7倍の大電流が要求され、優れた高負荷特性が要求される。上述のようなことから、負荷特性,入出力特性を大幅に向上させる電池技術は、極めて重要な課題である。   In recent years, there has also been a demand for a so-called dual mode in which a hybrid vehicle can run in an urban area using only electricity. In order to meet such demands, not only input / output characteristics but also good load characteristics with a larger current are required as battery characteristics. Generally, batteries used for consumer devices such as personal computers and mobile phones are required to have high capacity, but high rate characteristics are not required, and load characteristics are required at most 1/3 hour rate (3C). Degree. On the other hand, in the field of automobiles, a time rate (20C) of about 1/20, that is, a large current about 7 times that of a battery applied to a consumer device is required, and an excellent high load characteristic is required. From the above, battery technology that greatly improves load characteristics and input / output characteristics is a very important issue.

特許文献1及び特許文献2には、負極合剤の塗工量や密度に関しての検討が行われている。   In Patent Document 1 and Patent Document 2, studies on the coating amount and density of the negative electrode mixture are performed.

また、特許文献3には、負極活物質として、炭素材料を用いることが開示されている。   Patent Document 3 discloses using a carbon material as the negative electrode active material.

特開2002−260657号公報JP 2002-260657 A 特開2005−285581号公報Japanese Patent Laid-Open No. 2005-285581 特開2003−208922号公報JP 2003-208922 A

本発明は、入出力特性及び負荷特性を向上させたリチウム二次電池を提供することを目的とするものである。   An object of the present invention is to provide a lithium secondary battery with improved input / output characteristics and load characteristics.

本発明は、リチウムを吸蔵・放出可能な正極と、リチウムを吸蔵・放出可能な負極と、が電解質を介して形成されるリチウム二次電池において、正極と負極とが捲回されて電極捲回体を形成しており、負極合剤の負極集電体への両面合剤塗工量が6mg/cm2 以上8mg/cm2以下であり、負極合剤の密度1.4g/cm3以上1.7g/cm3 以下であることを特徴とするものである。 The present invention relates to a lithium secondary battery in which a positive electrode capable of inserting and extracting lithium and a negative electrode capable of inserting and extracting lithium are formed via an electrolyte. The coating amount of the negative electrode mixture on the negative electrode current collector is 6 mg / cm 2 or more and 8 mg / cm 2 or less, and the density of the negative electrode mixture is 1.4 g / cm 3 or more and 1 0.7 g / cm 3 or less.

また、本発明は、負極合剤の空隙率が20%以上,35%以下であることを特徴とする。   Further, the present invention is characterized in that the porosity of the negative electrode mixture is 20% or more and 35% or less.

本発明により、負荷特性及び入出力特性を向上させたリチウム二次電池を提供できる。   According to the present invention, a lithium secondary battery having improved load characteristics and input / output characteristics can be provided.

負極において、負極合剤の塗工量を低減させることにより、電極厚さが薄くなり、電池の内部抵抗が低下し、電池の負荷特性及び入出力特性の向上が期待できる。   In the negative electrode, by reducing the coating amount of the negative electrode mixture, the electrode thickness is reduced, the internal resistance of the battery is lowered, and the load characteristics and input / output characteristics of the battery can be expected to be improved.

しかし、粉砕分級作業等により微粒化し塗工することにより、塗工量を低減させる場合はコストが嵩む。さらに、微粒化による不可逆容量の増大も懸念され、電池容量が小さくなり、デュアルモードで要求されるエネルギーの確保,エネルギーの回生も難しくなる。   However, the cost increases when the amount of coating is reduced by pulverizing and coating by pulverization classification or the like. Furthermore, there is a concern about an increase in irreversible capacity due to atomization, the battery capacity is reduced, and it becomes difficult to secure energy and regenerate energy required in the dual mode.

一方、塗工量を多くすると、容量が上がる利点があるが、電極が厚くなり抵抗が上昇し、十分な入出力特性及び負荷特性が得られない。   On the other hand, increasing the coating amount has the advantage of increasing the capacity, but the electrode becomes thick and the resistance increases, and sufficient input / output characteristics and load characteristics cannot be obtained.

また、塗工量を低減させ電極を薄くすることによる容量の低下は負極合剤の高密度化により抑制する事が可能である。しかし、負極合剤の高密度化に際しては、負極合剤中の電解液との反応界面の確保を考慮しなければならない。負極合剤を高密度にすると、負極合剤における空隙率が低くなり、電極が保持できる電解液量が少なくなり、電解液と負極活物質表面とで形成される電極反応界面で起きる電極反応が阻害される。このような電極反応への悪影響が生じると、入出力が低下し、自動車分野で必要とされる入出力を確保できなくなる。一方、電極密度を低くし空隙率を高くすると、電極が保持できる電解液量が多くなり、電解液と負極活物質表面とで形成される電極反応界面で起きる電極反応は阻害されないが、空隙が多いため電極合剤内の電子伝導性が悪くなり、20C程度のハイレート放電時の容量が低下する。   Moreover, the capacity | capacitance fall by reducing the coating amount and making an electrode thin can be suppressed by densification of the negative mix. However, when increasing the density of the negative electrode mixture, it is necessary to consider securing a reaction interface with the electrolyte in the negative electrode mixture. When the density of the negative electrode mixture is increased, the porosity in the negative electrode mixture is reduced, the amount of electrolyte solution that can be held by the electrode is reduced, and the electrode reaction that occurs at the electrode reaction interface formed between the electrolyte solution and the surface of the negative electrode active material is reduced. Be inhibited. When such an adverse effect on the electrode reaction occurs, the input / output is lowered, and the input / output required in the automobile field cannot be secured. On the other hand, when the electrode density is decreased and the porosity is increased, the amount of the electrolyte solution that can be held by the electrode increases, and the electrode reaction that occurs at the electrode reaction interface formed between the electrolyte solution and the negative electrode active material surface is not hindered. Since there are many, the electronic conductivity in an electrode mixture will worsen, and the capacity | capacitance at the time of the high-rate discharge of about 20C will fall.

以上述べたように、反応界面の確保が可能な高密度の電極構造が技術のポイントであり、塗工量,負極合剤の密度及び空隙率を好適な範囲とすることにより、容量減少を抑え、高入出力,高負荷特性なリチウムイオン二次電池を提供することができる。   As described above, a high-density electrode structure capable of securing a reaction interface is a technical point, and by reducing the coating amount, the density of the negative electrode mixture, and the porosity, the capacity reduction can be suppressed. A lithium ion secondary battery with high input / output and high load characteristics can be provided.

本発明では、種々検討した結果、負極合剤の塗工量を6mg/cm2以上8mg/cm2以下の範囲とし、負極合剤の密度1.4g/cm3以上1.7g/cm3以下の範囲とすることにより、負荷特性及び入出力特性の向上が達成できることが判った。また、塗工量を6mg/cm2 以上7.4mg/cm2以下の範囲にすることがより好ましいことが判った。 In the present invention, as a result of various studies, the coating amount of the negative electrode mixture is set in the range of 6 mg / cm 2 to 8 mg / cm 2 , and the density of the negative electrode mixture is 1.4 g / cm 3 to 1.7 g / cm 3. It was found that the load characteristics and the input / output characteristics can be improved by setting the above range. Further, it has been found preferable to a coating amount of 6 mg / cm 2 or more 7.4 mg / cm 2 or less.

本発明のリチウム二次電池の正極活物質にはリチウム遷移金属複合酸化物を用いることができる。ニッケル酸リチウム,コバルト酸リチウムなどの正極活物質のNi,Coなどの一部を1種あるいはそれ以上の遷移金属で置換して用いることができる。   A lithium transition metal composite oxide can be used for the positive electrode active material of the lithium secondary battery of the present invention. A part of a positive electrode active material such as lithium nickelate or lithium cobaltate, such as Ni or Co, can be substituted with one or more transition metals.

負極活物質としては、炭素材料を用いる。その中でも天然黒鉛,人造黒鉛などの黒鉛を用いることが好ましい。また黒鉛は、結晶格子の面間隔を表すd002が3.356Å以下であり、結晶子サイズを表すLc(002)が1000Å以上、La(110)が1000Å以上のものが好ましい。X線回折により測定した本発明の黒鉛材料の(002)面の面間隔d002 は、特に制限されないが、通常3.356Å 以下の範囲である。この範囲を上回る場合、即ち、結晶性が劣る場合には、電極を製造したときに活物質の単位重量当たりの放電容量が小さくなる。一方、この面間隔d002 の下限は、理論的限界として通常3.354Å である。また、X線回折により測定した本発明の黒鉛材料のc軸方向の結晶子の大きさLc及びa軸方向の結晶子の大きさLaは、それぞれ特に制限されないが、通常、1000Å以上の範囲である。この範囲を下回ると、これを用いて電極を製造した場合に、活物質重量当たりの放電容量が小さくなるためである。また、X線回折により測定した面間隔d002 、結晶子の大きさLc及びLaとしては、炭素材料学会の学振法に従って測定される値を用いることができる。なお、学振法においては100nm(1000Å)以上の値は区別されず、全て「>1000(Å)」と記述される。 A carbon material is used as the negative electrode active material. Of these, graphite such as natural graphite and artificial graphite is preferably used. The graphite preferably has a d 002 representing a crystal lattice spacing of 3.356 mm or less, a Lc (002) representing a crystallite size of 1000 mm or more, and a La (110) of 1000 mm or more. Plane spacing d 002 of (002) plane of the graphite material of the present invention measured by X-ray diffraction is not particularly limited, in the range of usually less than 3.356A. When exceeding this range, that is, when the crystallinity is inferior, the discharge capacity per unit weight of the active material becomes small when the electrode is manufactured. On the other hand, the lower limit of the surface spacing d 002 is usually 3.354Å as a theoretical limit. Further, the crystallite size Lc in the c-axis direction and the crystallite size La in the a-axis direction of the graphite material of the present invention measured by X-ray diffraction are not particularly limited, but are usually in the range of 1000 mm or more. is there. This is because if the thickness is less than this range, the discharge capacity per weight of the active material becomes small when an electrode is produced using this. In addition, as the interplanar spacing d 002 and crystallite sizes Lc and La measured by X-ray diffraction, values measured in accordance with the Japan Society for Carbon Materials Science and Technology can be used. In the Gakushin method, values of 100 nm (1000 Å) or more are not distinguished and are all described as “> 1000 (Å)”.

また、負極合剤の(004)/(100)の積分強度比が21〜32のものを用いることが好ましい。   Moreover, it is preferable to use a negative electrode mixture having an integrated intensity ratio of (004) / (100) of 21 to 32.

なお、この(004)/(100)の積分強度比とは、負極合剤のX線回折測定により得られる(110)面及び(004)面に帰属されるピーク強度を比較することにより得られる。即ち、(110)面に帰属されるピーク強度に対する(004)面に帰属されるピーク強度比を示す。   The integrated intensity ratio of (004) / (100) is obtained by comparing the peak intensity attributed to the (110) plane and (004) plane obtained by X-ray diffraction measurement of the negative electrode mixture. . That is, the ratio of the peak intensity attributed to the (004) plane to the peak intensity attributed to the (110) plane is shown.

正極合剤,負極合剤には、一般的に活物質のほかに結着剤,導電剤等が含まれているが、これらの種類や量によって、発明の効果はなんら損なわれない。   The positive electrode mixture and the negative electrode mixture generally contain a binder, a conductive agent, and the like in addition to the active material, but the effects of the invention are not impaired by these types and amounts.

電解質としては、例えばエチレンカーボネート,プロピレンカーボネート,ブチレンカーボネート,ジメチルカーボネート,エチルメチルカーボネート,ジエチルカーボネート、γ−ブチロラクトン,γ−バレロラクトン,メチルアセテート,エチルアセテート,メチルプロピオネート,テトラヒドロフラン,2−メチルテトラヒドロフラン,1,2−ジメトキシエタン,1−エトキシ−2−メトキシエタン,3−メチルテトラヒドロフラン,1,2−ジオキサン,1,3−ジオキサン,1,4−ジオキサン,1,3−ジオキソラン,2−メチル−1,3−ジオキソラン,4−メチル−1,3−ジオキソラン等より少なくとも1種以上選ばれた非水溶媒に、例えば、LiPF6,LiBF4,LiClO4
LiN(C25SO2)2等より少なくとも1種以上選ばれたリチウム塩を溶解させた有機電解液あるいはリチウムイオンの伝導性を有する固体電解質あるいはゲル状電解質あるいは溶融塩など一般に炭素系材料などを負極活物質として用いた電池で使用される既知の電解質を用いることができる。また、電池の構成上の必要性に応じて微孔性セパレータを用いても本発明の効果はなんら損なわれない。
Examples of the electrolyte include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, γ-butyrolactone, γ-valerolactone, methyl acetate, ethyl acetate, methyl propionate, tetrahydrofuran, and 2-methyltetrahydrofuran. , 1,2-dimethoxyethane, 1-ethoxy-2-methoxyethane, 3-methyltetrahydrofuran, 1,2-dioxane, 1,3-dioxane, 1,4-dioxane, 1,3-dioxolane, 2-methyl- Non-aqueous solvents selected from at least one selected from 1,3-dioxolane, 4-methyl-1,3-dioxolane, etc. include, for example, LiPF 6 , LiBF 4 , LiClO 4 ,
Generally, a carbon-based material such as an organic electrolytic solution in which at least one lithium salt selected from LiN (C 2 F 5 SO 2 ) 2 or the like is dissolved, a solid electrolyte having lithium ion conductivity, a gel electrolyte, or a molten salt A known electrolyte used in a battery using the above as a negative electrode active material can be used. Moreover, even if a microporous separator is used according to the structural requirements of the battery, the effect of the present invention is not impaired at all.

以下に実施例を挙げ、本発明を説明する。なお、本発明は以下に述べる実施例に限定されるものではない。   The following examples illustrate the invention. In addition, this invention is not limited to the Example described below.

(実施例1)
まず、正極を作製した。正極活物質としてLi(NiMnCo)1/32、導電剤として黒鉛、結着剤としてポリフッ化ビニリデンを85:10:5の重量比で混練機を用い、30分間混練し正極合剤を得た。正極合剤を厚さ20μmのアルミニウム箔に両面塗工した。
(Example 1)
First, a positive electrode was produced. A positive electrode mixture is obtained by kneading Li (NiMnCo) 1/3 O 2 as a positive electrode active material, graphite as a conductive agent, and polyvinylidene fluoride as a binder in a weight ratio of 85: 10: 5 for 30 minutes using a kneader. It was. The positive electrode mixture was coated on both sides of an aluminum foil having a thickness of 20 μm.

次に、負極を作製した。負極活物質として天然黒鉛、導電剤として黒鉛、結着剤としてポリフッ化ビニリデンを用いて、負極活物質:導電剤:結着剤=90:5:5の重量比で正極と同様の作製方法で混練した。得られた負極合剤を厚さ10μmの銅箔に両面塗工した。   Next, a negative electrode was produced. Using natural graphite as the negative electrode active material, graphite as the conductive agent, and polyvinylidene fluoride as the binder, the negative electrode active material: conductive agent: binder = 90: 5: 5 weight ratio is the same as that of the positive electrode Kneaded. The obtained negative electrode mixture was coated on both sides of a copper foil having a thickness of 10 μm.

なお、天然黒鉛は、粒径が10μm以上30μm以下の範囲にある粒子を95%以上含有しているものを用いた。なお、粒子の最大粒径は100μmであり、最小粒径は数μm程度である。   Note that natural graphite containing 95% or more of particles having a particle size in the range of 10 μm to 30 μm was used. The maximum particle size of the particles is 100 μm, and the minimum particle size is about several μm.

作製した正極及び負極は、プレス機を用いて13〜14tで圧延成型した後、120℃で12時間真空乾燥した。このときの負極合剤密度,負極集電体の両面合剤塗工量,空隙率及び(004)/(100)の積分強度比を表1に示す。負極合剤密度は1.4g/cm3、負極集電体の両面合剤塗工量は6.0mg/cm2、空隙率は33%、(004)/(100)の積分強度比は21であった。 The produced positive electrode and negative electrode were roll-formed at 13 to 14 t using a press machine and then vacuum-dried at 120 ° C. for 12 hours. Table 1 shows the density of the negative electrode mixture, the coating amount of the double-sided mixture of the negative electrode current collector, the porosity, and the integrated strength ratio of (004) / (100). The density of the negative electrode mixture is 1.4 g / cm 3 , the coating amount of the negative electrode current collector on both sides is 6.0 mg / cm 2 , the porosity is 33%, and the integrated strength ratio of (004) / (100) is 21 Met.

なお、負極合剤の密度及び空隙率の測定は以下の通り行った。   The density and porosity of the negative electrode mixture were measured as follows.

負極合剤の密度は、電極の重量から集電体である箔の重量を差し引いた重量と単位面積との商から求め、負極合剤の空隙率は、真密度を用いて算出した。   The density of the negative electrode mixture was determined from the quotient of the weight obtained by subtracting the weight of the foil as a current collector from the weight of the electrode and the unit area, and the porosity of the negative electrode mixture was calculated using the true density.

なお、真密度とは、活物質内の空孔を差し引いた場合、即ち空隙がないものとして算出した密度のことをいい、ピクノメーターを用いて算出した。   The true density means the density calculated when the voids in the active material are subtracted, that is, without voids, and was calculated using a pycnometer.

Figure 2008218248
Figure 2008218248

乾燥後、正極と負極とをセパレータを介して捲回し、電池缶に挿入した。負極集電リード片6はニッケルの負極集電リード部8に集めて超音波溶接し、集電リード部を缶底溶接した。一方、正極集電リード片5はアルミニウムの集電リード部7に超音波溶接した後、アルミニウムのリード部を蓋9に抵抗溶接した。電解液(1MLiPF6 /EC:EMC=1:3)を注入後、缶4のカシメにより蓋を封口し、電池を得た。なお、缶の上端と蓋の間にはガスケット12を挿入した。このようにして7Ah級の電池を製造した。作製したリチウム二次電池の概略図を図1に示す。 After drying, the positive electrode and the negative electrode were wound through a separator and inserted into a battery can. The negative electrode current collecting lead piece 6 was collected on the nickel negative electrode current collecting lead portion 8 and ultrasonically welded, and the current collecting lead portion was welded to the bottom of the can. On the other hand, the positive electrode current collector lead piece 5 was ultrasonically welded to the aluminum current collector lead portion 7 and then the aluminum lead portion was resistance welded to the lid 9. After injecting the electrolytic solution (1M LiPF 6 / EC: EMC = 1: 3), the lid was sealed with caulking of the can 4 to obtain a battery. A gasket 12 was inserted between the upper end of the can and the lid. In this way, a 7 Ah class battery was manufactured. A schematic view of the produced lithium secondary battery is shown in FIG.

<電池性能試験>
電池性能試験として、充電終止電圧4.1V,放電終止電圧2.7V,充放電レート1C(定格電気容量の1時間率)で充放電し、電池容量を求めた。また、SOC(state of
charge)50%の状態で、1C,3C,5C,10C,20Cの電流を10秒間印加し、それぞれの電流値における10秒目の電圧を測定し、入出力特性を調べた。電池の放電終止電圧(VD)と電流電圧特性の直線を放電終止電圧まで外挿したときの電流値(ID)を用いて、式PO=ID×VD より出力密度を求めた。一方、入力密度は電池の充電終止電圧(VC)と電流電圧特性の直線を充電終止電圧まで外挿したときの電流値(IC)を用いて、式PI=IC×VC より求めた。入出力密度測定結果を表2に示す。また、負荷特性試験として、1/3C充電し、1/3Cで放電したときの放電容量を容量維持率100%とし、1/3Cで充電し、20Cで放電したときの放電容量と1/3Cで放電したときの放電容量から維持率を求め、表2に示す。図2には、塗工量(密度1.4g/cm3一定)と20C放電維持率との関係、図3には、密度(塗工量8.0mg/cm2一定)と20C放電維持率との関係を示し、図4には、密度(塗工量8.0mg/cm2一定)と入出力との関係を示した。図5には塗工量8.0mg/cm2における空隙率と20C放電維持率との関係、図6には塗工量8.0mg/cm2における空隙率と入出力との関係を示した。
<Battery performance test>
As a battery performance test, the battery capacity was determined by charging and discharging at a charge end voltage of 4.1 V, a discharge end voltage of 2.7 V, and a charge / discharge rate of 1 C (1 hour rate of the rated electric capacity). Also, SOC (state of
charge) In the state of 50%, the currents of 1C, 3C, 5C, 10C, and 20C were applied for 10 seconds, the voltage at the 10th second at each current value was measured, and the input / output characteristics were examined. Using the current value (I D ) when extrapolating the discharge end voltage (V D ) of the battery and the current-voltage characteristics line to the end of discharge voltage, the output density was calculated from the formula P O = I D × V D . On the other hand, the input density is obtained from the formula P I = I C × V C using the current value (I C ) when the line of the charge end voltage (V C ) and the current-voltage characteristic is extrapolated to the charge end voltage. Asked. Table 2 shows the input / output density measurement results. In addition, as a load characteristic test, the discharge capacity when charging at 1 / 3C and discharging at 1 / 3C is assumed to be a capacity maintenance rate of 100%, and the discharge capacity when charging at 1 / 3C and discharging at 20C is 1 / 3C. Table 2 shows the retention rate obtained from the discharge capacity when discharged at. FIG. 2 shows the relationship between the coating amount (density 1.4 g / cm 3 constant) and the 20 C discharge maintenance rate, and FIG. 3 shows the density (coating amount 8.0 mg / cm 2 constant) and the 20 C discharge maintenance rate. FIG. 4 shows the relationship between density (coating amount 8.0 mg / cm 2 constant) and input / output. FIG. 5 shows the relationship between the porosity at a coating amount of 8.0 mg / cm 2 and the 20C discharge maintenance rate, and FIG. 6 shows the relationship between the porosity at a coating amount of 8.0 mg / cm 2 and input / output. .

(実施例2)
実施例1と同様の方法で、正極及び負極を作製した。作製した正極及び負極は、いずれもプレス機で圧延成型した後、120℃で12時間真空乾燥した。このときの負極合剤の密度,負極集電体の両面合剤塗工量,空隙率及び(004)/(100)の積分強度比を表1に示す。負極合剤の密度は1.4g/cm3 、負極集電体の両面合剤塗工量は7.4mg/
cm2、空隙率は33%、(004)/(100)の積分強度比は21であった。
(Example 2)
In the same manner as in Example 1, a positive electrode and a negative electrode were produced. The produced positive electrode and negative electrode were both roll-formed with a press and then vacuum-dried at 120 ° C. for 12 hours. Table 1 shows the density of the negative electrode mixture, the coating amount of the double-sided mixture of the negative electrode current collector, the porosity, and the integrated strength ratio of (004) / (100). The density of the negative electrode mixture is 1.4 g / cm 3 , and the coating amount of the negative electrode current collector on both sides is 7.4 mg / cm 2.
cm 2 , the porosity was 33%, and the integrated intensity ratio of (004) / (100) was 21.

また、実施例1と同様の電池性能試験を行い、その結果を表2,図2に示す。   Moreover, the battery performance test similar to Example 1 was done, and the result is shown in Table 2 and FIG.

(実施例3)
実施例1と同様の方法で、正極及び負極を作製した。作製した正極及び負極は、いずれもプレス機で圧延成型した後、120℃で12時間真空乾燥した。このときの負極合剤の密度,負極集電体の両面合剤塗工量,空隙率及び(004)/(100)の積分強度比を表1に示す。負極合剤の密度は1.4g/cm3 、負極集電体の両面合剤塗工量は8.0mg/
cm2、空隙率は33%、(004)/(100)の積分強度比は21であった。
(Example 3)
In the same manner as in Example 1, a positive electrode and a negative electrode were produced. The produced positive electrode and negative electrode were both roll-formed with a press and then vacuum-dried at 120 ° C. for 12 hours. Table 1 shows the density of the negative electrode mixture, the coating amount of the double-sided mixture of the negative electrode current collector, the porosity, and the integrated strength ratio of (004) / (100). The density of the negative electrode mixture is 1.4 g / cm 3 , and the coating amount of the negative electrode current collector on both sides is 8.0 mg / cm 2 .
cm 2 , the porosity was 33%, and the integrated intensity ratio of (004) / (100) was 21.

また、実施例1と同様の電池性能試験を行い、その結果を表2,図2〜図6に示す。   Moreover, the battery performance test similar to Example 1 was done, and the result is shown in Table 2 and FIGS.

(実施例4)
実施例1と同様の方法で、正極及び負極を作製した。作製した正極及び負極は、いずれもプレス機で圧延成型した後、120℃で12時間真空乾燥した。このときの負極合剤の密度,負極集電体の両面合剤塗工量,空隙率及び(004)/(100)の積分強度比を表1に示す。負極合剤の密度は1.7g/cm3 、負極集電体の両面合剤塗工量は8.0mg/
cm2、空隙率は20%、(004)/(100)の積分強度比は32であった。
Example 4
In the same manner as in Example 1, a positive electrode and a negative electrode were produced. The produced positive electrode and negative electrode were both roll-formed with a press and then vacuum-dried at 120 ° C. for 12 hours. Table 1 shows the density of the negative electrode mixture, the coating amount of the double-sided mixture of the negative electrode current collector, the porosity, and the integrated strength ratio of (004) / (100). The density of the negative electrode mixture is 1.7 g / cm 3 and the coating amount of the negative electrode current collector on both sides is 8.0 mg / cm 2 .
cm 2 , the porosity was 20%, and the integrated intensity ratio of (004) / (100) was 32.

また、実施例1と同様の電池性能試験を行い、その結果を表2,図2〜図6に示す。   Moreover, the battery performance test similar to Example 1 was done, and the result is shown in Table 2 and FIGS.

(比較例1)
実施例1と同様の方法で、正極及び負極を作製した。作製した正極及び負極は、いずれもプレス機で圧延成型した後、120℃で12時間真空乾燥した。このときの負極合剤の密度,負極集電体の両面合剤塗工量,空隙率及び(004)/(100)の積分強度比を表1に示す。負極合剤の密度は1.4g/cm3、負極集電体の両面合剤塗工量は10.5mg/cm2、空隙率は33%、(004)/(100)の積分強度比は20であった。
(Comparative Example 1)
In the same manner as in Example 1, a positive electrode and a negative electrode were produced. The produced positive electrode and negative electrode were both roll-formed with a press and then vacuum-dried at 120 ° C. for 12 hours. Table 1 shows the density of the negative electrode mixture, the coating amount of the double-sided mixture of the negative electrode current collector, the porosity, and the integrated strength ratio of (004) / (100). The density of the negative electrode mixture is 1.4 g / cm 3 , the double-sided mixture coating amount of the negative electrode current collector is 10.5 mg / cm 2 , the porosity is 33%, and the integrated strength ratio of (004) / (100) is It was 20.

また、実施例1と同様の電池性能試験を行い、その結果を表2,図2に示す。   Moreover, the battery performance test similar to Example 1 was done, and the result is shown in Table 2 and FIG.

(比較例2)
実施例1と同様の方法で、正極及び負極を作製した。作製した正極及び負極は、いずれもプレス機で圧延成型した後、120℃で12時間真空乾燥した。このときの負極合剤の密度,負極集電体の両面合剤塗工量,空隙率及び(004)/(100)の積分強度比を表1に示す。負極合剤の密度は1.0g/cm3 、負極集電体の両面合剤塗工量は8.0mg/
cm2、空隙率は52%、(004)/(100)の積分強度比は20であった。
(Comparative Example 2)
In the same manner as in Example 1, a positive electrode and a negative electrode were produced. The produced positive electrode and negative electrode were both roll-formed with a press and then vacuum-dried at 120 ° C. for 12 hours. Table 1 shows the density of the negative electrode mixture, the coating amount of the double-sided mixture of the negative electrode current collector, the porosity, and the integrated strength ratio of (004) / (100). The density of the negative electrode mixture is 1.0 g / cm 3 , and the coating amount of the negative electrode current collector on both sides is 8.0 mg / cm 2 .
cm 2 , the porosity was 52%, and the integrated intensity ratio of (004) / (100) was 20.

また、実施例1と同様の電池性能試験を行い、その結果を表2,図2〜図6に示す。   Moreover, the battery performance test similar to Example 1 was done, and the result is shown in Table 2 and FIGS.

(比較例3)
実施例1と同様の方法で、正極及び負極を作製した。作製した正極及び負極は、いずれもプレス機で圧延成型した後、120℃で12時間真空乾燥した。このときの負極合剤の密度,負極集電体の両面合剤塗工量,空隙率及び(004)/(100)の積分強度比を表1に示す。負極合剤の密度は1.9g/cm3 、負極集電体の両面合剤塗工量は8.0mg/
cm2、空隙率は10%、(004)/(100)の積分強度比は34であった。
(Comparative Example 3)
In the same manner as in Example 1, a positive electrode and a negative electrode were produced. The produced positive electrode and negative electrode were both roll-formed with a press and then vacuum-dried at 120 ° C. for 12 hours. Table 1 shows the density of the negative electrode mixture, the coating amount of the double-sided mixture of the negative electrode current collector, the porosity, and the integrated strength ratio of (004) / (100). The density of the negative electrode mixture is 1.9 g / cm 3 and the coating amount of the negative electrode current collector on both sides is 8.0 mg / cm 2 .
cm 2 , the porosity was 10%, and the integrated intensity ratio of (004) / (100) was 34.

また、実施例1と同様の電池性能試験を行い、その結果を表2,図2〜図6に示す。   Moreover, the battery performance test similar to Example 1 was done, and the result is shown in Table 2 and FIGS.

Figure 2008218248
Figure 2008218248

表2より、最も塗工量の少ない電池においても電極密度を高くすることにより、エネルギー密度70Wh/kgと高く、回生エネルギーの利用可能な電池を提供できることがわかる。   Table 2 shows that by increasing the electrode density even in the battery with the smallest coating amount, it is possible to provide a battery that has a high energy density of 70 Wh / kg and can use regenerative energy.

図2より、負極合剤両面塗工量が6mg/cm2以上8mg/cm2以下の範囲では、20C放電容量維持率が65%以上と良好な値を示し、塗工量7.4mg/cm2以下では20C放電容量維持率が90%前後と高い値を示した。 As shown in FIG. 2, when the coating amount on both sides of the negative electrode mixture is 6 mg / cm 2 or more and 8 mg / cm 2 or less, the 20C discharge capacity retention rate is 65% or more, which is a good value, and the coating amount is 7.4 mg / cm. Below 2 , the 20C discharge capacity retention rate was as high as around 90%.

図3及び図4より、20C放電容量維持率が65%以上である良好な密度の範囲は、
1.4g/cm3以上1.9g/cm3以下であり、入出力特性を考慮すると1.4g/cm3以上
1.7g/cm3以下がより好ましい範囲であることが判る。
From FIG.3 and FIG.4, the range of the favorable density whose 20C discharge capacity maintenance factor is 65% or more is
It is 1.4 g / cm 3 or more and 1.9 g / cm 3 or less, and considering input / output characteristics, it is understood that 1.4 g / cm 3 or more and 1.7 g / cm 3 or less is a more preferable range.

また、図5及び図6より、負極合剤の空隙率が20%以上,35%以下の範囲が、電極捲回体を形成するリチウム二次電池において、負荷特性及び入出力特性の観点から最も好適である。   5 and 6, the negative electrode mixture has a porosity of 20% or more and 35% or less in the lithium secondary battery forming the electrode winding body from the viewpoint of load characteristics and input / output characteristics. Is preferred.

本発明の電極捲回体を示す側面断面図。Side surface sectional drawing which shows the electrode winding body of this invention. 密度1.4g/cm3における塗工量と20C放電維持率との関係図。The relationship figure of the coating amount in a density of 1.4 g / cm < 3 >, and a 20C discharge maintenance factor. 塗工量8.0mg/cm2における密度と20C放電維持率との関係図。The relationship figure of the density in the coating amount of 8.0 mg / cm < 2 >, and a 20C discharge maintenance factor. 塗工量8.0mg/cm2における密度と入出力との関係図。The relationship diagram of density and input / output at a coating amount of 8.0 mg / cm 2 . 塗工量8.0mg/cm2における空隙率と20C放電維持率との関係図。The relationship figure of the porosity and 20C discharge maintenance factor in coating amount 8.0mg / cm < 2 >. 塗工量8.0mg/cm2における空隙率と入出力との関係図。The relationship figure of the porosity and input / output in the coating amount of 8.0 mg / cm < 2 >.

符号の説明Explanation of symbols

1 正極
2 負極
3 セパレータ
4 電池缶
5 正極集電リード片
6 負極集電リード片
7 正極集電リード部
8 負極集電リード部
9 電池蓋
10 破裂弁
11 正極端子部
12 ガスケット
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Battery can 5 Positive electrode current collection lead piece 6 Negative electrode current collection lead piece 7 Positive electrode current collection lead part 8 Negative electrode current collection lead part 9 Battery cover 10 Rupture valve 11 Positive electrode terminal part 12 Gasket

Claims (13)

リチウムを吸蔵放出可能な正極と、リチウムを吸蔵放出可能な負極と、が電解質及びセパレータを介して形成されるリチウム二次電池において、
前記正極と、前記負極と、が捲回されて電極捲回体を形成しており、
前記負極は、負極集電体と負極合剤とを有し、
前記負極合剤は炭素材料を有し、
前記負極合剤の密度が1.4g/cm3以上,1.7g/cm3以下であり、
前記負極合剤の前記負極集電体への塗工量が6mg/cm2以上,8mg/cm2以下であることを特徴とするリチウム二次電池。
In a lithium secondary battery in which a positive electrode capable of inserting and extracting lithium and a negative electrode capable of inserting and extracting lithium are formed via an electrolyte and a separator,
The positive electrode and the negative electrode are wound to form an electrode winding body,
The negative electrode has a negative electrode current collector and a negative electrode mixture,
The negative electrode mixture has a carbon material,
The density of the negative electrode mixture is 1.4 g / cm 3 or more and 1.7 g / cm 3 or less,
The lithium secondary battery, wherein the amount of the negative electrode mixture applied to the negative electrode current collector is 6 mg / cm 2 or more and 8 mg / cm 2 or less.
前記炭素材料が、黒鉛であることを特徴とする請求項1に記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein the carbon material is graphite. 前記負極合剤が、負極活物質と導電剤と結着剤とを含み、前記負極活物質が黒鉛であることを特徴とする請求項1に記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein the negative electrode mixture includes a negative electrode active material, a conductive agent, and a binder, and the negative electrode active material is graphite. 前記負極合剤の空隙率が20%以上,35%以下であることを特徴とする請求項1に記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein a porosity of the negative electrode mixture is 20% or more and 35% or less. 前記負極合剤の前記負極集電体への塗工量が6mg/cm2以上,7.4mg/cm2 以下であることを特徴とする請求項1に記載のリチウム二次電池。 2. The lithium secondary battery according to claim 1, wherein an amount of the negative electrode mixture applied to the negative electrode current collector is 6 mg / cm 2 or more and 7.4 mg / cm 2 or less. 前記炭素材料の、d002が3.356Å以下、Lc(002)が1000Å以上、La(110)が1000Å以上であることを特徴とする請求項1に記載のリチウム二次電池。 2. The lithium secondary battery according to claim 1, wherein the carbon material has d 002 of 3.356 3 or less, Lc (002) of 1000 Å or more, and La (110) of 1000 Å or more. 前記炭素材料の(004)/(100)の積分強度比が、21〜32であることを特徴とする請求項1に記載のリチウム二次電池。   2. The lithium secondary battery according to claim 1, wherein an integrated intensity ratio of (004) / (100) of the carbon material is 21 to 32. 3. リチウムを吸蔵放出可能な正極と、リチウムを吸蔵放出可能な負極と、が電解質及びセパレータを介して形成されるリチウム二次電池において、
前記正極と、前記負極と、が捲回されて電極捲回体を形成しており、
前記負極は、負極集電体と負極合剤とを有し、
前記負極合剤は炭素材料を有し、
前記負極合剤の空隙率が20%以上,35%以下であり、
前記負極合剤の前記負極集電体への塗工量が6mg/cm2以上,8mg/cm2以下であることを特徴とするリチウム二次電池。
In a lithium secondary battery in which a positive electrode capable of inserting and extracting lithium and a negative electrode capable of inserting and extracting lithium are formed via an electrolyte and a separator,
The positive electrode and the negative electrode are wound to form an electrode winding body,
The negative electrode has a negative electrode current collector and a negative electrode mixture,
The negative electrode mixture has a carbon material,
The porosity of the negative electrode mixture is 20% or more and 35% or less,
The lithium secondary battery, wherein the amount of the negative electrode mixture applied to the negative electrode current collector is 6 mg / cm 2 or more and 8 mg / cm 2 or less.
前記負極合剤が、負極活物質と導電剤と結着剤とを含み、前記負極活物質が炭素材料であることを特徴とする請求項8に記載のリチウム二次電池。   The lithium secondary battery according to claim 8, wherein the negative electrode mixture includes a negative electrode active material, a conductive agent, and a binder, and the negative electrode active material is a carbon material. 前記炭素材料が、黒鉛であることを特徴とする請求項9に記載のリチウム二次電池。   The lithium secondary battery according to claim 9, wherein the carbon material is graphite. 前記炭素材料の、d002が3.356Å以下であることを特徴とする請求項8に記載のリチウム二次電池。 The lithium secondary battery according to claim 8, wherein d 002 of the carbon material is not more than 3.356 Å. 前記負極合剤の(004)/(100)の積分強度比が、21〜32であることを特徴とする請求項8に記載のリチウム二次電池。   9. The lithium secondary battery according to claim 8, wherein an integrated intensity ratio of (004) / (100) of the negative electrode mixture is 21 to 32. 10. 前記黒鉛は、粒径が10μm以上30μm以下の範囲にある粒子を95%以上含有していることを特徴とする請求項10に記載のリチウム二次電池。   11. The lithium secondary battery according to claim 10, wherein the graphite contains 95% or more of particles having a particle size in a range of 10 μm to 30 μm.
JP2007054997A 2007-03-06 2007-03-06 Lithium secondary battery Expired - Fee Related JP5097415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007054997A JP5097415B2 (en) 2007-03-06 2007-03-06 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007054997A JP5097415B2 (en) 2007-03-06 2007-03-06 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2008218248A true JP2008218248A (en) 2008-09-18
JP5097415B2 JP5097415B2 (en) 2012-12-12

Family

ID=39838040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007054997A Expired - Fee Related JP5097415B2 (en) 2007-03-06 2007-03-06 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5097415B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147647A1 (en) * 2011-04-27 2012-11-01 新神戸電機株式会社 Lithium ion secondary cell
US8986885B2 (en) 2010-02-25 2015-03-24 Hitachi Automotive Systems, Ltd. Lithium ion battery
CN105206796A (en) * 2012-02-29 2015-12-30 新神户电机株式会社 Lithium ion battery
JP2017152176A (en) * 2016-02-24 2017-08-31 オートモーティブエナジーサプライ株式会社 Lithium ion secondary battery
US9882207B2 (en) 2012-03-30 2018-01-30 Toyota Jidosha Kabushiki Kaisha Lithium-ion secondary battery
CN114730862A (en) * 2019-11-27 2022-07-08 三洋电机株式会社 Nonaqueous electrolyte secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108878954B (en) 2017-05-16 2021-04-06 株式会社理光 Nonaqueous electrolyte accumulator element

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255767A (en) * 1997-03-11 1998-09-25 Sanyo Electric Co Ltd Set battery for use in electric vehicle
JP2000173666A (en) * 1998-12-10 2000-06-23 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2001110405A (en) * 1999-10-12 2001-04-20 Sanyo Electric Co Ltd Gel high-molecular solid electrolyte battery and method for manufacturing the same
JP2002260742A (en) * 2001-02-27 2002-09-13 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2004095332A (en) * 2002-08-30 2004-03-25 Hitachi Chem Co Ltd Binder resin composition, mix slurry, electrode, and nonaqueous elecdtrolyte secondary battery
JP2004178879A (en) * 2002-11-26 2004-06-24 Hitachi Maxell Ltd Lithium secondary battery
JP2005197002A (en) * 2003-12-26 2005-07-21 Hitachi Ltd Lithium ion secondary battery
JP2005310764A (en) * 2004-03-23 2005-11-04 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2006024375A (en) * 2004-07-06 2006-01-26 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2006216372A (en) * 2005-02-03 2006-08-17 Sony Corp Battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255767A (en) * 1997-03-11 1998-09-25 Sanyo Electric Co Ltd Set battery for use in electric vehicle
JP2000173666A (en) * 1998-12-10 2000-06-23 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2001110405A (en) * 1999-10-12 2001-04-20 Sanyo Electric Co Ltd Gel high-molecular solid electrolyte battery and method for manufacturing the same
JP2002260742A (en) * 2001-02-27 2002-09-13 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2004095332A (en) * 2002-08-30 2004-03-25 Hitachi Chem Co Ltd Binder resin composition, mix slurry, electrode, and nonaqueous elecdtrolyte secondary battery
JP2004178879A (en) * 2002-11-26 2004-06-24 Hitachi Maxell Ltd Lithium secondary battery
JP2005197002A (en) * 2003-12-26 2005-07-21 Hitachi Ltd Lithium ion secondary battery
JP2005310764A (en) * 2004-03-23 2005-11-04 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2006024375A (en) * 2004-07-06 2006-01-26 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2006216372A (en) * 2005-02-03 2006-08-17 Sony Corp Battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8986885B2 (en) 2010-02-25 2015-03-24 Hitachi Automotive Systems, Ltd. Lithium ion battery
WO2012147647A1 (en) * 2011-04-27 2012-11-01 新神戸電機株式会社 Lithium ion secondary cell
CN105206796A (en) * 2012-02-29 2015-12-30 新神户电机株式会社 Lithium ion battery
US9882207B2 (en) 2012-03-30 2018-01-30 Toyota Jidosha Kabushiki Kaisha Lithium-ion secondary battery
DE112012006167B4 (en) 2012-03-30 2024-03-28 Toyota Jidosha Kabushiki Kaisha Lithium-ion secondary battery
JP2017152176A (en) * 2016-02-24 2017-08-31 オートモーティブエナジーサプライ株式会社 Lithium ion secondary battery
CN114730862A (en) * 2019-11-27 2022-07-08 三洋电机株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP5097415B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
KR102633418B1 (en) Method for producing negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and negative electrode material for non-aqueous electrolyte secondary battery
JP5081886B2 (en) Non-aqueous electrolyte type lithium ion secondary battery
JP5049820B2 (en) Lithium ion secondary battery
US20090305136A1 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2002358966A (en) Lithium secondary battery positive electrode plate and lithium secondary battery
TWI504037B (en) Lithium secondary battery pack, and the use of this electronic machine, charging system and charging method
JP2011029408A (en) Electrochemical capacitor and electrode layer used therefor, and method of manufacturing the electrode layer
JP2007035488A (en) Non-aqueous electrolyte battery
JP2007335360A (en) Lithium secondary cell
JP5097415B2 (en) Lithium secondary battery
JP2012022794A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP4714229B2 (en) Lithium secondary battery
JP2007317583A (en) Lithium secondary battery
JPWO2014122748A1 (en) Negative electrode active material for lithium secondary battery and lithium secondary battery
CN105720234A (en) Egative Electrode Material For Lithium Ion Battery
JP2015153659A (en) Nonaqueous electrolyte secondary battery
US20230361292A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JP2023538082A (en) Negative electrode and secondary battery containing the same
JP2009259607A (en) Battery pack
JP7136017B2 (en) Non-aqueous electrolyte secondary battery
JP2009218112A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP2007165074A (en) Lithium secondary battery, electric vehicle using it, and power tool
JPWO2014068903A1 (en) Nonaqueous electrolyte secondary battery
JP6988169B2 (en) A method for manufacturing a negative electrode for a non-aqueous electrolyte secondary battery, and a method for manufacturing a non-aqueous electrolyte secondary battery.
WO2011074083A1 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

R150 Certificate of patent or registration of utility model

Ref document number: 5097415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees