JP2008216197A - エッジ検出装置及びその光束調整方法 - Google Patents

エッジ検出装置及びその光束調整方法 Download PDF

Info

Publication number
JP2008216197A
JP2008216197A JP2007057489A JP2007057489A JP2008216197A JP 2008216197 A JP2008216197 A JP 2008216197A JP 2007057489 A JP2007057489 A JP 2007057489A JP 2007057489 A JP2007057489 A JP 2007057489A JP 2008216197 A JP2008216197 A JP 2008216197A
Authority
JP
Japan
Prior art keywords
light
line sensor
projector
measurement
monochromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007057489A
Other languages
English (en)
Other versions
JP4989993B2 (ja
Inventor
Toshiki Koshi
俊樹 越
Yoshihiko Okayama
喜彦 岡山
Shiro Kano
史朗 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2007057489A priority Critical patent/JP4989993B2/ja
Publication of JP2008216197A publication Critical patent/JP2008216197A/ja
Application granted granted Critical
Publication of JP4989993B2 publication Critical patent/JP4989993B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】測定空間内の測定対象物の位置に依らず、測定対象物を確実に検出することができるエッジ検出装置を提供する。
【解決手段】光源6からの単色光をその光軸に対し平行から所定の範囲で収束させた単色光束としてラインセンサ8に投光する。
【選択図】図2

Description

この発明は、投光器から照射された単色光束を受光器で受光し、該単色光束を遮る測定対象物のエッジ位置を検出する光学式のエッジ検出装置及びその光束調整方法に関するものである。
図7は、特許文献1に開示される従来のエッジ検出装置の構成を示す図である。図7において、このエッジ検出装置は、ラインセンサ100、投光器101及びエッジ検出部102を備える。ラインセンサ100は、一定方向に所定のピッチで複数の受光セル(画素)が配列されており、投光器101から照射された単色平行光を受光する。投光器101は、ラインセンサ100の受光面に対向して配置され、レーザダイオード(LD)からなる光源101a、光ファイバ101b及び投光レンズ101cを備える。
投光器101において、光源101aにより発生された単色光(レーザ光)は、光ファイバ101bを介して投光レンズ101cに導かれ、投光レンズ101cによって単色平行光束に変換された後、ラインセンサ100に照射される。投光器101とラインセンサ100の受光面の間に形成された測定空間103を測定対象物104が通過すると、ラインセンサ100へ照射される単色平行光が遮蔽される。エッジ検出部102は、マイクロコンピュータから構成されており、ラインセンサ100の出力を解析して測定空間103で単色平行光を遮蔽した測定対象物104の受光セルの配列方向におけるエッジ位置を検出する。
エッジ検出部102による測定対象物104のエッジ位置の検出は、測定空間103で測定対象物104が単色平行光束の一部を遮ることにより生じた、ラインセンサ100の全受光量の変化あるいは測定対象物104のエッジ部分に生じるフレネル回折に起因した受光パターンを解析することによりなされる。このようにして、従来のエッジ検出装置は、ラインセンサ100の受光面上の光強度分布に従って測定対象物104のエッジ位置を高精度に検出する。
特開2004−177335号公報
従来のエッジ検出装置は、上記のように構成されているので、ラインセンサ100の全ての受光セルに単色平行光が照射されていれば、ラインセンサ100の受光セル配列方向の幅分だけ、測定対象物104を検出することが可能である。しかしながら、エッジ検出装置を製造するにあたり、部品間の個体差等を考慮すると、全ての製品で投光器101における単色光の出射位置(光ファイバ101bの出射面位置)を投光レンズ101cの焦点位置に一致させて完全な平行光とすることは困難である。
そこで、従来のエッジ検出装置では、製造時のばらつきなどにより、投光レンズ101cで単色光をラインセンサ100の受光セル配列方向の幅より広げた単色光束となる場合がある。
図8は、投光レンズによって単色光束をラインセンサの受光セル配列方向の幅より広げた場合を示す図であり、測定対象物104が測定空間103における単色光の光路を横断する方向に移動する場合を示している。図8(a)において、測定対象物104bは、測定空間103のラインセンサ100側を移動し、図8(a)中の移動方向の位置でエッジがラインセンサ100の最端部に配置された受光セル105に受光されるべき単色光を遮っている。
一方、測定対象物104aは、エッジ位置からラインセンサ100の受光面までの距離Bが測定対象物104bよりも大きく、測定空間103の投光レンズ101c側を移動している。この場合、測定対象物104aは、図8(a)に示すように、測定対象物104bと同一の移動方向の位置であっても、ラインセンサ100に受光されるべき単色光を遮っていない。つまり、測定対象物104aは、図8(b)に示すようにさらに距離Cだけ移動しないと、エッジがラインセンサ100の受光セル105に受光されるべき単色光を遮らない。
従って、投光レンズ101cによって単色光束がラインセンサ100の受光セル配列方向の幅より広がっている場合、ラインセンサ100の受光面からの距離が近い測定対象物104aは、測定対象物104bよりも測定空間103内を移動方向にさらに進んだ位置まで移動しないと、ラインセンサ100が検出できない。
図9は、図8中のエッジ検出装置による測定対象物の移動量に対するエッジ位置の移動量測定結果を示すグラフであり、測定空間の投光レンズ側を移動する測定対象物についての結果を示している。図9では、ラインセンサ100の受光セル配列方向の幅が30mmである場合を例に挙げており、投光レンズ101cからラインセンサ100の受光セルに完全な単色平行光が照射されていれば、基準位置0mmとした場合、測定空間103内をラインセンサ100に沿って移動する測定対象物104のエッジが基準位置から30mm離れた位置まで可能である。なお、測定対象物104の移動ステージの基準位置は、図8(a)に示した測定対象物104a,104bの各下端の位置である。
しかしながら、このエッジ検出装置では、上述したように測定対象物104bと比較して投光レンズ101c側を移動する測定対象物104aが、測定空間103内をさらに進んだ位置まで移動しないと、ラインセンサ100がエッジを検出できない。このため、図9に示すように、測定対象物104aの移動ステージを0mmから30mmまで移動させても、測定対象物104aの移動量(エッジの移動量)が28mm分しか測定されず、前後1mmずつの計測誤差が生じる。つまり、測定対象物104の移動ステージの基準位置は、図8(a)で示した測定対象物104a,104bの各下端位置であることから、測定対象物104aの場合、測定が開始されるまでの手前の1mmと測定空間103を通過するまでの奥の1mmに測定不能エリアが生じ、測定対象物104が実際に移動した移動量分の計測が不可能となる。
このように、従来のエッジ検出装置は、測定空間103における測定対象物104の位置関係によって、測定対象物104を同様に移動させても計測開始位置がずれる場合がある。この傾向は、ラインセンサ100の受光セル配列方向の幅に製品ごとの個体差がある場合にさらに顕著になり、測定対象物104と投光器101及びラインセンサ100との位置関係によって測定対象物104の移動量との間に計測誤差が生じる。
この発明は、上記のような課題を解決するためになされたもので、測定空間内の測定対象物の位置に依らず、測定空間内であれば測定対象物を確実に検出することができるエッジ検出装置を得ることを目的とする。
また、この発明は、投光器から受光器へ照射する単色光束の収束度合いを簡易な操作で調整することができるエッジ検出装置の光束調整方法を得ることを目的とする。
この発明に係るエッジ検出装置は、複数の受光セルを配列したラインセンサを有する受光器と、単色光を発生する光源と、当該光源からの単色光をその光軸に対し平行から所定の範囲で収束させた単色光束に変換してラインセンサに投光する投光レンズとを有する投光器とを備えるものである。
この発明に係るエッジ検出装置は、投光器が、光源の単色光の出射部が投光レンズに向くように光源を搭載する第1ステージと、第1ステージを投光レンズに向かって左右に稼働させる第2ステージと、第2ステージを投光レンズの方向に沿って前後に稼働させる第3ステージとを備えるものである。
この発明に係るエッジ検出装置は、所定の範囲が光軸を中心として0.01°以内であり、所定の範囲で収束させた単色光束がラインセンサの計測に使用する受光セルが配列された範囲に照射されるものである。
この発明に係るエッジ検出装置の光束調整方法は、上記エッジ検出装置の光束調整方法において、投光器と受光器を対向配置するステップと、投光器と受光器の間に形成される測定空間の投光器側に所定寸法を有する測定対象物を配置して当該測定対象物の寸法を計測するステップと、測定空間の受光器側に所定寸法を有する測定対象物を配置して当該測定対象物の寸法を計測するステップと、両ステップで計測された測定対象物の寸法差に基づいて、光源及び投光レンズのうちの少なくとも1つの位置を調整することにより、投光レンズからラインセンサへ投光される単色光束の収束度合いを調整するステップとを備えるものである。
この発明に係るエッジ検出装置の光束調整方法は、上記エッジ検出装置の光束調整方法において、投光器と受光器を異なる間隔で対向配置し、各間隔で投光器からの単色光束を受光したラインセンサの受光セル分布を計測するステップと、各間隔で計測された受光セル分布に基づいて、光源及び投光レンズのうちの少なくとも1つの位置を調整することにより、投光レンズからラインセンサへ投光される単色光束の収束度合いを調整するステップとを備えるものである。
この発明によれば、複数の受光セルを配列したラインセンサを有する受光器と、単色光を発生する光源と、当該光源からの単色光をその光軸に対し平行から所定の範囲で収束させた単色光束に変換してラインセンサに投光する投光レンズとを有する投光器とを備えるので、調整が困難な完全な平行光を生成することなく、投光器と受光器の間に形成される測定空間における測定対象物の位置に起因して本来よりも測定範囲が狭まることを防止できるという効果がある。なお、ここでいう「本来」とは、例えば図8(a)において測定対象物104bの場合では30mmの移動量を測定できることを指しており、「測定範囲が狭まる」とは、例えば図8(a)において測定対象物104aが30mm移動したのに対して28mmしか測定できないことを指している。
この発明によれば、投光器が、光源の単色光の出射部が投光レンズに向くように光源を搭載する第1ステージと、第1ステージを投光レンズに向かって左右に稼働させる第2ステージと、第2ステージを投光レンズの方向に沿って前後に稼働させる第3ステージとを備えるので、簡易な構成で投光器から受光器へ照射する単色光束を調整することができるという効果がある。
この発明によれば、所定の範囲が光軸を中心として0.01°以内であり、所定の範囲で収束させた単色光束がラインセンサの計測に使用する受光セルが配列された範囲に照射されるので、測定対象物の実移動量とその測定値との誤差をμmオーダーに抑えることができるという効果がある。
この発明によれば、投光器と受光器を対向配置するステップと、投光器と受光器の間に形成される測定空間の投光器側に所定寸法を有する測定対象物を配置して当該測定対象物の寸法を計測するステップと、測定空間の受光器側に所定寸法を有する測定対象物を配置して当該測定対象物の寸法を計測するステップと、両ステップで計測された測定対象物の寸法差に基づいて、光源及び投光レンズのうちの少なくとも1つの位置を調整することにより、投光レンズからラインセンサへ投光される単色光束の収束度合いを調整するステップとを備えるので、簡易な基準で単色光束の収束度合いを保つことができるという効果がある。
この発明によれば、投光器と受光器を異なる間隔で対向配置し、各間隔で投光器からの単色光束を受光したラインセンサの受光セル分布を計測するステップと、各間隔で計測された受光セル分布に基づいて、光源及び投光レンズのうちの少なくとも1つの位置を調整することにより、投光レンズからラインセンサへ投光される単色光束の収束度合いを調整するステップとを備えるので、簡易な基準で単色光束の収束度合いを保つことができるという効果がある。
実施の形態1.
図1は、この発明の実施の形態1によるエッジ検出装置の構成を示す図である。図1において、実施の形態1によるエッジ検出装置は、投光器1、受光器2及びエッジ検出部3を備える。投光器1は、受光器2のラインセンサ8の受光面に対向して配置され、レーザダイオード(LD)からなる光源6及び投光レンズ7を備える。光源6は、不図示の移動ステージ上に設けられ、少なくとも図1中の投光レンズ7との距離Aが調整可能である。この距離Aを調整することにより、投光レンズ7は、光源6により発生された単色光を、ラインセンサ8の中央部に光軸を合わせつつ、該光軸に対し平行から所定の範囲で収束(絞った)させた単色光束として出力する。
受光器2は、ラインセンサ8及びA/D変換部9を備える。ラインセンサ8は、一定方向に所定のピッチで複数の受光セル(画素)が配列された受光面を有しており、投光器1から照射された単色光束を受光する。A/D変換部9は、ラインセンサ8からのアナログ出力信号をデジタル信号に変換してエッジ検出部3に出力する。
エッジ検出部3は、マイクロコンピュータ等により構成され、プロセッサ10及び表示部11を備える。プロセッサ10は、A/D変換部9によってデジタル変換されたラインセンサ8の出力を解析して測定空間4で単色光束の一部を遮蔽した測定対象物5の受光セルの配列方向におけるエッジ位置を検出する。表示部11は、プロセッサ10による検出結果を表示する。なお、エッジ検出部3は、受光器2内に設けてもよい。
投光器1において、光源6により発生された単色光が、投光レンズ7によって光軸に対し平行から所定の範囲で収束させた単色光束に変換された後、ラインセンサ8に照射される。投光器1とラインセンサ8との間の測定空間4において、測定対象物5が投光器1から照射される単色光束の光路を横断するように移動すると、ラインセンサ8に受光されるべき単色光束の一部が遮蔽される。なお、投光レンズ7の幅Laは、ラインセンサ8の幅Lbより大きく設定することにより、ラインセンサ8の受光セルを全て使って計測することが可能となり、かつ光軸又は計測可能範囲を合わせる操作が容易になる。また、投光レンズ7の幅Laをラインセンサ8の幅Lbより大きく設定すれば、ラインセンサ8の受光セルのうち両端の受光セルを使わずに中央部近辺の受光セルで計測する場合においても、同様に容易に光軸又は計測可能範囲を合わせることができる。
エッジ検出部3のプロセッサ10は、測定空間4で測定対象物5が単色光束の一部を遮ることにより生じたラインセンサ8の全受光量の変化あるいは測定対象物5のエッジ部分に生じるフレネル回折に起因した受光パターンを解析することにより、該測定対象物のエッジ位置を検出する。このようにして検出された測定対象物5のエッジ位置等の測定結果は表示部11に表示することも可能であり、これによりユーザが測定結果を視認できる。
図2は、図1中の投光レンズを介してラインセンサに照射される単色光束を示す図である。図2において、実施の形態1によるエッジ検出装置では、光源6の移動ステージ等を動かすことにより、光源6の単色光出射面から投光レンズ7の位置までの距離Aを調節し、光源6により発生された単色光をその光軸に対し平行から所定の範囲で収束させた単色光束に変換する。
図2に示すように、投光レンズ7で単色光束を絞ることにより、ラインセンサ8の受光面からエッジまでの距離Bが大きく、測定空間4の投光レンズ7側を移動する測定対象物5aが、ラインセンサ8側の測定対象物と同一位置でラインセンサ8の最端部の受光セル8aに受光されるべき単色光を遮蔽する。
このように、実施の形態1によるエッジ検出装置では、従来のエッジ検出装置とは異なり、投光レンズ7で単色光束を絞ってラインセンサ8に照射することにより、測定空間4内の測定対象物5の位置に依らず、測定対象物5の実移動量を確実に検出でき、測定空間4内の測定対象物5のラインセンサ8又は投光レンズ7との位置や距離に起因した計測不可状態を抑制することができる。また、製造時において、単色光束を収束させる方向のみに調整することにより、全ての製品に対して同様の特性と性能を引き出すことができ、製品管理が容易となる。
なお、単色光束を収束させる所定の範囲としては、投光レンズ7の端面位置aからラインセンサ8の受光面の位置bまでの距離を300mmとした場合、単色光束の光軸に対して0.01°以下の範囲とすることが望ましい。更には投光器1と受光器2の測定空間4の距離が離れた場合でも、ラインセンサ8の受光セルのうち実際に計測に使用するセルの配列幅以上に単色光束を照射することが望ましい。
実際のエッジ検出装置では、測定の高精度化が求められており、図9に示したような測定対象物5の実移動量(測定空間4内で測定対象物を移動させる移動ステージの移動量)と測定対象物5のエッジ位置移動量の測定値との誤差が少なくともμmオーダー(数十μm程度)の範囲でなければならない。上述した光束を収束させる好適な範囲は、上記誤差が上記許容範囲となる臨界条件を規定している。
上記範囲よりも光束をさらに狭めると、測定対象物5の実移動量より少ない測定値が得られることとなる。例えば、単色光束を所定の範囲外まで絞りすぎると、上述した測定対象物5の実移動量と測定値との誤差が100μmから数百μm程度までずれる。
また、上述した光束を収束させる好適な範囲では、単色光束を絞りすぎてラインセンサ8と測定対象物5とが離れた場合(距離Bが大きい場合)に実移動量との差異が大きくなることを防ぐことができる。さらに、上記好適な範囲で光束を収束させることにより、投光レンズ7の幅Laとラインセンサ8の幅Lbとの大きさの差異も最小限にすることができる。つまり、実際に計測したい計測幅に対し、投光レンズ7を必要以上に大きく構成しなくてもよい。
なお、従来のように光束を収束させない場合、上述したように測定が開始されるまでの手前の1mmと測定空間を通過するまでの奥の1mmに測定不能エリアが生じ、測定対象物が実際に移動した移動領分の計測が不可能となる。これに対し、上記好適な範囲で光束を収束させて測定対象物5の移動量30mm分のデータをラインセンサ8で取得することができれば、当該データに補正をかけて実際の移動量に変換することは容易である。
次に投光器1の具体的な構成について説明する。
図3は、図1中の投光器の内部構成を示す図であり、投光器1の上部カバーをはずした内部構造を上面から示している。なお、図3において、本発明における特徴部分以外は、記載を省略するか、簡略して記載している。
位置調整用ステージ12は、長手方向が図3の紙面に垂直な方向に沿った長穴が設けられた板状部材16aと光源6を取り付けた板状部材16bとが光源6を前後に挟み込むように配置され、板状部材16aの長穴に通した固定用ねじ15を板状部材16bのねじ穴に螺合して光源6が保持される。この位置調整用ステージ12では、固定用ねじ15をゆるめて長穴の長手方向に沿って移動させてから再度螺合することにより、図3の紙面に垂直な方向(高さ方向)に光源6の位置を調整することができる。
また、位置調整用ステージ13は、位置調整用ステージ12が設置され、長手方向が図3中のA1方向に沿った長穴17を有する板状部材からなり、固定用ねじ18を長穴17に通して位置調整用ステージ14のねじ穴に螺合して設置される。この位置調整用ステージ13は、固定用ねじ18をゆるめて長穴17の長手方向に沿って板状部材を移動させてから再度螺合することにより、A1方向に光源6の位置を調整することができる。
位置調整用ステージ14は、位置調整用ステージ13が設置され、長手方向が図3中のA2方向に沿った長穴19を有する板状部材からなり、固定用ねじ20を長穴19に通して投光器1の筐体に設けたねじ穴に螺合して設置される。この位置調整用ステージ14は、固定用ねじ20をゆるめて長穴19の長手方向に沿って板状部材を移動させてから再度螺合することにより、A2方向に光源6の位置を調整することができる。
投光レンズ7はレンズホルダ21aに挿入され、留め具21bで固定される。レンズホルダ21aのA2方向に垂直な端面は開口しており、光源6側の開口から単色光を入力し、これに対向する端面の開口から単色光束を出力する。
このように、実施の形態1による投光器1では、位置調整用ステージ12,13によりラインセンサ8の中央部に単色光束の光軸を合わせ、位置調整用ステージ14を用いて光源6と投光レンズ7との距離Aが大きくなるように、つまり光源6と投光レンズ7とが遠のくように調整することにより、光源6からの単色光束をその光軸に対し平行から所定の範囲で収束させた単色光束として出力する。
なお、図3では、位置調整用ステージ14を用いて光源6の位置を調整する構成を示したが、投光レンズ7を位置調整用ステージ上に配置し、投光レンズ7側をA2方向に沿って移動させて単色光束の幅を調整するように構成してもよい。
次にラインセンサの実測定幅について説明する。
図4は、実施の形態1によるエッジ検出装置のラインセンサ出力を示す図であり、投光器1からの照射光を受光したラインセンサ8の受光セル分布を示している。なお、図4の横軸は、ラインセンサ8の受光セル位置に対応する受光セル番号を示し、縦軸は受光された単色光の強度である実光量を示している。ここで、受光セル番号とは、ラインセンサ8に配置された受光セルに対して最端部の受光セル(図2中の受光セル8a)から順に付した通し番号である。また、実光量とは、受光器2のA/D変換部9によってデジタル信号に変換されたラインセンサ8の出力信号のカウント値である。
図4において、受光セル番号範囲2aに含まれるラインセンサ8の受光セルは、投光レンズ7から実際に照射光を受光している受光セルを示しており、受光セル番号範囲2bに含まれるラインセンサ8の受光セルは、測定対象物5のエッジ検出に使用する受光セルである。また、受光セル番号範囲2aに含まれるラインセンサ8の受光セルでは、測定対象物5によって投光レンズ7からの照射光が遮蔽されている受光セルを示している。
このように、実際に単色光束を受光している受光セル番号範囲2aに含まれる受光セルのうち、ラインセンサ8の端部の受光セルでは、受光する実光量が急激に低下しており、受光セル番号の最小値又は最大値付近の受光セルは、光源6、投光レンズ7及びラインセンサ8の位置関係によっては単色光をほとんど受光できない場合もある。
そこで、実施の形態1では、ラインセンサ8の中央部に光軸を合わせた光源6からの単色光束をその光軸に対し平行な状態から所定の範囲で収束させた単色光束とするとともに、受光セル番号範囲2aに含まれる受光セルのうち、ラインセンサ8のより中央付近に位置する受光セル番号範囲2bの受光セルで規定される受光セル配列幅を実測定幅とする。なお、この受光セル配列幅は、受光セル番号範囲2b内の受光セル番号によって正確に求めることができ、これによる実測定幅の範囲内で測定対象物5のエッジの全実移動量を計測することが可能である。
以上のように、この実施の形態1によれば、ラインセンサ8の中央部に光軸を合わせた投光器1からの単色光束をその光軸に対し平行から所定の範囲で収束(狭めた)させた単色光束としてラインセンサ8に投光するので、調整が困難な完全な単色平行光を生成することなく、測定空間4内における測定対象物5の位置に起因した計測誤差をなくし、かつ測定対象物5のエッジ位置の実移動量を確実に計測することができる。
実施の形態2.
この実施の形態2では、投光器1と受光器2との間に形成される測定空間4において、投光器1の近傍と受光器2の近傍とに所定寸法を有する測定対象物5を交互に配置し、それぞれの場合で測定対象物5の寸法(単色光を受光できない受光セルの配列幅の寸法)をそれぞれ計測して、これら測定対象物5の計測寸法差を基準として単色光束の収束度合いを調整する。
なお、ここでいう単色光束の収束度合いとは、ラインセンサ8の中央部に光軸を合わせた投光器1からの単色光がその光軸に対し平行からどの程度収束しているかを示す度合いである。従って、投光器1から照射される単色光束が完全な平行光であれば、ラインセンサ8の受光面からの測定対象物5の距離が異なっていても上記差の値は0となる。
図5は、この発明の実施の形態2によるエッジ検出装置の光束調整方法を説明するための図であり、投光器1と受光器2に対する測定対象物5の位置関係を示している。図5では、ラインセンサ8の受光面から距離がB1である、投光器1の近傍に配置した測定対象物5の計測寸法と、ラインセンサ8の受光面から距離がB2(B1>B2)である、受光器2の近傍に配置した測定対象物5の計測寸法との差を基準として単色光束の収束度合いを調整する。
先ず、投光器1と受光器2を対向配置する。例えば、上記実施の形態1の図2で示したように、投光レンズ7の端面位置aからラインセンサ8の受光面の位置bまでの距離が300mmとなる位置に投光器1と受光器2とを配置する。
この後、投光器1と受光器2の間に形成される測定空間4の投光器1側に所定寸法を有する測定対象物5を配置して当該測定対象物5の寸法を計測する。図5の例では、位置aに配置した測定対象物5の寸法を計測する。続いて、測定空間4の受光器2側に所定寸法を有する測定対象物5を配置して当該測定対象物5の寸法を計測する。図5の例では、位置bに配置した測定対象物5の寸法を計測する。
次に、位置aと位置bで計測された測定対象物5の寸法差に基づいて、光源6及び投光レンズ7のうちの少なくとも1つの位置を調整することにより、投光レンズ7からラインセンサ8へ投光される単色光束の収束度合いを調整する。ここで、位置aに配置した測定対象物5の計測寸法と位置bに配置した測定対象物5の計測寸法との差から、投光レンズ7を通過した単色光束がその光軸に対して0.01°以下の範囲で収束するように調整される。
なお、光学系の調整方法としては、投光器1が図3のように構成されている場合、位置調整用ステージ12,13,14を用いて光源6の位置を調整する。この他、投光レンズ7の位置を移動させて調整してもよく、受光器2のラインセンサ8の位置を移動させて調整するようにしてもよい。
以上のように、この実施の形態2によれば、受光器2で検出される測定対象物5の計測寸法を用いて単色光束の収束度合いを調整するので、簡易に基準で単色光束の収束度合いを保つことが可能となる。
実施の形態3.
上記実施の形態2では、ラインセンサ8の受光面からの測定対象物5の距離ごとの測定対象物5の計測寸法の差を基準として用いたが、この実施の形態3は、投光器1と受光器2との間隔を変え、そのときラインセンサ8の出力から求められる受光セル分布を基準として単色光束の収束度合いを調整する。
図6は、この発明の実施の形態3によるエッジ検出装置の光束調整方法を説明するための図であり、投光器1からの照射光を受光したラインセンサ8の受光セル分布を示している。図6において、横軸は、図4と同様にラインセンサ8の受光セル位置に対応する受光セル番号を示しており、縦軸は受光された単色光の強度である実光量を示している。
先ず、投光器1と受光器2を異なる間隔で対向配置し、各間隔で投光器1からの単色光束を受光したラインセンサ8の受光セル分布を計測する。ここで、受光セル分布の幅は、ラインセンサ8の一定方向に配列した受光セルのうち、所定の光量を受光した受光セルの配列幅に相当し、ラインセンサ8の受光面に照射された単色光束の幅に対応する。図6の例では、受光した実光量が実際に計測に使用できる程度の光量である100カウント以上の受光セルによる受光セル分布を計測している。
投光器1と受光器2は、投光器1から照射される単色光束の光軸がラインセンサ8の中央部に位置するように対向配置し、例えば投光器1と受光器2を間隔0mmで配置して、実光量が100カウント以上の受光セル分布を計測する。続いて、投光器1と受光器2との間隔を300mm離して、実光量が100カウント以上の受光セル分布を計測する。
次に、各間隔で計測された受光セル分布に基づいて、光源6及び投光レンズ7のうちの少なくとも1つの位置を調整することにより、投光レンズ7からラインセンサ8へ投光される単色光束の収束度合いを調整する。例えば、投光器1と受光器2との間隔が300mmである場合の受光セル分布幅が、間隔が0mmでの受光セル分布幅より所定の規定値だけ狭くなるように光学系を調整する。
なお、所定の規定値としては、上記実施の形態1と同様に、投光器1と受光器2との間隔が0mmと300mmの場合、300mmにおける単色光束幅の差分から、投光レンズ7を通過した単色光束がその光軸に対して0.01°以下の範囲で収束するように受光セル分布の幅差を設定する。
また、光学系の調整方法としては、投光器1が図3のように構成されている場合、光源6を位置調整用ステージ12,13,14によって光源6の位置を調整するか、投光レンズ7の位置を移動させて調整してもよい。
以上のように、この実施の形態3によれば、ラインセンサ8の出力から求められる受光セル分布を基準として単色光束の収束度合いを調整するので、簡易に基準で単色光束の収束度合いを保つことが可能となる。
この発明の実施の形態1によるエッジ検出装置の構成を示す図である。 図1中の投光レンズを介してラインセンサに照射される単色光束を示す図である。 図1中の投光器の内部構成を示す図である。 実施の形態1によるエッジ検出装置のラインセンサ出力を示す図である。 この発明の実施の形態2によるエッジ検出装置の光束調整方法を説明するための図である。 この発明の実施の形態3によるエッジ検出装置の光束調整方法を説明するための図である。 従来のエッジ検出装置の構成を示す図である。 単色光束をラインセンサの受光セル配列方向の幅より広げた場合を示す図である。 図8中のエッジ検出装置による測定対象物の移動量に対するエッジ位置の移動量測定結果を示すグラフである。
符号の説明
1 投光器
2 受光器
3 エッジ検出部
4 測定空間
5,5a 測定対象物
6 光源
7 投光レンズ
8 ラインセンサ
8a 受光セル
9 A/D変換部
10 プロセッサ
11 表示部
12〜14 位置調整ステージ
15,18,20 固定用ねじ
16a,16b 板状部材
17,19 長穴
21a レンズホルダ
21b 留め具
100 ラインセンサ
101 投光器
101a 光源
101b 光ファイバ
101c 投光レンズ
102 エッジ検出部
103 測定空間
104,104a,104b 測定対象物
105 受光セル

Claims (5)

  1. 複数の受光セルを配列したラインセンサを有する受光器と、
    単色光を発生する光源と、前記光源からの単色光をその光軸に対し平行から所定の範囲で収束させた単色光束に変換して前記ラインセンサに投光する投光レンズとを有する投光器とを備えたエッジ検出装置。
  2. 投光器は、光源の単色光の出射部が投光レンズに向くように前記光源を搭載する第1ステージと、前記第1ステージを前記投光レンズに向かって左右に稼働させる第2ステージと、前記第2ステージを前記投光レンズの方向に沿って前後に稼働させる第3ステージとを備えたことを特徴とする請求項1記載のエッジ検出装置。
  3. 所定の範囲は、光軸を中心として0.01°以内であり、
    前記所定の範囲で収束させた単色光束は、ラインセンサの計測に使用する受光セルが配列された範囲に照射されることを特徴とする請求項1または請求項2記載のエッジ検出装置。
  4. 請求項1記載のエッジ検出装置の光束調整方法において、
    投光器と受光器を対向配置するステップと、
    前記投光器と前記受光器の間に形成される測定空間の投光器側に所定寸法を有する測定対象物を配置して当該測定対象物の寸法を計測するステップと、
    前記測定空間の受光器側に前記所定寸法を有する測定対象物を配置して当該測定対象物の寸法を計測するステップと、
    前記両ステップで計測された測定対象物の寸法差に基づいて、光源及び投光レンズのうちの少なくとも1つの位置を調整することにより、前記投光レンズから前記ラインセンサへ投光される単色光束の収束度合いを調整するステップとを備えたエッジ検出装置の光束調整方法。
  5. 請求項1記載のエッジ検出装置の光束調整方法において、
    投光器と受光器を異なる間隔で対向配置し、各間隔で前記投光器からの単色光束を受光した前記ラインセンサの受光セル分布を計測するステップと、
    前記各間隔で計測された受光セル分布に基づいて、光源及び投光レンズのうちの少なくとも1つの位置を調整することにより、前記投光レンズから前記ラインセンサへ投光される単色光束の収束度合いを調整するステップとを備えたエッジ検出装置の光束調整方法。
JP2007057489A 2007-03-07 2007-03-07 エッジ検出装置及びその光束調整方法 Active JP4989993B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007057489A JP4989993B2 (ja) 2007-03-07 2007-03-07 エッジ検出装置及びその光束調整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007057489A JP4989993B2 (ja) 2007-03-07 2007-03-07 エッジ検出装置及びその光束調整方法

Publications (2)

Publication Number Publication Date
JP2008216197A true JP2008216197A (ja) 2008-09-18
JP4989993B2 JP4989993B2 (ja) 2012-08-01

Family

ID=39836392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007057489A Active JP4989993B2 (ja) 2007-03-07 2007-03-07 エッジ検出装置及びその光束調整方法

Country Status (1)

Country Link
JP (1) JP4989993B2 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62173007U (ja) * 1986-04-23 1987-11-04
JPH02110303A (ja) * 1988-06-07 1990-04-23 Contrologic Inc 非接触光学ゲージ
JPH07234108A (ja) * 1994-02-24 1995-09-05 Keyence Corp 測定装置
JPH08247722A (ja) * 1995-03-08 1996-09-27 Omron Corp 寸法測定装置
JPH1047928A (ja) * 1996-08-06 1998-02-20 Omron Corp 光学式外形計測装置
JP2000088533A (ja) * 1998-09-16 2000-03-31 Hitachi Metals Ltd 長尺管の寸法計測装置
JP2001166202A (ja) * 1999-12-10 2001-06-22 Katsura Oputo System:Kk 焦点検出方法及び焦点検出装置
JP2004125531A (ja) * 2002-09-30 2004-04-22 Sunx Ltd 寸法測定装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62173007U (ja) * 1986-04-23 1987-11-04
JPH02110303A (ja) * 1988-06-07 1990-04-23 Contrologic Inc 非接触光学ゲージ
JPH07234108A (ja) * 1994-02-24 1995-09-05 Keyence Corp 測定装置
JPH08247722A (ja) * 1995-03-08 1996-09-27 Omron Corp 寸法測定装置
JPH1047928A (ja) * 1996-08-06 1998-02-20 Omron Corp 光学式外形計測装置
JP2000088533A (ja) * 1998-09-16 2000-03-31 Hitachi Metals Ltd 長尺管の寸法計測装置
JP2001166202A (ja) * 1999-12-10 2001-06-22 Katsura Oputo System:Kk 焦点検出方法及び焦点検出装置
JP2004125531A (ja) * 2002-09-30 2004-04-22 Sunx Ltd 寸法測定装置

Also Published As

Publication number Publication date
JP4989993B2 (ja) 2012-08-01

Similar Documents

Publication Publication Date Title
US7505150B2 (en) Device and method for the measurement of the curvature of a surface
US7626688B2 (en) Optical measuring system with a high-speed optical sensing device enabling to sense luminous intensity and chromaticity
EP2437029B1 (en) Distance measuring instrument
TW201411272A (zh) 影像感測器定位裝置及方法
CN107843412B (zh) 光检测系统及光检测装置
ITMI20071931A1 (it) Sorveglianza optoelettronica con test mediante dinamizzazione
US9097516B2 (en) Surface angle and surface angle distribution measurement device
JP2014006134A (ja) 光学測定装置
US11639846B2 (en) Dual-pattern optical 3D dimensioning
CN102650602B (zh) 放射线检查装置
JP2013036948A (ja) 欠陥検査装置
JP4989993B2 (ja) エッジ検出装置及びその光束調整方法
JP2007263587A (ja) 吸光度測定用プローブ及び吸光度測定装置
JP2007526461A (ja) 透明試料の厚み測定装置及びその方法
KR101600187B1 (ko) 묘화 장치
WO2011108263A1 (ja) 光束平行度測定装置
US8665438B2 (en) Color sensing device
JP2008196855A (ja) ウェハの位置決め方法および位置決め装置
JPS6291833A (ja) 光源の2次元配光分布測定装置
WO2019033624A1 (zh) 微透镜阵列检测系统及微透镜阵列的检测方法
CN216954847U (zh) 一种校准光源
CN214096358U (zh) 一种光束质量分析仪
JP2010237167A (ja) 光電センサ
JP4979335B2 (ja) エッジ検出装置
KR100550521B1 (ko) 노광기 및 그 글래스 정렬방법

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080908

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120501

R150 Certificate of patent or registration of utility model

Ref document number: 4989993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250