JP2008215292A - Insulator structure - Google Patents

Insulator structure Download PDF

Info

Publication number
JP2008215292A
JP2008215292A JP2007057040A JP2007057040A JP2008215292A JP 2008215292 A JP2008215292 A JP 2008215292A JP 2007057040 A JP2007057040 A JP 2007057040A JP 2007057040 A JP2007057040 A JP 2007057040A JP 2008215292 A JP2008215292 A JP 2008215292A
Authority
JP
Japan
Prior art keywords
intake passage
insulator
fuel
engine
throttle device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007057040A
Other languages
Japanese (ja)
Other versions
JP4865603B2 (en
Inventor
Makoto Harada
誠 原田
Makoto Ogasawara
誠 小笠原
Yutaka Ono
豊 小野
Hiroyuki Kawakubo
寛之 河窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007057040A priority Critical patent/JP4865603B2/en
Priority to DE102008006994.9A priority patent/DE102008006994B4/en
Publication of JP2008215292A publication Critical patent/JP2008215292A/en
Application granted granted Critical
Publication of JP4865603B2 publication Critical patent/JP4865603B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10078Connections of intake systems to the engine
    • F02M35/10085Connections of intake systems to the engine having a connecting piece, e.g. a flange, between the engine and the air intake being foreseen with a throttle valve, fuel injector, mixture ducts or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10026Plenum chambers
    • F02M35/10032Plenum chambers specially shaped or arranged connecting duct between carburettor or air inlet duct and the plenum chamber; specially positioned carburettors or throttle bodies with respect to the plenum chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10091Air intakes; Induction systems characterised by details of intake ducts: shapes; connections; arrangements
    • F02M35/10144Connections of intake ducts to each other or to another device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10216Fuel injectors; Fuel pipes or rails; Fuel pumps or pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10262Flow guides, obstructions, deflectors or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10268Heating, cooling or thermal insulating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/16Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines characterised by use in vehicles
    • F02M35/162Motorcycles; All-terrain vehicles, e.g. quads, snowmobiles; Small vehicles, e.g. forklifts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulator structure enabling expansion of an adjustment range of output characteristics of an engine by enabling further reduction of the diameter of a restriction opening. <P>SOLUTION: This insulator 11 has a structure connecting an intake passage 5 in an internal combustion engine side connecting to a combustion chamber 4 and an intake passage 8 in a throttle device 3 side adjusting and setting flow rates of fuel and air to be supplied to the combustion chamber 4 to form an intake passage. The insulator 11 is provided with a restriction part 65 restricting a region which the fuel and the air pass through, and the restriction part 65 is formed in a funnel shape in which a passage section area gets smaller as it goes toward a downstream direction of the intake passage. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関側の吸気通路とスロットル装置側の吸気通路とを接続し、スロットル装置から供給される燃料及び空気を燃焼室に導くインシュレータの構造に関する。   The present invention relates to an insulator structure in which an intake passage on an internal combustion engine side and an intake passage on a throttle device side are connected to guide fuel and air supplied from the throttle device to a combustion chamber.

従来から、内燃機関側の吸気通路と、内燃機関に供給する燃料及び空気の流量を調整設定するキャブレター形式や燃料噴射形式のスロットル装置側の吸気通路とを接続して連通した吸気通路を形成し、エンジンの振動を遮断しつつスロットル装置から供給される燃料及び空気を内燃機関の燃焼室に導くインシュレータが用いられている。インシュレータは、基本的には、内燃機関側の吸気通路とスロットル装置側の吸気通路とを接続する接続部材であり、外観を変化させることなく内部の通路形状を変更することができる。そこで、インシュレータ内部に通路断面積を縮小する制限開口を形成したオリフィス板を配設して燃焼室に流入する空気量を制限し、これにより車両の仕様に応じたエンジンの出力特性が得られるようにしたインシュレータが知られている(例えば、特許文献1を参照)。   Conventionally, an intake passage is formed by connecting an intake passage on the side of an internal combustion engine and an intake passage on the side of a throttle device of a fuel injection type or a carburetor type that adjusts and sets the flow rates of fuel and air supplied to the internal combustion engine. Insulators that guide fuel and air supplied from a throttle device to a combustion chamber of an internal combustion engine while blocking engine vibration are used. The insulator is basically a connecting member that connects the intake passage on the internal combustion engine side and the intake passage on the throttle device side, and can change the shape of the internal passage without changing the appearance. Therefore, an orifice plate having a restriction opening for reducing the cross-sectional area of the passage is provided inside the insulator to restrict the amount of air flowing into the combustion chamber, so that engine output characteristics corresponding to the vehicle specifications can be obtained. Insulators are known (for example, see Patent Document 1).

特開平6−285872号公報JP-A-6-285872

上記のように、インシュレータの内部に異なる開口面積の制限開口を形成することでエンジンの出力特性を変化させることができるため、制限開口をさらに小径化して出力特性の調整範囲を拡大したいという要求がある。しかしながら、制限開口の開口面積を減少させていくと、空気とともに流下する霧状の燃料の一部が制限開口を通過できずに開口周縁に衝突して液状化し吸気通路内に滞留するようになる。その結果、空燃比の安定しない混合気が燃焼室に供給され、エンジンの燃焼効率が低下してドライバビリティの向上やエミッション性能の向上が図れないという課題があった。   As described above, since the engine output characteristics can be changed by forming the limiting openings with different opening areas inside the insulator, there is a demand to further reduce the diameter of the limiting openings to expand the adjustment range of the output characteristics. is there. However, when the opening area of the restriction opening is reduced, a part of the mist-like fuel that flows down with the air cannot pass through the restriction opening but liquefies by colliding with the periphery of the opening and stays in the intake passage. . As a result, there is a problem that an air-fuel mixture having an unstable air-fuel ratio is supplied to the combustion chamber, the engine combustion efficiency is lowered, and drivability and emission performance cannot be improved.

また、スロットル装置がキャブレター形式の場合には、吸気気流によって霧状化された燃料が吸入空気とともにインシュレータ内を流れる構成のため、燃料吐出ジェット側の周壁近傍に制限開口を設けることである程度小径化することができる。しかし、吸気通路内に燃料を噴射する燃料噴射弁を用いた形態のスロットル装置の場合には、霧状化された燃料が吸気気流と異なるベクトルを有して噴射されるため、制限開口を小径化することが特に困難であるという課題があった。   In addition, when the throttle device is a carburetor type, the fuel atomized by the intake airflow flows in the insulator together with the intake air, so the diameter is reduced to some extent by providing a restriction opening near the peripheral wall on the fuel discharge jet side. can do. However, in the case of a throttle device using a fuel injection valve that injects fuel into the intake passage, the atomized fuel is injected with a vector different from that of the intake airflow, so the restriction opening has a small diameter. There was a problem that it was particularly difficult to make it.

本発明はこのような課題に鑑みてなされたものであり、制限開口のさらなる小径化を可能とし、エンジンの出力特性の調整範囲を拡大できるようなインシュレータ構造を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide an insulator structure capable of further reducing the diameter of the restriction opening and expanding the adjustment range of the output characteristics of the engine.

上記課題を解決して目的を達成するため、本発明は、燃焼室に繋がる内燃機関側の吸気通路(例えば、実施形態における吸気通路5)と、燃焼室に供給する燃料及び空気の流量を調整設定するスロットル装置側の吸気通路(例えば、実施形態における吸気通路8)とを接続して連通した吸気通路を形成し、スロットル装置から供給される燃料及び空気を燃焼室に導くインシュレータの構造であり、インシュレータに燃料及び空気の通過領域を制限する制限部を設け、この制限部を吸気通路の下流方向に向かうにつれて通路断面積が小さくなるロート状に形成してインシュレータ構造を構成する。   In order to solve the above-described problems and achieve the object, the present invention adjusts the flow rate of the fuel and air supplied to the combustion chamber, and the intake passage (for example, the intake passage 5 in the embodiment) connected to the combustion chamber. It is a structure of an insulator that connects an intake passage on the throttle device side to be set (for example, the intake passage 8 in the embodiment) to form a communicating intake passage and guides fuel and air supplied from the throttle device to a combustion chamber. The insulator is provided with a restricting portion for restricting the passage region of the fuel and air, and this restricting portion is formed in a funnel shape in which the cross-sectional area of the passage becomes smaller toward the downstream side of the intake passage.

本発明において、スロットル装置は、吸気通路内に燃料を噴射する燃料噴射弁(例えば、実施形態におけるインジェクタ35)を有して構成され、この燃料噴射弁は、燃料の噴射方向が吸気通路の下流方向に向けて傾斜した傾斜姿勢で設けられるとともに、前記制限部が、燃料噴射弁における燃料の噴射口に指向して開口形成される。   In the present invention, the throttle device includes a fuel injection valve (for example, the injector 35 in the embodiment) that injects fuel into the intake passage, and the fuel injection direction of the fuel injection valve is downstream of the intake passage. In addition to being provided in an inclined posture inclined toward the direction, the limiting portion is formed to open toward the fuel injection port in the fuel injection valve.

なお、インシュレータの内部に、外周を覆おう外筒部と繋がって吸気通路を上流側と下流側とに仕切る仕切壁を有し、前記制限部は、外筒部とともに一体成型により仕切壁に形成されることが好ましい。   In addition, the insulator has a partition wall that is connected to an outer cylinder part that covers the outer periphery and partitions the intake passage into an upstream side and a downstream side, and the restriction part is formed on the partition wall by integral molding with the outer cylinder part It is preferred that

あるいは、インシュレータの内部に、吸気通路を上流側と下流側とに仕切る板状部材(例えば、実施形態におけるオリフィス板60,70,80)を有し、前記制限部は、板状部材に形成されることが好ましい。   Alternatively, the insulator has a plate-like member (for example, the orifice plates 60, 70, 80 in the embodiment) that partitions the intake passage into the upstream side and the downstream side, and the restricting portion is formed in the plate-like member. It is preferable.

なお、制限部の開口(例えば、実施形態における制限開口67,77,77′,87)は、インシュレータにおけるスロットル装置側の吸気通路との接続部の内径中心線(例えば、実施形態における中心線C8)に対して燃料噴射弁側(燃料噴射弁が配設された側)に偏在し、インシュレータにおける内燃機関側の吸気通路との接続部は、前記内径中心線に対して反燃料噴射弁側(燃料噴射弁が配設された側と反対側)にオフセットして形成されることが好ましい。 Note that the opening of the restricting portion (for example, the restricting openings 67, 77, 77 ′, 87 in the embodiment) is the inner diameter center line (for example, the center line C in the embodiment) of the connection portion with the intake passage on the throttle device side in the insulator. 8 ) The fuel injection valve side (the side where the fuel injection valve is disposed) is unevenly distributed with respect to the intake passage on the internal combustion engine side in the insulator, and the connection portion with the inner diameter center line is on the anti-fuel injection valve side It is preferably formed offset to the side opposite to the side where the fuel injection valve is disposed.

また、制限部が吸気通路における上方位置に開口し、制限部の下方に外筒部の内壁面に沿って制限部の上流側と下流側とを連通させる連通孔が形成されることが望ましい。   Further, it is desirable that the restricting portion opens at an upper position in the intake passage, and a communication hole is formed below the restricting portion to communicate the upstream side and the downstream side of the restricting portion along the inner wall surface of the outer cylinder portion.

インシュレータに制限部を設け、この制限部を吸気通路の下流方向に向かうにつれて通路断面積が小さくなるロート状に形成した構成によれば、吸入空気及び霧状化された燃料がロート状の制限部により整流されて制限部の壁面に沿って流下する。このため、霧状の燃料を効率よく内燃機関側の吸気通路に導くことができ、これにより制限開口のさらなる小径化を可能としてエンジンの出力特性の調整範囲を拡大することができる。   According to the configuration in which the restricting portion is provided in the insulator, and the restricting portion is formed in a funnel shape in which the cross-sectional area of the passage becomes smaller toward the downstream side of the intake passage, the intake air and the atomized fuel are in the funnel-like restricting portion. Is flown along the wall surface of the restriction portion. For this reason, the mist-like fuel can be efficiently guided to the intake passage on the internal combustion engine side, thereby further reducing the diameter of the restriction opening and extending the adjustment range of the output characteristics of the engine.

また、燃料噴射弁を備えた燃料噴射形式のスロットル装置を用いる場合において、燃料噴射弁を噴射方向が吸気通路の下流方向に向けて傾斜する傾斜姿勢で設けるとともに、制限部を燃料噴射弁の噴射口に指向して開口形成した構成によれば、吸気気流のベクトル方向と噴射燃料のベクトル方向とを相互に近づけることができ、また噴射口から円錐状に広がる噴霧形状に対して最も制限部に近い領域(例えば、実施形態における上部領域)の霧状燃料を制限部のロート形状に沿って流下させることができる。このため、燃料の通過率が問題となり、制限部の小径化が困難とされる燃料噴射形式のスロットル装置においても、噴射燃料を効率よく内燃機関側の吸気通路に導くことができ、これにより制限開口の小径化を可能としてエンジンの出力特性の調整範囲を拡大することができる。   When a fuel injection type throttle device equipped with a fuel injection valve is used, the fuel injection valve is provided in an inclined posture in which the injection direction is inclined toward the downstream direction of the intake passage, and the restricting portion is injected by the fuel injection valve. According to the configuration in which the opening is formed toward the mouth, the vector direction of the intake airflow and the vector direction of the injected fuel can be brought close to each other, and is the most restrictive part with respect to the spray shape spreading in a conical shape from the injection port. The atomized fuel in the near region (for example, the upper region in the embodiment) can flow down along the funnel shape of the restricting portion. For this reason, even in a fuel injection type throttle device in which the passage rate of the fuel becomes a problem and it is difficult to reduce the diameter of the restricting portion, the injected fuel can be efficiently guided to the intake passage on the internal combustion engine side. The diameter of the opening can be reduced, and the adjustment range of the engine output characteristics can be expanded.

なお、インシュレータの内部に吸気通路を上流側と下流側とに仕切る仕切壁を設け、制限部を外筒部とともに一体成型により仕切壁に形成した構成によれば、インシュレータ構造を単純化して生産工程を簡明化することができ、生産性を向上させることができる。一方、インシュレータの内部に吸気通路を上流側と下流側とに仕切る板状部材を設け、制限部を板状部材に形成した構成によれば、開口面積や開口形状が異なる板状部材をモールドすることで、インシュレータの金型を変更することなくエンジン特性に応じた複数種類のインシュレータを容易に生産することができる。   In addition, according to the configuration in which the partition wall for partitioning the intake passage into the upstream side and the downstream side is provided inside the insulator, and the limiting portion is formed in the partition wall by integral molding with the outer cylinder portion, the insulator structure is simplified and the production process Can be simplified, and productivity can be improved. On the other hand, according to the configuration in which the plate-like member that partitions the intake passage into the upstream side and the downstream side is provided inside the insulator, and the limiting portion is formed in the plate-like member, the plate-like members having different opening areas and opening shapes are molded. Thus, a plurality of types of insulators corresponding to engine characteristics can be easily produced without changing the mold of the insulator.

制限部の開口が、インシュレータにおけるスロットル装置側の接続部の内径中心線に対して燃料噴射弁側に偏在し、インシュレータにおける内燃機関側の吸気通路との接続部が上記内径中心線に対して反対方向にオフセットして形成される構成によれば、内燃機関側の吸気通路が噴射燃料のベクトル方向にオフセットして形成されるため、噴射燃料を内燃機関側の吸気通路の中心付近に滑らかに流入させることができ、また、スロットル装置から燃焼室までの吸気通路を緩やかな曲がり形状としつつ、内燃機関側の接続部を小径化することができる。   The opening of the restricting portion is unevenly distributed on the fuel injection valve side with respect to the inner diameter center line of the connecting portion on the throttle device side in the insulator, and the connecting portion with the intake passage on the internal combustion engine side of the insulator is opposite to the inner diameter center line. According to the configuration formed by offsetting in the direction, since the intake passage on the internal combustion engine side is formed offset in the vector direction of the injected fuel, the injected fuel flows smoothly into the vicinity of the center of the intake passage on the internal combustion engine side. In addition, the diameter of the connecting portion on the internal combustion engine side can be reduced while the intake passage from the throttle device to the combustion chamber has a gently curved shape.

制限部を吸気通路における上方位置に開口形成し、制限部の下方に外筒部の内壁面に沿って制限部の上流側と下流側とを連通させる連通孔を形成した構成によれば、たとえ制限部に接触して液状化した燃料が生じても燃料の滞留を防止することができるとともに、連通孔と制限部とが離れて配設されるため、連通孔付近の滞留ガスが吸気の吹き返しを受け難くなり、混合気が安定してエンジン性能を向上させることができる。   According to the configuration in which the restricting portion is formed at an upper position in the intake passage, and the communication hole that communicates the upstream side and the downstream side of the restricting portion along the inner wall surface of the outer cylinder portion is formed below the restricting portion. Even if liquefied fuel is produced in contact with the restriction part, it is possible to prevent the fuel from staying, and the communication hole and the restriction part are arranged apart from each other, so that the staying gas near the communication hole blows back the intake air. It becomes difficult to receive, and the air-fuel mixture can be stabilized and the engine performance can be improved.

従って、本発明によれば、制限開口のさらなる小径化を可能とし、エンジンの出力特性の調整範囲を拡大可能なインシュレータ構造を提供することができる。   Therefore, according to the present invention, it is possible to provide an insulator structure capable of further reducing the diameter of the restriction opening and expanding the adjustment range of the output characteristics of the engine.

以下、本発明に係るインシュレータ構造について図面を参照しながら説明する。本発明に係るインシュレータ構造を自動二輪車に適用した場合の構成例を図1に及び図2に示しており、まず、これらの図面を参照してインシュレータの配置構成について概要説明する。なお、説明の便宜上、特に明示した場合を除き、図1に付記した矢印U方向を上方、矢印R方向(車体後方)を右方と称して説明する。   Hereinafter, an insulator structure according to the present invention will be described with reference to the drawings. FIG. 1 and FIG. 2 show a configuration example when the insulator structure according to the present invention is applied to a motorcycle. First, an outline of an arrangement configuration of the insulator will be described with reference to these drawings. For convenience of explanation, unless otherwise specified, the arrow U direction appended to FIG. 1 will be referred to as upward, and the arrow R direction (rear of the vehicle body) will be referred to as right.

インシュレータ11は、動力を発生するエンジン2と、エンジン2に供給する燃料及び空気の流量を調整設定するスロットル装置3との間に設けられており、
燃焼室4に繋がるエンジン側の吸気通路5と、エアクリーナ7に繋がるスロットル装置側の吸気通路8とを接続して連通した吸気通路を形成し、スロットル装置3から供給される燃料及び空気を燃焼室4に導く。
The insulator 11 is provided between the engine 2 that generates power and the throttle device 3 that adjusts and sets the flow rates of fuel and air supplied to the engine 2.
An engine-side intake passage 5 connected to the combustion chamber 4 and a throttle device-side intake passage 8 connected to the air cleaner 7 are connected to form a communication intake passage, and fuel and air supplied from the throttle device 3 are supplied to the combustion chamber. Guide to 4.

エンジン2は、オーバー・ヘッド・カムシャフト(OHC)形式の水冷エンジンを例示しており、シリンダヘッド21には、燃焼室4に繋がる吸気通路5及び排気通路6が形成され、燃焼室4に開口する吸気口5pを開閉する吸気バルブ22と、燃焼室4に開口する排気口6pを開閉する排気バルブ23とがそれぞれ上下方向に摺動可能に支持され、シリンダヘッド21との間に介挿されたバルブスプリング24,24により常時上方に付勢されている。吸気バルブ22及び排気バルブ23の上端部は、それぞれシリンダヘッド21に揺動可能に枢支されカムシャフト25に形成されたカムにより揺動されるロッカーアーム26a,26bに当接支持されており、図示省略するカムチェーン及びスプロケットを介して接続されたカムシャフト25の回転によりロッカーアーム26a,26bが揺動され、このロッカーアームの揺動応じて吸気バルブ22及び排気バルブ23が押し下げられて吸気孔5p,排気口6pが開閉される。すなわち、吸気バルブ22及び排気バルブ23は、コンロッド27を介してクランクシャフト28に接続されるピストン29の昇降位置に応じて昇降され、クランクシャフト28の回転に同期して吸気口5p及び排気口6pが開閉される。   The engine 2 exemplifies an over head camshaft (OHC) type water-cooled engine, and the cylinder head 21 is formed with an intake passage 5 and an exhaust passage 6 connected to the combustion chamber 4, and is opened to the combustion chamber 4. An intake valve 22 that opens and closes the intake port 5p and an exhaust valve 23 that opens and closes the exhaust port 6p that opens to the combustion chamber 4 are supported to be slidable in the vertical direction, and are interposed between the cylinder head 21 and the cylinder head 21. The valve springs 24, 24 are always urged upward. The upper ends of the intake valve 22 and the exhaust valve 23 are pivotally supported by the cylinder head 21 and supported by rocker arms 26a and 26b that are swung by cams formed on the camshaft 25, respectively. The rocker arms 26a and 26b are swung by the rotation of the camshaft 25 connected via a cam chain and a sprocket (not shown), and the intake valve 22 and the exhaust valve 23 are pushed down in response to the rocking of the rocker arm. 5p and the exhaust port 6p are opened and closed. That is, the intake valve 22 and the exhaust valve 23 are raised and lowered according to the raising and lowering position of the piston 29 connected to the crankshaft 28 via the connecting rod 27, and the intake port 5p and the exhaust port 6p are synchronized with the rotation of the crankshaft 28. Is opened and closed.

スロットル装置3は、燃料吐出手段としてインジェクタ(燃料噴射装弁)を用いた燃料噴射形式のスロットル装置を示しており、吸気通路8が形成されたスロットルボディ31に、吸気通路8の管軸と直交方向(両図における紙面直交方向)に延びる軸廻りに揺動可能に取り付けられて吸気通路8を開閉する円盤状のスロットルバルブ32と、このスロットルバルブ32の下流側に設けられて、吸気通路8内に燃料を噴射するインジェクタ35とを備えて構成される。   The throttle device 3 is a fuel injection type throttle device using an injector (fuel injection valve) as a fuel discharge means. The throttle device 3 is perpendicular to the pipe axis of the intake passage 8 in the throttle body 31 in which the intake passage 8 is formed. A disc-shaped throttle valve 32 that is swingably mounted about an axis extending in a direction (a direction orthogonal to the drawing in both figures) and opens and closes the intake passage 8, and is provided on the downstream side of the throttle valve 32. And an injector 35 for injecting fuel.

インジェクタ35は、燃料の噴射方向が吸気通路8の下流方向に向けて傾斜した傾斜姿勢、より具体的には、燃料の噴射口35aが吸気通路8の管壁に開設された開口に臨み、この噴射口35aから円錐状に噴射される噴射燃料の中心線C35が、円弧状にカーブするエンジン側の吸気通路5の中心線C5に滑らかに接するような取付姿勢で、スロットルボディ31に固定されている(図5を参照)。 The injector 35 has an inclined posture in which the fuel injection direction is inclined toward the downstream direction of the intake passage 8, more specifically, the fuel injection port 35 a faces an opening formed in the pipe wall of the intake passage 8. The center line C 35 of the injected fuel that is injected conically from the injection port 35 a is fixed to the throttle body 31 in such a mounting posture that smoothly contacts the center line C 5 of the engine-side intake passage 5 that curves in an arc. (See FIG. 5).

インジェクタ35による燃料噴射は、エンジン2の作動を制御するECU(Electronic Control Unit)により制御され、エンジン2(複数気筒エンジンの場合には該当気筒)が吸入行程となり、吸気バルブ22が開くタイミングに合わせて噴射口35aから霧状の燃料が噴射される。噴射される燃料の吐出量は、エンジン回転数やスロットルバルブ32のバルブ開度、吸気圧などに応じて設定され、具体的には、上記のような各パラメータに対応してマップ状に形成され、予めECU内のROMに記憶された燃料噴射マップに基づいて、燃料の噴射時間を設定することにより行われる。このため、エンジン2の駆動状態(所要空燃比)に応じた適切な噴射時間で、エンジン側の吸気通路5に指向する斜め下流方向に向けて霧状の燃料が噴射される。そして、エアクリーナ7で清浄化されスロットルバルブ35により流量が調整された空気と、インジェクタ35から噴射された燃料が、混合されつつインシュレータ11の制限開口67を通り、エンジン側の吸気通路5に流入する。   The fuel injection by the injector 35 is controlled by an ECU (Electronic Control Unit) that controls the operation of the engine 2, and the engine 2 (corresponding cylinder in the case of a multi-cylinder engine) is in the intake stroke, so that the intake valve 22 is opened. Thus, mist-like fuel is injected from the injection port 35a. The discharge amount of the injected fuel is set according to the engine speed, the valve opening of the throttle valve 32, the intake pressure, and the like. Specifically, it is formed in a map shape corresponding to each parameter as described above. The fuel injection time is set based on a fuel injection map stored in advance in a ROM in the ECU. For this reason, mist-like fuel is injected toward the diagonally downstream direction directed to the intake passage 5 on the engine side in an appropriate injection time according to the driving state (required air-fuel ratio) of the engine 2. The air cleaned by the air cleaner 7 and adjusted in flow rate by the throttle valve 35 and the fuel injected from the injector 35 flow through the restriction opening 67 of the insulator 11 and flow into the intake passage 5 on the engine side while being mixed. .

エンジン側の吸気通路5は、滑らかな円弧状にカーブして燃焼室4に繋がっており、制限開口67を通って吸気通路5に流入した空気及び燃料が、この通路内でさらに均一に混合されながら吸気通路5を流下し、吸気口5pを通って燃焼室4に供給される。そして、均一化された混合気が圧縮行程においてピストン29により圧縮されたのち、シリンダヘッド21に取り付けられた点火プラグ(不図示)で点火されて燃焼し、ピストン29およびコンロッド27を介してクランクシャフト28を回転させる。燃焼後の排気ガスは排気行程においてピストン29により押し出され、排気口6pから排気通路6を通って外部に排出される。   The engine-side intake passage 5 is curved in a smooth circular arc shape and is connected to the combustion chamber 4. Air and fuel flowing into the intake passage 5 through the restriction opening 67 are further uniformly mixed in the passage. The air then flows down the intake passage 5 and is supplied to the combustion chamber 4 through the intake port 5p. Then, after the homogenized air-fuel mixture is compressed by the piston 29 in the compression stroke, it is ignited and burned by a spark plug (not shown) attached to the cylinder head 21, and the crankshaft is connected via the piston 29 and the connecting rod 27. 28 is rotated. The exhaust gas after combustion is pushed out by the piston 29 in the exhaust stroke, and is discharged outside through the exhaust port 6p through the exhaust passage 6.

このように、エンジン2とスロットル装置3との間に介挿されてエンジン側の吸気通路5とスロットル装置側の吸気通路8とを連結するインシュレータの外観図を図3に示し、図4(a)に吸気通路の延びる方向に沿った第1実施形態のインシュレータ11の鉛直断面図(図(b)中に付記するIVa矢視の断面図)、図4(b)にスロットル装置3側から見たインシュレータ11の正面図を示す。   Thus, an external view of an insulator that is inserted between the engine 2 and the throttle device 3 and connects the intake passage 5 on the engine side and the intake passage 8 on the throttle device side is shown in FIG. ) Is a vertical cross-sectional view of the insulator 11 of the first embodiment along the direction in which the intake passage extends (cross-sectional view taken along arrow IVa in FIG. 4B), and FIG. 4B is a view from the throttle device 3 side. A front view of the insulator 11 is shown.

インシュレータ11は、外周を覆おう外筒部51を有して全体として円筒状をなし、内部に形成された円環状の仕切壁55にオリフィス板60が埋め込まれて一体に形成されている。仕切壁55を挟む一端側(図4(a)における右端側)には、シリンダヘッド21に突設された段付円筒状の吸気孔突部42に嵌合接続されるエンジン接続部52、他端側(同図における左端側)にはスロットル装置3に形成された段付円筒状のコネクタ部43に嵌合接続されるスロットル接続部53が形成され、これらの接続部52,53の外周側に、それぞれ締め付けバンド44a,44bを巻き掛けるバンド係止部54a,54bが形成されている。   The insulator 11 has an outer cylinder portion 51 that covers the outer periphery and has a cylindrical shape as a whole, and is formed integrally with an orifice plate 60 embedded in an annular partition wall 55 formed inside. On one end side of the partition wall 55 (on the right end side in FIG. 4 (a)), an engine connection portion 52 that is fitted and connected to a stepped cylindrical intake hole protrusion 42 that protrudes from the cylinder head 21, and the like. A throttle connection portion 53 is formed on the end side (left end side in the figure) to be fitted and connected to a stepped cylindrical connector portion 43 formed in the throttle device 3, and the outer peripheral side of these connection portions 52 and 53. In addition, band locking portions 54a and 54b around which the fastening bands 44a and 44b are wound are formed.

そして、エンジン2の吸気孔突部42にエンジン接続部52を嵌合接続し、スロットル接続部53にスロットル装置3のコネクタ部43を嵌合接続すると、オリフィス板60を挟んでエンジン側の吸気通路5とスロットル装置側の吸気通路8とが連結され、バンド係止部54a,54bに巻き掛けられた締め付けバンド44a,44bを締め込むことで、嵌合接続部に隙間を生じることなく強固に密閉接続される。インシュレータ11は耐油性、耐候性の高いゴム材料を用いオリフィス板60の周縁をモールドするインサート成型により一体に構成され、エンジン2の振動を遮断してスロットル装置3に直接伝達されない構成としている。   When the engine connection portion 52 is fitted and connected to the intake hole protrusion 42 of the engine 2 and the connector portion 43 of the throttle device 3 is fitted and connected to the throttle connection portion 53, the intake passage on the engine side is sandwiched between the orifice plate 60. 5 and the intake passage 8 on the throttle device side are connected, and by tightening the fastening bands 44a and 44b wound around the band locking portions 54a and 54b, the fitting connection portion is tightly sealed without generating a gap. Connected. The insulator 11 is integrally formed by insert molding in which the peripheral edge of the orifice plate 60 is molded using a rubber material having high oil resistance and weather resistance, and the vibration of the engine 2 is cut off and is not directly transmitted to the throttle device 3.

仕切壁55に設けられたオリフィス板60は、吸気通路を上流側(スロットル装置3側)と下流側(エンジン2側)とに仕切る平坦な円盤状のプレート部61と、このプレート部61の中央近傍に設けられて燃料及び空気の通過領域を制限する制限部65と、プレート部61の周縁近傍にプレート部61を貫通して形成された連通孔63などからなり、例えば、板厚1mm程度のアルミニューム合金板やステンレス鋼板を用いて構成される。連通孔63は、仕切壁55の底壁面に沿って上流側と下流側とを連通させる長孔状に形成されており、吸気通路内に液状化した燃料が生じた場合にこれを流下させて滞留を防止する。   The orifice plate 60 provided in the partition wall 55 includes a flat disk-shaped plate portion 61 that partitions the intake passage into the upstream side (throttle device 3 side) and the downstream side (engine 2 side), and the center of the plate portion 61. A restriction portion 65 provided in the vicinity for restricting the passage region of fuel and air, a communication hole 63 formed through the plate portion 61 in the vicinity of the periphery of the plate portion 61, and the like, for example, having a plate thickness of about 1 mm It is composed of aluminum alloy plate or stainless steel plate. The communication hole 63 is formed in the shape of a long hole that communicates the upstream side and the downstream side along the bottom wall surface of the partition wall 55, and when liquefied fuel is generated in the intake passage, the communication hole 63 is caused to flow down. Prevent stagnation.

制限部65は、吸気通路の下流方向(図4(a)における左方)に向かうにつれて通路断面積が小さくなるロート状ないしベルマウス状に形成され、プレート部61から下流側に絞り起こされた突出端部に、滑らかな円錐状または円弧状の吸入壁面66と繋がって円形の制限開口67が開設されている。このため、吸気通路を流下する流体(空気及び霧状燃料の気液混合流体)が制限部65の整流作用により整流され、吸入壁面66に沿って滑らかに流下する。従って、霧状の燃料を効率的にエンジン側の吸気通路5に導くことができる。また、制限開口67がプレート部61から下流側に絞り起こされた突出端部に形成されているため、エンジン側の吸気通路5からの吸気の吹き返しに対して、燃料成分やカーボン等の粒状成分を堰き止めて逆流を防止することができ、これによりスロットル装置3の汚れを防止することができる。   The restricting portion 65 is formed in a funnel shape or bell mouth shape in which the passage cross-sectional area decreases toward the downstream direction of the intake passage (leftward in FIG. 4A), and is squeezed from the plate portion 61 to the downstream side. A circular restriction opening 67 is formed at the protruding end portion so as to be connected to a smooth conical or arcuate suction wall 66. For this reason, the fluid flowing through the intake passage (the gas-liquid mixed fluid of air and mist fuel) is rectified by the rectifying action of the restricting portion 65 and flows smoothly along the suction wall surface 66. Therefore, the mist-like fuel can be efficiently guided to the intake passage 5 on the engine side. Further, since the restriction opening 67 is formed at the protruding end portion that is squeezed and raised downstream from the plate portion 61, a particulate component such as a fuel component or carbon with respect to return of intake air from the intake passage 5 on the engine side. Can be prevented to prevent the backflow, thereby preventing the throttle device 3 from being soiled.

ここで、図4および図5に示すように、吸入壁面66の形状は制限開口67の中心を通る中心線C67に対して軸対称ではなく、吸気通路8の上方に配設されるインジェクタ35の噴射口35aに指向して上方に広く拡大する偏心ロート状に形成されている。またインジェクタ35の噴射口35aは、スロットルバルブ32における吸入空気の通過口側の周縁(上方の管璧近傍)に近接して設けられている。このため、吸気気流のベクトル方向と噴射燃料のベクトル方向とを相互に近づけることができ、噴射口35aから斜め下流に向けて円錐状に広がる噴射燃料に対してオリフィス板60に最も近い領域の燃料を衝突させることなく、偏心させたロート形状の吸入壁面66に沿って滑らかに流下させることができる(図5中に二点鎖線で示す噴射燃料の外郭線Fjを参照)。 Here, as shown in FIGS. 4 and 5, the shape of the suction wall surface 66 is not axially symmetric with respect to the center line C 67 passing through the center of the restriction opening 67, and the injector 35 disposed above the intake passage 8. It is formed in an eccentric funnel shape that is widened upwardly toward the injection port 35a. The injection port 35a of the injector 35 is provided in the vicinity of the peripheral edge (near the upper pipe wall) of the throttle valve 32 on the intake air side. Therefore, the vector direction of the intake airflow and the vector direction of the injected fuel can be made close to each other, and the fuel in the region closest to the orifice plate 60 with respect to the injected fuel that spreads in a conical shape obliquely downstream from the injection port 35a. Can flow smoothly along the eccentric funnel-shaped suction wall surface 66 (see the outline Fj of the injected fuel indicated by the two-dot chain line in FIG. 5).

また、図4中に、スロットル接続部53の内径中心線(すなわちスロットル装置3側の吸気通路8の中心線)C8と、制限開口67の中心線C67と、エンジン接続部52の内径中心線(すなわちエンジン2側の吸気通路5の中心線)C5とを付記したように、制限開口67は、スロットル接続部53の内径中心線(吸気通路8の中心線)C8との関係においてインジェクタ側である上方寄りに偏在し、エンジン接続部52はスロットル接続部53の内径中心線(吸気通路8の中心線)C8との関係において反インジェクタ側である下方にオフセットして形成されている。すなわち、エンジン側の吸気通路5がスロットル装置3側の吸気通路8に対して噴射燃料のベクトル方向(斜め下方)にオフセットして配設されるようになっている。このため、斜め下向きに噴射されて制限開口67を通過した燃料は、エンジン側の吸気通路5においてこの通路の中心近傍に流入することとなり、制限開口67通過後の気液混合流体を滑らかに流下させることができる。また、スロットル装置3から燃焼室4に繋がる吸気通路5を緩やかな曲がり形状としつつエンジン接続部52を小径化してインシュレータ11を小型に構成することができる。 In FIG. 4, the inner diameter center line of the throttle connection portion 53 (that is, the center line of the intake passage 8 on the throttle device 3 side) C 8 , the center line C 67 of the restriction opening 67, and the inner diameter center of the engine connection portion 52. As indicated by the line (namely, the center line of the intake passage 5 on the engine 2 side) C 5 , the restriction opening 67 is in relation to the inner diameter center line (center line of the intake passage 8) C 8 of the throttle connection portion 53. unevenly distributed upward toward an injector side, the engine connection portion 52 is formed to be offset downward is anti injector side in relation to the C 8 (the center line of the intake passage 8) inside diameter center line of the throttle connecting portion 53 Yes. In other words, the intake passage 5 on the engine side is arranged offset from the intake passage 8 on the throttle device 3 side in the vector direction (diagonally downward) of the injected fuel. Therefore, the fuel that has been injected obliquely downward and passed through the restriction opening 67 flows into the vicinity of the center of the passage in the intake passage 5 on the engine side, and the gas-liquid mixed fluid that has passed through the restriction opening 67 flows down smoothly. Can be made. In addition, the insulator 11 can be made compact by reducing the diameter of the engine connection portion 52 while making the intake passage 5 connected from the throttle device 3 to the combustion chamber 4 a gentle curve.

さらに、インシュレータ11では、制限開口67を連通孔63から離隔させ、エンジン接続部52の内径中心線C5に対して反対側に設けている。このため、連通孔63近傍での気体の流動が抑制されて吸気の吹き返しの影響を受け難くなり、これにより滞留ガスの巻き込みを抑制することができる。 Further, in the insulator 11, the restriction opening 67 is separated from the communication hole 63 and provided on the opposite side to the inner diameter center line C 5 of the engine connection portion 52. For this reason, the flow of the gas in the vicinity of the communication hole 63 is suppressed and it is difficult to be affected by the blow-back of the intake air, thereby suppressing the entrainment of the staying gas.

以上説明したように、インシュレータ11によれば、霧状の燃料を効率よくエンジン側の吸気通路5に導くことができ、これによりインジェクタ形式のスロットル装置を用いた場合であっても制限開口67の小径化を可能としてエンジンの出力特性の調整範囲を拡大することができる。   As described above, according to the insulator 11, the mist-like fuel can be efficiently guided to the intake passage 5 on the engine side, so that even if the injector type throttle device is used, the restriction opening 67 The diameter can be reduced, and the adjustment range of engine output characteristics can be expanded.

次に、本発明における他の実施形態のインシュレータ構造について、図6〜図9の各図を参照して説明する。図6〜図9は、図4(a)に対応して第2〜第5実施形態のインシュレータ12〜15の断面図を示しており、制限部の構成が相違する点を除いて他の構成部分は第1実施形態のインシュレータ11と同様である。そこで、同様部分に同一番号を付して重複説明を省略し、各実施形態のインシュレータについて制限部の構成を中心に説明する。   Next, an insulator structure according to another embodiment of the present invention will be described with reference to FIGS. FIGS. 6 to 9 show cross-sectional views of the insulators 12 to 15 of the second to fifth embodiments corresponding to FIG. 4A, and other configurations except that the configuration of the limiting portion is different. The part is the same as that of the insulator 11 of the first embodiment. Therefore, the same parts are denoted by the same reference numerals and redundant description is omitted, and the insulator of each embodiment will be described focusing on the configuration of the limiting unit.

図6に示す第2実施形態のインシュレータ12は、外筒部51と繋がる仕切壁55′が吸気通路を上流側と下流側とに仕切って形成され、制限部75及び連通孔73が、外筒部51とともに仕切壁55′に一体成型により形成される。すなわち、インシュレータ12では、前述した吸入壁面66と同様の偏心ロート形状の吸入壁面76が仕切壁55′に一体に形成され、下流側の仕切壁面に中心線C77を開口中心とする制限開口77が開口形成される。このような構成によれば、オリフィス板を別途製作してインサートモールドする必要がないことから、生産工程を簡明化して生産性を向上させることができる。 In the insulator 12 of the second embodiment shown in FIG. 6, a partition wall 55 ′ connected to the outer cylinder part 51 is formed by dividing the intake passage into an upstream side and a downstream side, and the restriction part 75 and the communication hole 73 are provided in the outer cylinder. It is formed by integral molding with the partition wall 55 ′ together with the part 51. That is, in the insulator 12, an eccentric funnel-shaped suction wall surface 76 similar to the suction wall surface 66 described above is formed integrally with the partition wall 55 ′, and the restriction opening 77 having the center line C 77 as the opening center is formed in the downstream partition wall surface. Is formed. According to such a configuration, since it is not necessary to separately manufacture an orifice plate and insert mold, it is possible to simplify the production process and improve productivity.

図7に示す第3実施形態のインシュレータ13は、連通孔73と制限部75における吸入壁面76とが、第2実施形態のインシュレータ12と同様に、外筒部51とともに仕切壁55′に一体成型される。一方、制限部75における中心線C77を開口中心とする制限開口77′は仕切壁55′にインサートモールドされる薄肉平板状のオリフィス板70に開設されており、両者が一体となって制限部75を構成する。このような構成によれば、オリフィス板70の構成を簡明化しつつ制限開口77′の形状寸法を高精度に維持することができ、また開口面積や開口形状が異なるオリフィス板を用いることで、一定範囲についてインシュレータ13の金型を共用することができる。 In the insulator 13 of the third embodiment shown in FIG. 7, the communication hole 73 and the suction wall surface 76 in the restricting portion 75 are integrally formed with the partition wall 55 ′ together with the outer cylinder portion 51, similarly to the insulator 12 of the second embodiment. Is done. On the other hand, a restriction opening 77 ′ with the center line C 77 as the center of opening in the restriction part 75 is provided in a thin flat orifice plate 70 which is insert-molded on the partition wall 55 ′. 75 is constituted. According to such a configuration, the configuration of the orifice plate 70 can be simplified, the shape and size of the restriction opening 77 ′ can be maintained with high accuracy, and the orifice plate having a different opening area and shape can be used. The mold of the insulator 13 can be shared for the range.

図8に示す第4実施形態のインシュレータ14及び図9に示す第5実施形態のインシュレータ15は、制限部85及び連通孔83を厚肉円盤状のオリフィス板80,80′の板厚方向内部に形成した構成例であり、例えばアルミダイキャスト等の成形手段により一体に形成し必要に応じて切削加工を付加して吸入壁面を形成したうえ、仕切壁55にインサートモールドして構成される。すなわち、インシュレータ14,15では、前述した吸入壁面66,76と同様の偏心ロート状の吸入壁面86が、オリフィス板80,80′を貫通する流路壁面として形成され、吸入壁面86と滑らかに繋がる制限開口87が、中心線C87を開口中心として下流側の板面に開口形成される。第5実施形態のインシュレータ15は、制限部85の吸入縁部を上流側に突出成型して噴射燃料を迎え入れる受容口88を形成した構成例である。これらのような構成によれば、第1,第3実施形態のインシュレータ11以上に制限部の形状寸法を高精度に製作し及び維持することができることに加えて、薄板の絞り加工では困難な壁面形状を創成することも可能であり、かつ開口面積や開口形状が異なるオリフィス板を用いることで、インシュレータ14,15の金型を変更することなくエンジン特性に応じたインシュレータを容易に生産することができる。 In the insulator 14 of the fourth embodiment shown in FIG. 8 and the insulator 15 of the fifth embodiment shown in FIG. 9, the restricting portion 85 and the communication hole 83 are provided in the plate thickness direction inside the thick disc-shaped orifice plates 80 and 80 ′. This is a configuration example formed, for example, formed integrally by a molding means such as aluminum die cast, and a suction wall surface is formed by adding a cutting process as necessary, and then the partition wall 55 is insert molded. That is, in the insulators 14 and 15, an eccentric funnel-like suction wall surface 86 similar to the suction wall surfaces 66 and 76 described above is formed as a channel wall surface that penetrates the orifice plates 80 and 80 ′, and is smoothly connected to the suction wall surface 86. A limiting opening 87 is formed in the downstream plate surface with the center line C 87 as the opening center. The insulator 15 of the fifth embodiment is a configuration example in which a receiving port 88 for receiving injected fuel is formed by projecting the suction edge of the restricting portion 85 to the upstream side. According to such a structure, in addition to being able to manufacture and maintain the shape and size of the restricting portion with higher precision than the insulator 11 of the first and third embodiments, the wall surface is difficult to draw by thin plate. It is possible to create a shape, and by using orifice plates having different opening areas and shapes, it is possible to easily produce an insulator according to engine characteristics without changing the mold of the insulators 14 and 15. it can.

なお、図10に示すインシュレータ16のように、仕切り板90の上部を上流側に膨出成型してインジェクタ35に対向する上向きの受容プレート部91を形成し、この受容プレート部91に板面を貫通する制限開口97を開設してインシュレータを構成してもよい。また、受容プレート部91に、燃料噴射方向に合わせて左斜め下方に延びるロート状の制限部を突出成型し、当該制限部の下端に制限開口を形成するように構成しても良い。   As shown in the insulator 16 shown in FIG. 10, the upper portion of the partition plate 90 is bulged and formed on the upstream side to form an upward receiving plate portion 91 that faces the injector 35, and a plate surface is provided on the receiving plate portion 91. An insulator may be configured by opening a limiting opening 97 that penetrates. Alternatively, a funnel-shaped restricting portion that extends obliquely downward to the left in accordance with the fuel injection direction may be protruded from the receiving plate portion 91, and a restricting opening may be formed at the lower end of the restricting portion.

従って、以上説明したインシュレータ12〜16においても、第1実施形態のインシュレータ11と同様に、霧状の燃料を効率よくエンジン側の吸気通路5に導くことができ、これにより制限開口の小径化を可能として、エンジンの出力特性の調整範囲を拡大することができる。   Therefore, in the insulators 12 to 16 described above, similarly to the insulator 11 of the first embodiment, the mist-like fuel can be efficiently guided to the intake passage 5 on the engine side, thereby reducing the diameter of the restriction opening. As a possibility, the adjustment range of the output characteristics of the engine can be expanded.

なお、以上では本発明に係るインシュレータ構造を適用する好適な実施形態として、インジェクタ形式のスロットル装置3を有する内燃機関に適用した構成例を示したが、キャブレター形式のスロットル装置を有する内燃機関に対して、燃料吐出ジェットの形成位置や燃料の飛翔に合わせてロート状の制限部の配向等を変更して適用することができる。また、自動二輪車に限らず、四輪自動車や特殊車両等の内燃機関にも同様に適用し、同様の効果を得ることができる。   In the above, as a preferred embodiment to which the insulator structure according to the present invention is applied, a configuration example applied to an internal combustion engine having an injector type throttle device 3 has been shown. However, for an internal combustion engine having a carburetor type throttle device, Thus, it can be applied by changing the orientation of the funnel-shaped restricting portion in accordance with the formation position of the fuel discharge jet and the flight of the fuel. Further, the present invention is not limited to motorcycles, but can be similarly applied to internal combustion engines such as four-wheel automobiles and special vehicles, and similar effects can be obtained.

本発明に係るインシュレータ構造を自動二輪車に適用した場合におけるインシュレータの配設位置を示す側面図である。It is a side view which shows the arrangement | positioning position of the insulator at the time of applying the insulator structure which concerns on this invention to a motorcycle. エンジン及びスロットル装置とインシュレータとの位置関係を示す側断面図である。It is a sectional side view which shows the positional relationship of an engine and a throttle apparatus, and an insulator. 上記インシュレータの外観図である。It is an external view of the said insulator. (a)吸気通路の延びる方向に沿った第1実施形態のインシュレータの断面図(図(b)中に付記するIVa矢視の断面図)、及び(b)このインシュレータをスロットル装置側から見た正面図である。(a) A cross-sectional view of the insulator according to the first embodiment along the direction in which the intake passage extends (a cross-sectional view taken along arrow IVa in FIG. (b)), and (b) the insulator viewed from the throttle device side. It is a front view. 吸気通路に対するインジェクタの燃料噴射とインシュレータの制限部との関係を示す断面図である。It is sectional drawing which shows the relationship between the fuel injection of the injector with respect to an intake passage, and the limiting part of an insulator. 第2実施形態のインシュレータの断面図である。It is sectional drawing of the insulator of 2nd Embodiment. 第3実施形態のインシュレータの断面図である。It is sectional drawing of the insulator of 3rd Embodiment. 第4実施形態のインシュレータの断面図である。It is sectional drawing of the insulator of 4th Embodiment. 第5実施形態のインシュレータの断面図である。It is sectional drawing of the insulator of 5th Embodiment. 他の構成例を示すインシュレータの断面図である。It is sectional drawing of the insulator which shows the other structural example.

符号の説明Explanation of symbols

5 エンジン接続部の内径中心線
8 スロットル接続部の内径中心線
35 噴射燃料の中心線
67 制限開口の中心線
2 エンジン(内燃機関)
3 スロットル装置
4 燃焼室
5 エンジン側の吸気通路
8 スロットル装置側の吸気通路
11 インシュレータ(第1実施形態)
12 インシュレータ(第2実施形態)
13 インシュレータ(第3実施形態)
14 インシュレータ(第4実施形態)
15 インシュレータ(第5実施形態)
31 スロットルボディ
32 スロットルバルブ
35 インジェクタ(燃料噴射弁、35a 噴射口)
51 外筒部
52 エンジン接続部(エンジン側の吸気通路との接続部)
53 スロットル接続部(スロットル装置側の吸気通路との接続部)
55,55′ 仕切壁
60 オリフィス板(板状部材)
63 連通孔
65 制限部
67 制限開口
70 オリフィス板(板状部材)
73 連通孔
75 制限部
77,77′ 制限開口
80 オリフィス板(板状部材)
83 連通孔
85 制限部
87 制限開口
C 5 Inner diameter center line of engine connection C 8 Inner diameter center line of throttle connection C 35 Center line of injected fuel C 67 Center line of restricted opening 2 Engine (internal combustion engine)
3 Throttle device 4 Combustion chamber 5 Engine side intake passage 8 Throttle device side intake passage 11 Insulator (first embodiment)
12 Insulator (second embodiment)
13 Insulator (Third Embodiment)
14 Insulator (4th Embodiment)
15 Insulator (5th Embodiment)
31 Throttle body 32 Throttle valve 35 Injector (fuel injection valve, 35a injection port)
51 outer cylinder part 52 engine connection part (connection part with engine side intake passage)
53 Throttle connection (connection with intake passage on throttle device side)
55, 55 'partition wall 60 orifice plate (plate-like member)
63 Communication hole 65 Restriction part 67 Restriction opening 70 Orifice plate (plate-like member)
73 Communication hole 75 Restriction part 77, 77 'Restriction opening 80 Orifice plate (plate-like member)
83 Communication hole 85 Restriction part 87 Restriction opening

Claims (6)

燃焼室に繋がる内燃機関側の吸気通路と、前記燃焼室に供給する燃料及び空気の流量を調整設定するスロットル装置側の吸気通路とを接続して連通した吸気通路を形成し、前記スロットル装置から供給される前記燃料及び空気を前記燃焼室に導くインシュレータの構造であって、
前記インシュレータに、前記燃料及び空気の通過領域を制限する制限部を設け、
前記制限部は、前記吸気通路の下流方向に向かうにつれて通路断面積が小さくなるロート状に形成されることを特徴とするインシュレータ構造。
An intake passage is formed by connecting an intake passage on the internal combustion engine side connected to the combustion chamber and an intake passage on the throttle device side for adjusting and setting the flow rates of fuel and air to be supplied to the combustion chamber. A structure of an insulator for guiding the supplied fuel and air to the combustion chamber;
The insulator is provided with a restricting portion for restricting a passage region of the fuel and air,
The insulator structure according to claim 1, wherein the restricting portion is formed in a funnel shape in which a cross-sectional area of the passage becomes smaller toward a downstream direction of the intake passage.
前記スロットル装置は、前記吸気通路内に燃料を噴射する燃料噴射弁を有し、
前記燃料噴射弁は、前記燃料の噴射方向が前記吸気通路の下流方向に向けて傾斜した傾斜姿勢で設けられるとともに、
前記制限部が、前記燃料噴射弁における燃料の噴射口に指向して開口形成されることを特徴とする請求項1に記載のインシュレータ構造。
The throttle device has a fuel injection valve that injects fuel into the intake passage,
The fuel injection valve is provided in an inclined posture in which the injection direction of the fuel is inclined toward the downstream direction of the intake passage,
The insulator structure according to claim 1, wherein the limiting portion is formed to open toward a fuel injection port in the fuel injection valve.
前記インシュレータの内部には、外周を覆おう外筒部と繋がって前記吸気通路を上流側と下流側とに仕切る仕切壁を有し、
前記制限部は、前記外筒部とともに一体成型により前記仕切壁に形成されることを特徴とする請求項2に記載のインシュレータ構造。
Inside the insulator, there is a partition wall that is connected to an outer cylinder portion that covers the outer periphery and partitions the intake passage into an upstream side and a downstream side,
The insulator structure according to claim 2, wherein the limiting portion is formed on the partition wall by integral molding with the outer cylinder portion.
前記インシュレータの内部には、前記吸気通路を上流側と下流側とに仕切る板状部材を有し、
前記制限部は、前記板状部材に形成されることを特徴とする請求項2に記載のインシュレータ構造。
Inside the insulator, there is a plate-like member that partitions the intake passage into an upstream side and a downstream side,
The insulator structure according to claim 2, wherein the limiting portion is formed on the plate-like member.
前記制限部の開口は、前記インシュレータにおける前記スロットル装置側の吸気通路との接続部の内径中心線に対して前記燃料噴射弁側に偏在し、
前記インシュレータにおける前記内燃機関側の吸気通路との接続部は、前記内径中心線に対して反燃料噴射弁側にオフセットして形成されることを特徴とする請求項3または請求項4に記載のインシュレータ構造。
The opening of the restriction portion is unevenly distributed on the fuel injection valve side with respect to the inner diameter center line of the connection portion with the intake passage on the throttle device side in the insulator,
The connection part with the intake passage by the side of the said internal combustion engine in the said insulator is offset and formed in the anti-fuel-injection valve side with respect to the said internal-diameter centerline, The Claim 3 or Claim 4 characterized by the above-mentioned. Insulator structure.
前記制限部は前記吸気通路における上方位置に開口し、
前記制限部の下方には前記外筒部の内壁面に沿って前記制限部の上流側と下流側とを連通させる連通孔が形成されることを特徴とする請求項2から請求項5のいずれか一項に記載のインシュレータ構造。
The restricting portion opens to an upper position in the intake passage,
6. The communication hole according to any one of claims 2 to 5, wherein a communication hole is formed below the restriction portion to communicate the upstream side and the downstream side of the restriction portion along the inner wall surface of the outer cylinder portion. An insulator structure according to claim 1.
JP2007057040A 2007-03-07 2007-03-07 Insulator structure Expired - Fee Related JP4865603B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007057040A JP4865603B2 (en) 2007-03-07 2007-03-07 Insulator structure
DE102008006994.9A DE102008006994B4 (en) 2007-03-07 2008-01-31 Isolierkörperaufbau

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007057040A JP4865603B2 (en) 2007-03-07 2007-03-07 Insulator structure

Publications (2)

Publication Number Publication Date
JP2008215292A true JP2008215292A (en) 2008-09-18
JP4865603B2 JP4865603B2 (en) 2012-02-01

Family

ID=39678140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007057040A Expired - Fee Related JP4865603B2 (en) 2007-03-07 2007-03-07 Insulator structure

Country Status (2)

Country Link
JP (1) JP4865603B2 (en)
DE (1) DE102008006994B4 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043132A1 (en) * 2009-10-08 2011-04-14 三菱重工業株式会社 Air intake device for engine
JP2014069715A (en) * 2012-09-28 2014-04-21 Suzuki Motor Corp Intake system for motor bicycles
JP2014169522A (en) * 2013-02-28 2014-09-18 Maschinenfabrik Rieter Ag Spinning apparatus
CN104849414A (en) * 2015-06-03 2015-08-19 韩少茹 Power distribution network high-voltage switch cabinet monitoring method and device
JP2019105168A (en) * 2017-12-08 2019-06-27 トヨタ自動車株式会社 Inlet duct structure
JPWO2021181547A1 (en) * 2020-03-11 2021-09-16
KR20220089415A (en) 2020-12-21 2022-06-28 주식회사 포스코 Oxide iron and reduced iron composite fuel and method for manufacturing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103762516B (en) * 2014-01-10 2017-06-23 国网上海市电力公司 It is a kind of for the circumscribed ozone sync detection device of switch cubicle and its application
US11624343B2 (en) * 2019-11-25 2023-04-11 Zoom Zoom Parts Llc System for enhancing performance of carburetor engine and peripherals of an all-terrain vehicle
JP7478791B2 (en) * 2022-09-30 2024-05-07 本田技研工業株式会社 Fuel supply system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025923A (en) * 1973-07-12 1975-03-18
JPH0323364A (en) * 1989-06-20 1991-01-31 Texas Instr Japan Ltd Heating device for fuel feed device
JPH06285872A (en) * 1993-03-31 1994-10-11 Honda Motor Co Ltd Manufacture of member
JPH10196494A (en) * 1997-01-14 1998-07-28 Honda Motor Co Ltd Fuel injection device
JP2003074425A (en) * 2001-08-31 2003-03-12 Honda Motor Co Ltd Sealing structure for air cleaner
JP2006017065A (en) * 2004-07-05 2006-01-19 Nikki Co Ltd Suction air passage structure for engine
JP2006207431A (en) * 2005-01-26 2006-08-10 Honda Motor Co Ltd V-type internal combustion engine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1756083U (en) * 1956-03-06 1957-11-14 Daimler Benz Ag REGISTER CARBURETOR.
DE2641066A1 (en) * 1976-09-11 1978-03-16 Bosch Gmbh Robert DEVICE FOR PROCESSING THE FUEL-AIR MIXTURE
CA1141247A (en) * 1979-10-23 1983-02-15 Kenneth R. Armstrong Economy gain through flow modification
DE3606708C2 (en) * 1986-03-01 1995-09-21 Stihl Maschf Andreas Connection piece between carburetor and combustion chamber
DE10109207B4 (en) * 2001-02-26 2011-10-06 Andreas Stihl Ag & Co Connecting piece between a carburetor and a cylinder of an internal combustion engine
DE10143435B4 (en) * 2001-03-29 2012-07-26 Andreas Stihl Ag & Co. Internal combustion engine for a hand-held implement
DE602004032162D1 (en) * 2003-11-07 2011-05-19 Yamaha Motor Co Ltd FUEL FEEDING DEVICE, VEHICLE AND FUEL FEEDING ASSEMBLY METHOD
DE102004024465A1 (en) * 2004-05-14 2005-12-08 Mann + Hummel Gmbh intake system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025923A (en) * 1973-07-12 1975-03-18
JPH0323364A (en) * 1989-06-20 1991-01-31 Texas Instr Japan Ltd Heating device for fuel feed device
JPH06285872A (en) * 1993-03-31 1994-10-11 Honda Motor Co Ltd Manufacture of member
JPH10196494A (en) * 1997-01-14 1998-07-28 Honda Motor Co Ltd Fuel injection device
JP2003074425A (en) * 2001-08-31 2003-03-12 Honda Motor Co Ltd Sealing structure for air cleaner
JP2006017065A (en) * 2004-07-05 2006-01-19 Nikki Co Ltd Suction air passage structure for engine
JP2006207431A (en) * 2005-01-26 2006-08-10 Honda Motor Co Ltd V-type internal combustion engine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043132A1 (en) * 2009-10-08 2011-04-14 三菱重工業株式会社 Air intake device for engine
JP2014069715A (en) * 2012-09-28 2014-04-21 Suzuki Motor Corp Intake system for motor bicycles
JP2014169522A (en) * 2013-02-28 2014-09-18 Maschinenfabrik Rieter Ag Spinning apparatus
CN104849414A (en) * 2015-06-03 2015-08-19 韩少茹 Power distribution network high-voltage switch cabinet monitoring method and device
CN105067045A (en) * 2015-06-03 2015-11-18 韩少茹 Power distribution network high-tension switch cabinet monitoring device
CN104849414B (en) * 2015-06-03 2016-06-22 国网山东省电力公司巨野县供电公司 System for distribution network of power high-tension switch cabinet monitoring method and device
CN105067045B (en) * 2015-06-03 2018-02-16 国网山东省电力公司济南供电公司 Power distribution network high-tension switch cabinet monitoring device
JP2019105168A (en) * 2017-12-08 2019-06-27 トヨタ自動車株式会社 Inlet duct structure
JPWO2021181547A1 (en) * 2020-03-11 2021-09-16
WO2021181547A1 (en) * 2020-03-11 2021-09-16 本田技研工業株式会社 Intake device of internal combustion engine for saddle-type vehicle
JP7241235B2 (en) 2020-03-11 2023-03-16 本田技研工業株式会社 Intake device for internal combustion engine for straddle-type vehicle
KR20220089415A (en) 2020-12-21 2022-06-28 주식회사 포스코 Oxide iron and reduced iron composite fuel and method for manufacturing the same

Also Published As

Publication number Publication date
DE102008006994A1 (en) 2008-09-11
DE102008006994B4 (en) 2016-01-07
JP4865603B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP4865603B2 (en) Insulator structure
JP4595726B2 (en) Intake device
US9273652B2 (en) Air intake device for internal combustion engine
US9790902B2 (en) Engine cylinder head intake port configuration
JPWO2019009347A1 (en) cylinder head
EP1749997B1 (en) Fuel injection type internal combustion engine
US3980060A (en) Internal combustion engine
JP4198329B2 (en) Fuel injection device for internal combustion engine
JP2006207469A (en) Intake manifold for internal combustion engine
JP2016070206A (en) Intake device of internal combustion engine
JP6212014B2 (en) Intake device for internal combustion engine
US10267213B2 (en) Combustion chamber structure of spark-ignition internal combustion engine
US10100776B2 (en) Preformed article for cylinder head, cylinder head, and method for manufacturing cylinder head
WO2011138909A1 (en) Air cleaner of two-cycle engine
JPH084542A (en) Intake port structure for internal combustion engine
JP2021169770A (en) Spark ignition type engine unit and vehicle
CN203403987U (en) Oil-saving accelerator
JP2003278627A (en) Spark ignition type engine provided with fuel injection valve
JP3711699B2 (en) Direct-injection spark ignition internal combustion engine
JPH109050A (en) Direct fuel cylinder injection type spark ignition engine
JPH11210454A (en) Engine for motorcycle
JP3697385B2 (en) 2-cylinder engine intake system
JP2000230461A (en) Structure of fuel distribution pipe of internal combustion engine
JPS6345354B2 (en)
JP2012193725A (en) Intake air device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4865603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees