JP2008214565A - Apparatus for supplying mixed gas and method for adjusting variation in composition in the apparatus for supplying mixed gas - Google Patents

Apparatus for supplying mixed gas and method for adjusting variation in composition in the apparatus for supplying mixed gas Download PDF

Info

Publication number
JP2008214565A
JP2008214565A JP2007056869A JP2007056869A JP2008214565A JP 2008214565 A JP2008214565 A JP 2008214565A JP 2007056869 A JP2007056869 A JP 2007056869A JP 2007056869 A JP2007056869 A JP 2007056869A JP 2008214565 A JP2008214565 A JP 2008214565A
Authority
JP
Japan
Prior art keywords
mixed gas
gas supply
calorific value
piping
supply apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007056869A
Other languages
Japanese (ja)
Other versions
JP5001031B2 (en
Inventor
Susumu Nishio
晋 西尾
Yasuhiko Urabe
安彦 浦邊
Takefumi Ishikura
威文 石倉
Tomonori Nagasawa
知紀 長澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2007056869A priority Critical patent/JP5001031B2/en
Priority to PCT/JP2008/053480 priority patent/WO2008108259A1/en
Publication of JP2008214565A publication Critical patent/JP2008214565A/en
Application granted granted Critical
Publication of JP5001031B2 publication Critical patent/JP5001031B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D11/00Control of flow ratio
    • G05D11/02Controlling ratio of two or more flows of fluid or fluent material
    • G05D11/13Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means
    • G05D11/135Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by sensing at least one property of the mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0447Composition; Humidity
    • F17C2250/0456Calorific or heating value

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pipeline Systems (AREA)
  • Industrial Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for supplying a mixed gas that is suitable for the stabilization of calorific value of a fuel gas such as a city gas and to provide a method for adjusting the variation in a composition of a mixed gas in the apparatus. <P>SOLUTION: In the apparatus for supplying a mixed gas, each of two packed columns is filled with the same adsorbent material therein. A piping extension S1 of a piping L3a extending from a branch piping L3 downstream of the packed column is formed so as to be longer than a piping extension S2 of a piping L4a. The piping L3a is provided with a plurality of outlets 10 in its passage and is constituted so as to render a piping extension S1 variable by means of the outlets. A value representing the variation in calorific value of a fuel gas to be supplied to a load apparatus 5 is adjusted by properly adjusting the opening degree of each of flow rate control valves V1 and V2 and/or the piping extension S1 of the piping L3a based on a measured value by a calorimeter 7. The control of calorific value is effected firstly by the action of the adsorbent material in each of the filling columns. The additional control of heat value is effected by the phase shift of the variation in calorific value by virtue of the difference in the extension of the branch piping and still further, the variation in calorific value can be kept to the minimum by appropriately setting a flow rate ratio and a piping extension S1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、混合ガス供給装置及びその組成変動調整方法に係り、特に、都市ガス等、燃料ガスの発熱量安定化に好適な混合ガス供給装置及びその組成変動調整方法に関する。 The present invention relates to a mixed gas supply device and a composition variation adjusting method thereof, and more particularly to a mixed gas supply device suitable for stabilizing a calorific value of fuel gas such as city gas and a composition variation adjusting method thereof.

近年、大都市圏から離れた地方における都市ガス需要の増加に伴い、LNG(液化天然ガス)サテライト基地が多く建設されている。LNGサテライト基地は、LNG貯槽と気化器を備えた設備であり、沿岸のLNG受入基地からローリーでLNGを輸送し、LNG貯槽に一旦貯蔵した後に、LNGを気化して工業団地や住宅地などに都市ガスとして供給するためのものである。   In recent years, LNG (liquefied natural gas) satellite bases have been built with increasing demand for city gas in regions far from metropolitan areas. The LNG satellite base is a facility equipped with LNG storage tanks and vaporizers. After transporting LNG from the coastal LNG receiving terminal by lorry and storing it in the LNG storage tank, the LNG is vaporized to industrial parks and residential areas. It is for supply as city gas.

このようなLNGサテライト供給方式においては、気化器稼動開始時や負荷変動、気温変化等に伴う供給ガスの発熱量変動が問題となる場合があり、このため供給ガスの発熱量安定化のための種々の技術が開示されている。気化器自体の改良としては、LNG気化器の停止時にパージラインからLPGをパージする技術が提案されている(例えば特許文献1)。
また、吸着材を用いた発熱量調整装置として、気化器下流側に活性炭を充填した吸着材充填塔を設けて、発熱量を抑制する技術が提案されている(例えば特許文献2)。図16は、このような吸着材充填塔を用いた従来の発熱量調整装置100を示す。従来の発熱量調整装置100は、LNG貯槽101、外気を加熱源とする気化器102、吸着材充填塔103を主要構成とする。吸着材充填塔103内には細孔直径2.0〜3.0nmの活性炭が充填されている。このような構成により、タンクローリ105、ライン106を介して供給されるLNGをLNG貯槽101に一旦貯蔵し、気化器102で気化して天然ガスとし、さらに吸着材充填塔103を通過させる。これにより、気化器出側において高沸点(重質炭化水素)成分の組成比が高くガス発熱量が高いときには、高沸点成分を吸着材で吸着し、また低沸点成分であるメタンの組成比が高くガス発熱量が低いときには、吸着した高沸点成分を脱着させて発熱量を抑制する。
In such an LNG satellite supply system, there is a case where the heat generation amount fluctuation of the supply gas accompanying the start of operation of the carburetor, load fluctuation, temperature change or the like becomes a problem. Various techniques have been disclosed. As an improvement of the vaporizer itself, a technique for purging LPG from a purge line when the LNG vaporizer is stopped has been proposed (for example, Patent Document 1).
In addition, as a calorific value adjustment device using an adsorbent, a technique for suppressing the calorific value by providing an adsorbent packed tower filled with activated carbon on the downstream side of the vaporizer has been proposed (for example, Patent Document 2). FIG. 16 shows a conventional calorific value adjusting device 100 using such an adsorbent packed tower. A conventional calorific value adjusting device 100 mainly includes an LNG storage tank 101, a vaporizer 102 using outside air as a heat source, and an adsorbent packed tower 103. The adsorbent packed tower 103 is filled with activated carbon having a pore diameter of 2.0 to 3.0 nm. With such a configuration, the LNG supplied via the tank lorry 105 and the line 106 is temporarily stored in the LNG storage tank 101, vaporized by the vaporizer 102 to become natural gas, and further passed through the adsorbent packed tower 103. Thus, when the composition ratio of the high boiling point (heavy hydrocarbon) component is high and the gas calorific value is high on the outlet side of the vaporizer, the high boiling point component is adsorbed by the adsorbent, and the composition ratio of methane which is the low boiling point component is When the gas calorific value is high and the gas calorific value is low, the adsorbed high boiling point component is desorbed to suppress the calorific value.

特開平7−109476号公報JP-A-7-109476 特開2005-273753号公報JP 2005-273753 A

しかしながら、従来の吸着材による発熱量調整方法においては、吸着材の吸着量に限界があるため、充填塔の単位体積当たりガス処理量が制限される。従って、都市ガス供給のような高度の発熱量安定化が必要とされる場合には、吸着材充填量を増やすことが必要となり、充填塔容積の大型化、建設作業や設置作業の煩雑化が避けられないという問題がある。   However, in the conventional calorific value adjustment method using an adsorbent, the amount of gas adsorbed per unit volume of the packed tower is limited because the adsorbent adsorbed amount is limited. Therefore, when a high degree of heat generation stabilization such as city gas supply is required, it is necessary to increase the amount of adsorbent filling, which increases the capacity of the packed tower and complicates construction work and installation work. There is an inevitable problem.

本発明は、このような課題を解決するためのものであって、吸着材を用いた混合ガス供給装置において、充填塔の吸着材充填量を増やすことなく、組成変動を一定範囲に抑えてガス供給を可能とする混合ガス供給装置を提供するものである。本発明は、以下の内容を要旨とする。すなわち、   The present invention is for solving such a problem, and in a mixed gas supply apparatus using an adsorbent, the composition fluctuation is suppressed to a certain range without increasing the adsorbent filling amount of the packed tower. The present invention provides a mixed gas supply device that enables supply. The gist of the present invention is as follows. That is,

請求項1の発明は、ガス組成が経時的に変動する混合ガスを供給する供給ラインと、供給ライン経路中に複数の分岐配管を備えた並列配管部と、一以上の分岐配管経路中に設けた吸着材充填塔と、一部の分岐配管を通過する混合ガスの組成変動の位相を、他の分岐配管の組成変動の位相に対して変化させる位相差調整手段と、を備えて成ることを特徴とする混合ガス供給装置である。
本来、吸着材の充填量によりガス組成変動幅の抑制量は定まるが、本発明により各充填塔出口におけるガス組成変動に位相差を生じさせることにより、その限度を超えた変動幅抑制が可能となる。
本発明において、「組成変動」は周期的な変動に限定されず、非周期的変動をも含み、また連続的な変動のみならず、単発的な変動も含む。また「位相」とは、周期的あるいは非周期的な組成変動が起きたときに、下流側にその結果が現れるまでの時間及びタイミングを意味する概念である。さらに「位相差」とは、位相のずれを意味する概念である。
本発明において、「混合ガス」は、化学工業における原料ガス、副生ガス、排気ガス、バイオマスによる生成ガス等を含む概念である。
また、本発明に用いる「吸着材」としては、活性炭、ゼオライト、シリカゲル、メソポーラスシリカ、活性アルミナ、有機金属錯体などを用いることができる。また、活性炭としては、石炭原料活性炭、ヤシガラ活性炭、木炭、石油原料活性炭、竹炭、フェノール樹脂活性炭、レーヨン由来活性炭、アクロニトリル由来活性炭、草炭、おがくず炭、泥炭などがある。
The invention according to claim 1 is provided in a supply line for supplying a mixed gas whose gas composition varies over time, a parallel pipe section having a plurality of branch pipes in the supply line path, and in one or more branch pipe paths And a phase difference adjusting means for changing the phase of the composition fluctuation of the mixed gas passing through a part of the branch pipes with respect to the phase of the composition fluctuation of the other branch pipes. This is a mixed gas supply device.
Originally, the amount of suppression of the gas composition fluctuation range is determined by the amount of adsorbent packed, but the present invention makes it possible to suppress the fluctuation range beyond that limit by creating a phase difference in the gas composition fluctuation at the exit of each packed tower. Become.
In the present invention, “composition variation” is not limited to periodic variation, but also includes non-periodic variation, and includes not only continuous variation but also single variation. The term “phase” is a concept that means the time and timing until a result appears on the downstream side when a periodic or aperiodic composition fluctuation occurs. Furthermore, the “phase difference” is a concept that means a phase shift.
In the present invention, the “mixed gas” is a concept including a raw material gas, a by-product gas, an exhaust gas, a produced gas by biomass, and the like in the chemical industry.
In addition, as the “adsorbent” used in the present invention, activated carbon, zeolite, silica gel, mesoporous silica, activated alumina, organometallic complex, and the like can be used. Examples of the activated carbon include coal raw material activated carbon, coconut husk activated carbon, charcoal, petroleum raw material activated carbon, bamboo charcoal, phenol resin activated carbon, rayon-derived activated carbon, acrylonitrile-derived activated carbon, grass charcoal, sawdust charcoal, and peat.

上記発明において、並列配管部に、各分岐配管を通過する混合ガスの流量比を調整する手段を加えた装置とすることもできる(請求項2)。
上記各発明において、「位相差調整手段」として、充填される吸着材の材料の相違(請求項3及び4)、又は各充填塔のアスペクト比の相違(請求項5)とすることができる。
充填容器のアスペクト比(容器長/内径)を異ならしめることによって、位相差を生じさせることができる。アスペクト比が大きい充填容器では、流入ガスの吐出が遅れるため変動周期が遅れる。逆に、アスペクト比が小さい充填容器では、変動周期の遅れは小さくなる。
さらに、「位相差調整手段」として、各充填塔に充填される吸着材の形状の相違(請求項6)とすることもできる。例えば、吸着材の粒径が小さくなれば容器中のガスの拡散が遅れて位相が遅れ、粒径が大きくなれば位相遅れは小さくなる。
In the above-mentioned invention, it is also possible to provide an apparatus in which means for adjusting the flow rate ratio of the mixed gas passing through each branch pipe is added to the parallel pipe section (claim 2).
In each of the above inventions, the “phase difference adjusting means” can be a difference in the material of the adsorbent to be packed (Claims 3 and 4) or a difference in the aspect ratio of each packed tower (Claim 5).
By making the aspect ratio (container length / inner diameter) of the filled containers different, a phase difference can be generated. In a filled container having a large aspect ratio, the fluctuation cycle is delayed because the discharge of the inflowing gas is delayed. Conversely, in a filled container having a small aspect ratio, the delay of the fluctuation cycle is small.
Furthermore, the “phase difference adjusting means” may be a difference in the shape of the adsorbent packed in each packed tower (claim 6). For example, if the particle size of the adsorbent decreases, the diffusion of gas in the container is delayed and the phase is delayed, and if the particle size increases, the phase delay decreases.

「位相差調整手段」として、並列配管部の配管延長の相違とすることもでき(請求項7)、さらに、配管延長を任意に調整可能とすることもできる(請求項8)。
例えば、充填塔の下流側配管の延長を長くすることで、当該充填塔を通過する混合ガスの位相に遅れを生じさせることができる。
さらに、上記「位相差調整手段」を2以上組み合わせた装置とすることもできる(請求項9)。2以上組み合わせることにより、位相差を調整する上で相乗的効果が期待できる。
上記各発明において、「混合ガス」として燃料ガスを用いることができ(請求項10)、また、メタンを主成分とする都市ガスとすることができる(請求項11)。
The “phase difference adjusting means” may be a difference in the pipe extension of the parallel pipe section (Claim 7), and the pipe extension can be arbitrarily adjusted (Claim 8).
For example, the phase of the mixed gas passing through the packed tower can be delayed by extending the length of the downstream piping of the packed tower.
Furthermore, a device in which two or more of the above “phase difference adjusting means” are combined can be provided. By combining two or more, a synergistic effect can be expected in adjusting the phase difference.
In each of the above inventions, a fuel gas can be used as the “mixed gas” (Claim 10), and a city gas mainly composed of methane can be used (Claim 11).

請求項12の発明は、請求項10又は11に記載の混合ガス供給装置を備え、さらに前記並列配管部通過後の燃料ガス又は都市ガスの発熱量を所定の範囲内に調整可能に構成したことを特徴とする発熱量調整装置である。
燃料ガスに組成変動が生じると、これに伴い発熱量も変動する。本発明は、燃料ガスの組成変動に伴う発熱量変動を抑制するため、上記混合ガス供給装置を用いて発熱量調整を行うものである。
現在、全国の都市ガスはウオッベ指数及び燃焼速度指数に基づいて14種類のガスグループに分類され、都市ガス事業者は特定したガス種の都市ガスを供給域内の需要家に対して供給することが、ガス事業法により義務付けられている。例えば、メタンを主成分とする13A都市ガスについては、52.7≦WI≦57.8、35≦MCP≦47と定められている。ここにウオッベ指数(WI)は、ガスの発熱量H(MJ/m3)をガスの空気に対する比重sの平方根で割った数値、
WI=H/√s
で表され、ガス機器の完全燃焼性の指標となるものである。
また、燃焼速度指数(MCP)は、次式で表される。

Figure 2008214565
上式において、Si、fiはそれぞれ都市ガス中の各可燃性ガスの燃焼速度及び係数、Aiは都市ガス中の各可燃性ガスの含有率(体積百分率)、Kは減衰係数である。各係数の具体的数値についてはガス事業法に示されているため、ここでは省略する。
従って、本発明による混合ガス供給装置通過後の混合ガスのWI及びMCPを、例えば13A都市ガスの範囲に制御することにより、供給域内で都市ガス13A用機器を良好に燃焼させることができる。 The invention of claim 12 is provided with the mixed gas supply device of claim 10 or 11, and further configured such that the calorific value of the fuel gas or city gas after passing through the parallel pipe section can be adjusted within a predetermined range. Is a calorific value adjustment device.
When the composition variation occurs in the fuel gas, the calorific value also varies accordingly. The present invention adjusts the calorific value using the above-mentioned mixed gas supply device in order to suppress the calorific value fluctuation accompanying the composition fluctuation of the fuel gas.
Currently, city gas nationwide is classified into 14 types of gas groups based on the Wobbe index and burning rate index, and city gas companies can supply city gas of the specified gas type to consumers in the supply area. As required by the Gas Business Law. For example, 13A city gas mainly composed of methane is defined as 52.7 ≦ WI ≦ 57.8 and 35 ≦ MCP ≦ 47. Here, the Wobbbe index (WI) is a numerical value obtained by dividing the calorific value H (MJ / m3) of the gas by the square root of the specific gravity s of the gas with respect to air.
WI = H / √s
This is an index of complete combustibility of gas equipment.
The combustion rate index (MCP) is expressed by the following equation.
Figure 2008214565
In the above equation, Si and fi are the burning rate and coefficient of each combustible gas in the city gas, Ai is the content (volume percentage) of each combustible gas in the city gas, and K is the attenuation coefficient. Specific numerical values for each coefficient are shown in the Gas Business Law, and are therefore omitted here.
Therefore, by controlling the WI and MCP of the mixed gas after passing through the mixed gas supply apparatus according to the present invention within the range of, for example, 13A city gas, the city gas 13A equipment can be burned well in the supply area.

請求項13の発明は、請求項1乃至11に記載の混合ガス供給装置において、各分岐配管を通過する混合ガスの組成変動サイクルの周期が同一のときに、一部の分岐配管を通過する混合ガスの組成変動サイクルの位相を、他の分岐配管の位相に対してπラジアン遅らせるように調整することを特徴とする混合ガス供給装置における組成変動調整方法である。
並列配管部の下流側合流部における組成変動の波形は、各分岐配管を通過する混合ガスの組成変動波形を合成したものとなる。この場合、その組成変動周期が同一であるときは、位相差がπラジアンのときに変動幅は最小になる。従って、そのように調整することにより、組成変動の抑制を効果的に行うことができる。
A thirteenth aspect of the present invention is the mixed gas supply apparatus according to any one of the first to eleventh aspects, wherein when the cycle of the composition variation cycle of the mixed gas that passes through each branch pipe is the same, the mixture that passes through some branch pipes A composition variation adjustment method in a mixed gas supply apparatus, wherein the phase of a gas composition variation cycle is adjusted to be delayed by π radians with respect to the phase of another branch pipe.
The waveform of the composition variation at the downstream side merging portion of the parallel piping portion is a combination of the composition variation waveforms of the mixed gas passing through each branch piping. In this case, when the composition variation period is the same, the variation width is minimized when the phase difference is π radians. Therefore, the composition fluctuation can be effectively suppressed by making such adjustment.

請求項14の発明は、請求項10又は11に記載の混合ガス供給装置において、ガス組成が経時的に変化する燃料ガス又は都市ガスの発熱量を所定の範囲内に調整するように、前記位相差又は流量比の一方又は両方を制御することを特徴とする混合ガス供給装置における発熱量調整方法である。   According to a fourteenth aspect of the present invention, there is provided the mixed gas supply apparatus according to the tenth or eleventh aspect, wherein the calorific value of the fuel gas or the city gas whose gas composition changes with time is adjusted to be within a predetermined range. It is a calorific value adjustment method in a mixed gas supply device characterized by controlling one or both of a phase difference and a flow rate ratio.

本発明により、充填塔の吸着材充填量を増やすことなく、組成変動を一定範囲に抑えてガス供給を可能とする混合ガス供給装置が可能となる。
また、混合ガスとして燃料ガスを用いる発明にあっては、供給元から発熱量変動を伴うガスが供給された場合であっても、発熱量変動を一定範囲に抑制して需要家に供給することが可能となる。
According to the present invention, it is possible to provide a mixed gas supply device that enables gas supply while suppressing composition fluctuation within a certain range without increasing the amount of adsorbent packed in the packed tower.
Further, in the invention using fuel gas as a mixed gas, even if a gas accompanied by a calorific value variation is supplied from a supplier, the calorific value variation is suppressed to a certain range and supplied to the consumer. Is possible.

以下、本発明の実施形態について、図1乃至15を参照してさらに詳細に説明する。なお、重複記載を回避するため、各図において同一構成には同一符号を用いて示している。なお、本発明の範囲は特許請求の範囲記載のものであって、以下の実施形態に限定されないことはいうまでもない。
(第一の実施形態)
本実施形態は、「混合ガス」として組成が経時的に変動する燃料ガス(LNG原料)を用い、かつ「位相差調整手段」として配管延長の相違を用いることにより、組成変動(発熱量変動)の抑制を図るものである。
図1は、本実施形態に係る燃料ガス供給装置1の全体構成を示す図である。燃料ガス供給装置1は、LNG貯槽4と、気化器3と、分岐配管L3、L4の経路中に並列に設けられた2塔の吸着材充填塔2a、2bと、供給ライン末端側に負荷装置5(例えばガスエンジン)を備えている。LNG貯槽4には、不図示のタンクローリ等により運ばれるLNGが貯蔵されている。これら装置間は配管L1乃至L5により接続されている。2基の充填塔内には同一吸着材(例えば石炭原料活性炭、ヤシガラ原料活性炭等)が充填されている。分岐配管L3、L4の充填塔上流側には、それぞれ流量調節バルブV1、V2が配設されている。配管L5経路中には熱量計7が配設されている。分岐配管L3の充填塔下流側配管L3aの配管延長S1は、配管L4aの配管延長S2と比較して長く形成されている。さらに配管L3a途中には複数の流出口10が設けられており、これにより配管延長S1を可変とするように構成されている。
燃料ガス供給装置1は制御部8を備えており、熱量計7の計測値に基づいて流量調節バルブV1、V2の開度及び/又は配管L3a配管延長S1を適宜調整して、負荷装置5に供給する燃料ガスの発熱量変動値を調整できるように構成されている。
Hereinafter, embodiments of the present invention will be described in more detail with reference to FIGS. In addition, in order to avoid duplication description, in each figure, the same structure is shown using the same code | symbol. Needless to say, the scope of the present invention is described in the claims and is not limited to the following embodiments.
(First embodiment)
This embodiment uses a fuel gas (LNG raw material) whose composition changes over time as a “mixed gas”, and uses a difference in pipe extension as a “phase difference adjusting means”, thereby changing the composition (heating value fluctuation). It is intended to suppress this.
FIG. 1 is a diagram illustrating an overall configuration of a fuel gas supply apparatus 1 according to the present embodiment. The fuel gas supply apparatus 1 includes an LNG storage tank 4, a vaporizer 3, two adsorbent packed towers 2a and 2b provided in parallel in the path of the branch pipes L3 and L4, and a load apparatus at the end of the supply line. 5 (for example, a gas engine). The LNG storage tank 4 stores LNG carried by a tank truck (not shown). These devices are connected by pipes L1 to L5. The same adsorbent (for example, coal raw material activated carbon, coconut shell raw material activated carbon, etc.) is packed in the two packed towers. On the upstream side of the packed towers of the branch pipes L3 and L4, flow control valves V1 and V2 are arranged, respectively. A calorimeter 7 is disposed in the pipe L5 path. The pipe extension S1 of the downstream pipe L3a of the packed tower downstream of the branch pipe L3 is formed longer than the pipe extension S2 of the pipe L4a. Further, a plurality of outlets 10 are provided in the middle of the pipe L3a, so that the pipe extension S1 is variable.
The fuel gas supply device 1 includes a control unit 8 and appropriately adjusts the opening of the flow rate adjusting valves V1 and V2 and / or the piping L3a piping extension S1 based on the measurement value of the calorimeter 7 to the load device 5. It is configured such that the calorific value fluctuation value of the supplied fuel gas can be adjusted.

以上の構成により、燃料ガス供給装置1はLNG貯槽4内のLNGを気化器3で気化して天然ガスとし、吸着材充填塔2a、2bを通過させた後に供給ラインL5を経由して負荷装置5に供給する。この場合、まず各充填塔内吸着材の作用により発熱量の抑制が行われる。さらに、分岐配管延長の相違による発熱量変動位相のずれにより、さらなる発熱量抑制が行われるが、上述のように流量比と配管延長S1を適当に設定することにより、発熱量変動最小とすることができる。なお、配管の長さと位相のずれの関係は、以下の式で表すことができる。

Figure 2008214565
With the above configuration, the fuel gas supply device 1 vaporizes the LNG in the LNG storage tank 4 with the vaporizer 3 into natural gas, passes through the adsorbent packed towers 2a and 2b, and then passes through the supply line L5 to load the load device. 5 is supplied. In this case, first, the calorific value is suppressed by the action of the adsorbent in each packed tower. Further, the heat generation amount is further suppressed by the shift of the heat generation amount fluctuation phase due to the difference in the branch pipe extension. However, by appropriately setting the flow rate ratio and the pipe extension S1 as described above, the heat generation amount fluctuation should be minimized. Can do. The relationship between the length of the pipe and the phase shift can be expressed by the following equation.
Figure 2008214565

なお、本実施形態では、分岐配管L3aの配管延長及び流量比を適宜選択する構成としたが、予め発熱量変動が最小となるような配管延長、流量比を知り、その値に固定しておく形態とすることもできる。
また、両分岐配管経路中に吸着材充填塔を配置する形態としたが、一方の分岐配管のみ充填塔を配置して、他方の分岐配管には充填塔を配置せず配管延長を長くする形態としてもよい。また、この配管延長の長さを可変としてもよい。
また、2基の吸着材充填塔を並列に配置する形態を示したが、3基以上の充填塔を並列に配置し、それぞれの配管延長、流量比を可変とする形態としてもよい。
また、2つの充填塔に同一吸着材を充填する形態としたが、異なる吸着材を充填する形態としてもよい。また、同一吸着材で異なる形状のものを用いる形態とすることもできる。
In this embodiment, the pipe extension and the flow rate ratio of the branch pipe L3a are appropriately selected. However, the pipe extension and the flow rate ratio that minimize the variation in the heat generation amount are known in advance and fixed to those values. It can also be in the form.
Moreover, although it was set as the form which arrange | positions an adsorbent packed tower in both branch piping path | routes, the form which arrange | positions a packed tower only to one branch pipe, and does not arrange a packed tower in the other branch pipe, lengthens the pipe extension It is good. Further, the length of the pipe extension may be variable.
Moreover, although the form which arrange | positions two adsorbent packed towers in parallel was shown, it is good also as a form which arrange | positions three or more packed towers in parallel, and makes each piping extension and flow rate ratio variable.
Moreover, although it was set as the form filled with the same adsorbent in two packed towers, it is good also as a form filled with a different adsorbent. Moreover, it can also be set as the form which uses the thing of a different shape with the same adsorbent.

(第二の実施形態)
次に、本発明の他の実施形態について説明する。図2は、本実施形態に係る燃料ガス供給装置20の全体構成を示す図である。燃料ガス供給装置20が上述の燃料ガス供給装置1と異なる点は、2つの充填塔21a、21bのアスペクト比(容器長/内径)が異なることである。すなわち、充填塔21aのアスペクト比AR1=X1/D1であるのに対して、充填塔21bのアスペクト比AR2=X2/D2とし、さらにAR1>AR2となるように構成されている。また、延長配管部及び流量調節バルブV1、V2を備えていない点が異なる。その他の構成は燃料ガス供給装置1と同一であるので、重複説明を省略する。
燃料ガス供給装置20においては、アスペクト比の大きい充填塔21a側に流入したガスの吐出が遅れるため、充填塔21b側と比べて発熱量変動の位相が遅れる。これにより同一アスペクト比の充填塔を有する同種の燃料供給装置と比較して、発熱量変動幅を小さくすることが可能となる。
なお、本実施形態においても延長配管部及び流量調節バルブV1、V2を備えた形態として、さらなる発熱量変動幅の調整を行うことも可能である。
(Second embodiment)
Next, another embodiment of the present invention will be described. FIG. 2 is a diagram illustrating an overall configuration of the fuel gas supply device 20 according to the present embodiment. The fuel gas supply device 20 is different from the fuel gas supply device 1 described above in that the aspect ratios (container length / inner diameter) of the two packed towers 21a and 21b are different. That is, the aspect ratio AR1 of the packed tower 21a is X1 / D1, whereas the aspect ratio AR2 of the packed tower 21b is X2 / D2, and AR1> AR2. Moreover, the point which is not provided with the extension piping part and the flow control valves V1 and V2 differs. Since the other configuration is the same as that of the fuel gas supply device 1, a duplicate description is omitted.
In the fuel gas supply device 20, since the discharge of the gas flowing into the packed tower 21a side having a large aspect ratio is delayed, the phase of fluctuation of the calorific value is delayed as compared with the packed tower 21b side. This makes it possible to reduce the fluctuation range of the calorific value as compared with the same type of fuel supply device having a packed tower with the same aspect ratio.
In the present embodiment as well, it is possible to further adjust the fluctuation range of the calorific value as a form including the extension pipe portion and the flow rate adjusting valves V1, V2.

(第三の実施形態)
さらに、本発明の他の実施形態について説明する。図3は、本実施形態に係る燃料ガス供給装置30の全体構成を示す図である。燃料ガス供給装置30が上述の燃料ガス供給装置10と異なる点は、分岐配管L9、L10のいずれの経路中にも充填塔を有さず、位相差調整手段として分岐配管L9の配管延長をL10に対して長くしていることである。その他の構成は燃料ガス供給装置1と同一である。
以上の構成により、熱量計7の計測値に基づいて流量比を調整して、合流点P1における分岐配管L9側の変動周期の位相をπラジアン遅らせることにより、発熱量変動幅を小さくすることが可能となる。
なお、本実施形態においても、分岐配管L9の配管延長及び流量比を位相がπラジアン遅らせるような値に固定しておく形態とすることもできる。
(Third embodiment)
Furthermore, another embodiment of the present invention will be described. FIG. 3 is a diagram showing an overall configuration of the fuel gas supply device 30 according to the present embodiment. The fuel gas supply device 30 differs from the fuel gas supply device 10 described above in that there is no packed tower in any of the branch pipes L9 and L10, and the pipe extension of the branch pipe L9 is used as a phase difference adjusting means. Is to make it longer. Other configurations are the same as those of the fuel gas supply apparatus 1.
With the above configuration, the flow rate fluctuation range can be reduced by adjusting the flow rate ratio based on the measurement value of the calorimeter 7 and delaying the phase of the fluctuation cycle on the branch pipe L9 side at the junction P1 by π radians. It becomes possible.
In the present embodiment, the pipe extension and the flow rate ratio of the branch pipe L9 may be fixed to values such that the phase is delayed by π radians.

本発明による発熱量抑制効果を確認するため、以下の試験を行った。
(供試吸着材)
石炭原料活性炭及びヤシガラ原料活性炭の2種類の吸着材を用いた(以下、石炭原料活性炭を活性炭A、ヤシガラ原料活性炭を活性炭Bと略称することがある)。活性炭A,Bの物性を表1に、細孔径分布(窒素吸着DFT法による)を図4(a)に示す。また、活性炭A、Bのメタン、プロパンに対する圧力−吸着量特性を図4(b)に示す。
In order to confirm the calorific value suppression effect according to the present invention, the following tests were conducted.
(Test adsorption material)
Two types of adsorbents, ie, coal raw material activated carbon and coconut shell raw material activated carbon were used (hereinafter, the coal raw material activated carbon may be abbreviated as activated carbon A and the coconut shell raw material activated carbon may be referred to as activated carbon B). The physical properties of the activated carbons A and B are shown in Table 1, and the pore size distribution (by nitrogen adsorption DFT method) is shown in FIG. Moreover, the pressure-adsorption amount characteristic with respect to the methane and propane of activated carbon A and B is shown in FIG.4 (b).

Figure 2008214565
(試験ガス)
2分間、LNG気化ガス(組成:CH4:90.8%、C2H6:5.0%、C3H8:3.0%、i-C4H10:0.6%、n-C4H10:0.6%)を流し、その後1分間、このガスに添加用ガス(プロパン:ブタン=1:1)を添加するサイクルを繰り返すことにより、周期的に組成(発熱量)が変動するガスを調製した。試験ガスの発熱量変動は、最小44.8MJ/m3、最大50.8MJ/m3であり、ΔH=2.85MJ/m3であった。ここにΔHは、ΔH=(Hmax−Hmin)/2、すなわち発熱量最大値Hmaxと最小値Hminの差の1/2であり、発熱量変動幅比較の指標となる数値である。
Figure 2008214565
(Test gas)
Flow LNG vapor (composition: CH4: 90.8%, C2H6: 5.0%, C3H8: 3.0%, i-C4H10: 0.6%, n-C4H10: 0.6%) for 2 minutes, then add to this gas for 1 minute By repeating the cycle of adding gas (propane: butane = 1: 1), a gas whose composition (calorific value) fluctuates periodically was prepared. The calorific value variation of the test gas was a minimum of 44.8 MJ / m3, a maximum of 50.8 MJ / m3, and ΔH = 2.85 MJ / m3. Here, ΔH is ΔH = (Hmax−Hmin) / 2, that is, 1/2 of the difference between the maximum calorific value Hmax and the minimum value Hmin, and is a numerical value serving as an index for comparing the calorific value fluctuation range.

(試験装置)
並列に配置した2個の充填容器(内容積合計30cc)に、吸着材を充填した試験装置を用いた。この場合、第一の実施形態に準じて、一方の充填容器(容器1)の下流側の配管延長を他方の充填容器(容器2)のそれより長くして、発熱量変動サイクルに所定の位相差が生じるようにした。容器出口における発熱量変動周期は、容器1、容器2ともに1周期(2πラジアン)=180secで同一であった。参考のため、位相差のラジアン表示と時間表示の対応を表2に示す。

Figure 2008214565
(Test equipment)
A test device in which two adsorbing materials were filled in two filling containers (total volume of 30 cc) arranged in parallel was used. In this case, in accordance with the first embodiment, the pipe extension on the downstream side of one filling container (container 1) is made longer than that of the other filling container (container 2), so that the predetermined amount of time in the calorific value fluctuation cycle is reached. A phase difference was created. The calorific value fluctuation period at the container outlet was the same for both the container 1 and the container 2 at 1 period (2π radians) = 180 sec. For reference, Table 2 shows the correspondence between the radian display of the phase difference and the time display.
Figure 2008214565

(試験方法)
各充填容器に表3のNo.1〜No.3の組み合わせで吸着材を充填し、容器2個全体として空塔速度2000h−1、温度25℃の流入条件で試験ガスを流して、装置出口におけるガスの発熱量を熱量計(Advantica社製、製品名:GasPT)で測定した。測定は、位相差をパラメータとして流量比変化と発熱量変動の関係を調べた。
(Test method)
Each packing container is filled with the adsorbent in the combination of No. 1 to No. 3 in Table 3, and the test gas is allowed to flow in the inflow conditions of a superficial velocity of 2000 h −1 and a temperature of 25 ° C. The calorific value of the gas was measured with a calorimeter (manufactured by Advantica, product name: GasPT). In the measurement, the relationship between the flow rate ratio change and the calorific value fluctuation was examined using the phase difference as a parameter.

Figure 2008214565
(測定結果)
図5に、No.1条件における各位相差での発熱量変動の流量比依存性結果を示す。同図において縦軸ΔHは、ΔH=(Hmax−Hmin)/2、すなわち発熱量最大値Hmaxと最小値Hminの差の1/2であり、発熱量変動幅比較の指標である。ここに、横軸においてF1、F2はそれぞれ容器1、容器2の流量であり、F1/(F1+F2)は全体流量に対する容器1の比率である。なお、従来技術の容器1個を用いる場合(図16参照)は、F1=1、F2=0であるから、ΔHは図5において横軸F1/(F1+F2)=1における値となる。
Figure 2008214565
(Measurement result)
FIG. 5 shows the result of the flow rate dependency of the variation in heat generation at each phase difference under No. 1 condition. In the figure, the vertical axis ΔH is ΔH = (Hmax−Hmin) / 2, that is, 1/2 of the difference between the maximum calorific value Hmax and the minimum value Hmin, and is an index for comparing the calorific value fluctuation range. Here, on the horizontal axis, F1 and F2 are the flow rates of the containers 1 and 2, respectively, and F1 / (F1 + F2) is the ratio of the container 1 to the total flow rate. When one conventional container is used (see FIG. 16), F1 = 1 and F2 = 0, so ΔH is the value on the horizontal axis F1 / (F1 + F2) = 1 in FIG.

同図より、この材料では流量比50:50、かつ位相差π(90秒)のときに変動抑制効果最大となるが、他の流量比、位相差条件のときも、容器なし又は容器1個の条件と比較して抑制効果が高いことが分かる。
図6は、流量比50:50、位相差π(90秒)のときの発熱量変動時間推移を示す図である。
図7、8は、No.2条件における同上測定結果である。また、図9、10はNo.3条件における同上測定結果である。
From this figure, this material has the maximum effect of suppressing the fluctuation when the flow ratio is 50:50 and the phase difference π (90 seconds), but no container or one container is also obtained under other flow ratio and phase difference conditions. It can be seen that the suppression effect is high compared to the above conditions.
FIG. 6 is a diagram showing a change in heat generation amount variation time when the flow ratio is 50:50 and the phase difference is π (90 seconds).
7 and 8 show the same measurement results as in No. 2 condition. 9 and 10 show the same measurement results as in No. 3 conditions.

(試験装置)
図15に示すように、並列配管部の一方の分岐配管のみ吸着材充填容器3(内容積30cc)を配置し、他方は容器を配置せずバイパス配管のみとする試験装置を用いた。そして、充填容器側の配管延長部をバイパス配管側より長くして、発熱量変動に所定の位相差が生じるようにした。例えば位相遅れは、配管内径4.35mm、配管延長20.1mのときにπ/5ラジアン(18秒長さ)となる。
(試験方法)
表3のNo.4、5の条件により、容器3に吸着材を充填し、実施例1と同様の測定を行った。
(測定結果)
図11は、No.4(活性炭A)条件における各位相差での発熱量変動の流量比依存性測定結果を示す図である。また、図12は(1)流量比=81:19、位相差0、及び(2)流量比=81:19、位相差π/5(18秒)のときの発熱量変動時間推移データを示す図である。
(1)におけるΔH=0.58(MJ/m3)、(2)におけるΔH=0.42であり、容器1個で配管延長なしのときの値、ΔH=0.73(実施例1参照)と比較して発熱量変動抑制効果が高いことが分かる。
(Test equipment)
As shown in FIG. 15, a test apparatus was used in which the adsorbent-filled container 3 (internal volume 30 cc) was arranged only in one branch pipe of the parallel pipe section, and only the bypass pipe was not arranged in the other. And the piping extension part by the side of a filling container was made longer than the bypass piping side, and it was made for the predetermined | prescribed phase difference to arise in the emitted-heat amount fluctuation | variation. For example, the phase delay is π / 5 radians (18 seconds long) when the pipe inner diameter is 4.35 mm and the pipe extension is 20.1 m.
(Test method)
Under the conditions of Nos. 4 and 5 in Table 3, the container 3 was filled with an adsorbent, and the same measurement as in Example 1 was performed.
(Measurement result)
FIG. 11 is a diagram showing the flow ratio dependency measurement result of the calorific value fluctuation at each phase difference under No. 4 (activated carbon A) condition. Further, FIG. 12 shows heat amount fluctuation time transition data when (1) flow rate ratio = 81: 19, phase difference 0, and (2) flow rate ratio = 81: 19, phase difference π / 5 (18 seconds). FIG.
ΔH = 0.58 (MJ / m3) in (1), ΔH = 0.42 in (2), value when one pipe is not extended, ΔH = 0.73 (see Example 1) It can be seen that the effect of suppressing the variation in heat generation is higher than

図13は、No.5(活性炭B)条件における各位相差での発熱量変動の流量比依存性測定結果を示す図である。また、図14は(1)流量比=93:7、位相差0、及び(2)流量比=83:17、位相差π/4(22秒)のときの発熱量変動時間推移データを示す図である。活性炭B(ヤシガラ原料活性炭)の場合も、活性炭A(石炭原料活性炭)と同様の発熱量変動抑制特性を示すことが分かる。
以上、No.1〜No.5のいずれの条件においても、本発明による発熱量変動抑制効果が実証された。
FIG. 13 is a diagram showing a flow ratio dependency measurement result of a heat generation amount variation at each phase difference under No. 5 (activated carbon B) condition. Moreover, FIG. 14 shows calorific value fluctuation time transition data when (1) flow rate ratio = 93: 7, phase difference 0, and (2) flow rate ratio = 83: 17, phase difference π / 4 (22 seconds). FIG. In the case of activated carbon B (coconut shell raw material activated carbon), it can be seen that the same calorific value fluctuation suppressing characteristics as activated carbon A (coal raw material activated carbon) are exhibited.
As described above, the heating value fluctuation suppressing effect according to the present invention has been demonstrated under any of No. 1 to No. 5.

本発明は、燃料ガスの発熱量抑制に限らず、化学工業における原料ガス、副生ガス、排気ガス、バイオマスによる生成ガス等、組成変動する複数のガス成分からなる混合ガスの組成抑制に広く利用可能である。   The present invention is widely used not only for suppressing the calorific value of fuel gas but also for suppressing the composition of a mixed gas composed of a plurality of gas components whose composition varies, such as raw material gas, by-product gas, exhaust gas, and produced gas by biomass in the chemical industry. Is possible.

第一の実施形態に係る燃料ガス供給装置1の構成を示す図である。It is a figure which shows the structure of the fuel gas supply apparatus 1 which concerns on 1st embodiment. 第二の実施形態に係る燃料ガス供給装置20の構成を示す図である。It is a figure which shows the structure of the fuel gas supply apparatus 20 which concerns on 2nd embodiment. 第三の実施形態に係る燃料ガス供給装置30の構成を示す図である。It is a figure which shows the structure of the fuel gas supply apparatus 30 which concerns on 3rd embodiment. 供試吸着材である活性炭A、Bの細孔径分布を示す図である。It is a figure which shows the pore size distribution of activated carbon A and B which are test adsorption materials. 活性炭A、Bのメタン、プロパンに対する圧力−吸着量特性を示す図である。It is a figure which shows the pressure-adsorption amount characteristic with respect to methane and propane of activated carbon A and B. No.1条件における発熱量変動の流量依存性結果を示す。The result of the flow rate dependency of the calorific value fluctuation in No. 1 condition is shown. No.1条件における流量比50:50、位相差π(90秒)のときの発熱量変動時間推移を示す図である。It is a figure which shows the calorific value fluctuation | variation time transition at the flow rate ratio of 50:50 in No. 1 conditions, and phase difference (pi) (90 second). No.2条件における発熱量変動の流量依存性結果を示す図である。It is a figure which shows the flow rate dependence result of the emitted-heat amount fluctuation | variation in No. 2 conditions. No.2条件における流量比50:50、位相差π(90秒)のときの発熱量変動時間推移を示す図である。It is a figure which shows the calorific value fluctuation | variation time transition at the flow rate ratio of 50:50 and phase difference (pi) (90 second) in No. 2 conditions. No.3条件における発熱量変動の流量依存性結果を示す図である。It is a figure which shows the flow rate dependence result of the emitted-heat amount fluctuation | variation in No.3 conditions. No.3条件における流量比50:50、位相差π(90秒)のときの発熱量変動時間推移を示す図である。It is a figure which shows the calorific value fluctuation | variation time transition at the time of flow rate ratio 50:50 and phase difference (pi) (90 second) in No. 3 conditions. No.4条件における発熱量変動の流量依存性結果を示す図である。It is a figure which shows the flow rate dependence result of the emitted-heat amount fluctuation | variation in No.4 conditions. No.4条件における(1)流量比=81:19、位相差0、及び(2)流量比=81:19、位相差π/5(18秒)のときの発熱量変動時間推移を示す図である。The figure which shows the calorific value fluctuation | variation time transition in the case of (1) flow rate ratio = 81: 19, phase difference 0, and (2) flow rate ratio = 81: 19, phase difference (pi) / 5 (18 second) in No. 4 conditions. It is. No.5条件における発熱量変動の流量依存性結果を示す図である。It is a figure which shows the flow-dependency result of the emitted-heat amount fluctuation | variation in No. 5 conditions. No.5条件における(1)流量比=93:7、位相差0、及び(2)流量比=83:17、位相差π/4(22秒)のときの発熱量変動時間推移を示す図である。The figure which shows the calorific value fluctuation | variation time transition in the case of (1) flow rate ratio = 93: 7, phase difference 0, and (2) flow rate ratio = 83: 17, phase difference π / 4 (22 seconds) in No. 5 condition. It is. 実施例2の試験装置を示す図である。FIG. 3 is a diagram showing a test apparatus of Example 2. 従来の発熱量調整装置100の構成を示す図である。It is a figure which shows the structure of the conventional calorific value adjustment apparatus.

符号の説明Explanation of symbols

1、20、30・・・・燃料ガス供給装置
2a、2b、21a、21b・・・・吸着材充填塔
3・・・・気化器
4・・・・LNG貯槽
5・・・・負荷装置
7・・・・熱量計
L1〜L10・・・・供給ライン
V1、V2・・・・流量調節バルブ
1, 20, 30 ... Fuel gas supply devices 2a, 2b, 21a, 21b ... Adsorbent packed tower 3 ... Vaporizer 4 ... LNG storage tank 5 ... Load device 7 .... Calorimeters L1 to L10 ... Supply lines V1, V2 ... Flow control valve

Claims (14)

ガス組成が経時的に変動する混合ガスを供給する供給ラインと、
供給ライン経路中に複数の分岐配管を備えた並列配管部と、
一以上の分岐配管経路中に設けた吸着材充填塔と、
一部の分岐配管を通過する混合ガスの組成変動の位相を、他の分岐配管の組成変動の位相に対して変化させる位相差調整手段と、
を備えて成ることを特徴とする混合ガス供給装置。
A supply line for supplying a mixed gas whose gas composition varies over time;
A parallel pipe section having a plurality of branch pipes in the supply line path;
An adsorbent packed tower provided in one or more branch piping paths;
A phase difference adjusting means for changing the phase of the composition fluctuation of the mixed gas passing through some branch pipes with respect to the phase of the composition fluctuation of other branch pipes;
A mixed gas supply apparatus comprising:
前記並列配管部は、各分岐配管を通過する混合ガスの流量比を調整する手段を、さらに備えて成ることを特徴とする請求項1に記載の混合ガス供給装置。 The mixed gas supply apparatus according to claim 1, wherein the parallel pipe section further includes means for adjusting a flow rate ratio of the mixed gas passing through each branch pipe. 前記位相差調整手段が、前記充填塔に充填される吸着材の材料の相違を含んで成ることを特徴とする請求項1又は2に記載の混合ガス供給装置。 3. The mixed gas supply apparatus according to claim 1, wherein the phase difference adjusting unit includes a difference in the material of the adsorbent packed in the packed tower. 4. 前記吸着材が、石炭原料活性炭とヤシガラ原料活性炭とを含むことを特徴とする請求項3に記載の混合ガス供給装置。 The mixed gas supply device according to claim 3, wherein the adsorbent includes coal raw material activated carbon and coconut shell raw material activated carbon. 前記位相差調整手段が、各充填塔のアスペクト比の相違を含んで成ることを特徴とする請求項1乃至4に記載の混合ガス供給装置。 5. The mixed gas supply apparatus according to claim 1, wherein the phase difference adjusting means includes a difference in aspect ratio of each packed tower. 前記位相差調整手段が、各充填塔に充填される吸着材の形状の相違を含んで成ることを特徴とする請求項1乃至5に記載の混合ガス供給装置。 6. The mixed gas supply apparatus according to claim 1, wherein the phase difference adjusting means includes a difference in shape of an adsorbent packed in each packed tower. 前記位相差調整手段が、並列配管部の配管延長の相違を含んで成ることを特徴とする請求項1乃至6に記載の混合ガス供給装置。 The mixed gas supply device according to claim 1, wherein the phase difference adjusting means includes a difference in pipe extension of a parallel pipe section. 一部の分岐配管の配管延長を任意に調整可能とする手段を、さらに備えて成ることを特徴とする請求項7に記載の混合ガス供給装置。 8. The mixed gas supply apparatus according to claim 7, further comprising means for arbitrarily adjusting the pipe extension of some of the branch pipes. 請求項1乃至8に記載の位相差調整手段を二以上組み合わせて成ることを特徴とする請求項1又は2に記載の混合ガス供給装置。 The mixed gas supply apparatus according to claim 1 or 2, wherein two or more phase difference adjusting means according to any one of claims 1 to 8 are combined. 前記混合ガスが、燃料ガスであることを特徴とする請求項1乃至9に記載の混合ガス供給装置。 The mixed gas supply apparatus according to claim 1, wherein the mixed gas is a fuel gas. 前記燃料ガスが、メタンを主成分とする都市ガスであることを特徴とする請求項10に記載の混合ガス供給装置。 The mixed gas supply device according to claim 10, wherein the fuel gas is a city gas mainly composed of methane. 請求項10又は11に記載の混合ガス供給装置を備え、さらに前記並列配管部通過後の燃料ガス又は都市ガスの発熱量を所定の範囲内に調整可能に構成したことを特徴とする発熱量調整装置。 A calorific value adjustment comprising the mixed gas supply device according to claim 10 or 11, wherein the calorific value of fuel gas or city gas after passing through the parallel pipe section can be adjusted within a predetermined range. apparatus. 請求項1乃至11に記載の混合ガス供給装置において、各分岐配管を通過する混合ガスの組成変動サイクルの周期が同一のときに、
一部の分岐配管を通過する混合ガスの組成変動サイクルの位相を、他の分岐配管の位相に対してπラジアン遅らせるように調整することを特徴とする混合ガス供給装置における組成変動調整方法。
In the mixed gas supply apparatus according to any one of claims 1 to 11, when the cycle of the composition variation cycle of the mixed gas passing through each branch pipe is the same,
A composition fluctuation adjusting method for a mixed gas supply apparatus, wherein the phase of a composition fluctuation cycle of a mixed gas passing through some branch pipes is adjusted to be delayed by π radians with respect to the phase of other branch pipes.
請求項10又は11に記載の混合ガス供給装置において、
ガス組成が経時的に変化する燃料ガス又は都市ガスの発熱量を所定の範囲内に調整するように、前記位相差又は流量比の一方又は両方を制御することを特徴とする混合ガス供給装置における発熱量調整方法。

The mixed gas supply apparatus according to claim 10 or 11,
In the mixed gas supply apparatus, wherein one or both of the phase difference and the flow rate ratio are controlled so that the calorific value of the fuel gas or the city gas whose gas composition changes with time is adjusted within a predetermined range. The calorific value adjustment method.

JP2007056869A 2007-03-07 2007-03-07 Mixed gas supply device and composition variation adjustment method in mixed gas supply device Active JP5001031B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007056869A JP5001031B2 (en) 2007-03-07 2007-03-07 Mixed gas supply device and composition variation adjustment method in mixed gas supply device
PCT/JP2008/053480 WO2008108259A1 (en) 2007-03-07 2008-02-28 Mixed-gas supply apparatus, and composition fluctuation adjusting method in the mixed-gas supply apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007056869A JP5001031B2 (en) 2007-03-07 2007-03-07 Mixed gas supply device and composition variation adjustment method in mixed gas supply device

Publications (2)

Publication Number Publication Date
JP2008214565A true JP2008214565A (en) 2008-09-18
JP5001031B2 JP5001031B2 (en) 2012-08-15

Family

ID=39738142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007056869A Active JP5001031B2 (en) 2007-03-07 2007-03-07 Mixed gas supply device and composition variation adjustment method in mixed gas supply device

Country Status (2)

Country Link
JP (1) JP5001031B2 (en)
WO (1) WO2008108259A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231357A (en) * 2007-03-23 2008-10-02 Tokyo Gas Co Ltd Mixed gas feeder, calorific value adjustment apparatus, and its variation adjustment method
JP2010229230A (en) * 2009-03-26 2010-10-14 Tokyo Gas Co Ltd Mixed gas feeder and composition fluctuation-regulating method in mixed gas feeder
JP2015152163A (en) * 2014-02-19 2015-08-24 住友精化株式会社 Liquefied gas clear-off system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157036A (en) * 1983-02-24 1984-09-06 ベルクヴエルクスフエルバント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Manufacture of constant and high methane content gas mixturefrom marsh gas containing small methane
JP2004331948A (en) * 2003-04-16 2004-11-25 Tokyo Gas Co Ltd Method for adjusting calorific value of sending fuel gas, method for stabilizing calorific value and device therefor
JP2005273753A (en) * 2004-03-24 2005-10-06 Osaka Gas Co Ltd Vaporizing and supplying system of liquefied natural gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157036A (en) * 1983-02-24 1984-09-06 ベルクヴエルクスフエルバント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Manufacture of constant and high methane content gas mixturefrom marsh gas containing small methane
JP2004331948A (en) * 2003-04-16 2004-11-25 Tokyo Gas Co Ltd Method for adjusting calorific value of sending fuel gas, method for stabilizing calorific value and device therefor
JP2005273753A (en) * 2004-03-24 2005-10-06 Osaka Gas Co Ltd Vaporizing and supplying system of liquefied natural gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231357A (en) * 2007-03-23 2008-10-02 Tokyo Gas Co Ltd Mixed gas feeder, calorific value adjustment apparatus, and its variation adjustment method
JP2010229230A (en) * 2009-03-26 2010-10-14 Tokyo Gas Co Ltd Mixed gas feeder and composition fluctuation-regulating method in mixed gas feeder
JP2015152163A (en) * 2014-02-19 2015-08-24 住友精化株式会社 Liquefied gas clear-off system

Also Published As

Publication number Publication date
JP5001031B2 (en) 2012-08-15
WO2008108259A1 (en) 2008-09-12

Similar Documents

Publication Publication Date Title
JP5103030B2 (en) Mixed gas supply device, calorific value adjustment device, and calorific value adjustment method in mixed gas supply device
KR101616315B1 (en) Apparatus for reducing VOC
WO2014010033A1 (en) Lng terminal, and gas and/or lng supply method for lng terminal
JP5001031B2 (en) Mixed gas supply device and composition variation adjustment method in mixed gas supply device
JP6716048B1 (en) Heat quantity fluctuation suppressing device, heat quantity fluctuation suppressing method
JP4407913B2 (en) Liquefied natural gas vapor supply system
JP4931781B2 (en) Mixed gas supply device and method for suppressing composition variation
JP5001041B2 (en) Mixed gas supply device, calorific value adjustment device, and variation adjustment method thereof
JP5313737B2 (en) Mixed gas supply device and composition variation adjustment method in mixed gas supply device
JP4823949B2 (en) Mixed gas storage container
JP5042364B2 (en) Gas supply system and supply method
JP5207522B2 (en) Mixing gas composition fluctuation suppression device
JP2016191024A (en) Gas control device, combustion system and program
JP4907845B2 (en) Method for adjusting calorific value of delivered fuel gas, method for stabilizing heat quantity, and apparatus therefor
JP5160627B2 (en) Method for adjusting calorific value of delivered fuel gas and calorific value adjusting device
WO2008156191A1 (en) Odorant for gas and process for production of town gas with the odorant
JP4859724B2 (en) Mixed gas supply device and method for adjusting composition variation thereof
JP4823861B2 (en) Gas storage and delivery method and apparatus
US20140338393A1 (en) Methods for blending liquefied natural gas
JP2017180573A (en) Gas supply system
JP4812194B2 (en) Natural gas adsorption storage device and adsorption storage method
Cheung Green energy recovery by blending treated biogas into town gas pipeline networks
Liss et al. Fuel issues for liquefied natural gas vehicles
EP3482055A1 (en) Internal combustion engine fuel gas blending system
KR20100085973A (en) Use of liquefied gas compositions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120517

R150 Certificate of patent or registration of utility model

Ref document number: 5001031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250