WO2014010033A1 - Lng terminal, and gas and/or lng supply method for lng terminal - Google Patents

Lng terminal, and gas and/or lng supply method for lng terminal Download PDF

Info

Publication number
WO2014010033A1
WO2014010033A1 PCT/JP2012/067637 JP2012067637W WO2014010033A1 WO 2014010033 A1 WO2014010033 A1 WO 2014010033A1 JP 2012067637 W JP2012067637 W JP 2012067637W WO 2014010033 A1 WO2014010033 A1 WO 2014010033A1
Authority
WO
WIPO (PCT)
Prior art keywords
lng
gas
heavy
tank
vaporized
Prior art date
Application number
PCT/JP2012/067637
Other languages
French (fr)
Japanese (ja)
Inventor
哲生 国広
Original Assignee
中国電力株式会社
東洋エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社, 東洋エンジニアリング株式会社 filed Critical 中国電力株式会社
Priority to JP2014506378A priority Critical patent/JP5653563B2/en
Priority to PCT/JP2012/067637 priority patent/WO2014010033A1/en
Publication of WO2014010033A1 publication Critical patent/WO2014010033A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/12Liquefied petroleum gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • F25J3/0214Liquefied natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/14Injection, e.g. in a reactor or a fuel stream during fuel production
    • C10L2290/143Injection, e.g. in a reactor or a fuel stream during fuel production of fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/543Distillation, fractionation or rectification for separating fractions, components or impurities during preparation or upgrading of a fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0326Valves electrically actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/043Localisation of the removal point in the gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/046Localisation of the removal point in the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • F17C2225/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/035High pressure, i.e. between 10 and 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0316Water heating
    • F17C2227/0318Water heating using seawater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0447Composition; Humidity
    • F17C2250/0456Calorific or heating value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • F17C2260/046Enhancing energy recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/05Improving chemical properties
    • F17C2260/056Improving fluid characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/01Purifying the fluid
    • F17C2265/015Purifying the fluid by separating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/02Mixing fluids
    • F17C2265/025Mixing fluids different fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/037Treating the boil-off by recovery with pressurising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/05Regasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/07Generating electrical power as side effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0136Terminals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/02Multiple feed streams, e.g. originating from different sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/02Mixing or blending of fluids to yield a certain product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/80Hot exhaust gas turbine combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/60Integration in an installation using hydrocarbons, e.g. for fuel purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/50Arrangement of multiple equipments fulfilling the same process step in parallel

Definitions

  • the present invention relates to an LNG base that receives and stores LNG and supplies power generation gas, city gas, and the like to a demand destination, LNG base gas, and / or an LNG supply method.
  • LNG liquefied natural gas
  • NG vaporized gas
  • LNG The properties of LNG vary depending on the production area and LNG production process. However, since there are restrictions on the properties of LNG and vaporized gas supplied to power generation gas, gas companies, etc., the methane concentration is currently planned at the LNG terminal. LNG within the range is accepted, and acceptance of LNG with a methane concentration of around 90% mainly distributed in the market is the mainstream. When the received LNG does not satisfy a predetermined property, LNG having different properties is supplied after being blended (see, for example, Patent Document 1).
  • LNG having a methane concentration of 90% means LNG in which the methane concentration in the gas is 90 vol% when LNG is vaporized into NG. The same applies hereinafter.
  • Unconventional natural gas is natural gas produced from other than normal coal fields and gas fields, and tight gas, coal bed methane, and shale gas are currently commercially produced (see, for example, Non-Patent Document 1). Unconventional natural gas has a methane concentration of 90% or more, and its calorific value is lower than that of natural gas currently used.
  • LPG liquefied petroleum gas
  • the present invention solves the above problems with a concept different from the conventional one, accepts various LNG such as unconventional LNG or ultra-light LNG, and generates power and fuel gas, LNG without adding LPG or the like from the outside. It is an object of the present invention to provide an LNG base, an LNG base gas and / or an LNG supply method that can supply the LNG.
  • the present invention is an LNG base that receives and stores LNG in an LNG tank, adjusts the stored LNG to a predetermined property, and supplies it as vaporized gas, LNG, and generates methane gas or vaporized gas containing methane gas as a main component.
  • Gas supply system for power generation that is supplied as a working gas, and a fuel supply system that supplies a calorific value adjustment gas and / or a calorific value adjustment LNG adjusted to a calorific value that can be used as city gas without supplying a heat-increasing agent from the outside
  • an LNG base characterized by comprising:
  • the LNG terminal of the present invention supplies methane gas or vaporized gas mainly composed of methane gas as power generation gas, and calorie adjustment gas and / or calorie adjustment LNG adjusted to calorific value that can be used as city gas to customers.
  • the properties of the calorie adjusting gas and / or the calorie adjusting LNG are the same as the city gas sent from the conventional LNG base, but the properties of the power generating gas are greatly different from those of the conventional power generating gas.
  • the conventional power generation gas is a gas having a methane concentration of about 90 vol%, whereas the power generation gas sent from the LNG base of the present invention has an overwhelmingly high methane concentration.
  • the power generation gas is a gas mainly containing methane, which contains no or almost no heavy components such as ethane and propane, so that the heavy components such as ethane and propane separated from LNG can be converted into a calorific value adjusting gas and / or It can be used as a heat-increasing agent when producing the calorie adjustment LNG.
  • various LNG such as unconventional LNG or ultra-light LNG can be received, and power generation gas, fuel gas, and LNG can be supplied without adding LPG or the like from the outside.
  • the power generation gas is a gas turbine fuel, and is a vaporized gas whose methane concentration is controlled to a constant value.
  • methane Since methane has poor combustibility compared to ethane, propane, etc., gas containing about 10 vol% of ethane, propane, etc. in addition to methane has been used so far.
  • the gas turbine can be stably operated even if the methane concentration is high as long as the gas calorie and the gas combustion rate are constant. In other words, even if the methane concentration does not contain ethane, propane, etc., and the methane concentration is 100 vol%, and even if the methane concentration contains only a small amount of ethane, propane, etc., the methane concentration is constant or the fluctuation range of the methane concentration
  • a small gas can be used as a gas turbine fuel.
  • the LNG base of the present invention supplies a vaporized gas having a higher methane gas concentration than the conventional gas as a power generation gas.
  • the methane concentration is controlled to a constant value, it is suitably used as a fuel for a gas turbine. can do.
  • the LNG base of the present invention stores a heavy fraction separating apparatus and a heavy fraction separator that separates heavy fraction, which is a highly exothermic component contained in LNG or vaporized gas obtained by vaporizing LNG, in the LNG base.
  • a heavy fraction separation facility having a heavy fraction storage tank, and a heavy fraction separated by the heavy fraction separation device are added to a vaporized gas obtained by vaporizing LNG and / or LNG, thereby adjusting a calorific value gas and / or a calorific value.
  • a fuel production facility for producing LNG wherein the power generation gas is a vaporized gas obtained by vaporizing LNG from which a heavy component has been separated by the heavy component separation device, and a gas produced from the vaporized gas obtained by vaporizing LNG. It is a vaporized gas from which a heavy component has been separated by a mass separator, a vaporized gas obtained by vaporizing received LNG as it is, or a gas obtained by mixing these vaporized gases.
  • LNG and / or LNG using a heavy component separation facility for separating heavy components, which are highly exothermic components, contained in the vaporized gas obtained by vaporizing LNG or LNG, and using the separated heavy components as a heat-increasing agent.
  • a fuel production facility for producing a calorie adjusting gas and / or a calorie adjusting LNG is provided, so that the calorie adjusting gas and / or the calorie adjusting LNG can be supplied without supplying a heat-increasing agent from the outside.
  • vaporized gas obtained by vaporizing LNG from which heavy components have been separated and the vaporized gas from which heavy components have been separated from the vaporized gas obtained by vaporizing LNG are used as power generation gases
  • methane gas or methane gas is mainly used as the power generation gas.
  • vaporized gas whose methane concentration is controlled to a constant value can be supplied.
  • LNG with a methane concentration of 100% is accepted, it can be vaporized as it is to generate power generation gas.
  • the BOG generated in the LNG tank that receives and stores LNG is pressurized by a compressor, and the LNG from which the heavy component is separated by the heavy component separation device is vaporized gas, LNG A gas for generating electricity, which is mixed with a vaporized gas from which a heavy component has been separated from the vaporized gas by vaporizing the gas, a vaporized gas obtained by vaporizing the received LNG as it is, or a gas obtained by mixing these vaporized gases It is characterized by being supplied as.
  • BOG blow-off gas
  • methane gas or vaporized gas mainly composed of methane gas is supplied as power generation gas, so BOG is used for power generation. It can be suitably used as a gas.
  • the LNG base of the present invention comprises two or more LNG tanks in the LNG base, and LNG mixing means for mixing two or more types of LNG stored in the LNG tank at a predetermined ratio.
  • the separation / separation facility is a common facility for each LNG tank system, and the heavy separation device is LNG mixed by the LNG mixing means or vaporized gas obtained by vaporizing LNG mixed by the LNG mixing means. It is characterized by segregation of mass.
  • the heavy component separation apparatus can be installed so as to separate the heavy component from the LNG obtained by mixing two or more kinds of LNG stored in the LNG tank.
  • the heavy component separation facility can be used as a common facility regardless of the number of LNG tanks, so that the process configuration can be simplified.
  • the LNG base of the present invention is characterized in that in the LNG base, the mixing of the LNG is performed by tank mixing in which LNG is mixed in the LNG tank, and line blending in which LNG is mixed in the LNG dispensing system.
  • the present invention can be applied to a LNG base that employs either a tank mixing system that mixes LNG in an LNG tank, a line blend system that mixes LNG in an LNG delivery system, or any other system.
  • the LNG base of the present invention includes two or more LNG tanks in the LNG base, and the heavy fraction separation device is provided in each LNG tank system and stores the heavy fraction. Is common to each LNG tank system.
  • the heavy fraction separator is provided in each LNG tank system, it is easy to receive and operate LNG.
  • the LNG base of the present invention includes two or more LNG tanks in the LNG base, and the LNG tank accepts only power generation LNG that can supply vaporized gas obtained by vaporizing LNG as it is as power generation gas.
  • a LNG tank system for power generation and a non-power generation LNG tank system that accepts only LNG other than the power generation LNG, and the heavy component separation facility is installed only in the non-power generation LNG tank system.
  • the heavy separation facility is installed only in the non-power generation LNG tank system that accepts only LNG other than the power generation LNG, and is capable of supplying vaporized gas obtained by vaporizing LNG as it is as power generation gas. Since LNG for use is not sent to the heavy separation facility, the load on the heavy separation facility is reduced, and the facility can be downsized.
  • the heavy fraction separation device is a distillation device, a gas separation device having a gas separation membrane, a liquefaction device for cooling and liquefying the vaporized gas, and a heavy content attachment / detachment device for adsorbing and desorbing heavy matter Or it is the adsorption apparatus using a pressure swing adsorption method, It is characterized by the above-mentioned.
  • the heavy component can be separated not only from LNG but also from the vaporized gas obtained by vaporizing LNG, and the device is not limited to a specific device. It can be appropriately selected according to the scale and the like.
  • a heavy component attaching / detaching device or an adsorption device using the pressure swing adsorption method it is possible to continuously supply power generation gas, fuel gas and LNG by installing two or more units and alternately switching them.
  • the present invention is an LNG base vaporized gas and / or LNG supply method for receiving and storing LNG in an LNG tank, adjusting the stored LNG to a predetermined property and supplying the LNG as vaporized gas, LNG,
  • a vaporized gas containing methane gas as a main component is produced by separating LNG or a heavy component that is a highly exothermic component contained in the vaporized gas obtained by vaporizing LNG, or produced by vaporizing the received LNG as it is, or Vaporized gas produced by a method of more than seeds is mixed and manufactured, or BOG generated in the LNG tank is mixed with this gas, and the gas is supplied to the customer as power generation gas and used as city gas Vaporized gas and / or LNG adjusted to a possible calorific value is produced using the above heavy components separated without supplying a heat-increasing agent from the outside, or heat is increased from the outside.
  • a gas and / or LNG supply method of an LNG base characterized in that two or more of the vaporized gas and / or LNG
  • a gas mainly containing methane which contains no heavy components such as ethane and propane, is supplied as a power generation gas.
  • a heavy component such as propane can be separated and recovered, and this can be used as a heat-increasing agent when producing a calorific adjustment gas and / or a calorific adjustment LNG.
  • when producing power generation gas unlike conventional power generation gas, it is not necessary to add heavy components such as ethane and propane, and heavy LNG. Therefore, it is possible to accept various LNG such as unconventional LNG or ultra-light LNG and supply power generation gas, fuel gas and LNG without adding LPG or the like from the outside.
  • the LNG base of the present invention and the gas / or LNG supply method of the LNG base basically adjust the amount of heat by adding the heavy component separation equipment and the separated heavy component to the LNG or vaporized gas in the existing LNG base. This can be realized by additionally installing a device, and even when an existing LNG base is remodeled, the influence on the operating facilities of the LNG base can be minimized.
  • FIG. 1 is a device configuration diagram of the LNG base 1 according to the first embodiment of the present invention.
  • the LNG base 1 includes a power generation gas supply system, and supplies methane gas or a vaporized gas mainly composed of methane gas as a power generation gas, and also includes a fuel supply system without supplying a heat-increasing agent from the outside.
  • a calorific value adjusting gas and / or a calorific value adjusting LNG adjusted to a calorific value usable as gas is supplied.
  • the power generation gas is supplied as fuel for the gas turbine.
  • the LNG base 1 includes two LNG tanks 11a and 11b, and receives and stores the LNG carried by the LNG tanker (not shown) via the unloading arm 13.
  • the LNG to be accepted is not limited to a specific LNG, but accepts a conventional LNG having a methane concentration of about 90 vol%, an unconventional LNG having a methane concentration of 90 vol% or more, and an ultralight LNG having a methane concentration of 100 vol%. be able to.
  • the types of LNG to be received are not limited in the two LNG tanks 11a and 11b. For this reason, when the conventional LNG being stored is consumed in the LNG tank 11a, the non-conventional LNG may be accepted next time. The same applies to the LNG tank 11b.
  • LNG discharge lines 15a and 15b are connected to the LNG tanks 11a and 11b, respectively, and in the middle of the LNG discharge lines 15a and 15b, the LNG pumps 17a and 17b for boosting the LNG are further supplied to the discharge side of the LNG pumps 17a and 17b.
  • Flow control valves 19a and 19b are provided.
  • the LNG payout lines 15 a and 15 b merge on the downstream side of the flow control valves 19 a and 19 b to become a mixing line 21.
  • the flow control valves 19a and 19b and the mixing line 21 function as a mixing unit that blends LNG discharged from the LNG tank 11a and LNG discharged from the LNG tank 11b at a predetermined ratio, and here, two types of LNG are line-blended. be able to.
  • the mixing line 21 is connected to the distillation apparatus 23, and sends LNG blended with LNG discharged from the LNG tank 11a, LNG discharged from the LNG tank 11b, and LNG of the two LNG tanks 11a and 11b to the distillation apparatus 23. .
  • the distillation apparatus 23 distills LNG sent from the mixing line 21 at a predetermined temperature and pressure, and separates it into heavy components such as methane, ethane, propane, and butane.
  • the degree of separation between methane and heavy components, and the concentration of heavy components contained in separated methane will be described later.
  • a known distillation apparatus can be used, and the specification of the distillation column, the configuration of the equipment, and the like are not limited to specific ones, depending on the degree of separation between methane and heavy components. Can be determined as appropriate.
  • Methane separated by the distillation device 23 is sent to the vaporizer 27 via the upper line 25.
  • heavy components such as ethane, propane, and butane are sent to the storage tank 65 via the lower line 41 and stored therein.
  • the vaporizer 27 is a device that completely vaporizes or heats methane delivered from the distillation tower 23.
  • an open rack vaporizer (ORV) or a submerged vaporizer (SMV) using seawater as a heating medium generally used at an LNG base can be used.
  • ORV open rack vaporizer
  • SMV submerged vaporizer
  • seawater as a heating medium generally used at an LNG base
  • a heater may be used.
  • the methane discharged from the distillation apparatus 23 may be completely gasified and heated to a predetermined temperature, and is not limited to the names of the vaporizer and the heater.
  • the methane gas completely gasified by the vaporizer 27 and heated to a predetermined temperature is supplied to the power plant through the gas line 29 as a power generation gas.
  • the power generation gas is used as fuel for the gas turbine 101.
  • a BOG (boil-off gas) line 55 is connected to the gas line 29, and BOG generated in the LNG tanks 11a and 11b is mixed with methane gas from which heavy components have been separated by the distillation apparatus 23 as a power generation gas.
  • BOG is a gas in which part of the LNG stored in the LNG tanks 11a and 11b is evaporated by heat input from the outside, and the component has a methane concentration of approximately 100 vol%.
  • the BOG lines 51 a and 51 b connected to the gas phase portions of the LNG tanks 11 a and 11 b are connected to the BOG line 55 through the BOG compressor 53, and the BOG is pressurized by the BOG compressor 53 and sent to the gas line 29.
  • the branch line 61 is connected to the mixing line 21 in the middle of the line.
  • the branch line 61 is connected to the heat quantity adjusting device 63 and sends a part of the LNG flowing through the mixing line 21 to the heat quantity adjusting device 63.
  • the mixing line 21 is provided with a flow rate adjusting valve 22 that adjusts the amount of LNG to be sent to the distillation apparatus 23 on the downstream side of the position where the branch line 61 is connected.
  • the branch line 61 is also provided with a flow rate adjusting valve 62 that adjusts the amount of LNG sent to the heat amount adjusting device 63.
  • the calorific value adjusting device 63 is a device for adjusting the calorific value of LNG sent via the branch line 61 to the same calorific value as that of the city gas (13A).
  • the heat quantity adjusting device 63 is connected to a heat increasing agent supply line 71 in which a heat increasing agent supply pump 67 and a flow rate adjusting valve 69 are interposed.
  • a calorimeter 73 capable of measuring the amount of heat is installed at the outlet of the calorific value adjusting device 63, and a heavy component stored in the storage tank 65 is supplied as a heat-increasing agent via the heat-increasing agent supply line 71 as necessary. Is done.
  • LNG having the heat quantity adjusted by the heat quantity adjusting device 63 is sent to the tank truck shipping place through the fuel line 75 and shipped to the customer through the tank truck. Most of the LNG with the adjusted amount of heat is vaporized by the vaporizer 79 and sent to the customer through the city gas line 77 as city gas (13A).
  • the LNG base 1 of the first embodiment includes the LNG tanks 11a and 11b, the LNG discharge lines 15a and 15b, the mixing line 21, the distillation device 23, the upper line 25, the vaporizer 27, the gas line 29, and further to this.
  • a BOG line 51a, 51b, 55 connected to the power generation gas supply system is configured.
  • a fuel production facility is constituted by a heat-increasing agent supply system composed of a calorific value adjusting device 63, a storage tank 65, a heat-increasing agent supply line 71 and the like, and a calorimeter 73, and further, the fuel production facility, the LNG tanks 11a, 11b, The LNG payout lines 15a and 15b, the mixing line 21, the branch line 61, the fuel line 75, the city gas line 77, and the carburetor 79 constitute a fuel supply system.
  • methane gas or vaporized gas whose main component is methane gas and whose methane concentration is controlled to a constant value is supplied to the gas turbine 101 as power generation gas. If the methane concentration of the vaporized gas that can be used as power generation gas is indicated by a numerical value, the lower limit value is about 96 vol%, and the upper limit value is 100 vol%.
  • the methane concentration of the vaporized gas that can be used as the power generation gas is determined in terms of the operability of the gas turbine 101 and the securing of heavy components necessary for the production of city gas and the like. Since methane is less combustible than ethane, propane, etc., if only the operability of the gas turbine 101 is considered, a gas containing about 10 vol% of ethane, propane, etc. in addition to methane is considered, as in the case of conventional gas turbine fuel. Is preferred. On the other hand, if the vaporized gas containing a large amount of heavy components such as ethane and propane is used as a power generation gas, the heavy components necessary for the production of city gas cannot be secured.
  • methane gas or vaporized gas whose main component is methane gas and whose methane concentration is controlled to a constant value as fuel for the gas turbine.
  • Methane has poor combustibility compared to ethane, propane, and the like, but the gas turbine can be stably operated even if the methane concentration is high as long as the gas calorie and the gas combustion rate are constant.
  • the methane concentration is 100 vol%, and even if the methane concentration contains only a small amount of ethane, propane, etc., the methane concentration is constant or the fluctuation range of the methane concentration
  • a small gas can be used as a gas turbine fuel.
  • the fluctuation range of the methane concentration is determined by the gas turbine to be used, but if the fluctuation range is exemplified, it is about ⁇ 1%. Therefore, if an example of the vaporization gas supplied as a fuel of a gas turbine is shown, it will be a vaporization gas with a methane concentration of 98% ⁇ 1%.
  • BOG is also mixed in the vaporized gas used for power generation gas.
  • the amount of BOG generated is small compared to the flow rate of methane from which the heavy component discharged from the distillation apparatus 23 is separated, so the influence on the power generation gas is small, but BOG is a gas with a methane concentration of approximately 100 vol%. Therefore, when the concentration of methane from which the heavy components discharged from the distillation apparatus 23 are separated is 97 vol%, the methane concentration of the power generation gas varies when the amount of generated BOG varies. It is necessary to keep.
  • BOG has been difficult to handle due to its low calorie, but here, methane gas or vaporized gas mainly composed of methane gas is supplied as power generation gas. Therefore, BOG is preferably used as power generation gas. Can do.
  • the methane concentration of the vaporized gas that can be used as the power generation gas is 96 vol%, preferably 97 vol%, more preferably 98 to 100 vol%.
  • the concept of power generation gas described above is the same in the LNG bases of the second to fifth embodiments described later.
  • the operation method of the LNG base 1 is not limited to the following operation method and numerical values. Since the LNG with the adjusted amount of heat is also produced at the same time as the city gas (13A), the production of the city gas (13A) includes the production of LNG with the adjusted amount of heat. BOG is mixed with vaporized gas and sent out as power generation gas. The same applies to other embodiments.
  • Case 1 It is assumed that LNG having a methane concentration of about 95% is stored in the LNG tank 11a, and LNG having a methane concentration of about 90% is stored in the LNG tank 11b.
  • the city gas is a vaporized gas having a calorific value of 46 MJ / m 3 N.
  • the composition of the gas having a calorific value of 46 MJ / m 3 N is about 88 vol% of methane concentration and ethane, propane and butane as other components. It is assumed that heavy components such as ethane, propane, and butane are stored in the storage tank 65.
  • the distillation apparatus 23 and the calorific value adjustment apparatus 63 are connected via the LNG discharge line 15a, the mixing line 21, and the branch line 61. Send LNG.
  • the power generation gas is separated into heavy components contained in the LNG by the distillation device 23 so as to have a methane concentration of 98% or more, and then gasified or heated by the vaporizer 27 and sent as a power generation gas.
  • the LNG stored in the LNG tank 11a has a methane concentration of about 95%, and since the calorific value is insufficient for the city gas, the LNG stored in the LNG tank 11a can be vaporized as it is and sent as city gas. Can not. Therefore, the heavy component is supplied to the calorific value adjusting device 63 through the heat-increasing agent supply line 71 so that the calorific value becomes a predetermined calorific value, and the heavy component is added to LNG. This is vaporized by the vaporizer 79 and sent out as city gas.
  • the LNG stored in the LNG tank 11b is used to produce power generation gas and city gas
  • the LNG stored in the LNG tank 11a is also used when the LNG stored in the LNG tank 11a and the LNG tank 11b is used simultaneously. Just think like the time.
  • Case 2 It is assumed that LNG having a methane concentration of about 95% is stored in the LNG tank 11a, and LNG having a methane concentration of 100% is stored in the LNG tank 11b. Others are the same as those in Case 1.
  • LNG is sent to the distillation apparatus 23 and the calorific value adjustment apparatus 63 via the LNG delivery line 15 b, the mixing line 21, and the branch line 61. Since this LNG does not contain heavy components, the LNG sent to the distillation apparatus 23 is discharged as it is from the top of the column. This is gasified or heated by the vaporizer 27 and sent as power generation gas.
  • the LNG stored in the LNG tank 11b has a methane concentration of 100%, and since the calorific value is insufficient for the city gas, the LNG stored in the LNG tank 11b cannot be directly vaporized and sent out as city gas. .
  • the heavy component cannot be recovered even if it passes through the distillation device 23.
  • this LNG base 1 is provided with a storage tank 65 for storing the heavy component, the storage tank City gas is produced from heavy components stored in 65 and LNG having a methane concentration of 100%.
  • Case 3 LNG having a methane concentration of about 95% is stored in the LNG tank 11a, and LNG having a methane concentration of 85% is stored in the LNG tank 11b. Others are the same as in case 1.
  • LNG stored in the LNG tank 11b has a methane concentration of 85%, and even if it is vaporized as it is, it cannot be used not only as a power generation gas but also as city gas. Therefore, the LNG in the LNG tank 11a and the LNG in the LNG tank 11b are line blended so that the calorific value of the LNG is the same as that of the city gas, and the power generation gas and the city gas are produced using the LNG.
  • the blended LNG produces power generation gas in the same manner as the LNG with 95% methane concentration shown in Case 1.
  • City gas sends out gas which vaporized blended LNG.
  • the heavy components separated by the distillation apparatus 23 are stored in the storage tank 65 as they are.
  • the LNG base 1 of the first embodiment includes the two LNG tanks 11a and 11b, the mixing means for blending two or more types of LNG, the distillation apparatus 23 for separating heavy components from the LNG, and the storage tank 65. It is equipped with a heavy component separation facility that is configured, and a fuel production facility that produces vaporized gas with adjusted calorie such as city gas and LNG, so it can accept LNG of various properties and perform various operations and operations. be able to.
  • the heavy component separated by the distillation device 23 is stored in the storage tank 65 as a liquid, and the liquid heavy component is supplied to the calorific value adjusting device 63. May be stored in a gas state, and the heavy component may be supplied to the calorific value adjustment device 63 in a gas state. Further, a line for bypassing the distillation apparatus 23 may be provided, and when LNG having a predetermined methane concentration is received, the LNG may be directly sent to the vaporizer 27 to be vaporized. Note that the number of LNG tanks is not limited to two.
  • FIG. 2 is a device configuration diagram of the LNG base 2 according to the second embodiment of the present invention. The same components as those of the LNG base 1 according to the first embodiment shown in FIG.
  • the LNG base 2 of the second embodiment is an LNG base constructed based on the same technical idea as that of the LNG base 1 of the first embodiment.
  • methane gas or methane gas is used.
  • a power generation gas supply system that supplies vaporized gas as a main component as a power generation gas, and a heat amount adjustment gas and / or heat amount adjustment adjusted to a heat amount that can be used as city gas without supplying a heat-increasing agent from the outside.
  • a fuel supply system for supplying LNG for supplying LNG.
  • the LNG to be accepted is not limited to a specific LNG, but accepts a conventional LNG having a methane concentration of about 90 vol%, an unconventional LNG having a methane concentration of 90 vol% or more, and an ultralight LNG having a methane concentration of 100 vol%. be able to.
  • the two LNG tanks 11a and 11b are not limited in the type of LNG to be received. For this reason, when the conventional LNG being stored is consumed in the LNG tank 11a, the non-conventional LNG may be accepted next time. The same applies to the LNG tank 11b.
  • the LNG base 2 has the same basic configuration as the LNG base 1, but in the case of the LNG base 1, the LNG base 2 has one distillation device 23, whereas the LNG base 2 has a distillation device 23a in each tank system. The difference is that 23b is installed.
  • the tank system refers to a system directly related to LNG stored in the LNG tank. In the case of the system of the LNG tank 11a, the LNG tank 11a, the LNG discharge line 15a, the bypass line 31a, the BOG line 51a, and the branch line 61a are included. .
  • the LNG payout line 15a connected to the LNG tank 11a is directly connected to the distillation apparatus 23a at the end.
  • the LNG payout line 15a is provided with a bypass line 31a that bypasses the distillation apparatus 23a downstream of the flow rate control valve 19a, and the bypass line 31a is connected to the upper line 25a.
  • On-off valves 30a, 32a, and 24a are provided in the middle of the LNG delivery line 15a, the bypass line 31a, and the upper line 25a on the downstream side of the point where the bypass line 31a is connected. Further, a branch line 61a for sending LNG to the heat quantity adjusting device 63 is connected to the LNG delivery line 15a downstream of the point where the bypass line 31a is connected and upstream of the on-off valve 30a.
  • a storage tank 65 for storing heavy components is shared by the LNG tanks 11a and 11b.
  • a communication line 33 for connecting the LNG payout line 15a and the LNG payout line 15b is provided downstream of the flow rate control valves 19a and 19b and upstream of the point where the bypass lines 31a and 31b are connected.
  • the communication line 33 includes an on-off valve 34 in the middle of the line.
  • the LNG base 2 of the second embodiment includes the LNG tanks 11a and 11b, the LNG discharge lines 15a and 15b, the communication line 33, the distillation devices 23a and 23b, the upper lines 25a and 25b, the bypass lines 31a and 31b, and the vaporization.
  • the generator 27, the gas line 29, and the BOG lines 51a, 51b, 55 connected thereto constitute a power generation gas supply system.
  • a fuel production facility is constituted by a heat-increasing agent supply system composed of a calorific value adjusting device 63, a storage tank 65, a heat-increasing agent supply line 71 and the like, and a calorimeter 73, and further, the fuel production facility, the LNG tanks 11a, 11b, The LNG delivery lines 15a and 15b, the communication line 33, the branch lines 61a and 61b, the fuel line 75, the city gas line 77, and the carburetor 79 constitute a fuel supply system.
  • Case 1 It is assumed that LNG having a methane concentration of about 95% is stored in the LNG tank 11a, and LNG having a methane concentration of about 90% is stored in the LNG tank 11b.
  • the city gas is a vaporized gas having a calorific value of 46 MJ / m 3 N.
  • the composition of the gas having a calorific value of 46 MJ / m 3 N is about 88 vol% of methane concentration and ethane, propane and butane as other components. It is assumed that heavy components such as ethane, propane, and butane are stored in the storage tank 65.
  • the LNG stored in the LNG tank 11a When the LNG stored in the LNG tank 11a is used to produce power generation gas and city gas, the LNG is sent to the distillation device 23a and the calorific value adjustment device 63 via the LNG discharge line 15a and the branch line 61a. At this time, the bypass line 31a is closed.
  • the power generation gas is separated into heavy components contained in LNG by the distillation device 23a so as to have a methane concentration of 98% or more, then gasified or heated by the vaporizer 27, and sent as power generation gas.
  • the LNG stored in the LNG tank 11a does not generate enough heat to produce city gas. Therefore, the heavy quantity is supplied to the heat quantity adjusting device 63 through the heat-increasing agent supply line 71 so that the heat generation amount becomes a predetermined heat generation amount. Feed and add heavy to LNG. This is vaporized by the vaporizer 79 and sent out as city gas.
  • the production of power generation gas and city gas using LNG stored in the LNG tank 11b may be considered in the same manner as when LNG stored in the LNG tank 11a is used. As described above, these operation methods are the same as the operation method of case 1 of the first embodiment.
  • Case 2 It is assumed that LNG having a methane concentration of about 95% is stored in the LNG tank 11a, and LNG having a methane concentration of 100% is stored in the LNG tank 11b. Others are the same as those in Case 1.
  • the procedure for producing power generation gas and city gas by using LNG stored in the two LNG tanks 11a and 11b at the same time will be described.
  • the LNG stored in the LNG tank 11a is dedicated to the production of city gas
  • the LNG stored in the LNG tank 11b is dedicated to the power generation gas.
  • the LNG stored in the LNG tank 11a sends LNG to the heat quantity adjusting device 63 through the payout line 15a and the branch line 61a, and supplies a heavy component to the heat quantity adjusting device 63 through the heat-increasing agent supply line 71 to adjust the calorific value.
  • the discharge line 15a and the bypass line 31a leading to the distillation device 23a are closed.
  • the LNG stored in the LNG tank 11b has a methane concentration of 100%
  • the LNG is sent to the vaporizer 27 through the LNG discharge line 15b and the bypass line 31b, vaporized, and then sent as a power generation gas.
  • the discharge line 15b and the branch line 61b leading to the distillation apparatus 23b are closed.
  • the LNG stored in the LNG tank 11a may not be exclusively used for city gas, and the city gas and the power generation gas may be produced in the same manner as in case 1.
  • the LNG stored in the LNG tank 11a and the LNG stored in the LNG tank 11b are mixed via the communication line 33, and city gas and power generation gas are mixed in the same manner as in the first embodiment. You may make it manufacture.
  • Case 3 LNG having a methane concentration of about 95% is stored in the LNG tank 11a, and LNG having a methane concentration of 85% is stored in the LNG tank 11b. Others are the same as in case 1.
  • LNG stored in the LNG tank 11b has a methane concentration of 85%, and even if it is vaporized as it is, it cannot be used not only as a power generation gas but also as city gas. For this reason, the LNG in the LNG tank 11a and the LNG in the LNG tank 11b are line-blended via the connection line 33 so that the calorific value of the LNG is the same as that of the city gas, and this LNG is used as a gas for city gas. .
  • the power generation gas may be manufactured using blended LNG, but may be manufactured as described in Case 1 using LNG stored in the LNG tank 11a having a high methane concentration. In this case, since it is not necessary to add heavy components to the production of city gas, the heavy components separated by the distillation apparatus 23a are stored in the storage tank 65 as they are.
  • the LNG base 2 of the second embodiment is provided with the distillation devices 23a and 23b in each tank system, various operations can be performed over the LNG base 1 of the first embodiment.
  • LNG with various properties can be accepted and various operations can be performed.
  • the heavy component separated by the distillation devices 23a and 23b is stored in the storage tank 65 as a liquid, and the heavy component in the liquid state is supplied to the calorific value adjusting device 63.
  • the mass may be stored in a gas state, and the heavy component may be supplied to the calorie adjustment device 63 in a gas state.
  • the number of LNG tanks is not limited to two.
  • FIG. 3 is a device configuration diagram of the LNG base 3 according to the third embodiment of the present invention.
  • the LNG base 3 of the third embodiment is an LNG base constructed based on the same technical idea as the LNG base 1 of the first embodiment, and the LNG base 1 of the first embodiment and the LNG base of the second embodiment.
  • power generation gas supply system that supplies methane gas or vaporized gas mainly composed of methane gas as power generation gas, and the amount of heat that can be used as city gas without supplying a heat-increasing agent from the outside.
  • a fuel supply system for supplying the calorific value adjustment gas and / or the calorific value adjustment LNG.
  • the LNG to be accepted is not limited to a specific LNG, but accepts a conventional LNG having a methane concentration of about 90 vol%, an unconventional LNG having a methane concentration of 90 vol% or more, and an ultralight LNG having a methane concentration of 100 vol%. be able to.
  • the LNG base 3 is different from the LNG base 1 of the first embodiment and the LNG base 2 of the second embodiment, and since the types of LNG to be received in the LNG tanks 11a and 11b are specified, the system is connected to the LNG base 1 and the LNG base 1. Slightly different from Base 2.
  • the LNG tank 11a is a tank dedicated to LNG having a methane concentration of 98% or more, and the LNG discharge line 15a is not connected to the distillation apparatus 23 but directly connected to the vaporizer 27.
  • the LNG tank 11b is a tank that exclusively receives LNG having a methane concentration of less than 98%, and the methane concentration in the LNG is not particularly limited as long as the LNG has a methane concentration of less than 98%.
  • the LNG payout line 15b of the LNG tank 11b is connected to the distillation device 23, and the payout line 15b is connected to a branch line 61 that sends LNG to the calorific value adjustment device 63.
  • the LNG payout line 15a and the LNG payout line 15b are connected by a mixing line 35 in which a flow rate adjusting valve 36 is interposed.
  • the mixing line 35 is a line for sending LNG stored in the LNG tank 11a to the payout line 11b.
  • the LNG base 3 of the third embodiment includes the LNG tanks 11a and 11b, the LNG discharge lines 15a and 15b, the distillation device 23, the upper line 25, the vaporizer 27, the gas line 29, the mixing line 35, and further to this.
  • a BOG line 51a, 51b, 55 connected to the power generation gas supply system is configured.
  • a fuel production facility is constituted by a heat-increasing agent supply system composed of a calorific value adjusting device 63, a storage tank 65, a heat-increasing agent supply line 71 and the like, and a calorimeter 73, and further, the fuel production facility, the LNG tanks 11a, 11b, The LNG payout lines 15a and 15b, the mixing line 35, the branch line 61, the fuel line 75, the city gas line 77, and the carburetor 79 constitute a fuel supply system.
  • LNG having a methane concentration of 98% or more is stored in the LNG tank 11a, it is vaporized by the vaporizer 27 and used as a power generation gas.
  • City gas is basically produced using LNG in the LNG tank 11b.
  • LNG having a methane concentration of 90% it can be manufactured in the same manner as in case 1 of the first embodiment.
  • city gas is produced by adding LNG in LNG tank 11a through mixing line 35.
  • the LNG in the LNG tank 11a may be sent to the LNG delivery line 15b and further to the branch line 61 through the mixing line 35.
  • the LNG base 3 of the third embodiment is provided with the LNG tank 11a that exclusively receives LNG having a methane concentration of 98% or more, and specifies the LNG that is received in the LNG tanks 11a and 11b. It is small and the process flow is simple.
  • the heavy component separated by the distillation device 23 is stored in the storage tank 65 as a liquid, and the liquid heavy component is supplied to the calorific value adjusting device 63. May be stored in a gas state, and the heavy component may be supplied to the calorific value adjustment device 63 in a gas state.
  • the number of LNG tanks is not limited to two.
  • FIG. 4 is a device configuration diagram of the LNG base 4 according to the fourth embodiment of the present invention.
  • the same components as those of the LNG bases 1, 2, and 3 shown in FIGS. 1 to 3 are denoted by the same reference numerals and description thereof is omitted.
  • the LNG base 4 of the fourth embodiment is an LNG base constructed based on the same technical idea as the LNG base 1 of the first embodiment, and the LNG bases 1, 2, 3 of the first to third embodiments Similarly, power generation gas supply system that supplies methane gas or vaporized gas mainly composed of methane gas as power generation gas, and the amount of heat adjusted to the amount of heat that can be used as city gas without supplying a heat increasing agent from the outside And a fuel supply system that supplies the adjustment gas and / or the calorie adjustment LNG.
  • the LNG to be accepted is not limited to a specific LNG, but accepts a conventional LNG having a methane concentration of about 90 vol%, an unconventional LNG having a methane concentration of 90 vol% or more, and an ultralight LNG having a methane concentration of 100 vol%. be able to.
  • the two LNG tanks 11a and 11b are not limited in the type of LNG to be received. For this reason, when the conventional LNG being stored is consumed in the LNG tank 11a, the non-conventional LNG may be accepted next time. The same applies to the LNG tank 11b.
  • the LNG base 4 has the same basic configuration as the LNG base 1, but in the case of the LNG base 1, the distillation apparatus 23 is used as a means for separating and collecting heavy components contained in the LNG.
  • the LNG base 4 uses the heavy component adsorption devices 39a and 39b as means for separating and collecting the heavy component contained in the LNG.
  • the heavy component separation equipment is configured with the heavy component adsorption devices 39a and 39b and the gas tank 66 as main devices.
  • the heavy component adsorption devices 39a and 39b store therein an adsorbent that adsorbs heavy components such as ethane, propane, and butane, and adsorb heavy components contained in LNG sent through the mixing lines 37a and 37b. LNG from which heavy components have been separated is discharged.
  • the adsorbent that has adsorbed the heavy component desorbs the heavy component when the pressure is decreased and / or the temperature is increased.
  • a known adsorbent can be used as the adsorbent, and activated carbon is exemplified as the adsorbent.
  • the heavy component adsorption devices 39a and 39b are used while alternately repeating the adsorption and desorption (regeneration) of the heavy component, one heavy component adsorption device can continuously supply power generation gas and city gas. I can't do it. Therefore, in the LNG base 4, when two heavy component adsorption devices 39a and 39b are installed and one heavy component adsorption device 39a (39b) is configured to adsorb the heavy component, the other heavy component adsorption device 39b (39a) is configured so as to desorb heavy components, thereby enabling continuous supply of power generation gas and city gas.
  • the mixing lines 37a and 37b are connected to the lower portions of the heavy component adsorption devices 39a and 39b, respectively.
  • Upper lines 25a and 25b for sending LNG from which heavy components have been separated to the vaporizer 27 are provided at the tops of the heavy component adsorption devices 39a and 39b, and lower lines for delivering the desorbed heavy components to the gas tank 66 at the bottoms. 41a and 41b are connected.
  • the gas tank 66 stores the heavy components sent from the heavy component adsorption devices 39a and 39b.
  • the mixing lines 37a and 37b, the upper lines 25a and 25b, and the lower lines 41a and 41b include On-off valves 38a, 38b, 24a, 24b, 42a, 42b are provided.
  • the on-off valves 38a, 38b, 24a, 24b, 42a, 42b are opened and closed in accordance with the heavy component adsorption operation and desorption (regeneration) operation of the heavy component adsorption devices 39a, 39b.
  • the LNG base 4 of the fourth embodiment includes the LNG tanks 11a and 11b, the LNG discharge lines 15a and 15b, the mixing lines 21, 37a and 37b, the heavy component adsorption devices 39a and 39b, the upper lines 25a and 25b,
  • a gas generation system for power generation is configured by the vaporizer 27, the gas line 29, and the BOG lines 51a, 51b, and 55 connected thereto.
  • a heat production agent supply system constituted by a heat quantity adjusting device 63, a gas tank 66, a heat increase agent supply line 71, and the like, and a calorimeter 73 constitute a fuel production facility.
  • the fuel production facility, and further LNG tanks 11a, 11b, The LNG payout lines 15a and 15b, the mixing line 21, the branch line 61, the fuel line 75, the city gas line 77, and the carburetor 79 constitute a fuel supply system.
  • Case 1 It is assumed that LNG having a methane concentration of about 95% is stored in the LNG tank 11a, and LNG having a methane concentration of about 90% is stored in the LNG tank 11b.
  • the city gas is a vaporized gas having a calorific value of 46 MJ / m 3 N.
  • the composition of the gas having a calorific value of 46 MJ / m 3 N is about 88 vol% of methane concentration and ethane, propane and butane as other components. Further, it is assumed that heavy components such as ethane, propane, and butane are stored in the gas tank 66.
  • the heavy component adsorbing device 39a and the calorific value adjusting device via the LNG discharge line 15a, the mixing lines 21, 37a and the branch line 61 are used.
  • LNG is sent to 63.
  • the power generation gas is separated from the heavy component contained in the LNG by the heavy component adsorption device 39a so as to have a methane concentration of 98% or more, then gasified or heated by the vaporizer 27, and sent as a power generation gas.
  • the supply of LNG to the heavy component adsorption device 39a is stopped and the LNG is supplied to the heavy component adsorption device 39b.
  • LNG to the heavy component adsorption device 39a is stopped.
  • the heavy component adsorption device 39a is regenerated while producing the power generation gas using the heavy component adsorption device 39b.
  • the regeneration of the heavy component adsorption device 39a is performed by depressurizing and / or heating the pressure while the supply of LNG is stopped to desorb the heavy component adsorbed on the adsorbent.
  • the LNG stored in the LNG tank 11a has a methane concentration of about 95%, and since the calorific value is insufficient for the city gas, the LNG stored in the LNG tank 11a can be vaporized as it is and sent as city gas. Can not. Therefore, the heavy component is supplied to the calorific value adjusting device 63 through the heat-increasing agent supply line 71 so that the calorific value becomes a predetermined calorific value, and the heavy component is added to LNG. This is vaporized by the vaporizer 79 and sent out as city gas.
  • the LNG stored in the LNG tank 11b is used to produce power generation gas and city gas
  • the LNG stored in the LNG tank 11a is also used when the LNG stored in the LNG tank 11a and the LNG tank 11b is used simultaneously. Just think like the time.
  • Case 2 It is assumed that LNG having a methane concentration of about 95% is stored in the LNG tank 11a, and LNG having a methane concentration of 100% is stored in the LNG tank 11b. Others are the same as those in Case 1.
  • LNG is sent to the heavy component adsorption device 39b and the calorific value adjustment device 63 via the LNG delivery line 15b, the mixing lines 21 and 37b, and the branch line 61. Since this LNG does not contain a heavy component, the LNG sent to the heavy component adsorbing device 39b is discharged as it is from the top of the column. This is gasified or heated by the vaporizer 27 and sent as power generation gas.
  • the LNG stored in the LNG tank 11b has a methane concentration of 100%, and since the calorific value is insufficient for the city gas, the LNG stored in the LNG tank 11b cannot be directly vaporized and sent out as city gas. .
  • the heavy component cannot be recovered even if it passes through the heavy component adsorbing device 39b, but the LNG base 4 includes a gas tank 66 for storing the heavy component.
  • City gas is produced from heavy components stored in the gas tank 66 and LNG having a methane concentration of 100%.
  • Case 3 LNG having a methane concentration of about 95% is stored in the LNG tank 11a, and LNG having a methane concentration of 85% is stored in the LNG tank 11b. Others are the same as in case 1.
  • the LNG stored in the LNG tank 11b has a methane concentration of 85%, and even if it is vaporized as it is, it cannot be used as a gas for city gas as well as for power generation. Therefore, the LNG in the LNG tank 11a and the LNG in the LNG tank 11b are line blended so that the calorific value of the LNG is the same as that of the city gas, and the power generation gas and the city gas are produced using the LNG.
  • the blended LNG produces power generation gas in the same manner as the LNG with 95% methane concentration shown in Case 1.
  • City gas sends out gas which vaporized blended LNG.
  • the heavy components separated by the heavy component adsorption devices 39a and 39b are stored in the gas tank 66 as they are.
  • the LNG base 4 of the fourth embodiment includes two heavy component adsorption devices 39a and 39b that adsorb and separate heavy components contained in the LNG, while alternately performing adsorption and desorption (regeneration). Since the power generation gas and the city gas are manufactured, the LNG received in the LNG tanks 11a and 11b is not limited to a specific LNG, and various operations and operations can be performed as in the LNG base 1 of the first embodiment.
  • two heavy component adsorption devices 39a and 39b are arranged in parallel and used while being switched alternately.
  • the number of heavy component adsorption devices 39a and 39b is limited to two. Is not to be done.
  • the methane concentration in LNG cannot be set to the predetermined methane concentration with the two heavy component adsorption devices, four heavy component adsorption devices are used, and the two heavy component adsorption devices are connected in series. It is possible to arrange two of them. In this case, the adsorbents used in the preceding and subsequent heavy adsorption devices may be different.
  • a buffer tank may be provided on the outlet side.
  • suction apparatus 39a, 39b was stored in the gas tank 66 as gas
  • heat amount adjustment apparatus 63 was shown
  • the heavy component may be stored in a liquid state, and the heavy component may be supplied to the calorific value adjustment device 63 in a liquid state.
  • the number of LNG tanks is not limited to two.
  • FIG. 5 is a device configuration diagram of the LNG base 5 according to the fifth embodiment of the present invention.
  • the same components as those of the LNG bases 1, 2, 3, and 4 shown in FIGS. 1 to 4 are denoted by the same reference numerals and description thereof is omitted.
  • the LNG base 5 of the fifth embodiment is an LNG base constructed based on the same technical idea as the LNG base 1 of the first embodiment, and the LNG bases 1, 2, 3, As in 4, the power generation gas supply system that supplies methane gas or vaporized gas mainly composed of methane gas as power generation gas, and the amount of heat that can be used as city gas without supplying a heat-increasing agent from the outside. And a fuel supply system for supplying the calorific value adjustment gas and / or the calorific value adjustment LNG.
  • the LNG base 5 has the same basic configuration as the LNG base 1, but the LNG base 5 uses the distillation device 23 as a means for separating and collecting heavy components contained in the LNG, whereas the LNG base 5 As a means for separating and recovering heavy components contained in LNG, a gas separation device 57 is used.
  • a heavy component separation facility is configured with the gas separation device 57 and the gas tank 66 as main equipment.
  • the gas separation device 57 stores therein a gas separation membrane that separates methane and heavy components such as ethane, propane, and butane.
  • the gas separation membrane only needs to be able to separate methane and heavy components such as ethane, propane, and butane, and the permeate may be methane or heavy components such as ethane, propane, and butane.
  • the gas separation membrane may be either an inorganic membrane or an organic membrane, but it must be capable of producing a gas having a methane concentration of 96 to 100 vol%.
  • the gas separation membrane is not limited to one stage, and a plurality of stages may be installed in series. Further, those having a large permeation flow rate are preferable.
  • the gas separation device 57 is installed on the downstream side of the vaporizer 27, and the separated methane gas is stored in the gas turbine 101 as a power generation gas, and heavy components such as ethane, propane, and butane are stored in the gas tank 66.
  • the LNG base 5 of the fifth embodiment is connected to the LNG tanks 11a and 11b, the LNG discharge lines 15a and 15b, the mixing line 21, the vaporizer 27, the gas line 29, the gas separation device 57, and further to this.
  • the BOG lines 51a, 51b, and 55 constitute a power generation gas supply system.
  • a fuel production facility is constituted by a heat quantity adjusting device 63, a gas tank 66, a heat quantity agent supply line 71 and the like, and a calorimeter 73, and the fuel production equipment, LNG tanks 11a, 11b, LNG
  • the delivery lines 15a and 15b, the mixing line 21, the branch line 61, and the city gas line 77 constitute a fuel supply system.
  • Case 1 It is assumed that LNG having a methane concentration of about 95% is stored in the LNG tank 11a, and LNG having a methane concentration of about 90% is stored in the LNG tank 11b.
  • the city gas is a vaporized gas having a calorific value of 46 MJ / m 3 N.
  • the composition of the gas having a calorific value of 46 MJ / m 3 N is about 88 vol% of methane concentration and ethane, propane and butane as other components. Further, it is assumed that heavy components such as ethane, propane, and butane are stored in the gas tank 66.
  • the vaporized gas (NG) vaporized by the vaporizer 27 is supplied to the gas separation device 57, and the amount of heat is adjusted via the branch line 61. Send to device 63.
  • the power generation gas is separated as a power generation gas by separating the heavy components contained in the vaporized gas by the gas separation device 57 to a methane concentration of 98% or more.
  • the LNG stored in the LNG tank 11a has a methane concentration of about 95%, and the calorific value is insufficient to make city gas. Therefore, the LNG stored in the LNG tank 11a is vaporized as it is and sent as city gas. Can not do it. Therefore, the heavy component is supplied to the calorific value adjusting device 63 through the heat increasing agent supply line 71 so that the calorific value becomes a predetermined calorific value, and this is sent out as city gas.
  • the LNG stored in the LNG tank 11b is used to produce power generation gas and city gas
  • the LNG stored in the LNG tank 11a is also used when the LNG stored in the LNG tank 11a and the LNG tank 11b is used simultaneously. Just think like the time.
  • Case 2 It is assumed that LNG having a methane concentration of about 95% is stored in the LNG tank 11a, and LNG having a methane concentration of 100% is stored in the LNG tank 11b. Others are the same as those in Case 1.
  • the vaporized gas (NG) vaporized by the vaporizer 27 is sent to the gas separation device 57 and further to the calorific value adjustment device 63 via the branch line 61. Since this vaporized gas does not contain heavy components, the vaporized gas sent to the gas separation device 57 is sent as it is as a power generation gas.
  • the LNG stored in the LNG tank 11b has a methane concentration of 100%, and the amount of heat generation is insufficient to make the city gas, so the vaporized gas cannot be sent out as the city gas as it is.
  • vaporized gas having a methane concentration of 100% heavy components cannot be recovered even if they are passed through the gas separation device 57, but the LNG base 5 is provided with a gas tank 66 for storing the heavy components.
  • City gas is produced from the heavy components stored in 66 and LNG having a methane concentration of 100%.
  • Case 3 LNG having a methane concentration of about 95% is stored in the LNG tank 11a, and LNG having a methane concentration of 85% is stored in the LNG tank 11b. Others are the same as in case 1.
  • the LNG stored in the LNG tank 11b has a methane concentration of 85%, and even if it is vaporized as it is, it cannot be used as a gas for city gas as well as for power generation. Therefore, the LNG in the LNG tank 11a and the LNG in the LNG tank 11b are line blended so that the calorific value of the LNG is the same as that of the city gas, and the power generation gas and the city gas are produced using the LNG.
  • the blended LNG produces power generation gas in the same manner as the LNG with 95% methane concentration shown in Case 1.
  • City gas sends out gas which vaporized blended LNG.
  • the heavy components separated by the gas separation device 57 are stored in the gas tank 66 as they are.
  • the LNG base 5 of the fifth embodiment includes the gas separation device 57 that separates heavy components contained in the vaporized gas, and produces power generation gas and city gas. Therefore, the LNG base of the first embodiment.
  • the LNG received in the LNG tanks 11a and 11b is not limited to a specific LNG, and various operations and operations can be performed.
  • the vaporized gas when a line bypassing the gas separation device 57 is provided and LNG having a predetermined methane concentration is received, the vaporized gas may be sent as it is as a power generation gas. Further, the branch line 61 may be connected to the mixing line 21 on the upstream side of the vaporizer 27, and LNG may be sent to the heat quantity adjusting device 63. In this case, a vaporizer is provided in the city gas line 77.
  • the number of LNG tanks is not limited to two.
  • the vaporized gas is separated into heavy components such as methane and ethane, propane, and butane through the gas separation membrane, but instead of the gas separation membrane, a liquefier is used to use methane and ethane, propane, A heavy component such as butane may be separated.
  • the vaporized gas vaporized by the vaporizer may be set to a predetermined temperature and pressure to liquefy heavy components such as ethane, propane, and butane, and these may be separated from methane gas.
  • an adsorbent may be used to adsorb and separate heavy components such as ethane, propane and butane in the vaporized gas.
  • the apparatus configuration is the same as that of the fourth embodiment, and the vaporized gas is sent to the heavy fraction separator containing the adsorbent, and heavy using pressure swing adsorption (PSA) method, PSA method + temperature swing adsorption (TSA) method. Minutes may be absorbed and desorbed.
  • PSA pressure swing adsorption
  • TSA temperature swing adsorption
  • An example of the adsorbent is activated carbon.
  • the LNG base of the present invention is basically the same as the existing LNG base, with heavy component separation equipment, and the separated heavy component is added to LNG or vaporized gas to increase the amount of heat.
  • This can be realized by additionally installing a device to be adjusted, and even when the existing LNG base is remodeled, the influence on the operating facilities of the LNG base can be minimized.
  • the supply destination of power generation gas is not limited to the power plant, and even for private use Good.
  • the heavy component separated and recovered by the heavy component separator becomes surplus, it may be sold to a gas company or the like. Since the heavy portion is usually traded at a higher price than LNG, the commercial value is high.
  • the present invention is not limited to the above-described embodiment, and can be changed and used without changing the gist.
  • two types of LNG are mixed by line blending, but tank mixing in which two types of LNG are mixed in an LNG tank may be employed instead of line blending.
  • a heater and a flash drum can be used as the heavy fraction separator.
  • a gas separation device using a gas separation membrane and a gas separation device using an adsorbent may be used in combination.

Abstract

Provided is an LNG terminal capable of accepting a variety of LNGs such as unconventional LNG or extra light LNG and supplying gas for electric power generation, fuel gas or LNG without adding external LPG, etc. The LNG terminal (1) is provided with: LNG tanks (11a, 11b) for accepting and storing LNG; a distillation apparatus (23) for separating heavy components, which are high heat-generating components contained in LNG or vaporized gas resulting from vaporization of LNG and a storage tank (65) for storing the separated heavy components; and fuel manufacturing equipment for manufacturing LNG of adjusted heating value by adding the heavy components stored in the storage tank (65) to the LNG. After adjusting the heating value by adding heavy components stored in the storage tank (65) to the LNG, the gas is vaporized by a vaporizer (79) and delivered as municipal gas. Additionally, the LNG from which heavy components have been separated by the distillation apparatus (23) is vaporized using a vaporizer (27) and same is delivered as gas for electric power generation.

Description

LNG基地、LNG基地のガス及び/又はLNG供給方法LNG base, LNG base gas and / or LNG supply method
 本発明は、LNGを受入れ貯蔵し、需要先に発電用ガス及び都市ガス等を供給するLNG基地、LNG基地のガス及び/又はLNG供給方法に関する。 The present invention relates to an LNG base that receives and stores LNG and supplies power generation gas, city gas, and the like to a demand destination, LNG base gas, and / or an LNG supply method.
 LNG基地(LNG受入基地)では、LNG(液化天然ガス)を気化させた気化ガス(NG)を発電用ガスとして発電所に供給するほか、ガス会社等へ燃料ガスとなるLNG、気化ガスを供給している。ガス会社等には、客先の要求性状を満足するLNG、気化ガスが供給される。発電用ガスも発熱量等が大きく変動するとガスタービンの安定運転に支障を来たすので、所定性状の気化ガスが供給される。 At the LNG terminal (LNG receiving terminal), LNG (liquefied natural gas) vaporized gas (NG) is supplied to the power station as power generation gas, and LNG and fuel gas are supplied to gas companies and other sources. is doing. Gas companies and the like are supplied with LNG and vaporized gas that satisfy customer requirements. If the calorific value etc. of the power generation gas fluctuates greatly, the stable operation of the gas turbine will be hindered, so that vaporized gas having a predetermined property is supplied.
 LNGの性状は、産地やLNG製造過程により異なるが、上記のように供給する発電用ガス、ガス会社等に供給するLNG、気化ガスとも性状に制約があるため、現在、LNG基地では計画メタン濃度範囲内のLNGを受け入れており、市場で主に流通しているメタン濃度が90%前後のLNGの受け入れが主流である。受け入れたLNGが所定の性状を満足しない場合には、性状の異なるLNGをブレンドした後に供給することも行われている(例えば特許文献1参照)。本明細書において、メタン濃度が90%のLNGとは、LNGを気化させNGとしたとき、ガス中のメタン濃度が90vol%となるLNGを言う。以下、同様である。 The properties of LNG vary depending on the production area and LNG production process. However, since there are restrictions on the properties of LNG and vaporized gas supplied to power generation gas, gas companies, etc., the methane concentration is currently planned at the LNG terminal. LNG within the range is accepted, and acceptance of LNG with a methane concentration of around 90% mainly distributed in the market is the mainstream. When the received LNG does not satisfy a predetermined property, LNG having different properties is supplied after being blended (see, for example, Patent Document 1). In the present specification, LNG having a methane concentration of 90% means LNG in which the methane concentration in the gas is 90 vol% when LNG is vaporized into NG. The same applies hereinafter.
 今後は、柔軟なLNGの調達や調達コスト低減のために非在来型LNG、さらにはメタン濃度100%の超軽質LNGの受け入れが進むことが予想される。非在来型天然ガスは、通常の炭田・ガス田以外から生産される天然ガスであり、現在、タイトガス、コールベットメタン、シェールガスが商業生産されている(例えば非特許文献1参照)。非在来型天然ガスは、メタン濃度が90%以上であり、現在使用されている天然ガスに比較すると発熱量は低い。 In the future, it is expected that acceptance of unconventional LNG and ultra-light LNG with a methane concentration of 100% will progress in order to procure flexible LNG and reduce procurement costs. Unconventional natural gas is natural gas produced from other than normal coal fields and gas fields, and tight gas, coal bed methane, and shale gas are currently commercially produced (see, for example, Non-Patent Document 1). Unconventional natural gas has a methane concentration of 90% or more, and its calorific value is lower than that of natural gas currently used.
特開2010-1355号公報JP 2010-1355 A
 非在来型LNG又は超軽質LNGを受け入れ、客先の要求性状を満たすガス等を供給するには、エタン、プロパン等の重質分が多く含まれる高発熱量のLNG(重質LNG)をブレンドする必要があり、その量は現状に比較して多くなる。非在来型LNG又は超軽質LNGに重質LNGをブレンドし発熱量を調整する方法では、重質LNGの受け入れ量により、非在来型LNG又は超軽質LNGの受け入れ量が制限される課題がある。 In order to accept unconventional LNG or ultra-light LNG and supply gas etc. that meet customer requirements, LNG with high calorific value (heavy LNG) containing a lot of heavy components such as ethane and propane It needs to be blended, and the amount is higher than the current situation. In the method of adjusting the calorific value by blending heavy LNG with non-conventional LNG or ultra-light LNG, there is a problem that the acceptance amount of non-conventional LNG or ultra-light LNG is limited by the amount of heavy LNG received. is there.
 非在来型LNG又は超軽質LNGを受け入れる場合、重質LNGに代え、プロパンなど液化石油ガス(LPG)を添加し、発熱量を調整する方法も考えられるが、通常のLNG基地にはLPG供給設備は設けられていないため新設する必要がある。 When accepting unconventional LNG or ultra-light LNG, a method of adjusting the calorific value by adding liquefied petroleum gas (LPG) such as propane in place of heavy LNG can be considered, but LPG is supplied to ordinary LNG bases There are no facilities, so a new installation is required.
 本発明は、従来とは異なった発想で上記問題を解決し、非在来型LNG又は超軽質LNGなど多様なLNGを受け入れ、外部からLPG等を添加することなく発電用ガス及び燃料ガス、LNGを供給可能ならしめるLNG基地、LNG基地のガス及び/又はLNG供給方法を提供することを目的とする。 The present invention solves the above problems with a concept different from the conventional one, accepts various LNG such as unconventional LNG or ultra-light LNG, and generates power and fuel gas, LNG without adding LPG or the like from the outside. It is an object of the present invention to provide an LNG base, an LNG base gas and / or an LNG supply method that can supply the LNG.
 本発明は、LNGタンクにLNGを受入れ貯蔵し、貯蔵しているLNGを所定の性状に調整し気化ガス、LNGとして供給するLNG基地であって、メタンガス又はメタンガスを主成分とする気化ガスを発電用ガスとして供給する発電用ガス供給系統と、外部から増熱剤を供給することなく、都市ガスとして使用可能な発熱量に調整された熱量調整ガス及び/又は熱量調整LNGを供給する燃料供給系統と、を備えることを特徴とするLNG基地である。 The present invention is an LNG base that receives and stores LNG in an LNG tank, adjusts the stored LNG to a predetermined property, and supplies it as vaporized gas, LNG, and generates methane gas or vaporized gas containing methane gas as a main component. Gas supply system for power generation that is supplied as a working gas, and a fuel supply system that supplies a calorific value adjustment gas and / or a calorific value adjustment LNG adjusted to a calorific value that can be used as city gas without supplying a heat-increasing agent from the outside And an LNG base characterized by comprising:
 本発明のLNG基地は、メタンガス又はメタンガスを主成分とする気化ガスを発電用ガスとして、さらに都市ガスとして使用可能な発熱量に調整された熱量調整ガス及び/又は熱量調整LNGを需要先に供給する。熱量調整ガス及び/又は熱量調整LNGの性状は、従来のLNG基地から送出される都市ガスと変わりないが、発電用ガスの性状は、従来の発電用ガスと大きく異なる。従来の発電用ガスは、メタン濃度90vol%前後のガスであるのに対して、本発明のLNG基地から送出される発電用ガスのメタン濃度は圧倒的に高い。発電用ガスをエタン、プロパン等の重質分を含まない又は殆ど含まないメタンを主成分とするガスとすることで、LNGから分離したエタン、プロパン等の重質分を熱量調整ガス及び/又は熱量調整LNGを製造するときの増熱剤として使用することができる。これにより非在来型LNG又は超軽質LNGなど多様なLNGを受け入れ、外部からLPG等を添加することなく発電用ガス、燃料ガス及びLNGを供給することができる。 The LNG terminal of the present invention supplies methane gas or vaporized gas mainly composed of methane gas as power generation gas, and calorie adjustment gas and / or calorie adjustment LNG adjusted to calorific value that can be used as city gas to customers. To do. The properties of the calorie adjusting gas and / or the calorie adjusting LNG are the same as the city gas sent from the conventional LNG base, but the properties of the power generating gas are greatly different from those of the conventional power generating gas. The conventional power generation gas is a gas having a methane concentration of about 90 vol%, whereas the power generation gas sent from the LNG base of the present invention has an overwhelmingly high methane concentration. The power generation gas is a gas mainly containing methane, which contains no or almost no heavy components such as ethane and propane, so that the heavy components such as ethane and propane separated from LNG can be converted into a calorific value adjusting gas and / or It can be used as a heat-increasing agent when producing the calorie adjustment LNG. As a result, various LNG such as unconventional LNG or ultra-light LNG can be received, and power generation gas, fuel gas, and LNG can be supplied without adding LPG or the like from the outside.
 本発明において、前記発電用ガスは、ガスタービン用の燃料であり、メタン濃度が一定の値に制御された気化ガスであることを特徴とする。 In the present invention, the power generation gas is a gas turbine fuel, and is a vaporized gas whose methane concentration is controlled to a constant value.
 メタンは、エタン、プロパン等に比較すると燃焼性が悪いため、これまでガスタービンの燃料としては、メタン以外にエタン、プロパン等を10vol%程度含むガスが使用されている。しかしガスタービンは、ガスカロリーやガスの燃焼速度が一定であれば、メタン濃度が高くても安定運転が可能である。つまりエタン、プロパン等を含まないメタン濃度が100vol%のガス、さらにはエタン、プロパン等を僅かしか含まないメタン濃度が100vol%に近いガスであっても、メタン濃度が一定あるいはメタン濃度の変動幅が小さいガスは、ガスタービンの燃料とすることができる。本発明のLNG基地は、従来のガスと比較してメタンガス濃度が高い気化ガスを発電用ガスとして供給するが、メタン濃度が一定の値に制御されているので、ガスタービンの燃料として好適に使用することができる。 Since methane has poor combustibility compared to ethane, propane, etc., gas containing about 10 vol% of ethane, propane, etc. in addition to methane has been used so far. However, the gas turbine can be stably operated even if the methane concentration is high as long as the gas calorie and the gas combustion rate are constant. In other words, even if the methane concentration does not contain ethane, propane, etc., and the methane concentration is 100 vol%, and even if the methane concentration contains only a small amount of ethane, propane, etc., the methane concentration is constant or the fluctuation range of the methane concentration A small gas can be used as a gas turbine fuel. The LNG base of the present invention supplies a vaporized gas having a higher methane gas concentration than the conventional gas as a power generation gas. However, since the methane concentration is controlled to a constant value, it is suitably used as a fuel for a gas turbine. can do.
 また本発明のLNG基地は、前記LNG基地において、LNG又はLNGを気化させた気化ガスに含まれる高発熱成分である重質分を分離する重質分分離装置及び分離した重質分を貯蔵する重質分貯蔵タンクを有する重質分分離設備と、LNG及び/又はLNGを気化させた気化ガスに前記重質分分離装置で分離した重質分を添加し、熱量調整ガス及び/又は熱量調整LNGを製造する燃料製造設備と、を備え、前記発電用ガスが、前記重質分分離装置により重質分が分離されたLNGを気化させた気化ガス、LNGを気化させた気化ガスから前記重質分分離装置により重質分が分離された気化ガス、受入れたLNGをそのまま気化させた気化ガス、又はこれら気化ガスを混合したガスであることを特徴とする。 In addition, the LNG base of the present invention stores a heavy fraction separating apparatus and a heavy fraction separator that separates heavy fraction, which is a highly exothermic component contained in LNG or vaporized gas obtained by vaporizing LNG, in the LNG base. A heavy fraction separation facility having a heavy fraction storage tank, and a heavy fraction separated by the heavy fraction separation device are added to a vaporized gas obtained by vaporizing LNG and / or LNG, thereby adjusting a calorific value gas and / or a calorific value. A fuel production facility for producing LNG, wherein the power generation gas is a vaporized gas obtained by vaporizing LNG from which a heavy component has been separated by the heavy component separation device, and a gas produced from the vaporized gas obtained by vaporizing LNG. It is a vaporized gas from which a heavy component has been separated by a mass separator, a vaporized gas obtained by vaporizing received LNG as it is, or a gas obtained by mixing these vaporized gases.
 本発明によれば、LNG又はLNGを気化させた気化ガスに含まれる高発熱成分である重質分を分離する重質分分離設備、分離した重質分を増熱剤としてLNG及び/又はLNGを気化させた気化ガスに添加し、熱量調整ガス及び/又は熱量調整LNGを製造する燃料製造設備を備えるので、外部から増熱剤を供給することなく、熱量調整ガス及び/又は熱量調整LNGを製造することができる。また重質分が分離されたLNGを気化させた気化ガス、LNGを気化させた気化ガスから重質分が分離された気化ガスを発電用ガスとするので、発電用ガスとしてメタンガス又はメタンガスを主成分とし、さらにはメタン濃度が一定の値に制御された気化ガスを供給することができる。またメタン濃度100%のLNGを受け入れたときは、それをそのまま気化させることで発電用ガスとすることもできる。 According to the present invention, LNG and / or LNG using a heavy component separation facility for separating heavy components, which are highly exothermic components, contained in the vaporized gas obtained by vaporizing LNG or LNG, and using the separated heavy components as a heat-increasing agent. Is added to the vaporized gas, and a fuel production facility for producing a calorie adjusting gas and / or a calorie adjusting LNG is provided, so that the calorie adjusting gas and / or the calorie adjusting LNG can be supplied without supplying a heat-increasing agent from the outside. Can be manufactured. In addition, since the vaporized gas obtained by vaporizing LNG from which heavy components have been separated and the vaporized gas from which heavy components have been separated from the vaporized gas obtained by vaporizing LNG are used as power generation gases, methane gas or methane gas is mainly used as the power generation gas. As a component, vaporized gas whose methane concentration is controlled to a constant value can be supplied. When LNG with a methane concentration of 100% is accepted, it can be vaporized as it is to generate power generation gas.
 また本発明のLNG基地において、LNGを受入れ貯蔵するLNGタンク内で発生するBOGが、コンプレッサで昇圧され、前記重質分分離装置により重質分が分離されたLNGを気化させた気化ガス、LNGを気化させた気化ガスから前記重質分分離装置により重質分が分離された気化ガス、受入れたLNGをそのまま気化させた気化ガス、又はこれら気化ガスを混合したガスと混合され、発電用ガスとして供給されることを特徴とする。 Further, in the LNG base of the present invention, the BOG generated in the LNG tank that receives and stores LNG is pressurized by a compressor, and the LNG from which the heavy component is separated by the heavy component separation device is vaporized gas, LNG A gas for generating electricity, which is mixed with a vaporized gas from which a heavy component has been separated from the vaporized gas by vaporizing the gas, a vaporized gas obtained by vaporizing the received LNG as it is, or a gas obtained by mixing these vaporized gases It is characterized by being supplied as.
 BOG(ボイルオフガス)は、カロリーが低いため従来はその取扱いに苦慮していたが、本発明においては、発電用ガスとしてメタンガス又はメタンガスを主成分とする気化ガスを供給するので、BOGを発電用ガスとして好適に使用することができる。 BOG (boil-off gas) has been difficult to handle due to its low calorie, but in the present invention, methane gas or vaporized gas mainly composed of methane gas is supplied as power generation gas, so BOG is used for power generation. It can be suitably used as a gas.
 また本発明のLNG基地は、前記LNG基地において、2基以上のLNGタンクと、前記LNGタンクに貯蔵する2種以上のLNGを所定の割合で混合するLNG混合手段と、を備え、前記重質分分離設備は、各LNGタンク系統の共用設備であり、前記重質分分離装置は、前記LNG混合手段により混合されたLNG又は前記LNG混合手段により混合されたLNGを気化させた気化ガスから重質分を分離可能なことを特徴とする。 The LNG base of the present invention comprises two or more LNG tanks in the LNG base, and LNG mixing means for mixing two or more types of LNG stored in the LNG tank at a predetermined ratio. The separation / separation facility is a common facility for each LNG tank system, and the heavy separation device is LNG mixed by the LNG mixing means or vaporized gas obtained by vaporizing LNG mixed by the LNG mixing means. It is characterized by segregation of mass.
 本発明によれば、LNGタンクに貯蔵する2種以上のLNGを混合したLNGから重質分を分離するように重質分分離装置を設置することができる。この方式の場合、LNGタンク数によらず重質分分離設備を共用設備とすることができるので、プロセス構成を簡単にすることができる。 According to the present invention, the heavy component separation apparatus can be installed so as to separate the heavy component from the LNG obtained by mixing two or more kinds of LNG stored in the LNG tank. In the case of this method, the heavy component separation facility can be used as a common facility regardless of the number of LNG tanks, so that the process configuration can be simplified.
 また本発明のLNG基地は、前記LNG基地において、前記LNGの混合を、LNGタンク内でLNGを混合するタンクミキシング、LNGの払い出し系統でLNGを混合するラインブレンドにより行うことを特徴とする。 Further, the LNG base of the present invention is characterized in that in the LNG base, the mixing of the LNG is performed by tank mixing in which LNG is mixed in the LNG tank, and line blending in which LNG is mixed in the LNG dispensing system.
 LNGタンク内でLNGを混合するタンクミキシング方式、LNGの払い出し系統でLNGを混合するラインブレンド方式、いずれの方式を採用するLNG基地においても、本発明を適用することができる。 The present invention can be applied to a LNG base that employs either a tank mixing system that mixes LNG in an LNG tank, a line blend system that mixes LNG in an LNG delivery system, or any other system.
 また本発明のLNG基地は、前記LNG基地において、2基以上のLNGタンクを備え、前記重質分分離装置は、各LNGタンク系統に設けられ、重質分を貯蔵する前記重質分貯蔵タンクは、各LNGタンク系統で共用であることを特徴とする。 In addition, the LNG base of the present invention includes two or more LNG tanks in the LNG base, and the heavy fraction separation device is provided in each LNG tank system and stores the heavy fraction. Is common to each LNG tank system.
 本発明によれば、重質分分離装置は、各LNGタンク系統に設けられているので、LNGの受け入れ運用が容易となる。 According to the present invention, since the heavy fraction separator is provided in each LNG tank system, it is easy to receive and operate LNG.
 また本発明のLNG基地は、前記LNG基地において、2基以上のLNGタンクを備え、前記LNGタンクは、LNGをそのまま気化させた気化ガスを発電用ガスとして供給可能な発電用LNGのみを受入れる発電用LNGタンク系統と、発電用LNG以外のLNGのみを受入れる非発電用LNGタンク系統とに区別され、前記重質分分離設備は、前記非発電用LNGタンク系統にのみ設置されていることを特徴とする。 In addition, the LNG base of the present invention includes two or more LNG tanks in the LNG base, and the LNG tank accepts only power generation LNG that can supply vaporized gas obtained by vaporizing LNG as it is as power generation gas. A LNG tank system for power generation and a non-power generation LNG tank system that accepts only LNG other than the power generation LNG, and the heavy component separation facility is installed only in the non-power generation LNG tank system And
 本発明によれば、重質分分離設備は、発電用LNG以外のLNGのみを受入れる非発電用LNGタンク系統にのみ設置され、LNGをそのまま気化させた気化ガスを発電用ガスとして供給可能な発電用LNGは、重質分分離設備に送られないので、重質分分離設備の負荷が軽減され、設備の小型化が図れる。 According to the present invention, the heavy separation facility is installed only in the non-power generation LNG tank system that accepts only LNG other than the power generation LNG, and is capable of supplying vaporized gas obtained by vaporizing LNG as it is as power generation gas. Since LNG for use is not sent to the heavy separation facility, the load on the heavy separation facility is reduced, and the facility can be downsized.
 また本発明のLNG基地において、前記重質分分離装置が、蒸留装置、ガス分離膜を備えるガス分離装置、気化ガスを冷却し液化させる液化装置、重質分を吸脱着する重質分着脱装置又は圧力スイング吸着法を使用した吸着装置であることを特徴とする。 Further, in the LNG base of the present invention, the heavy fraction separation device is a distillation device, a gas separation device having a gas separation membrane, a liquefaction device for cooling and liquefying the vaporized gas, and a heavy content attachment / detachment device for adsorbing and desorbing heavy matter Or it is the adsorption apparatus using a pressure swing adsorption method, It is characterized by the above-mentioned.
 本発明において、重質分の分離は、LNGのみならず、LNGを気化させた気化ガスから分離することも可能であり、その装置も特定の装置に限定されないので、LNGの性状、LNG基地の規模等に合せ適宜選択することができる。重質分着脱装置又は圧力スイング吸着法を使用した吸着装置を使用する場合は、2基以上設置し交互に切換え運転することで発電用ガス、燃料ガス及びLNGの連続供給が可能となる。 In the present invention, the heavy component can be separated not only from LNG but also from the vaporized gas obtained by vaporizing LNG, and the device is not limited to a specific device. It can be appropriately selected according to the scale and the like. When using a heavy component attaching / detaching device or an adsorption device using the pressure swing adsorption method, it is possible to continuously supply power generation gas, fuel gas and LNG by installing two or more units and alternately switching them.
 また本発明は、LNGタンクにLNGを受入れ貯蔵し、貯蔵しているLNGを所定の性状に調整し気化ガス、LNGとして供給するLNG基地の気化ガス及び/又はLNG供給方法であって、メタンガス又はメタンガスを主成分とする気化ガスを、LNG又はLNGを気化させた気化ガスに含まれる高発熱成分である重質分を分離し製造し、又は受入れたLNGをそのまま気化させ製造し、又は前記2種以上の方法で製造された気化ガスを混合し製造し、又はこれらガスにLNGタンク内で発生するBOGを混合し製造し、当該ガスを発電用ガスとして需要先に供給し、都市ガスとして使用可能な発熱量に調整した気化ガス及び/又はLNGを、外部から増熱剤を供給することなく分離された前記重質分を用いて製造し、又は外部から増熱剤を供給することなく2種以上のLNGを気化させた気化ガス及び/又はLNGを混合し製造し、需要先に供給することを特徴とするLNG基地のガス及び/又はLNG供給方法である。 Further, the present invention is an LNG base vaporized gas and / or LNG supply method for receiving and storing LNG in an LNG tank, adjusting the stored LNG to a predetermined property and supplying the LNG as vaporized gas, LNG, A vaporized gas containing methane gas as a main component is produced by separating LNG or a heavy component that is a highly exothermic component contained in the vaporized gas obtained by vaporizing LNG, or produced by vaporizing the received LNG as it is, or Vaporized gas produced by a method of more than seeds is mixed and manufactured, or BOG generated in the LNG tank is mixed with this gas, and the gas is supplied to the customer as power generation gas and used as city gas Vaporized gas and / or LNG adjusted to a possible calorific value is produced using the above heavy components separated without supplying a heat-increasing agent from the outside, or heat is increased from the outside. A gas and / or LNG supply method of an LNG base, characterized in that two or more of the vaporized gas and / or LNG to LNG vaporized mixture prepared without supplying the demand end to supply.
 本発明のLNG基地のガス及び/又はLNG供給方法は、エタン、プロパン等の重質分を含まない又は殆ど含まないメタンを主成分とするガスを発電用ガスとして供給するので、LNGからエタン、プロパン等の重質分を分離回収し、これを熱量調整ガス及び/又は熱量調整LNGを製造するときの増熱剤として使用することができる。また本発明において、発電用ガスを製造するとき、従来の発電用ガスと異なりエタン、プロパン等の重質分、重質LNGを添加する必要がない。このため非在来型LNG又は超軽質LNGなど多様なLNGを受け入れ、外部からLPG等を添加することなく発電用ガス、燃料ガス及びLNGを供給することができる。 In the LNG base gas and / or LNG supply method of the present invention, a gas mainly containing methane, which contains no heavy components such as ethane and propane, is supplied as a power generation gas. A heavy component such as propane can be separated and recovered, and this can be used as a heat-increasing agent when producing a calorific adjustment gas and / or a calorific adjustment LNG. Further, in the present invention, when producing power generation gas, unlike conventional power generation gas, it is not necessary to add heavy components such as ethane and propane, and heavy LNG. Therefore, it is possible to accept various LNG such as unconventional LNG or ultra-light LNG and supply power generation gas, fuel gas and LNG without adding LPG or the like from the outside.
 本発明によれば、非在来型LNG又は超軽質LNGなど多様なLNGを受け入れ、外部からLPG等を添加することなく発電用ガス及び燃料ガス、LNGを供給することができる。また本発明のLNG基地、LNG基地のガス/又はLNG供給方法は、既設のLNG基地において、基本的に重質分分離設備、分離した重質分をLNG又は気化ガスに添加し熱量を調整する装置を追設することで実現可能であり、既設のLNG基地を改造する場合においても、LNG基地の稼働設備への影響を最小限とすることができる。 According to the present invention, it is possible to accept various LNG such as unconventional LNG or ultra-light LNG, and supply power generation gas, fuel gas, and LNG without adding LPG or the like from the outside. In addition, the LNG base of the present invention and the gas / or LNG supply method of the LNG base basically adjust the amount of heat by adding the heavy component separation equipment and the separated heavy component to the LNG or vaporized gas in the existing LNG base. This can be realized by additionally installing a device, and even when an existing LNG base is remodeled, the influence on the operating facilities of the LNG base can be minimized.
本発明の第1実施形態のLNG基地1の機器構成図である。It is an apparatus block diagram of the LNG base 1 of 1st Embodiment of this invention. 本発明の第2実施形態のLNG基地2の機器構成図である。It is an apparatus block diagram of the LNG base 2 of 2nd Embodiment of this invention. 本発明の第3実施形態のLNG基地3の機器構成図である。It is an apparatus block diagram of the LNG base 3 of 3rd Embodiment of this invention. 本発明の第4実施形態のLNG基地4の機器構成図である。It is an apparatus block diagram of the LNG base 4 of 4th Embodiment of this invention. 本発明の第5実施形態のLNG基地5の機器構成図である。It is an apparatus block diagram of the LNG base 5 of 5th Embodiment of this invention.
 図1は、本発明の第1実施形態のLNG基地1の機器構成図である。LNG基地1は、発電用ガス供給系統を備え、メタンガス又はメタンガスを主成分とする気化ガスを発電用ガスとして供給すると共に、燃料供給系統を備え、外部から増熱剤を供給することなく、都市ガスとして使用可能な熱量に調整された熱量調整ガス及び/又は熱量調整LNGを供給する。なお、本実施形態では、発電用ガスは、ガスタービンの燃料として供給される。 FIG. 1 is a device configuration diagram of the LNG base 1 according to the first embodiment of the present invention. The LNG base 1 includes a power generation gas supply system, and supplies methane gas or a vaporized gas mainly composed of methane gas as a power generation gas, and also includes a fuel supply system without supplying a heat-increasing agent from the outside. A calorific value adjusting gas and / or a calorific value adjusting LNG adjusted to a calorific value usable as gas is supplied. In the present embodiment, the power generation gas is supplied as fuel for the gas turbine.
 LNG基地1は、2基のLNGタンク11a、11bを備え、LNGタンカー(図示省略)で運ばれるLNGをアンローディングアーム13を介して受入れ貯蔵する。受け入れるLNGは、特定のLNGに限定されるものではなく、メタン濃度90vol%程度の在来型LNG、メタン濃度90vol%以上の非在来型LNG、さらにはメタン濃度100vol%の超軽質LNGを受け入れることができる。 The LNG base 1 includes two LNG tanks 11a and 11b, and receives and stores the LNG carried by the LNG tanker (not shown) via the unloading arm 13. The LNG to be accepted is not limited to a specific LNG, but accepts a conventional LNG having a methane concentration of about 90 vol%, an unconventional LNG having a methane concentration of 90 vol% or more, and an ultralight LNG having a methane concentration of 100 vol%. be able to.
 2基のLNGタンク11a、11bも、受け入れるLNGの種類が限定されていない。このためLNGタンク11aにおいて、貯蔵中の在来型LNGが消費されると、次回、非在来型LNGを受け入れる場合もある。LNGタンク11bについても同様である。 The types of LNG to be received are not limited in the two LNG tanks 11a and 11b. For this reason, when the conventional LNG being stored is consumed in the LNG tank 11a, the non-conventional LNG may be accepted next time. The same applies to the LNG tank 11b.
 LNGタンク11a、11bには、各々LNG払い出しライン15a、15bが接続し、LNG払い出しライン15a、15bの途中には、LNGを昇圧するLNGポンプ17a、17b、さらにLNGポンプ17a、17bの吐出側に流量制御弁19a、19bが設けられている。LNG払い出しライン15a、15bは、流量制御弁19a、19bの下流側で合流し、混合ライン21となる。 LNG discharge lines 15a and 15b are connected to the LNG tanks 11a and 11b, respectively, and in the middle of the LNG discharge lines 15a and 15b, the LNG pumps 17a and 17b for boosting the LNG are further supplied to the discharge side of the LNG pumps 17a and 17b. Flow control valves 19a and 19b are provided. The LNG payout lines 15 a and 15 b merge on the downstream side of the flow control valves 19 a and 19 b to become a mixing line 21.
 流量制御弁19a、19b及び混合ライン21は、LNGタンク11aから払い出されるLNG、LNGタンク11bから払い出されるLNGを所定の割合でブレンドする混合手段として機能し、ここで2種類のLNGをラインブレンドすることができる。 The flow control valves 19a and 19b and the mixing line 21 function as a mixing unit that blends LNG discharged from the LNG tank 11a and LNG discharged from the LNG tank 11b at a predetermined ratio, and here, two types of LNG are line-blended. be able to.
 混合ライン21は、蒸留装置23に接続し、LNGタンク11aから払い出されるLNG、LNGタンク11bから払い出されるLNG、さらには2基のLNGタンク11a、11bのLNGをブレンドしたLNGを蒸留装置23に送る。 The mixing line 21 is connected to the distillation apparatus 23, and sends LNG blended with LNG discharged from the LNG tank 11a, LNG discharged from the LNG tank 11b, and LNG of the two LNG tanks 11a and 11b to the distillation apparatus 23. .
 蒸留装置23は、混合ライン21から送られるLNGを所定の温度、圧力で蒸留し、メタンとエタン、プロパン、ブタン等の重質分とに分離する。メタンと重質分との分離度、別の表現をすれば分離されたメタンに含まれる重質分の濃度については後述する。蒸留装置23は、公知の蒸留装置を使用することが可能であり、蒸留塔の仕様、機器の構成等も特定のものに限定されるものではなく、メタンと重質分との分離度に応じて適宜決定することができる。蒸留装置23で分離されたメタンは、上部ライン25を介して気化器27に送られる。一方、エタン、プロパン、ブタン等の重質分は、下部ライン41を介して貯蔵タンク65に送られここに貯蔵される。 The distillation apparatus 23 distills LNG sent from the mixing line 21 at a predetermined temperature and pressure, and separates it into heavy components such as methane, ethane, propane, and butane. The degree of separation between methane and heavy components, and the concentration of heavy components contained in separated methane will be described later. As the distillation apparatus 23, a known distillation apparatus can be used, and the specification of the distillation column, the configuration of the equipment, and the like are not limited to specific ones, depending on the degree of separation between methane and heavy components. Can be determined as appropriate. Methane separated by the distillation device 23 is sent to the vaporizer 27 via the upper line 25. On the other hand, heavy components such as ethane, propane, and butane are sent to the storage tank 65 via the lower line 41 and stored therein.
 気化器27は、蒸留塔23から送出されるメタンを完全に気化させ又は加熱する装置である。気化器27には、LNG基地で一般的に使用されている海水を加熱媒体とするオープンラック式気化器(ORV)、サブマージド式気化器(SMV)を使用することができる。蒸留装置23から排出されるメタンがガスであれば、加熱器を使用してもよい。ここでは蒸留装置23から排出されるメタンを完全にガス化させかつ所定の温度まで昇温させることができればよく、気化器、加熱器の名称に拘泥されるものではない。 The vaporizer 27 is a device that completely vaporizes or heats methane delivered from the distillation tower 23. As the vaporizer 27, an open rack vaporizer (ORV) or a submerged vaporizer (SMV) using seawater as a heating medium generally used at an LNG base can be used. If the methane discharged from the distillation apparatus 23 is a gas, a heater may be used. Here, the methane discharged from the distillation apparatus 23 may be completely gasified and heated to a predetermined temperature, and is not limited to the names of the vaporizer and the heater.
 気化器27で完全にガス化され所定の温度に昇温したメタンガスは、発電用ガスとしてガスライン29を通じて、発電所に供給される。発電用ガスは、ガスタービン101の燃料として使用される。 The methane gas completely gasified by the vaporizer 27 and heated to a predetermined temperature is supplied to the power plant through the gas line 29 as a power generation gas. The power generation gas is used as fuel for the gas turbine 101.
 ガスライン29には、BOG(ボイルオフガス)ライン55が接続し、LNGタンク11a、11b内で発生するBOGが発電用ガスとして、蒸留装置23で重質分が分離されたメタンガスに混合される。BOGは、LNGタンク11a、11bに貯蔵するLNGの一部が外部からの入熱により蒸発したガスであり、成分は、ほぼメタン濃度100vol%である。LNGタンク11a、11bの気相部に接続するBOGライン51a、51bは、BOGコンプレッサ53を介してBOGライン55と接続し、BOGはBOGコンプレッサ53で昇圧され、ガスライン29に送られる。 A BOG (boil-off gas) line 55 is connected to the gas line 29, and BOG generated in the LNG tanks 11a and 11b is mixed with methane gas from which heavy components have been separated by the distillation apparatus 23 as a power generation gas. BOG is a gas in which part of the LNG stored in the LNG tanks 11a and 11b is evaporated by heat input from the outside, and the component has a methane concentration of approximately 100 vol%. The BOG lines 51 a and 51 b connected to the gas phase portions of the LNG tanks 11 a and 11 b are connected to the BOG line 55 through the BOG compressor 53, and the BOG is pressurized by the BOG compressor 53 and sent to the gas line 29.
 混合ライン21には、ライン途中に分岐ライン61が接続する。分岐ライン61は、熱量調整装置63に接続し、混合ライン21を流通するLNGの一部を熱量調整装置63に送る。混合ライン21には、分岐ライン61が接続する位置よりも下流側に蒸留装置23に送るLNGの量を調整する流量調整弁22が設けられている。同様に、分岐ライン61にも熱量調整装置63に送るLNGの量を調整する流量調整弁62が設けられている。 The branch line 61 is connected to the mixing line 21 in the middle of the line. The branch line 61 is connected to the heat quantity adjusting device 63 and sends a part of the LNG flowing through the mixing line 21 to the heat quantity adjusting device 63. The mixing line 21 is provided with a flow rate adjusting valve 22 that adjusts the amount of LNG to be sent to the distillation apparatus 23 on the downstream side of the position where the branch line 61 is connected. Similarly, the branch line 61 is also provided with a flow rate adjusting valve 62 that adjusts the amount of LNG sent to the heat amount adjusting device 63.
 熱量調整装置63は、分岐ライン61を介して送られるLNGの発熱量を都市ガス(13A)と同じ熱量に調整するための装置である。熱量調整装置63には、増熱剤供給ポンプ67及び流量調整弁69が介装された増熱剤供給ライン71が接続する。熱量調整装置63の出口部には、熱量を測定可能な熱量計73が設置され、必要に応じて増熱剤供給ライン71を介して貯蔵タンク65に貯蔵する重質分が増熱剤として供給される。 The calorific value adjusting device 63 is a device for adjusting the calorific value of LNG sent via the branch line 61 to the same calorific value as that of the city gas (13A). The heat quantity adjusting device 63 is connected to a heat increasing agent supply line 71 in which a heat increasing agent supply pump 67 and a flow rate adjusting valve 69 are interposed. A calorimeter 73 capable of measuring the amount of heat is installed at the outlet of the calorific value adjusting device 63, and a heavy component stored in the storage tank 65 is supplied as a heat-increasing agent via the heat-increasing agent supply line 71 as necessary. Is done.
 熱量調整装置63により熱量が調整されたLNGは、燃料ライン75を通じてタンクローリー出荷場に送られ、タンクローリーを介して需要先に出荷される。熱量が調整されたLNGの多くは、気化器79で気化され、都市ガス(13A)として都市ガスライン77を通じて需要先に送られる。 LNG having the heat quantity adjusted by the heat quantity adjusting device 63 is sent to the tank truck shipping place through the fuel line 75 and shipped to the customer through the tank truck. Most of the LNG with the adjusted amount of heat is vaporized by the vaporizer 79 and sent to the customer through the city gas line 77 as city gas (13A).
 以上のように第1実施形態のLNG基地1は、LNGタンク11a、11b、LNG払い出しライン15a、15b、混合ライン21、蒸留装置23、上部ライン25、気化器27、ガスライン29、さらにはこれに接続するBOGライン51a、51b、55により発電用ガス供給系統を構成する。また熱量調整装置63、貯蔵タンク65及び増熱剤供給ライン71等で構成される増熱剤供給系統、熱量計73により燃料製造設備を構成し、さらに該燃料製造設備、LNGタンク11a、11b、LNG払い出しライン15a、15b、混合ライン21、分岐ライン61、燃料ライン75、都市ガスライン77、気化器79により燃料供給系統を構成する。 As described above, the LNG base 1 of the first embodiment includes the LNG tanks 11a and 11b, the LNG discharge lines 15a and 15b, the mixing line 21, the distillation device 23, the upper line 25, the vaporizer 27, the gas line 29, and further to this. A BOG line 51a, 51b, 55 connected to the power generation gas supply system is configured. Further, a fuel production facility is constituted by a heat-increasing agent supply system composed of a calorific value adjusting device 63, a storage tank 65, a heat-increasing agent supply line 71 and the like, and a calorimeter 73, and further, the fuel production facility, the LNG tanks 11a, 11b, The LNG payout lines 15a and 15b, the mixing line 21, the branch line 61, the fuel line 75, the city gas line 77, and the carburetor 79 constitute a fuel supply system.
 LNG基地1では、メタンガス又はメタンガスを主成分とし、かつメタン濃度が一定の値に制御された気化ガスを発電用ガスとしてガスタービン101に供給する。発電用ガスとして使用可能な気化ガスのメタン濃度を数値で示せば、下限値は約96vol%、上限値は100vol%である。 In the LNG terminal 1, methane gas or vaporized gas whose main component is methane gas and whose methane concentration is controlled to a constant value is supplied to the gas turbine 101 as power generation gas. If the methane concentration of the vaporized gas that can be used as power generation gas is indicated by a numerical value, the lower limit value is about 96 vol%, and the upper limit value is 100 vol%.
 発電用ガスとして使用可能な気化ガスのメタン濃度は、ガスタービン101の運転性、都市ガス等の製造に必要な重質分の確保の点から決定される。メタンは、エタン、プロパン等に比較すると燃焼性が悪いため、ガスタービン101の運転性のみ考えるのであれば、従来のガスタービン燃料と同様に、メタン以外にエタン、プロパン等を10vol%程度含むガスが好ましい。一方で、エタン、プロパン等の重質分を多く含む気化ガスを発電用ガスとすると、都市ガスの製造に必要な重質分を確保することができなくなる。 The methane concentration of the vaporized gas that can be used as the power generation gas is determined in terms of the operability of the gas turbine 101 and the securing of heavy components necessary for the production of city gas and the like. Since methane is less combustible than ethane, propane, etc., if only the operability of the gas turbine 101 is considered, a gas containing about 10 vol% of ethane, propane, etc. in addition to methane is considered, as in the case of conventional gas turbine fuel. Is preferred. On the other hand, if the vaporized gas containing a large amount of heavy components such as ethane and propane is used as a power generation gas, the heavy components necessary for the production of city gas cannot be secured.
 ここでは、メタンガス又はメタンガスを主成分とし、かつメタン濃度が一定の値に制御された気化ガスをガスタービンの燃料とすることで上記問題を解決する。メタンは、エタン、プロパン等に比較すると燃焼性が悪いが、ガスタービンは、ガスカロリーやガスの燃焼速度が一定であれば、メタン濃度が高くても安定運転が可能である。つまりエタン、プロパン等を含まないメタン濃度が100vol%のガス、さらにはエタン、プロパン等を僅かしか含まないメタン濃度が100vol%に近いガスであっても、メタン濃度が一定あるいはメタン濃度の変動幅が小さいガスは、ガスタービンの燃料とすることができる。 Here, the above problem is solved by using methane gas or vaporized gas whose main component is methane gas and whose methane concentration is controlled to a constant value as fuel for the gas turbine. Methane has poor combustibility compared to ethane, propane, and the like, but the gas turbine can be stably operated even if the methane concentration is high as long as the gas calorie and the gas combustion rate are constant. In other words, even if the methane concentration does not contain ethane, propane, etc., and the methane concentration is 100 vol%, and even if the methane concentration contains only a small amount of ethane, propane, etc., the methane concentration is constant or the fluctuation range of the methane concentration A small gas can be used as a gas turbine fuel.
 メタン濃度の変動幅は、使用するガスタービンから決定されるが、変動幅を例示すれば、±1%程度である。よって、ガスタービンの燃料として供給される気化ガスの一例を示せば、メタン濃度98%±1%の気化ガスである。 The fluctuation range of the methane concentration is determined by the gas turbine to be used, but if the fluctuation range is exemplified, it is about ± 1%. Therefore, if an example of the vaporization gas supplied as a fuel of a gas turbine is shown, it will be a vaporization gas with a methane concentration of 98% ± 1%.
 分離回収する重質分が多いほど、多様なLNGを受け入れることが可能となるが、LNGに含まれる重質分の分離度を高めるほど蒸留装置の仕様が厳しく、負荷が大きくなる。またメタン99%のLNGを受け入れた場合に、これをメタン濃度100%にすることは効率的とは言い難い。メタン99%のLNGを多く受け入れるLNG基地にあっては、これをそのまま気化させ発電用ガスとすることが効率的である。 The more heavy components to be separated and recovered, the more various LNG can be accepted. However, the higher the degree of separation of heavy components contained in LNG, the more strict the specifications of the distillation apparatus and the greater the load. In addition, when LNG with 99% methane is accepted, it is difficult to say that it is efficient to set the methane concentration to 100%. In an LNG base that accepts a large amount of LNG of 99% methane, it is efficient to vaporize this as it is to generate power.
 発電用ガスに使用する気化ガスには、BOGも混入される。BOGの発生量は、蒸留装置23から排出される重質分が分離されたメタンの流量に比較して少ないので、発電用ガスに与える影響は小さいが、BOGは、ほぼメタン濃度100vol%のガスであるから、蒸留装置23から排出される重質分が分離されたメタンの濃度を97vol%としたような場合、BOGの発生量が変動すると発電用ガスのメタン濃度が変動することも考慮しておく必要がある。 BOG is also mixed in the vaporized gas used for power generation gas. The amount of BOG generated is small compared to the flow rate of methane from which the heavy component discharged from the distillation apparatus 23 is separated, so the influence on the power generation gas is small, but BOG is a gas with a methane concentration of approximately 100 vol%. Therefore, when the concentration of methane from which the heavy components discharged from the distillation apparatus 23 are separated is 97 vol%, the methane concentration of the power generation gas varies when the amount of generated BOG varies. It is necessary to keep.
 BOGは、カロリーが低いため従来はその取扱いに苦慮していたが、ここでは発電用ガスとしてメタンガス又はメタンガスを主成分とする気化ガスを供給するので、BOGを発電用ガスとして好適に使用することができる。 BOG has been difficult to handle due to its low calorie, but here, methane gas or vaporized gas mainly composed of methane gas is supplied as power generation gas. Therefore, BOG is preferably used as power generation gas. Can do.
 以上のことから発電用ガスとして使用可能な気化ガスのメタン濃度は、96vol%、好ましくは97vol%、より好ましくは98~100vol%である。以上の発電用ガスの考え方は、後述の第2~第5実施形態のLNG基地においても同じである。 From the above, the methane concentration of the vaporized gas that can be used as the power generation gas is 96 vol%, preferably 97 vol%, more preferably 98 to 100 vol%. The concept of power generation gas described above is the same in the LNG bases of the second to fifth embodiments described later.
 次に、LNG基地1の代表的な運転方法を説明する。以下に示す運転方法は、代表例であり、LNG基地1の運転方法は、下記の運転方法、数値に限定されるものではない。熱量が調整されたLNGも都市ガス(13A)と同時に製造されるので、都市ガス(13A)の製造には熱量が調整されたLNGの製造も含まれるものとする。またBOGは、気化ガスに混合され発電用ガスとして送出されるものとする。他の実施形態についても同様である。 Next, a typical operation method of the LNG base 1 will be described. The operation method shown below is a representative example, and the operation method of the LNG base 1 is not limited to the following operation method and numerical values. Since the LNG with the adjusted amount of heat is also produced at the same time as the city gas (13A), the production of the city gas (13A) includes the production of LNG with the adjusted amount of heat. BOG is mixed with vaporized gas and sent out as power generation gas. The same applies to other embodiments.
 ケース1:LNGタンク11aには、メタン濃度が約95%のLNGが貯蔵され、LNGタンク11bには、メタン濃度が約90%のLNGが貯蔵されているものとする。都市ガスは、発熱量が46MJ/mNの気化ガスとする。なお、発熱量46MJ/mNのガスの組成は、凡そメタン濃度が88vol%、他の成分がエタン、プロパン、ブタンである。また貯蔵タンク65には、エタン、プロパン、ブタンなどの重質分が貯蔵されているものとする。 Case 1: It is assumed that LNG having a methane concentration of about 95% is stored in the LNG tank 11a, and LNG having a methane concentration of about 90% is stored in the LNG tank 11b. The city gas is a vaporized gas having a calorific value of 46 MJ / m 3 N. The composition of the gas having a calorific value of 46 MJ / m 3 N is about 88 vol% of methane concentration and ethane, propane and butane as other components. It is assumed that heavy components such as ethane, propane, and butane are stored in the storage tank 65.
 LNGタンク11aに貯蔵のLNGを使用し、発電用ガス及び都市ガス(13A)を製造するときは、LNG払い出しライン15a、混合ライン21、分岐ライン61を介して蒸留装置23及び熱量調整装置63にLNGを送る。発電用ガスは、蒸留装置23でLNGに含まれる重質分を分離しメタン濃度98%以上とした後に、気化器27でガス化又は加温し、発電用ガスとして送出する。 When the LNG stored in the LNG tank 11a is used to produce power generation gas and city gas (13A), the distillation apparatus 23 and the calorific value adjustment apparatus 63 are connected via the LNG discharge line 15a, the mixing line 21, and the branch line 61. Send LNG. The power generation gas is separated into heavy components contained in the LNG by the distillation device 23 so as to have a methane concentration of 98% or more, and then gasified or heated by the vaporizer 27 and sent as a power generation gas.
 LNGタンク11aに貯蔵のLNGは、メタン濃度が約95%であり、都市ガスとするには、発熱量が不足するので、LNGタンク11aに貯蔵のLNGをそのまま気化させ都市ガスとして送出することができない。よって発熱量が所定の発熱量となるように増熱剤供給ライン71を通じて熱量調整装置63に重質分を供給し、LNGに重質分を添加する。これを気化器79で気化させ都市ガスとして送出する。 The LNG stored in the LNG tank 11a has a methane concentration of about 95%, and since the calorific value is insufficient for the city gas, the LNG stored in the LNG tank 11a can be vaporized as it is and sent as city gas. Can not. Therefore, the heavy component is supplied to the calorific value adjusting device 63 through the heat-increasing agent supply line 71 so that the calorific value becomes a predetermined calorific value, and the heavy component is added to LNG. This is vaporized by the vaporizer 79 and sent out as city gas.
 LNGタンク11bに貯蔵のLNGを使用し、発電用ガス及び都市ガスを製造するとき、LNGタンク11a及びLNGタンク11bに貯蔵のLNGを同時に使用するときも、LNGタンク11aに貯蔵のLNGを使用するときと同様に考えればよい。 When the LNG stored in the LNG tank 11b is used to produce power generation gas and city gas, the LNG stored in the LNG tank 11a is also used when the LNG stored in the LNG tank 11a and the LNG tank 11b is used simultaneously. Just think like the time.
 ケース2:LNGタンク11aには、メタン濃度が約95%のLNGが貯蔵され、LNGタンク11bには、メタン濃度が100%のLNGが貯蔵されているものとする。他は、ケース1と同様とする。 Case 2: It is assumed that LNG having a methane concentration of about 95% is stored in the LNG tank 11a, and LNG having a methane concentration of 100% is stored in the LNG tank 11b. Others are the same as those in Case 1.
 LNGタンク11bに貯蔵のLNGを使用し、発電用ガス及び都市ガスを製造するときの要領を説明する。LNG払い出しライン15b、混合ライン21、分岐ライン61を介して蒸留装置23及び熱量調整装置63にLNGを送る。このLNGには、重質分が含まれていないので、蒸留装置23に送られたLNGはそのまま塔頂から排出される。これを気化器27でガス化又は加温し発電用ガスとして送出する。 A procedure for producing power generation gas and city gas using LNG stored in the LNG tank 11b will be described. LNG is sent to the distillation apparatus 23 and the calorific value adjustment apparatus 63 via the LNG delivery line 15 b, the mixing line 21, and the branch line 61. Since this LNG does not contain heavy components, the LNG sent to the distillation apparatus 23 is discharged as it is from the top of the column. This is gasified or heated by the vaporizer 27 and sent as power generation gas.
 LNGタンク11bに貯蔵のLNGは、メタン濃度が100%であり、都市ガスとするには、発熱量が不足するので、LNGタンク11bに貯蔵のLNGをそのまま気化させ都市ガスとして送出することができない。メタン濃度が100%のLNGの場合、蒸留装置23に通じても重質分を回収することができないが、このLNG基地1には、重質分を貯蔵する貯蔵タンク65を備えるので、貯蔵タンク65に貯蔵された重質分とメタン濃度100%のLNGとから都市ガスを製造する。 The LNG stored in the LNG tank 11b has a methane concentration of 100%, and since the calorific value is insufficient for the city gas, the LNG stored in the LNG tank 11b cannot be directly vaporized and sent out as city gas. . In the case of LNG having a methane concentration of 100%, the heavy component cannot be recovered even if it passes through the distillation device 23. However, since this LNG base 1 is provided with a storage tank 65 for storing the heavy component, the storage tank City gas is produced from heavy components stored in 65 and LNG having a methane concentration of 100%.
 ケース3:LNGタンク11aには、メタン濃度が約95%のLNGが貯蔵され、LNGタンク11bには、メタン濃度が85%のLNGが貯蔵されているものとする。その他は、ケース1と同様とする。 Case 3: LNG having a methane concentration of about 95% is stored in the LNG tank 11a, and LNG having a methane concentration of 85% is stored in the LNG tank 11b. Others are the same as in case 1.
 LNGタンク11bに貯蔵のLNGは、メタン濃度が85%であり、これをそのまま気化させても発電用ガスはもちろん、都市ガスとしても使用することができない。このためLNGの発熱量が都市ガスと同じ発熱量となるようにLNGタンク11aのLNGとLNGタンク11bのLNGとをラインブレンドし、このLNGを使用して発電用ガス及び都市ガスを製造する。 LNG stored in the LNG tank 11b has a methane concentration of 85%, and even if it is vaporized as it is, it cannot be used not only as a power generation gas but also as city gas. Therefore, the LNG in the LNG tank 11a and the LNG in the LNG tank 11b are line blended so that the calorific value of the LNG is the same as that of the city gas, and the power generation gas and the city gas are produced using the LNG.
 ブレンドされたLNGは、ケース1で示したメタン濃度95%のLNGと同様の要領で発電用ガスを製造する。都市ガスは、ブレンドされたLNGを気化させたガスを送出する。本ケースでは、都市ガスの製造に重質分を添加する必要がないので、蒸留装置23で分離された重質分は、そのまま貯蔵タンク65に貯蔵される。 The blended LNG produces power generation gas in the same manner as the LNG with 95% methane concentration shown in Case 1. City gas sends out gas which vaporized blended LNG. In this case, since it is not necessary to add heavy components to the production of city gas, the heavy components separated by the distillation apparatus 23 are stored in the storage tank 65 as they are.
 以上のように第1実施形態のLNG基地1は、2基のLNGタンク11a、11b、2種以上のLNGをブレンドする混合手段、LNGから重質分を分離する蒸留装置23及び貯蔵タンク65を含み構成される重質分分離設備、都市ガスなど熱量を調整した気化ガス及びLNGを製造する燃料製造設備を備えるので、種々の性状のLNGの受け入れが可能であり、多様な運転及び運用を行なうことができる。 As described above, the LNG base 1 of the first embodiment includes the two LNG tanks 11a and 11b, the mixing means for blending two or more types of LNG, the distillation apparatus 23 for separating heavy components from the LNG, and the storage tank 65. It is equipped with a heavy component separation facility that is configured, and a fuel production facility that produces vaporized gas with adjusted calorie such as city gas and LNG, so it can accept LNG of various properties and perform various operations and operations. be able to.
 なお、上記実施形態では、蒸留装置23で分離された重質分を液体として貯蔵タンク65に貯蔵し、液体状態の重質分を熱量調整装置63に供給する例を示したが、重質分をガス状態で貯蔵し、該重質分を熱量調整装置63にガス状態で供給するようにしてもよい。また、蒸留装置23をバイパスするラインを設け、予め定めるメタン濃度のLNGを受け入れた場合、このLNGを直接、気化器27に送り気化させるようにしてもよい。なお、LNGタンクの数は、2基に限定されるものではない。 In the above-described embodiment, the heavy component separated by the distillation device 23 is stored in the storage tank 65 as a liquid, and the liquid heavy component is supplied to the calorific value adjusting device 63. May be stored in a gas state, and the heavy component may be supplied to the calorific value adjustment device 63 in a gas state. Further, a line for bypassing the distillation apparatus 23 may be provided, and when LNG having a predetermined methane concentration is received, the LNG may be directly sent to the vaporizer 27 to be vaporized. Note that the number of LNG tanks is not limited to two.
 図2は、本発明の第2実施形態のLNG基地2の機器構成図である。図1に示す第1実施形態のLNG基地1の構成と同一の構成には、同一の符号を付して説明を省略する。 FIG. 2 is a device configuration diagram of the LNG base 2 according to the second embodiment of the present invention. The same components as those of the LNG base 1 according to the first embodiment shown in FIG.
 第2実施形態のLNG基地2は、第1実施形態のLNG基地1と同様の技術的思想に基づき構築されたLNG基地であり、第1実施形態のLNG基地1と同様に、メタンガス又はメタンガスを主成分とする気化ガスを発電用ガスとして供給する発電用ガス供給系統と、外部から増熱剤を供給することなく、都市ガスとして使用可能な熱量に調整された熱量調整ガス及び/又は熱量調整LNGを供給する燃料供給系統とを備える。 The LNG base 2 of the second embodiment is an LNG base constructed based on the same technical idea as that of the LNG base 1 of the first embodiment. Like the LNG base 1 of the first embodiment, methane gas or methane gas is used. A power generation gas supply system that supplies vaporized gas as a main component as a power generation gas, and a heat amount adjustment gas and / or heat amount adjustment adjusted to a heat amount that can be used as city gas without supplying a heat-increasing agent from the outside. And a fuel supply system for supplying LNG.
 受け入れるLNGは、特定のLNGに限定されるものではなく、メタン濃度90vol%程度の在来型LNG、メタン濃度90vol%以上の非在来型LNG、さらにはメタン濃度100vol%の超軽質LNGを受け入れることができる。2基のLNGタンク11a、11bも、受け入れるLNGの種類が限定されていない。このためLNGタンク11aにおいて、貯蔵中の在来型LNGが消費されると、次回、非在来型LNGを受け入れる場合もある。LNGタンク11bについても同様である。 The LNG to be accepted is not limited to a specific LNG, but accepts a conventional LNG having a methane concentration of about 90 vol%, an unconventional LNG having a methane concentration of 90 vol% or more, and an ultralight LNG having a methane concentration of 100 vol%. be able to. The two LNG tanks 11a and 11b are not limited in the type of LNG to be received. For this reason, when the conventional LNG being stored is consumed in the LNG tank 11a, the non-conventional LNG may be accepted next time. The same applies to the LNG tank 11b.
 LNG基地2は、LNG基地1と基本的構成を同じくするが、LNG基地1の場合、蒸留装置23が1基であったのに対して、LNG基地2では、各タンク系統に蒸留装置23a、23bが設置されている点が異なる。タンク系統とは、LNGタンクに貯蔵するLNGに直接関連する系統をいい、LNGタンク11aの系統の場合、LNGタンク11a、LNG払い出しライン15a、バイパスライン31a、BOGライン51a、分岐ライン61aが含まれる。 The LNG base 2 has the same basic configuration as the LNG base 1, but in the case of the LNG base 1, the LNG base 2 has one distillation device 23, whereas the LNG base 2 has a distillation device 23a in each tank system. The difference is that 23b is installed. The tank system refers to a system directly related to LNG stored in the LNG tank. In the case of the system of the LNG tank 11a, the LNG tank 11a, the LNG discharge line 15a, the bypass line 31a, the BOG line 51a, and the branch line 61a are included. .
 LNGタンク11aに接続するLNG払い出しライン15aは、末端部が蒸留装置23aに直接接続する。またLNG払い出しライン15aには、流量制御弁19aの下流に蒸留装置23aをバイパスするバイパスライン31aが設けられ、バイパスライン31aは、上部ライン25aに接続する。 The LNG payout line 15a connected to the LNG tank 11a is directly connected to the distillation apparatus 23a at the end. The LNG payout line 15a is provided with a bypass line 31a that bypasses the distillation apparatus 23a downstream of the flow rate control valve 19a, and the bypass line 31a is connected to the upper line 25a.
 バイパスライン31aが接続する地点よりも下流側のLNG払い出しライン15a、バイパスライン31a及び上部ライン25aの途中には、開閉弁30a、32a、24aが設けられている。さらにバイパスライン31aが接続する地点よりも下流側でかつ開閉弁30aの上流側のLNG払い出しライン15aには、熱量調整装置63にLNGを送る分岐ライン61aが接続する。 On-off valves 30a, 32a, and 24a are provided in the middle of the LNG delivery line 15a, the bypass line 31a, and the upper line 25a on the downstream side of the point where the bypass line 31a is connected. Further, a branch line 61a for sending LNG to the heat quantity adjusting device 63 is connected to the LNG delivery line 15a downstream of the point where the bypass line 31a is connected and upstream of the on-off valve 30a.
 LNGタンク11bの系統も同じ構成からなるので説明を省略する。図2においては、添え字bを付してLNGタンク11aの系統と区別している。重質分を貯蔵する貯蔵タンク65は、LNGタンク11a、11bの系統に共用である。 Since the system of the LNG tank 11b has the same configuration, the description thereof is omitted. In FIG. 2, the subscript b is added to distinguish from the system of the LNG tank 11a. A storage tank 65 for storing heavy components is shared by the LNG tanks 11a and 11b.
 また流量制御弁19a、19bの下流側でかつバイパスライン31a、31bが接続する地点よりも上流側に、LNG払い出しライン15aとLNG払い出しライン15bとを連絡する連絡ライン33が設けられている。連絡ライン33は、ライン途中の開閉弁34を備える。 Further, a communication line 33 for connecting the LNG payout line 15a and the LNG payout line 15b is provided downstream of the flow rate control valves 19a and 19b and upstream of the point where the bypass lines 31a and 31b are connected. The communication line 33 includes an on-off valve 34 in the middle of the line.
 以上のように第2実施形態のLNG基地2は、LNGタンク11a、11b、LNG払い出しライン15a、15b、連絡ライン33、蒸留装置23a、23b、上部ライン25a、25b、バイパスライン31a、31b、気化器27、ガスライン29、さらにはこれに接続するBOGライン51a、51b、55により発電用ガス供給系統を構成する。また熱量調整装置63、貯蔵タンク65及び増熱剤供給ライン71等で構成される増熱剤供給系統、熱量計73により燃料製造設備を構成し、さらに該燃料製造設備、LNGタンク11a、11b、LNG払い出しライン15a、15b、連絡ライン33、分岐ライン61a、61b、燃料ライン75、都市ガスライン77、気化器79により燃料供給系統を構成する。 As described above, the LNG base 2 of the second embodiment includes the LNG tanks 11a and 11b, the LNG discharge lines 15a and 15b, the communication line 33, the distillation devices 23a and 23b, the upper lines 25a and 25b, the bypass lines 31a and 31b, and the vaporization. The generator 27, the gas line 29, and the BOG lines 51a, 51b, 55 connected thereto constitute a power generation gas supply system. Further, a fuel production facility is constituted by a heat-increasing agent supply system composed of a calorific value adjusting device 63, a storage tank 65, a heat-increasing agent supply line 71 and the like, and a calorimeter 73, and further, the fuel production facility, the LNG tanks 11a, 11b, The LNG delivery lines 15a and 15b, the communication line 33, the branch lines 61a and 61b, the fuel line 75, the city gas line 77, and the carburetor 79 constitute a fuel supply system.
 次に、LNG基地2の代表的な運転方法を説明する。以下に示す運転方法は、代表例であり、LNG基地2の運転方法は、下記の運転方法、数値に限定されるものではない。 Next, a typical operation method of the LNG base 2 will be described. The operation methods shown below are representative examples, and the operation method of the LNG base 2 is not limited to the following operation methods and numerical values.
 ケース1:LNGタンク11aには、メタン濃度が約95%のLNGが貯蔵され、LNGタンク11bには、メタン濃度が約90%のLNGが貯蔵されているものとする。都市ガスは、発熱量が46MJ/mNの気化ガスとする。なお、発熱量46MJ/mNのガスの組成は、凡そメタン濃度が88vol%、他の成分がエタン、プロパン、ブタンである。また貯蔵タンク65には、エタン、プロパン、ブタンなどの重質分が貯蔵されているものとする。 Case 1: It is assumed that LNG having a methane concentration of about 95% is stored in the LNG tank 11a, and LNG having a methane concentration of about 90% is stored in the LNG tank 11b. The city gas is a vaporized gas having a calorific value of 46 MJ / m 3 N. The composition of the gas having a calorific value of 46 MJ / m 3 N is about 88 vol% of methane concentration and ethane, propane and butane as other components. It is assumed that heavy components such as ethane, propane, and butane are stored in the storage tank 65.
 LNGタンク11aに貯蔵のLNGを使用し、発電用ガス及び都市ガスを製造するときは、LNG払い出しライン15a、分岐ライン61aを介して蒸留装置23a及び熱量調整装置63にLNGを送る。このときバイパスライン31aは閉止する。発電用ガスは、蒸留装置23aでLNGに含まれる重質分を分離しメタン濃度98%以上とした後に、気化器27でガス化又は加温し、発電用ガスとして送出する。 When the LNG stored in the LNG tank 11a is used to produce power generation gas and city gas, the LNG is sent to the distillation device 23a and the calorific value adjustment device 63 via the LNG discharge line 15a and the branch line 61a. At this time, the bypass line 31a is closed. The power generation gas is separated into heavy components contained in LNG by the distillation device 23a so as to have a methane concentration of 98% or more, then gasified or heated by the vaporizer 27, and sent as power generation gas.
 LNGタンク11aに貯蔵のLNGは、都市ガスとするには、発熱量が不足するので、発熱量が所定の発熱量となるように増熱剤供給ライン71を通じて熱量調整装置63に重質分を供給し、LNGに重質分を添加する。これを気化器79で気化させ都市ガスとして送出する。LNGタンク11bに貯蔵のLNGを使用して発電用ガス及び都市ガスを製造するときもLNGタンク11aに貯蔵のLNGを使用するときと同様に考えればよい。以上のようにこれら運転方法は、第1実施形態のケース1の運転方法と同じである。 The LNG stored in the LNG tank 11a does not generate enough heat to produce city gas. Therefore, the heavy quantity is supplied to the heat quantity adjusting device 63 through the heat-increasing agent supply line 71 so that the heat generation amount becomes a predetermined heat generation amount. Feed and add heavy to LNG. This is vaporized by the vaporizer 79 and sent out as city gas. The production of power generation gas and city gas using LNG stored in the LNG tank 11b may be considered in the same manner as when LNG stored in the LNG tank 11a is used. As described above, these operation methods are the same as the operation method of case 1 of the first embodiment.
 ケース2:LNGタンク11aには、メタン濃度が約95%のLNGが貯蔵され、LNGタンク11bには、メタン濃度が100%のLNGが貯蔵されているものとする。他は、ケース1と同様とする。 Case 2: It is assumed that LNG having a methane concentration of about 95% is stored in the LNG tank 11a, and LNG having a methane concentration of 100% is stored in the LNG tank 11b. Others are the same as those in Case 1.
 以下、2基のLNGタンク11a、11bに貯蔵するLNGを同時に使用し、発電用ガス及び都市ガスを製造するときの要領を説明する。ここでは、LNGタンク11aに貯蔵するLNGは、都市ガスの製造専用、LNGタンク11bに貯蔵のLNGは、発電用ガス専用とする。 Hereinafter, the procedure for producing power generation gas and city gas by using LNG stored in the two LNG tanks 11a and 11b at the same time will be described. Here, the LNG stored in the LNG tank 11a is dedicated to the production of city gas, and the LNG stored in the LNG tank 11b is dedicated to the power generation gas.
 LNGタンク11aに貯蔵するLNGは、払出しライン15a及び分岐ライン61aを通じて熱量調整装置63にLNGを送り、増熱剤供給ライン71を通じて熱量調整装置63に重質分を供給し発熱量を調整する。このとき蒸留装置23aに通じる払出しライン15a及びバイパスライン31aは閉止する。 The LNG stored in the LNG tank 11a sends LNG to the heat quantity adjusting device 63 through the payout line 15a and the branch line 61a, and supplies a heavy component to the heat quantity adjusting device 63 through the heat-increasing agent supply line 71 to adjust the calorific value. At this time, the discharge line 15a and the bypass line 31a leading to the distillation device 23a are closed.
 LNGタンク11bに貯蔵のLNGは、メタン濃度が100%であるので、LNG払い出しライン15b及びバイパスライン31bを介してLNGを気化器27に送り、気化させた後、発電用ガスとして送出する。このとき、蒸留装置23bに通じる払出しライン15b及び分岐ライン61bは閉止する。 Since the LNG stored in the LNG tank 11b has a methane concentration of 100%, the LNG is sent to the vaporizer 27 through the LNG discharge line 15b and the bypass line 31b, vaporized, and then sent as a power generation gas. At this time, the discharge line 15b and the branch line 61b leading to the distillation apparatus 23b are closed.
 ケース2の場合において、LNGタンク11aに貯蔵するLNGを、都市ガス専用とせず、ケース1と同様の要領で都市ガスと発電用ガスとを製造するようにしてもよい。また実施例1と同様に、連絡ライン33を介してLNGタンク11aに貯蔵のLNGとLNGタンク11bに貯蔵のLNGとを混合し、実施例1と同様の要領で都市ガスと発電用ガスとを製造するようにしてもよい。 In the case 2, the LNG stored in the LNG tank 11a may not be exclusively used for city gas, and the city gas and the power generation gas may be produced in the same manner as in case 1. Similarly to the first embodiment, the LNG stored in the LNG tank 11a and the LNG stored in the LNG tank 11b are mixed via the communication line 33, and city gas and power generation gas are mixed in the same manner as in the first embodiment. You may make it manufacture.
 ケース3:LNGタンク11aには、メタン濃度が約95%のLNGが貯蔵され、LNGタンク11bには、メタン濃度が85%のLNGが貯蔵されているものとする。その他は、ケース1と同様とする。 Case 3: LNG having a methane concentration of about 95% is stored in the LNG tank 11a, and LNG having a methane concentration of 85% is stored in the LNG tank 11b. Others are the same as in case 1.
 LNGタンク11bに貯蔵のLNGは、メタン濃度が85%であり、これをそのまま気化させても発電用ガスはもちろん、都市ガスとしても使用することができない。このためLNGの発熱量が都市ガスと同じ発熱量となるようにLNGタンク11aのLNGとLNGタンク11bのLNGとを連絡ライン33を介してラインブレンドし、このLNGを都市ガス用のガスとする。 LNG stored in the LNG tank 11b has a methane concentration of 85%, and even if it is vaporized as it is, it cannot be used not only as a power generation gas but also as city gas. For this reason, the LNG in the LNG tank 11a and the LNG in the LNG tank 11b are line-blended via the connection line 33 so that the calorific value of the LNG is the same as that of the city gas, and this LNG is used as a gas for city gas. .
 発電用ガスは、ブレンドしたLNGを使用し製造してもよいが、メタン濃度が高いLNGタンク11aに貯蔵するLNGを使用し、ケース1に記載の要領で製造すればよい。本ケースでは、都市ガスの製造に重質分を添加する必要がないので、蒸留装置23aで分離した重質分は、そのまま貯蔵タンク65に貯蔵される。 The power generation gas may be manufactured using blended LNG, but may be manufactured as described in Case 1 using LNG stored in the LNG tank 11a having a high methane concentration. In this case, since it is not necessary to add heavy components to the production of city gas, the heavy components separated by the distillation apparatus 23a are stored in the storage tank 65 as they are.
 以上のように第2実施形態のLNG基地2は、各タンク系統に蒸留装置23a、23bが設置されているので、第1実施形態のLNG基地1以上に多様な運転を行うことができる。また種々の性状のLNGの受け入れが可能であり、多様な運用が行える。 As described above, since the LNG base 2 of the second embodiment is provided with the distillation devices 23a and 23b in each tank system, various operations can be performed over the LNG base 1 of the first embodiment. In addition, LNG with various properties can be accepted and various operations can be performed.
 なお、上記実施形態では、蒸留装置23a、23bで分離された重質分を液体として貯蔵タンク65に貯蔵し、液体状態の重質分を熱量調整装置63に供給する例を示したが、重質分をガス状態で貯蔵し、該重質分を熱量調整装置63にガス状態で供給するようにしてもよい。またLNGタンクの数は、2基に限定されるものではない。 In the above embodiment, the heavy component separated by the distillation devices 23a and 23b is stored in the storage tank 65 as a liquid, and the heavy component in the liquid state is supplied to the calorific value adjusting device 63. The mass may be stored in a gas state, and the heavy component may be supplied to the calorie adjustment device 63 in a gas state. The number of LNG tanks is not limited to two.
 図3は、本発明の第3実施形態のLNG基地3の機器構成図である。図1に示す第1実施形態のLNG基地1、図2に示す第2実施形態のLNG基地2の構成と同一の構成には、同一の符号を付して説明を省略する。 FIG. 3 is a device configuration diagram of the LNG base 3 according to the third embodiment of the present invention. The same components as those of the LNG base 1 of the first embodiment shown in FIG. 1 and the LNG base 2 of the second embodiment shown in FIG.
 第3実施形態のLNG基地3は、第1実施形態のLNG基地1と同様の技術的思想に基づき構築されたLNG基地であり、第1実施形態のLNG基地1及び第2実施形態のLNG基地2と同様に、メタンガス又はメタンガスを主成分とする気化ガスを発電用ガスとして供給する発電用ガス供給系統と、外部から増熱剤を供給することなく、都市ガスとして使用可能な熱量に調整された熱量調整ガス及び/又は熱量調整LNGを供給する燃料供給系統とを備える。 The LNG base 3 of the third embodiment is an LNG base constructed based on the same technical idea as the LNG base 1 of the first embodiment, and the LNG base 1 of the first embodiment and the LNG base of the second embodiment. As in 2, power generation gas supply system that supplies methane gas or vaporized gas mainly composed of methane gas as power generation gas, and the amount of heat that can be used as city gas without supplying a heat-increasing agent from the outside. And a fuel supply system for supplying the calorific value adjustment gas and / or the calorific value adjustment LNG.
 受け入れるLNGは、特定のLNGに限定されるものではなく、メタン濃度90vol%程度の在来型LNG、メタン濃度90vol%以上の非在来型LNG、さらにはメタン濃度100vol%の超軽質LNGを受け入れることができる。但し、LNG基地3は、第1実施形態のLNG基地1及び第2実施形態のLNG基地2と異なり、LNGタンク11a、11bに受け入れるLNGの種類が特定されているため系統がLNG基地1及びLNG基地2と多少異なる。 The LNG to be accepted is not limited to a specific LNG, but accepts a conventional LNG having a methane concentration of about 90 vol%, an unconventional LNG having a methane concentration of 90 vol% or more, and an ultralight LNG having a methane concentration of 100 vol%. be able to. However, the LNG base 3 is different from the LNG base 1 of the first embodiment and the LNG base 2 of the second embodiment, and since the types of LNG to be received in the LNG tanks 11a and 11b are specified, the system is connected to the LNG base 1 and the LNG base 1. Slightly different from Base 2.
 LNGタンク11aは、メタン濃度98%以上のLNG専用のタンクであり、LNG払い出しライン15aは、蒸留装置23には接続せず、気化器27に直接接続する。LNGタンク11bは、メタン濃度98%未満のLNGを専用に受入れるタンクであり、メタン濃度98%未満のLNGであればLNG中のメタン濃度は特に問わない。LNGタンク11bのLNG払い出しライン15bは、蒸留装置23に接続し、払出しライン15bには、熱量調整装置63にLNGを送る分岐ライン61が接続する。 The LNG tank 11a is a tank dedicated to LNG having a methane concentration of 98% or more, and the LNG discharge line 15a is not connected to the distillation apparatus 23 but directly connected to the vaporizer 27. The LNG tank 11b is a tank that exclusively receives LNG having a methane concentration of less than 98%, and the methane concentration in the LNG is not particularly limited as long as the LNG has a methane concentration of less than 98%. The LNG payout line 15b of the LNG tank 11b is connected to the distillation device 23, and the payout line 15b is connected to a branch line 61 that sends LNG to the calorific value adjustment device 63.
 さらにLNG払い出しライン15aとLNG払い出しライン15bとは、流量調整弁36が介装された混合ライン35で結ばれる。混合ライン35は、LNGタンク11aに貯蔵するLNGを払出しライン11bに送るためのラインである。 Further, the LNG payout line 15a and the LNG payout line 15b are connected by a mixing line 35 in which a flow rate adjusting valve 36 is interposed. The mixing line 35 is a line for sending LNG stored in the LNG tank 11a to the payout line 11b.
 LNGタンク11bに受け入れるLNGが都市ガス(13A)相当の発熱量を有していないときは、発熱量を調整する操作が必要となる。LNGの発熱量が都市ガス(13A)相当以下の場合には、増熱剤供給ライン71を通じて増熱剤を供給することで発熱量を調整することができる。一方、LNGの発熱量が都市ガス(13A)相当以上の場合には、発熱量を低下させるために混合ライン35からメタン濃度98%以上のLNGを供給することで発熱量を調整する。よって都市ガス(13A)相当の発熱量以下のLNGのみを受け入れる場合には、混合ライン35を設けなくてもよい。 When the LNG received in the LNG tank 11b does not have a calorific value equivalent to city gas (13A), an operation for adjusting the calorific value is required. When the amount of heat generated by LNG is less than or equal to the city gas (13A), the amount of heat generated can be adjusted by supplying the heat-increasing agent through the heat-increasing agent supply line 71. On the other hand, when the calorific value of LNG is equal to or greater than that of city gas (13A), the calorific value is adjusted by supplying LNG having a methane concentration of 98% or more from the mixing line 35 in order to reduce the calorific value. Therefore, when only LNG having a calorific value equal to or less than the city gas (13A) is received, the mixing line 35 may not be provided.
 以上のように第3実施形態のLNG基地3は、LNGタンク11a、11b、LNG払い出しライン15a、15b、蒸留装置23、上部ライン25、気化器27、ガスライン29、混合ライン35、さらにはこれに接続するBOGライン51a、51b、55により発電用ガス供給系統を構成する。また熱量調整装置63、貯蔵タンク65及び増熱剤供給ライン71等で構成される増熱剤供給系統、熱量計73により燃料製造設備を構成し、さらに該燃料製造設備、LNGタンク11a、11b、LNG払い出しライン15a、15b、混合ライン35、分岐ライン61、燃料ライン75、都市ガスライン77、気化器79により燃料供給系統を構成する。 As described above, the LNG base 3 of the third embodiment includes the LNG tanks 11a and 11b, the LNG discharge lines 15a and 15b, the distillation device 23, the upper line 25, the vaporizer 27, the gas line 29, the mixing line 35, and further to this. A BOG line 51a, 51b, 55 connected to the power generation gas supply system is configured. Further, a fuel production facility is constituted by a heat-increasing agent supply system composed of a calorific value adjusting device 63, a storage tank 65, a heat-increasing agent supply line 71 and the like, and a calorimeter 73, and further, the fuel production facility, the LNG tanks 11a, 11b, The LNG payout lines 15a and 15b, the mixing line 35, the branch line 61, the fuel line 75, the city gas line 77, and the carburetor 79 constitute a fuel supply system.
 次に、LNG基地3の代表的な運転方法を説明する。以下に示す運転方法は、代表例であり、LNG基地3の運転方法は下記の運転方法、数値に限定されるものではない。 Next, a typical operation method of the LNG base 3 will be described. The operation methods shown below are representative examples, and the operation method of the LNG base 3 is not limited to the following operation methods and numerical values.
 LNGタンク11aには、メタン濃度98%以上のLNGが貯蔵されているので、気化器27で気化させ発電用ガスとする。都市ガスは、基本的にLNGタンク11bのLNGを使用して製造する。例えばメタン濃度90%のLNGの場合、第1実施形態のケース1と同様の要領で製造することができる。LNGタンク11bのLNGのメタン濃度が85%の場合など、LNGの発熱量が都市ガスの発熱量を上回るときには、混合ライン35を通じてLNGタンク11aのLNGを添加し、都市ガスを製造する。LNGタンク11aのLNGを用いて都市ガスを製造する場合には、混合ライン35を介してLNGタンク11aのLNGをLNG払出しライン15b、さらには分岐ライン61に送ればよい。 Since LNG having a methane concentration of 98% or more is stored in the LNG tank 11a, it is vaporized by the vaporizer 27 and used as a power generation gas. City gas is basically produced using LNG in the LNG tank 11b. For example, in the case of LNG having a methane concentration of 90%, it can be manufactured in the same manner as in case 1 of the first embodiment. When the calorific value of LNG exceeds the calorific value of city gas, such as when the LNG concentration of LNG in LNG tank 11b is 85%, city gas is produced by adding LNG in LNG tank 11a through mixing line 35. When city gas is produced using the LNG in the LNG tank 11a, the LNG in the LNG tank 11a may be sent to the LNG delivery line 15b and further to the branch line 61 through the mixing line 35.
 以上のように第3実施形態のLNG基地3は、メタン濃度98%以上のLNGを専用に受け入れるLNGタンク11aを設け、LNGタンク11a、11bに受け入れるLNGを特定するので、蒸留装置23の負荷が小さく、またプロセスフローも簡単となる。 As described above, the LNG base 3 of the third embodiment is provided with the LNG tank 11a that exclusively receives LNG having a methane concentration of 98% or more, and specifies the LNG that is received in the LNG tanks 11a and 11b. It is small and the process flow is simple.
 なお、上記実施形態では、蒸留装置23で分離された重質分を液体として貯蔵タンク65に貯蔵し、液体状態の重質分を熱量調整装置63に供給する例を示したが、重質分をガス状態で貯蔵し、該重質分を熱量調整装置63にガス状態で供給するようにしてもよい。またLNGタンクの数は、2基に限定されるものではない。 In the above-described embodiment, the heavy component separated by the distillation device 23 is stored in the storage tank 65 as a liquid, and the liquid heavy component is supplied to the calorific value adjusting device 63. May be stored in a gas state, and the heavy component may be supplied to the calorific value adjustment device 63 in a gas state. The number of LNG tanks is not limited to two.
 図4は、本発明の第4実施形態のLNG基地4の機器構成図である。図1~図3に示すLNG基地1、2、3の構成と同一の構成には、同一の符号を付して説明を省略する。 FIG. 4 is a device configuration diagram of the LNG base 4 according to the fourth embodiment of the present invention. The same components as those of the LNG bases 1, 2, and 3 shown in FIGS. 1 to 3 are denoted by the same reference numerals and description thereof is omitted.
 第4実施形態のLNG基地4は、第1実施形態のLNG基地1と同様の技術的思想に基づき構築されたLNG基地であり、第1~第3実施形態のLNG基地1、2、3と同様に、メタンガス又はメタンガスを主成分とする気化ガスを発電用ガスとして供給する発電用ガス供給系統と、外部から増熱剤を供給することなく、都市ガスとして使用可能な熱量に調整された熱量調整ガス及び/又は熱量調整LNGを供給する燃料供給系統とを備える。 The LNG base 4 of the fourth embodiment is an LNG base constructed based on the same technical idea as the LNG base 1 of the first embodiment, and the LNG bases 1, 2, 3 of the first to third embodiments Similarly, power generation gas supply system that supplies methane gas or vaporized gas mainly composed of methane gas as power generation gas, and the amount of heat adjusted to the amount of heat that can be used as city gas without supplying a heat increasing agent from the outside And a fuel supply system that supplies the adjustment gas and / or the calorie adjustment LNG.
 受け入れるLNGは、特定のLNGに限定されるものではなく、メタン濃度90vol%程度の在来型LNG、メタン濃度90vol%以上の非在来型LNG、さらにはメタン濃度100vol%の超軽質LNGを受け入れることができる。2基のLNGタンク11a、11bも、受け入れるLNGの種類が限定されていない。このためLNGタンク11aにおいて、貯蔵中の在来型LNGが消費されると、次回、非在来型LNGを受け入れる場合もある。LNGタンク11bについても同様である。 The LNG to be accepted is not limited to a specific LNG, but accepts a conventional LNG having a methane concentration of about 90 vol%, an unconventional LNG having a methane concentration of 90 vol% or more, and an ultralight LNG having a methane concentration of 100 vol%. be able to. The two LNG tanks 11a and 11b are not limited in the type of LNG to be received. For this reason, when the conventional LNG being stored is consumed in the LNG tank 11a, the non-conventional LNG may be accepted next time. The same applies to the LNG tank 11b.
 LNG基地4は、LNG基地1と基本的構成を同じくするが、LNG基地1の場合、LNGに含まれる重質分を分離回収する手段として蒸留装置23を使用する。これに対してLNG基地4は、LNGに含まれる重質分を分離回収する手段として、重質分吸着装置39a、39bを用いる。本実施形態では、重質分吸着装置39a、39bとガスタンク66を主要機器として重質分分離設備が構成される。 The LNG base 4 has the same basic configuration as the LNG base 1, but in the case of the LNG base 1, the distillation apparatus 23 is used as a means for separating and collecting heavy components contained in the LNG. On the other hand, the LNG base 4 uses the heavy component adsorption devices 39a and 39b as means for separating and collecting the heavy component contained in the LNG. In the present embodiment, the heavy component separation equipment is configured with the heavy component adsorption devices 39a and 39b and the gas tank 66 as main devices.
 重質分吸着装置39a、39bは、内部にエタン、プロパン、ブタン等の重質分を吸着する吸着剤を収納し、混合ライン37a、37bを通じて送られるLNGに含まれる重質分を吸着し、重質分が分離されたLNGを排出する。重質分を吸着した吸着剤は、圧力を低下させる及び/又は温度を上昇させると重質分が脱着する。吸着剤は、公知の吸着剤を使用することが可能であり、吸着剤としては活性炭が例示される。 The heavy component adsorption devices 39a and 39b store therein an adsorbent that adsorbs heavy components such as ethane, propane, and butane, and adsorb heavy components contained in LNG sent through the mixing lines 37a and 37b. LNG from which heavy components have been separated is discharged. The adsorbent that has adsorbed the heavy component desorbs the heavy component when the pressure is decreased and / or the temperature is increased. A known adsorbent can be used as the adsorbent, and activated carbon is exemplified as the adsorbent.
 重質分吸着装置39a、39bは、重質分の吸着と脱着(再生)とを交互に繰り返しながら使用するため、1基の重質分吸着装置では、発電用ガス及び都市ガスの連続供給を行うことができない。このためLNG基地4では、2基の重質分吸着装置39a、39bを設置し、一方の重質分吸着装置39a(39b)が重質分を吸着としているとき、他方の重質分吸着装置39b(39a)が重質分を脱着するように構成し、発電用ガス及び都市ガスの連続供給を可能としている。 Since the heavy component adsorption devices 39a and 39b are used while alternately repeating the adsorption and desorption (regeneration) of the heavy component, one heavy component adsorption device can continuously supply power generation gas and city gas. I can't do it. Therefore, in the LNG base 4, when two heavy component adsorption devices 39a and 39b are installed and one heavy component adsorption device 39a (39b) is configured to adsorb the heavy component, the other heavy component adsorption device 39b (39a) is configured so as to desorb heavy components, thereby enabling continuous supply of power generation gas and city gas.
 各重質分吸着装置39a、39bの下部には、混合ライン37a、37bがそれぞれ接続する。重質分吸着装置39a、39bの頂部には、重質分が分離されたLNGを気化器27に送る上部ライン25a、25bが、底部には、脱着した重質分をガスタンク66に送る下部ライン41a、41bが接続する。ガスタンク66は、重質分吸着装置39a、39bから送られる重質分を貯蔵する。 The mixing lines 37a and 37b are connected to the lower portions of the heavy component adsorption devices 39a and 39b, respectively. Upper lines 25a and 25b for sending LNG from which heavy components have been separated to the vaporizer 27 are provided at the tops of the heavy component adsorption devices 39a and 39b, and lower lines for delivering the desorbed heavy components to the gas tank 66 at the bottoms. 41a and 41b are connected. The gas tank 66 stores the heavy components sent from the heavy component adsorption devices 39a and 39b.
 重質分吸着装置39a、39bは、重質分の吸着と脱着(再生)とを交互に繰り返しながら使用するため、混合ライン37a、37b、上部ライン25a、25b、下部ライン41a、41bには、開閉弁38a、38b、24a、24b、42a、42bが設けられている。開閉弁38a、38b、24a、24b、42a、42bは、重質分吸着装置39a、39bの重質分の吸着操作及び脱着(再生)操作に合せて開閉される。 Since the heavy component adsorption devices 39a and 39b are used by alternately repeating heavy component adsorption and desorption (regeneration), the mixing lines 37a and 37b, the upper lines 25a and 25b, and the lower lines 41a and 41b include On-off valves 38a, 38b, 24a, 24b, 42a, 42b are provided. The on-off valves 38a, 38b, 24a, 24b, 42a, 42b are opened and closed in accordance with the heavy component adsorption operation and desorption (regeneration) operation of the heavy component adsorption devices 39a, 39b.
 以上のように第4実施形態のLNG基地4は、LNGタンク11a、11b、LNG払い出しライン15a、15b、混合ライン21、37a、37b、重質分吸着装置39a、39b、上部ライン25a、25b、気化器27、ガスライン29、さらにはこれに接続するBOGライン51a、51b、55により発電用ガス供給系統を構成する。また熱量調整装置63、ガスタンク66及び増熱剤供給ライン71等で構成される増熱剤供給系統、熱量計73により燃料製造設備を構成し、さらに該燃料製造設備、さらにLNGタンク11a、11b、LNG払い出しライン15a、15b、混合ライン21、分岐ライン61、燃料ライン75、都市ガスライン77、気化器79により燃料供給系統を構成する。 As described above, the LNG base 4 of the fourth embodiment includes the LNG tanks 11a and 11b, the LNG discharge lines 15a and 15b, the mixing lines 21, 37a and 37b, the heavy component adsorption devices 39a and 39b, the upper lines 25a and 25b, A gas generation system for power generation is configured by the vaporizer 27, the gas line 29, and the BOG lines 51a, 51b, and 55 connected thereto. Further, a heat production agent supply system constituted by a heat quantity adjusting device 63, a gas tank 66, a heat increase agent supply line 71, and the like, and a calorimeter 73 constitute a fuel production facility. Further, the fuel production facility, and further LNG tanks 11a, 11b, The LNG payout lines 15a and 15b, the mixing line 21, the branch line 61, the fuel line 75, the city gas line 77, and the carburetor 79 constitute a fuel supply system.
 次に、LNG基地4の代表的な運転方法を説明する。以下に示す運転方法は、代表例であり、LNG基地4の運転方法は下記の運転方法、数値に限定されるものではない。 Next, a typical operation method of the LNG base 4 will be described. The operation methods shown below are representative examples, and the operation method of the LNG base 4 is not limited to the following operation methods and numerical values.
 ケース1:LNGタンク11aには、メタン濃度が約95%のLNGが貯蔵され、LNGタンク11bには、メタン濃度が約90%のLNGが貯蔵されているものとする。都市ガスは、発熱量が46MJ/mNの気化ガスとする。なお、発熱量46MJ/mNのガスの組成は、凡そメタン濃度が88vol%、他の成分がエタン、プロパン、ブタンである。またガスタンク66には、エタン、プロパン、ブタンなどの重質分が貯蔵されているものとする。 Case 1: It is assumed that LNG having a methane concentration of about 95% is stored in the LNG tank 11a, and LNG having a methane concentration of about 90% is stored in the LNG tank 11b. The city gas is a vaporized gas having a calorific value of 46 MJ / m 3 N. The composition of the gas having a calorific value of 46 MJ / m 3 N is about 88 vol% of methane concentration and ethane, propane and butane as other components. Further, it is assumed that heavy components such as ethane, propane, and butane are stored in the gas tank 66.
 LNGタンク11aに貯蔵のLNGを使用し、発電用ガス及び都市ガスを製造するときは、LNG払い出しライン15a、混合ライン21、37a及び分岐ライン61を介して重質分吸着装置39a及び熱量調整装置63にLNGを送る。発電用ガスは、重質分吸着装置39aでLNGに含まれる重質分を分離しメタン濃度98%以上とした後に、気化器27でガス化又は加温し、発電用ガスとして送出する。 When the LNG stored in the LNG tank 11a is used to produce power generation gas and city gas, the heavy component adsorbing device 39a and the calorific value adjusting device via the LNG discharge line 15a, the mixing lines 21, 37a and the branch line 61 are used. LNG is sent to 63. The power generation gas is separated from the heavy component contained in the LNG by the heavy component adsorption device 39a so as to have a methane concentration of 98% or more, then gasified or heated by the vaporizer 27, and sent as a power generation gas.
 重質分吸着装置39aへの供給が所定の時間経過した後は、重質分吸着装置39aへのLNGの供給を停止し、重質分吸着装置39bへLNGを供給する。この切換え操作のとき、発電用ガスの流量、圧力が変動しないように重質分吸着装置39bへLNGを供給した後に、重質分吸着装置39aへのLNGを停止する。重質分吸着装置39bを用いて発電用ガスを製造しつつ、重質分吸着装置39aの再生を行う。重質分吸着装置39aの再生は、LNGの供給を停止した状態で圧力を低下させ及び/又は加温し、吸着剤に吸着した重質分を脱着させることで行う。 After the supply to the heavy component adsorption device 39a has elapsed for a predetermined time, the supply of LNG to the heavy component adsorption device 39a is stopped and the LNG is supplied to the heavy component adsorption device 39b. At the time of this switching operation, after supplying LNG to the heavy component adsorption device 39b so that the flow rate and pressure of the power generation gas do not fluctuate, LNG to the heavy component adsorption device 39a is stopped. The heavy component adsorption device 39a is regenerated while producing the power generation gas using the heavy component adsorption device 39b. The regeneration of the heavy component adsorption device 39a is performed by depressurizing and / or heating the pressure while the supply of LNG is stopped to desorb the heavy component adsorbed on the adsorbent.
 LNGタンク11aに貯蔵のLNGは、メタン濃度が約95%であり、都市ガスとするには、発熱量が不足するので、LNGタンク11aに貯蔵のLNGをそのまま気化させ都市ガスとして送出することができない。よって発熱量が所定の発熱量となるように増熱剤供給ライン71を通じて熱量調整装置63に重質分を供給し、LNGに重質分を添加する。これを気化器79で気化させ都市ガス用のガスとして送出する。 The LNG stored in the LNG tank 11a has a methane concentration of about 95%, and since the calorific value is insufficient for the city gas, the LNG stored in the LNG tank 11a can be vaporized as it is and sent as city gas. Can not. Therefore, the heavy component is supplied to the calorific value adjusting device 63 through the heat-increasing agent supply line 71 so that the calorific value becomes a predetermined calorific value, and the heavy component is added to LNG. This is vaporized by the vaporizer 79 and sent out as city gas.
 LNGタンク11bに貯蔵のLNGを使用し、発電用ガス及び都市ガスを製造するとき、LNGタンク11a及びLNGタンク11bに貯蔵のLNGを同時に使用するときも、LNGタンク11aに貯蔵のLNGを使用するときと同様に考えればよい。 When the LNG stored in the LNG tank 11b is used to produce power generation gas and city gas, the LNG stored in the LNG tank 11a is also used when the LNG stored in the LNG tank 11a and the LNG tank 11b is used simultaneously. Just think like the time.
 ケース2:LNGタンク11aには、メタン濃度が約95%のLNGが貯蔵され、LNGタンク11bには、メタン濃度が100%のLNGが貯蔵されているものとする。他は、ケース1と同様とする。 Case 2: It is assumed that LNG having a methane concentration of about 95% is stored in the LNG tank 11a, and LNG having a methane concentration of 100% is stored in the LNG tank 11b. Others are the same as those in Case 1.
 LNGタンク11bに貯蔵のLNGを使用し、発電用ガス及び都市ガスを製造するときの要領を説明する。LNG払い出しライン15b、混合ライン21、37b及び分岐ライン61を介して重質分吸着装置39b及び熱量調整装置63にLNGを送る。このLNGには、重質分が含まれていないので、重質分吸着装置39bに送られたLNGはそのまま塔頂から排出される。これを気化器27でガス化又は加温し発電用ガスとして送出する。 A procedure for producing power generation gas and city gas using LNG stored in the LNG tank 11b will be described. LNG is sent to the heavy component adsorption device 39b and the calorific value adjustment device 63 via the LNG delivery line 15b, the mixing lines 21 and 37b, and the branch line 61. Since this LNG does not contain a heavy component, the LNG sent to the heavy component adsorbing device 39b is discharged as it is from the top of the column. This is gasified or heated by the vaporizer 27 and sent as power generation gas.
 LNGタンク11bに貯蔵のLNGは、メタン濃度が100%であり、都市ガスとするには、発熱量が不足するので、LNGタンク11bに貯蔵のLNGをそのまま気化させ都市ガスとして送出することができない。メタン濃度が100%のLNGの場合、重質分吸着装置39bに通じても重質分を回収することができないが、このLNG基地4には、重質分を貯蔵するガスタンク66を備えるので、ガスタンク66に貯蔵された重質分とメタン濃度100%のLNGとから都市ガスを製造する。 The LNG stored in the LNG tank 11b has a methane concentration of 100%, and since the calorific value is insufficient for the city gas, the LNG stored in the LNG tank 11b cannot be directly vaporized and sent out as city gas. . In the case of LNG having a methane concentration of 100%, the heavy component cannot be recovered even if it passes through the heavy component adsorbing device 39b, but the LNG base 4 includes a gas tank 66 for storing the heavy component. City gas is produced from heavy components stored in the gas tank 66 and LNG having a methane concentration of 100%.
 ケース3:LNGタンク11aには、メタン濃度が約95%のLNGが貯蔵され、LNGタンク11bには、メタン濃度が85%のLNGが貯蔵されているものとする。その他は、ケース1と同様とする。 Case 3: LNG having a methane concentration of about 95% is stored in the LNG tank 11a, and LNG having a methane concentration of 85% is stored in the LNG tank 11b. Others are the same as in case 1.
 LNGタンク11bに貯蔵のLNGは、メタン濃度が85%であり、これをそのまま気化させても発電用ガスはもちろん、都市ガス用のガスとしても使用することができない。このためLNGの発熱量が都市ガスと同じ発熱量となるようにLNGタンク11aのLNGとLNGタンク11bのLNGとをラインブレンドし、このLNGを使用して発電用ガス及び都市ガスを製造する。 The LNG stored in the LNG tank 11b has a methane concentration of 85%, and even if it is vaporized as it is, it cannot be used as a gas for city gas as well as for power generation. Therefore, the LNG in the LNG tank 11a and the LNG in the LNG tank 11b are line blended so that the calorific value of the LNG is the same as that of the city gas, and the power generation gas and the city gas are produced using the LNG.
 ブレンドされたLNGは、ケース1で示したメタン濃度95%のLNGと同様の要領で発電用ガスを製造する。都市ガスは、ブレンドされたLNGを気化させたガスを送出する。本ケースでは、都市ガスの製造に重質分を添加する必要がないので、重質分吸着装置39a、39bで分離した重質分は、そのままガスタンク66に貯蔵される。 The blended LNG produces power generation gas in the same manner as the LNG with 95% methane concentration shown in Case 1. City gas sends out gas which vaporized blended LNG. In this case, since it is not necessary to add heavy components to the production of city gas, the heavy components separated by the heavy component adsorption devices 39a and 39b are stored in the gas tank 66 as they are.
 以上のように第4実施形態のLNG基地4は、LNGに含まれる重質分を吸着分離する重質分吸着装置39a、39bを2基備え、吸着と脱着(再生)とを交互に行いながら発電用ガス及び都市ガスを製造するので、第1実施形態のLNG基地1と同様に、LNGタンク11a、11bに受け入れるLNGは、特定のLNGに限定されず多様な運転及び運用が行える。 As described above, the LNG base 4 of the fourth embodiment includes two heavy component adsorption devices 39a and 39b that adsorb and separate heavy components contained in the LNG, while alternately performing adsorption and desorption (regeneration). Since the power generation gas and the city gas are manufactured, the LNG received in the LNG tanks 11a and 11b is not limited to a specific LNG, and various operations and operations can be performed as in the LNG base 1 of the first embodiment.
 なお、上記実施形態では、2基の重質分吸着装置39a、39bを並列に配置し、これを交互に切換えながら使用するが、重質分吸着装置39a、39bの数は、2基に限定されるものではない。2基の重質分吸着装置では、LNG中のメタン濃度を所定のメタン濃度とすることができない場合には、重質分吸着装置を4基用い、2基の重質分吸着装置を直列に配置し、これを2系列設けてもよい。この場合、前段と後段の重質分吸着装置に使用する吸着剤が異なっていてもよい。 In the above embodiment, two heavy component adsorption devices 39a and 39b are arranged in parallel and used while being switched alternately. However, the number of heavy component adsorption devices 39a and 39b is limited to two. Is not to be done. When the methane concentration in LNG cannot be set to the predetermined methane concentration with the two heavy component adsorption devices, four heavy component adsorption devices are used, and the two heavy component adsorption devices are connected in series. It is possible to arrange two of them. In this case, the adsorbents used in the preceding and subsequent heavy adsorption devices may be different.
 また、重質分吸着装置39a、39bの切替え時などに流量、圧力が変動することが懸念されるときは、重質分吸着装置を3基並列に設置してもよく、さらに気化器27の出口側にバッファータンクを設けてもよい。 In addition, when there is a concern that the flow rate and pressure fluctuate when switching the heavy component adsorption devices 39a and 39b, three heavy component adsorption devices may be installed in parallel. A buffer tank may be provided on the outlet side.
 また上記実施形態では、重質分吸着装置39a、39bで分離された重質分を気体としてガスタンク66に貯蔵し、ガス状態の重質分を熱量調整装置63に供給する例を示したが、重質分を液体状態で貯蔵し、該重質分を熱量調整装置63に液体状態で供給するようにしてもよい。またLNGタンクの数は、2基に限定されるものではない。 Moreover, in the said embodiment, although the heavy part isolate | separated by heavy part adsorption | suction apparatus 39a, 39b was stored in the gas tank 66 as gas, the example which supplies the heavy part of a gas state to the calorie | heat amount adjustment apparatus 63 was shown, The heavy component may be stored in a liquid state, and the heavy component may be supplied to the calorific value adjustment device 63 in a liquid state. The number of LNG tanks is not limited to two.
 図5は、本発明の第5実施形態のLNG基地5の機器構成図である。図1~図4に示すLNG基地1、2、3、4の構成と同一の構成には、同一の符号を付して説明を省略する。 FIG. 5 is a device configuration diagram of the LNG base 5 according to the fifth embodiment of the present invention. The same components as those of the LNG bases 1, 2, 3, and 4 shown in FIGS. 1 to 4 are denoted by the same reference numerals and description thereof is omitted.
 第5実施形態のLNG基地5は、第1実施形態のLNG基地1と同様の技術的思想に基づき構築されたLNG基地であり、第1~第4実施形態のLNG基地1、2、3、4と同様に、メタンガス又はメタンガスを主成分とする気化ガスを発電用ガスとして供給する発電用ガス供給系統と、外部から増熱剤を供給することなく、都市ガスとして使用可能な熱量に調整された熱量調整ガス及び/又は熱量調整LNGを供給する燃料供給系統とを備える。 The LNG base 5 of the fifth embodiment is an LNG base constructed based on the same technical idea as the LNG base 1 of the first embodiment, and the LNG bases 1, 2, 3, As in 4, the power generation gas supply system that supplies methane gas or vaporized gas mainly composed of methane gas as power generation gas, and the amount of heat that can be used as city gas without supplying a heat-increasing agent from the outside. And a fuel supply system for supplying the calorific value adjustment gas and / or the calorific value adjustment LNG.
 LNG基地5は、LNG基地1と基本的構成を同じくするが、LNG基地1が、LNGに含まれる重質分を分離回収する手段として蒸留装置23を使用するのに対してLNG基地5は、LNGに含まれる重質分を分離回収する手段として、ガス分離装置57を用いる。本実施形態では、ガス分離装置57とガスタンク66を主要機器として重質分分離設備が構成される。 The LNG base 5 has the same basic configuration as the LNG base 1, but the LNG base 5 uses the distillation device 23 as a means for separating and collecting heavy components contained in the LNG, whereas the LNG base 5 As a means for separating and recovering heavy components contained in LNG, a gas separation device 57 is used. In the present embodiment, a heavy component separation facility is configured with the gas separation device 57 and the gas tank 66 as main equipment.
 ガス分離装置57は、内部にメタンとエタン、プロパン、ブタン等の重質分とに分離するガス分離膜を収納する。ガス分離膜は、メタンとエタン、プロパン、ブタン等の重質分とに分離することができればよく、透過物質は、メタンであってもエタン、プロパン、ブタン等の重質分であってもよい。またガス分離膜は、無機膜、有機膜いずれであってもよいが、メタン濃度96~100vol%のガスを製造可能なことが必要である。ガス分離膜は、一段に限定されるものではなく、直列に複数段設置してもよい。さらに透過流量の大きいものが好ましい。 The gas separation device 57 stores therein a gas separation membrane that separates methane and heavy components such as ethane, propane, and butane. The gas separation membrane only needs to be able to separate methane and heavy components such as ethane, propane, and butane, and the permeate may be methane or heavy components such as ethane, propane, and butane. . The gas separation membrane may be either an inorganic membrane or an organic membrane, but it must be capable of producing a gas having a methane concentration of 96 to 100 vol%. The gas separation membrane is not limited to one stage, and a plurality of stages may be installed in series. Further, those having a large permeation flow rate are preferable.
 ガス分離装置57は、気化器27の下流側に設置され、分離されたメタンガスは、発電用ガスとしてガスタービン101に、エタン、プロパン、ブタン等の重質分はガスタンク66に貯蔵される。 The gas separation device 57 is installed on the downstream side of the vaporizer 27, and the separated methane gas is stored in the gas turbine 101 as a power generation gas, and heavy components such as ethane, propane, and butane are stored in the gas tank 66.
 以上のように第5実施形態のLNG基地5は、LNGタンク11a、11b、LNG払い出しライン15a、15b、混合ライン21、気化器27、ガスライン29、ガス分離装置57、さらにはこれに接続するBOGライン51a、51b、55により発電用ガス供給系統を構成する。また熱量調整装置63、ガスタンク66及び増熱剤供給ライン71等で構成される増熱剤供給系統、熱量計73により燃料製造設備を構成し、さらに該燃料製造設備、LNGタンク11a、11b、LNG払い出しライン15a、15b、混合ライン21、分岐ライン61、都市ガスライン77により燃料供給系統を構成する。 As described above, the LNG base 5 of the fifth embodiment is connected to the LNG tanks 11a and 11b, the LNG discharge lines 15a and 15b, the mixing line 21, the vaporizer 27, the gas line 29, the gas separation device 57, and further to this. The BOG lines 51a, 51b, and 55 constitute a power generation gas supply system. Further, a fuel production facility is constituted by a heat quantity adjusting device 63, a gas tank 66, a heat quantity agent supply line 71 and the like, and a calorimeter 73, and the fuel production equipment, LNG tanks 11a, 11b, LNG The delivery lines 15a and 15b, the mixing line 21, the branch line 61, and the city gas line 77 constitute a fuel supply system.
 次に、LNG基地5の代表的な運転方法を説明する。以下に示す運転方法は、代表例であり、LNG基地5の運転方法は下記の運転方法、数値に限定されるものではない。 Next, a typical operation method of the LNG base 5 will be described. The operation methods shown below are representative examples, and the operation method of the LNG base 5 is not limited to the following operation methods and numerical values.
 ケース1:LNGタンク11aには、メタン濃度が約95%のLNGが貯蔵され、LNGタンク11bには、メタン濃度が約90%のLNGが貯蔵されているものとする。都市ガスは、発熱量が46MJ/mNの気化ガスとする。なお、発熱量46MJ/mNのガスの組成は、凡そメタン濃度が88vol%、他の成分がエタン、プロパン、ブタンである。またガスタンク66には、エタン、プロパン、ブタンなどの重質分が貯蔵されているものとする。 Case 1: It is assumed that LNG having a methane concentration of about 95% is stored in the LNG tank 11a, and LNG having a methane concentration of about 90% is stored in the LNG tank 11b. The city gas is a vaporized gas having a calorific value of 46 MJ / m 3 N. The composition of the gas having a calorific value of 46 MJ / m 3 N is about 88 vol% of methane concentration and ethane, propane and butane as other components. Further, it is assumed that heavy components such as ethane, propane, and butane are stored in the gas tank 66.
 LNGタンク11aに貯蔵のLNGを使用し、発電用ガス及び都市ガスを製造するときは気化器27で気化された気化ガス(NG)をガス分離装置57に、さらに分岐ライン61を介して熱量調整装置63に送る。発電用ガスは、ガス分離装置57により気化ガスに含まれる重質分を分離しメタン濃度98%以上とし、発電用ガスとして送出する。 When LNG stored in the LNG tank 11a is used to produce power generation gas and city gas, the vaporized gas (NG) vaporized by the vaporizer 27 is supplied to the gas separation device 57, and the amount of heat is adjusted via the branch line 61. Send to device 63. The power generation gas is separated as a power generation gas by separating the heavy components contained in the vaporized gas by the gas separation device 57 to a methane concentration of 98% or more.
 LNGタンク11aに貯蔵のLNGは、メタン濃度が約95%であり、都市ガスとするには、発熱量が不足するので、LNGタンク11aに貯蔵のLNGをそのまま気化させ都市ガス用のガスとして送出することができない。よって発熱量が所定の発熱量となるように増熱剤供給ライン71を通じて熱量調整装置63に重質分を供給し、これを都市ガスとして送出する。 The LNG stored in the LNG tank 11a has a methane concentration of about 95%, and the calorific value is insufficient to make city gas. Therefore, the LNG stored in the LNG tank 11a is vaporized as it is and sent as city gas. Can not do it. Therefore, the heavy component is supplied to the calorific value adjusting device 63 through the heat increasing agent supply line 71 so that the calorific value becomes a predetermined calorific value, and this is sent out as city gas.
 LNGタンク11bに貯蔵のLNGを使用し、発電用ガス及び都市ガスを製造するとき、LNGタンク11a及びLNGタンク11bに貯蔵のLNGを同時に使用するときも、LNGタンク11aに貯蔵のLNGを使用するときと同様に考えればよい。 When the LNG stored in the LNG tank 11b is used to produce power generation gas and city gas, the LNG stored in the LNG tank 11a is also used when the LNG stored in the LNG tank 11a and the LNG tank 11b is used simultaneously. Just think like the time.
 ケース2:LNGタンク11aには、メタン濃度が約95%のLNGが貯蔵され、LNGタンク11bには、メタン濃度が100%のLNGが貯蔵されているものとする。他は、ケース1と同様とする。 Case 2: It is assumed that LNG having a methane concentration of about 95% is stored in the LNG tank 11a, and LNG having a methane concentration of 100% is stored in the LNG tank 11b. Others are the same as those in Case 1.
 LNGタンク11bに貯蔵のLNGを使用し、発電用ガス及び都市ガスを製造するときの要領を説明する。気化器27で気化された気化ガス(NG)をガス分離装置57に、さらに分岐ライン61を介して熱量調整装置63に送る。この気化ガスには、重質分が含まれていないので、ガス分離装置57に送られた気化ガスは、そのまま発電用ガスとして送出する。 A procedure for producing power generation gas and city gas using LNG stored in the LNG tank 11b will be described. The vaporized gas (NG) vaporized by the vaporizer 27 is sent to the gas separation device 57 and further to the calorific value adjustment device 63 via the branch line 61. Since this vaporized gas does not contain heavy components, the vaporized gas sent to the gas separation device 57 is sent as it is as a power generation gas.
 LNGタンク11bに貯蔵のLNGは、メタン濃度が100%であり、都市ガスとするには、発熱量が不足するので、気化ガスをそのまま都市ガスとして送出することができない。メタン濃度が100%の気化ガスの場合、ガス分離装置57に通じても重質分を回収することができないが、このLNG基地5には、重質分を貯蔵するガスタンク66を備えるので、ガスタンク66に貯蔵された重質分とメタン濃度100%のLNGとから都市ガスを製造する。 The LNG stored in the LNG tank 11b has a methane concentration of 100%, and the amount of heat generation is insufficient to make the city gas, so the vaporized gas cannot be sent out as the city gas as it is. In the case of vaporized gas having a methane concentration of 100%, heavy components cannot be recovered even if they are passed through the gas separation device 57, but the LNG base 5 is provided with a gas tank 66 for storing the heavy components. City gas is produced from the heavy components stored in 66 and LNG having a methane concentration of 100%.
 ケース3:LNGタンク11aには、メタン濃度が約95%のLNGが貯蔵され、LNGタンク11bには、メタン濃度が85%のLNGが貯蔵されているものとする。その他は、ケース1と同様とする。 Case 3: LNG having a methane concentration of about 95% is stored in the LNG tank 11a, and LNG having a methane concentration of 85% is stored in the LNG tank 11b. Others are the same as in case 1.
 LNGタンク11bに貯蔵のLNGは、メタン濃度が85%であり、これをそのまま気化させても発電用ガスはもちろん、都市ガス用のガスとしても使用することができない。このためLNGの発熱量が都市ガスと同じ発熱量となるようにLNGタンク11aのLNGとLNGタンク11bのLNGとをラインブレンドし、このLNGを使用して発電用ガス及び都市ガスを製造する。 The LNG stored in the LNG tank 11b has a methane concentration of 85%, and even if it is vaporized as it is, it cannot be used as a gas for city gas as well as for power generation. Therefore, the LNG in the LNG tank 11a and the LNG in the LNG tank 11b are line blended so that the calorific value of the LNG is the same as that of the city gas, and the power generation gas and the city gas are produced using the LNG.
 ブレンドされたLNGは、ケース1で示したメタン濃度95%のLNGと同様の要領により発電用ガスを製造する。都市ガスは、ブレンドされたLNGを気化させたガスを送出する。本ケースでは、都市ガスの製造に重質分を添加する必要がないので、ガス分離装置57で分離した重質分は、そのままガスタンク66に貯蔵される。 The blended LNG produces power generation gas in the same manner as the LNG with 95% methane concentration shown in Case 1. City gas sends out gas which vaporized blended LNG. In this case, since it is not necessary to add heavy components to the production of city gas, the heavy components separated by the gas separation device 57 are stored in the gas tank 66 as they are.
 以上のように第5実施形態のLNG基地5は、気化ガスに含まれる重質分を分離するガス分離装置57を備え、発電用ガス及び都市ガスを製造するので、第1実施形態のLNG基地1と同様に、LNGタンク11a、11bに受け入れるLNGが、特定のLNGに限定されず多様な運転、運用が行える。 As described above, the LNG base 5 of the fifth embodiment includes the gas separation device 57 that separates heavy components contained in the vaporized gas, and produces power generation gas and city gas. Therefore, the LNG base of the first embodiment. Similarly to 1, the LNG received in the LNG tanks 11a and 11b is not limited to a specific LNG, and various operations and operations can be performed.
 なお、上記実施形態において、ガス分離装置57をバイパスするラインを設け、予め定めるメタン濃度のLNGを受け入れた場合、気化ガスをそのまま発電用ガスとして送出してもよい。また、分岐ライン61を気化器27の上流側の混合ライン21に接続し、LNGを熱量調整装置63に送るようにしてもよい。この場合には都市ガスライン77に気化器を設ける。またLNGタンクの数は、2基に限定されるものではない。 In the above embodiment, when a line bypassing the gas separation device 57 is provided and LNG having a predetermined methane concentration is received, the vaporized gas may be sent as it is as a power generation gas. Further, the branch line 61 may be connected to the mixing line 21 on the upstream side of the vaporizer 27, and LNG may be sent to the heat quantity adjusting device 63. In this case, a vaporizer is provided in the city gas line 77. The number of LNG tanks is not limited to two.
 上記実施形態では、気化ガスをガス分離膜に通じてメタンとエタン、プロパン、ブタンなどの重質分とに分離するが、ガス分離膜に代え、液化装置を使用してメタンとエタン、プロパン、ブタンなどの重質分とを分離させてもよい。気化器で気化させた気化ガスを所定の温度、圧力とし、エタン、プロパン、ブタンなどの重質分を液化させ、これらとメタンガスとを分離させてもよい。 In the above embodiment, the vaporized gas is separated into heavy components such as methane and ethane, propane, and butane through the gas separation membrane, but instead of the gas separation membrane, a liquefier is used to use methane and ethane, propane, A heavy component such as butane may be separated. The vaporized gas vaporized by the vaporizer may be set to a predetermined temperature and pressure to liquefy heavy components such as ethane, propane, and butane, and these may be separated from methane gas.
 また、ガス分離膜に代え、吸着剤を使用し気化ガス中のエタン、プロパン、ブタンなどの重質分を吸着分離させてもよい。第4実施形態と同様な装置構成とし、吸着剤を収納した重質分分離装置に気化ガスを送り、圧力スイング吸着(PSA)法、PSA法+温度スイング吸着(TSA)法を用いて重質分を吸脱着させるようにしてもよい。吸着剤としては、活性炭が例示される。 Also, instead of the gas separation membrane, an adsorbent may be used to adsorb and separate heavy components such as ethane, propane and butane in the vaporized gas. The apparatus configuration is the same as that of the fourth embodiment, and the vaporized gas is sent to the heavy fraction separator containing the adsorbent, and heavy using pressure swing adsorption (PSA) method, PSA method + temperature swing adsorption (TSA) method. Minutes may be absorbed and desorbed. An example of the adsorbent is activated carbon.
 以上、第1から第5実施形態に示すように本発明のLNG基地は、既設のLNG基地において、基本的に重質分分離設備、分離した重質分をLNG又は気化ガスに添加し熱量を調整する装置を追設することで実現可能であり、既設のLNG基地を改造する場合においても、LNG基地の稼働設備への影響を最小限とすることができる。 As described above, as shown in the first to fifth embodiments, the LNG base of the present invention is basically the same as the existing LNG base, with heavy component separation equipment, and the separated heavy component is added to LNG or vaporized gas to increase the amount of heat. This can be realized by additionally installing a device to be adjusted, and even when the existing LNG base is remodeled, the influence on the operating facilities of the LNG base can be minimized.
 また第1から第5実施形態のLNG基地では、発電用ガスを発電所に供給する例を示したが、発電用ガスの供給先は発電所に限定されるものではなく、自家用であってもよい。さらに重質分分離装置で分離回収した重質分が、余剰となった場合には、ガス会社等に販売すればよい。重質分は、通常、LNGよりも高価格で取引きされるため商品価値は高い。 Further, in the LNG bases of the first to fifth embodiments, an example of supplying power generation gas to the power plant has been shown, but the supply destination of power generation gas is not limited to the power plant, and even for private use Good. Furthermore, when the heavy component separated and recovered by the heavy component separator becomes surplus, it may be sold to a gas company or the like. Since the heavy portion is usually traded at a higher price than LNG, the commercial value is high.
 本発明は、上記実施形態に限定されるものではなく、要旨を変更しない範囲で変更して使用することができる。例えば上記実施形態では、2種のLNGの混合をラインブレンドにより行うが、ラインブレンドに代え、LNGタンク内で2種のLNGを混合させるタンクミキシングを採用することもできる。また重質分分離装置として、加熱器とフラッシュドラムを使用することができる。また第5実施形態の変形例として、ガス分離膜を使用したガス分離装置と吸着剤を使用したガス分離装置とを併用してもよい。 The present invention is not limited to the above-described embodiment, and can be changed and used without changing the gist. For example, in the above-described embodiment, two types of LNG are mixed by line blending, but tank mixing in which two types of LNG are mixed in an LNG tank may be employed instead of line blending. Moreover, a heater and a flash drum can be used as the heavy fraction separator. As a modification of the fifth embodiment, a gas separation device using a gas separation membrane and a gas separation device using an adsorbent may be used in combination.
1、2、3、4、5 LNG基地
11a、11b LNGタンク
15a、15b LNG払い出しライン
17a、17b LNGポンプ
21 混合ライン
23、23a、23b 蒸留装置
25、25a、25b 上部ライン
27 気化器
29 ガスライン
33 連絡ライン
35 混合ライン
37a、37b 混合ライン
39a、39b 重質分吸着装置
41、41a、41b 下部ライン
51a、51b BOGライン
55 BOGライン
57 ガス分離装置
61、61a、61b 分岐ライン
63 熱量調整装置
65 貯蔵タンク
66 ガスタンク
67 増熱剤供給ポンプ
71 増熱剤供給ライン
73 熱量計
75 燃料ライン
77 都市ガスライン
101 ガスタービン
1, 2, 3, 4, 5 LNG base 11a, 11b LNG tank 15a, 15b LNG discharge line 17a, 17b LNG pump 21 Mixing line 23, 23a, 23b Distillation device 25, 25a, 25b Upper line 27 Vaporizer 29 Gas line 33 Communication line 35 Mixing line 37a, 37b Mixing line 39a, 39b Heavy component adsorption device 41, 41a, 41b Lower line 51a, 51b BOG line 55 BOG line 57 Gas separation device 61, 61a, 61b Branch line 63 Heat quantity adjusting device 65 Storage tank 66 Gas tank 67 Thermal agent supply pump 71 Thermal agent supply line 73 Calorimeter 75 Fuel line 77 City gas line 101 Gas turbine

Claims (10)

  1.  LNGタンクにLNGを受入れ貯蔵し、貯蔵しているLNGを所定の性状に調整し気化ガス、LNGとして供給するLNG基地であって、
     メタンガス又はメタンガスを主成分とする気化ガスを発電用ガスとして供給する発電用ガス供給系統と、
     外部から増熱剤を供給することなく、都市ガスとして使用可能な発熱量に調整された熱量調整ガス及び/又は熱量調整LNGを供給する燃料供給系統と、
    を備えることを特徴とするLNG基地。
    An LNG base that receives and stores LNG in an LNG tank, adjusts the stored LNG to a predetermined property, and supplies it as vaporized gas, LNG,
    A power generation gas supply system for supplying methane gas or a vaporized gas mainly composed of methane gas as a power generation gas;
    A fuel supply system that supplies a calorific value adjustment gas and / or a calorific value adjustment LNG adjusted to a calorific value that can be used as city gas without supplying a heat-increasing agent from the outside;
    An LNG base comprising:
  2.  前記発電用ガスは、ガスタービン用の燃料であり、メタン濃度が一定の値に制御された気化ガスであることを特徴とする請求項1に記載のLNG基地。 The LNG base according to claim 1, wherein the power generation gas is a gas turbine fuel, and is a vaporized gas whose methane concentration is controlled to a constant value.
  3.  LNG又はLNGを気化させた気化ガスに含まれる高発熱成分である重質分を分離する重質分分離装置及び分離した重質分を貯蔵する重質分貯蔵タンクを有する重質分分離設備と、
     LNG及び/又はLNGを気化させた気化ガスに前記重質分分離装置で分離した重質分を添加し、熱量調整ガス及び/又は熱量調整LNGを製造する燃料製造設備と、
    を備え、
     前記発電用ガスが、前記重質分分離装置により重質分が分離されたLNGを気化させた気化ガス、LNGを気化させた気化ガスから前記重質分分離装置により重質分が分離された気化ガス、受入れたLNGをそのまま気化させた気化ガス、又はこれら気化ガスを混合したガスであることを特徴とする請求項1又は2に記載のLNG基地。
    A heavy component separation apparatus for separating heavy components that are highly exothermic components contained in LNG or vaporized gas obtained by vaporizing LNG, and a heavy component separation facility having a heavy component storage tank for storing the separated heavy components; ,
    A fuel production facility for producing a calorific value adjusting gas and / or a calorific value adjusting LNG by adding a heavy component separated by the heavy fraction separating device to a vaporized gas obtained by vaporizing LNG and / or LNG;
    With
    The heavy gas is separated from the vaporized gas obtained by vaporizing the LNG from which the heavy gas has been separated by the heavy fraction separator, and from the vaporized gas obtained by vaporizing the LNG by the heavy fraction separator. The LNG base according to claim 1 or 2, wherein the LNG base is a vaporized gas, a vaporized gas obtained by vaporizing the received LNG as it is, or a gas obtained by mixing these vaporized gases.
  4.  LNGを受入れ貯蔵するLNGタンク内で発生するBOGが、コンプレッサで昇圧され、前記重質分分離装置により重質分が分離されたLNGを気化させた気化ガス、LNGを気化させた気化ガスから前記重質分分離装置により重質分が分離された気化ガス、受入れたLNGをそのまま気化させた気化ガス、又はこれら気化ガスを混合したガスと混合され、発電用ガスとして供給されることを特徴とする請求項3に記載のLNG基地。 BOG generated in the LNG tank that receives and stores LNG is pressurized by a compressor, and vaporized gas obtained by vaporizing LNG from which heavy components have been separated by the heavy fraction separator, and vaporized gas obtained by vaporizing LNG. It is characterized in that it is mixed with a vaporized gas from which a heavy component has been separated by a heavy fraction separator, a vaporized gas obtained by vaporizing the received LNG as it is, or a gas obtained by mixing these vaporized gases and supplied as a power generation gas. The LNG base according to claim 3.
  5.  2基以上のLNGタンクと、
     前記LNGタンクに貯蔵する2種以上のLNGを所定の割合で混合するLNG混合手段と、を備え、
     前記重質分分離設備は、各LNGタンク系統の共用設備であり、
     前記重質分分離装置は、前記LNG混合手段により混合されたLNG又は前記LNG混合手段により混合されたLNGを気化させた気化ガスから重質分を分離可能なことを特徴とする請求項3又は4に記載のLNG基地。
    Two or more LNG tanks,
    LNG mixing means for mixing two or more types of LNG stored in the LNG tank at a predetermined ratio,
    The heavy fraction separation facility is a shared facility for each LNG tank system,
    The heavy fraction separator is capable of separating heavy fraction from LNG mixed by the LNG mixing means or vaporized gas obtained by vaporizing LNG mixed by the LNG mixing means. LNG base of 4.
  6.  前記LNGの混合を、LNGタンク内でLNGを混合するタンクミキシング、LNGの払い出し系統でLNGを混合するラインブレンドにより行うことを特徴とする請求項5に記載のLNG基地。 The LNG base according to claim 5, wherein the LNG is mixed by tank mixing for mixing LNG in an LNG tank, or by line blending for mixing LNG in an LNG discharge system.
  7.  2基以上のLNGタンクを備え、
     前記重質分分離装置は、各LNGタンク系統に設けられ、
     重質分を貯蔵する前記重質分貯蔵タンクは、各LNGタンク系統で共用であることを特徴とする請求項3又は4に記載のLNG基地。
    With two or more LNG tanks,
    The heavy fraction separator is provided in each LNG tank system,
    The LNG base according to claim 3 or 4, wherein the heavy storage tank for storing heavy components is shared by each LNG tank system.
  8.  2基以上のLNGタンクを備え、前記LNGタンクは、LNGをそのまま気化させた気化ガスを発電用ガスとして供給可能な発電用LNGのみを受入れる発電用LNGタンク系統と、発電用LNG以外のLNGのみを受入れる非発電用LNGタンク系統とに区別され、
     前記重質分分離設備は、前記非発電用LNGタンク系統にのみ設置されていることを特徴とする請求項3又は4に記載のLNG基地。
    Two or more LNG tanks are provided, and the LNG tank is a power generation LNG tank system that accepts only power generation LNG that can supply vaporized gas obtained by vaporizing LNG as it is, and only LNG other than power generation LNG. Is distinguished from the non-power generation LNG tank system that accepts
    The LNG base according to claim 3 or 4, wherein the heavy component separation facility is installed only in the non-power generation LNG tank system.
  9.  前記重質分分離装置が、蒸留装置、ガス分離膜を備えるガス分離装置、気化ガスを冷却し液化させる液化装置、重質分を吸脱着する重質分着脱装置又は圧力スイング吸着法を使用した吸着装置であることを特徴とする請求項3から8のいずれか1に記載のLNG基地。 The heavy separation device used was a distillation device, a gas separation device equipped with a gas separation membrane, a liquefaction device for cooling and liquefying the vaporized gas, a heavy component attachment / detachment device for adsorbing and desorbing heavy components, or a pressure swing adsorption method. It is an adsorption | suction apparatus, The LNG base of any one of Claim 3 to 8 characterized by the above-mentioned.
  10.  LNGタンクにLNGを受入れ貯蔵し、貯蔵しているLNGを所定の性状に調整し気化ガス、LNGとして供給するLNG基地の気化ガス及び/又はLNG供給方法であって、
     メタンガス又はメタンガスを主成分とする気化ガスを、LNG又はLNGを気化させた気化ガスに含まれる高発熱成分である重質分を分離し製造し、又は受入れたLNGをそのまま気化させ製造し、又は前記2種以上の方法で製造された気化ガスを混合し製造し、又はこれらガスにLNGタンク内で発生するBOGを混合し製造し、当該ガスを発電用ガスとして需要先に供給し、
     都市ガスとして使用可能な発熱量に調整した気化ガス及び/又はLNGを、外部から増熱剤を供給することなく分離された前記重質分を用いて製造し、又は外部から増熱剤を供給することなく2種以上のLNGを気化させた気化ガス及び/又はLNGを混合し製造し、需要先に供給することを特徴とするLNG基地のガス及び/又はLNG供給方法。
    An LNG base vaporized gas and / or LNG supply method for receiving and storing LNG in an LNG tank, adjusting the stored LNG to a predetermined property and supplying the LNG as vaporized gas, LNG,
    Methane gas or vaporized gas containing methane gas as a main component is produced by separating LNG or heavy components that are highly exothermic components contained in the vaporized gas obtained by vaporizing LNG, or by vaporizing received LNG as it is, or Vaporized gas produced by the two or more methods is mixed and manufactured, or BOG generated in the LNG tank is mixed with the gas, and the gas is supplied to a customer as a power generation gas.
    Vaporized gas and / or LNG adjusted to a calorific value that can be used as city gas is manufactured using the above-mentioned heavy component separated without supplying a heat increasing agent from the outside, or a heat increasing agent is supplied from the outside A gas and / or LNG supply method for an LNG base, characterized in that two or more kinds of LNG are vaporized and / or LNG is mixed and manufactured, and supplied to a customer.
PCT/JP2012/067637 2012-07-11 2012-07-11 Lng terminal, and gas and/or lng supply method for lng terminal WO2014010033A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014506378A JP5653563B2 (en) 2012-07-11 2012-07-11 LNG base
PCT/JP2012/067637 WO2014010033A1 (en) 2012-07-11 2012-07-11 Lng terminal, and gas and/or lng supply method for lng terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/067637 WO2014010033A1 (en) 2012-07-11 2012-07-11 Lng terminal, and gas and/or lng supply method for lng terminal

Publications (1)

Publication Number Publication Date
WO2014010033A1 true WO2014010033A1 (en) 2014-01-16

Family

ID=49915536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067637 WO2014010033A1 (en) 2012-07-11 2012-07-11 Lng terminal, and gas and/or lng supply method for lng terminal

Country Status (2)

Country Link
JP (1) JP5653563B2 (en)
WO (1) WO2014010033A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017180573A (en) * 2016-03-29 2017-10-05 東京瓦斯株式会社 Gas supply system
JP2018145403A (en) * 2017-03-07 2018-09-20 Jfeエンジニアリング株式会社 Component adjusting device of liquefied fuel gas
JP2018145404A (en) * 2017-03-01 2018-09-20 Jfeエンジニアリング株式会社 Component adjusting device of multicomponent-based liquefied gas
JP2018190605A (en) * 2017-05-08 2018-11-29 東京瓦斯株式会社 Power generation system
JP2018197334A (en) * 2017-05-23 2018-12-13 Jfeエンジニアリング株式会社 Component adjustment apparatus for liquefied fuel gas shipped by a lorry car
JP2020034134A (en) * 2018-08-31 2020-03-05 Jfeエンジニアリング株式会社 Component adjustment device of multi-component liquefied gas
JP2020128514A (en) * 2019-02-12 2020-08-27 Jfeエンジニアリング株式会社 Device of adjusting fuel gas component
JP2020133871A (en) * 2019-02-26 2020-08-31 東京瓦斯株式会社 Fuel gas supply system and fuel gas supply method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743095A (en) * 1980-08-28 1982-03-10 Chiyoda Chem Eng & Constr Co Ltd Storage method and system of evaporated gas in liquefied gas storage facility
JP2004099718A (en) * 2002-09-09 2004-04-02 Ishikawajima Plant Construction Co Ltd Method and apparatus for making lng having high calorific value have low calorie
JP2008208862A (en) * 2007-02-23 2008-09-11 Mitsubishi Heavy Ind Ltd Natural gas supply system with calorific value control part

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3533512B2 (en) * 1995-04-26 2004-05-31 株式会社荏原製作所 Liquefied gas supply system
JP2001208294A (en) * 2000-01-21 2001-08-03 Osaka Gas Co Ltd Gas supplying method
JP4918783B2 (en) * 2006-01-06 2012-04-18 中国電力株式会社 LNG receipt / payment quantity management apparatus and receipt / payment quantity management method
JP5260157B2 (en) * 2008-06-19 2013-08-14 三菱重工業株式会社 Natural gas calorie adjustment system and calorie adjustment method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743095A (en) * 1980-08-28 1982-03-10 Chiyoda Chem Eng & Constr Co Ltd Storage method and system of evaporated gas in liquefied gas storage facility
JP2004099718A (en) * 2002-09-09 2004-04-02 Ishikawajima Plant Construction Co Ltd Method and apparatus for making lng having high calorific value have low calorie
JP2008208862A (en) * 2007-02-23 2008-09-11 Mitsubishi Heavy Ind Ltd Natural gas supply system with calorific value control part

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017180573A (en) * 2016-03-29 2017-10-05 東京瓦斯株式会社 Gas supply system
JP2018145404A (en) * 2017-03-01 2018-09-20 Jfeエンジニアリング株式会社 Component adjusting device of multicomponent-based liquefied gas
JP2018145403A (en) * 2017-03-07 2018-09-20 Jfeエンジニアリング株式会社 Component adjusting device of liquefied fuel gas
JP2018190605A (en) * 2017-05-08 2018-11-29 東京瓦斯株式会社 Power generation system
JP2018197334A (en) * 2017-05-23 2018-12-13 Jfeエンジニアリング株式会社 Component adjustment apparatus for liquefied fuel gas shipped by a lorry car
JP2020034134A (en) * 2018-08-31 2020-03-05 Jfeエンジニアリング株式会社 Component adjustment device of multi-component liquefied gas
JP2020128514A (en) * 2019-02-12 2020-08-27 Jfeエンジニアリング株式会社 Device of adjusting fuel gas component
JP7156070B2 (en) 2019-02-12 2022-10-19 Jfeエンジニアリング株式会社 Fuel gas composition adjustment device
JP2020133871A (en) * 2019-02-26 2020-08-31 東京瓦斯株式会社 Fuel gas supply system and fuel gas supply method
JP7216570B2 (en) 2019-02-26 2023-02-01 東京瓦斯株式会社 Fuel gas supply system and fuel gas supply method

Also Published As

Publication number Publication date
JPWO2014010033A1 (en) 2016-06-20
JP5653563B2 (en) 2015-01-14

Similar Documents

Publication Publication Date Title
JP5653563B2 (en) LNG base
KR101090233B1 (en) Apparatus and method for regasificating liquefied hydrocarbon gas
JP2008513550A (en) Method for extracting ethane from liquefied natural gas
JP5959778B2 (en) Facility for receiving liquefied natural gas
JP5132452B2 (en) BOG reliquefaction equipment
JP5959782B2 (en) Facility for receiving liquefied natural gas
US20240053095A1 (en) Combined cycle natural gas processing system
JP2008201890A (en) Mixed gas feeder, calorific value regulation apparatus, and calorific value regulation method in mixed gas feeder
EP1996855A1 (en) Method and system for the regasification of lng
KR100918201B1 (en) Method and system for reducing heating value of natural gas
JP6646500B2 (en) Gas supply system
KR102200359B1 (en) treatment system of boil-off gas and ship having the same
JP5160627B2 (en) Method for adjusting calorific value of delivered fuel gas and calorific value adjusting device
JP4812183B2 (en) Natural gas adsorption storage device and adsorption storage method
JPH11293263A (en) Town gas, and process and apparatus for producing the same
KR101945525B1 (en) Fuel supply system for liquefied gas fueled vessel
JP2004331948A (en) Method for adjusting calorific value of sending fuel gas, method for stabilizing calorific value and device therefor
KR20090107902A (en) Method and system for reducing heating value of natural gas
JP2000213696A (en) Adsorption type gas holder and gas storage/supply system
JP6904272B2 (en) Liquefied fuel gas component regulator for lorry shipment
KR20100091553A (en) Ship
KR102340009B1 (en) Regasification system of liquefied gas and ship having the same
JP2009138958A (en) Mixed gas supply device and its composition variation suppressing method
TWI774783B (en) Natural gas production equipment and natural gas production method
KR101497441B1 (en) Multifunctional Ship

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014506378

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12880908

Country of ref document: EP

Kind code of ref document: A1