JP5103030B2 - Mixed gas supply device, calorific value adjustment device, and calorific value adjustment method in mixed gas supply device - Google Patents
Mixed gas supply device, calorific value adjustment device, and calorific value adjustment method in mixed gas supply device Download PDFInfo
- Publication number
- JP5103030B2 JP5103030B2 JP2007039384A JP2007039384A JP5103030B2 JP 5103030 B2 JP5103030 B2 JP 5103030B2 JP 2007039384 A JP2007039384 A JP 2007039384A JP 2007039384 A JP2007039384 A JP 2007039384A JP 5103030 B2 JP5103030 B2 JP 5103030B2
- Authority
- JP
- Japan
- Prior art keywords
- mixed gas
- gas
- gas supply
- adsorbent
- supply device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 14
- 239000007789 gas Substances 0.000 claims description 104
- 239000003463 adsorbent Substances 0.000 claims description 72
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 70
- 239000002737 fuel gas Substances 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 22
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 19
- 238000001179 sorption measurement Methods 0.000 claims description 14
- 238000011049 filling Methods 0.000 claims description 13
- 239000002994 raw material Substances 0.000 claims description 11
- 244000060011 Cocos nucifera Species 0.000 claims description 5
- 235000013162 Cocos nucifera Nutrition 0.000 claims description 5
- 239000003245 coal Substances 0.000 claims description 5
- 230000020169 heat generation Effects 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 2
- 239000003949 liquefied natural gas Substances 0.000 description 23
- 239000006200 vaporizer Substances 0.000 description 11
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 9
- 238000003860 storage Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 238000009835 boiling Methods 0.000 description 4
- 239000003610 charcoal Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000001294 propane Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000002336 sorption--desorption measurement Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 238000003775 Density Functional Theory Methods 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 239000003415 peat Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Landscapes
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Description
本発明は、混合ガス供給装置、発熱量調整装置及びその組成変動調整方法に係り、特に、都市ガス等、燃料ガスの発熱量安定化に好適な混合ガス供給装置、発熱量調整装置及びその組成変動調整方法に関する。 The present invention relates to a mixed gas supply device, a calorific value adjustment device, and a composition variation adjustment method thereof, and more particularly to a mixed gas supply device, a calorific value adjustment device, and a composition thereof suitable for stabilizing the calorific value of fuel gas such as city gas. The present invention relates to a variation adjustment method.
近年、大都市圏から離れた地方における都市ガス需要の増加に伴い、LNG(液化天然ガス)サテライト基地が多く建設されている。LNGサテライト基地は、LNG貯槽と気化器を備えた設備であり、沿岸のLNG受入基地からローリーでLNGを輸送し、LNG貯槽に一旦貯蔵した後に、LNGを気化して工業団地や住宅地などに都市ガスとして供給するためのものである。 In recent years, LNG (liquefied natural gas) satellite bases have been built with increasing demand for city gas in regions far from metropolitan areas. The LNG satellite base is a facility equipped with an LNG storage tank and a vaporizer. After transporting LNG from the coastal LNG receiving terminal by lorry and storing it in the LNG storage tank, the LNG is vaporized to industrial parks and residential areas. It is for supply as city gas.
このようなLNGサテライト供給方式においては、気化器稼動開始時や負荷変動、気温変化等に伴う供給ガスの発熱量変動が起こる場合があり、このため供給ガスの発熱量安定化のための種々の技術が開示されている。気化器自体の改良としては、LNG気化器の停止時にパージラインからLPGをパージする技術が提案されている(例えば特許文献1)。
また、吸着材を用いた発熱量調整装置として、気化器下流側に活性炭を充填した吸着材充填塔を設けて、発熱量を平準化する技術が提案されている(例えば特許文献2)。図8は、このような吸着材充填塔を用いた従来の発熱量調整装置100を示す。従来の発熱量調整装置100は、LNG貯槽101、外気を加熱源とする気化器102、吸着材充填塔103を主要構成とする。吸着材充填塔103内には細孔直径2.0〜3.0nmの活性炭が充填されている。このような構成により、タンクローリ105、ライン106を介して供給されるLNGをLNG貯槽101に一旦貯蔵し、気化器102で気化して天然ガスとし、さらに吸着材充填塔103を通過させる。これにより、気化器出側において高沸点(重質炭化水素)成分の組成比が高くガス発熱量が高いときには、高沸点成分を吸着材で吸着し、また低沸点成分であるメタンの組成比が高くガス発熱量が低いときには、吸着した高沸点成分を脱着させて発熱量を平準化する。
In such an LNG satellite supply system, there is a case where the calorific value fluctuation of the supply gas accompanying the start of operation of the carburetor, load fluctuation, temperature change or the like occurs. Technology is disclosed. As an improvement of the vaporizer itself, a technique for purging LPG from a purge line when the LNG vaporizer is stopped has been proposed (for example, Patent Document 1).
In addition, as a calorific value adjustment device using an adsorbent, a technique for leveling the calorific value by providing an adsorbent packed tower filled with activated carbon on the downstream side of the vaporizer has been proposed (for example, Patent Document 2). FIG. 8 shows a conventional calorific
しかしながら、従来の吸着材による発熱量調整方法においては、吸着材の吸着量に限界があるため、充填塔の単位体積当たりガス処理量が制限される。従って、都市ガス供給のような高度の発熱量安定化が必要とされる場合には、吸着材充填量を増やすことが必要となり、充填塔容積の大型化、建設作業や設置作業の煩雑化が避けられないという問題がある。 However, in the conventional calorific value adjustment method using an adsorbent, the amount of gas adsorbed per unit volume of the packed tower is limited because the adsorbent adsorbed amount is limited. Therefore, when a high degree of heat generation stabilization such as city gas supply is required, it is necessary to increase the amount of adsorbent filling, which increases the capacity of the packed tower and complicates construction work and installation work. There is an inevitable problem.
本発明は、このような課題を解決するためのものであって、吸着材を用いた混合ガス供給装置において、充填塔の吸着材充填量を増やすことなく、組成変動を一定範囲に抑えてガス供給を可能とする混合ガス供給装置を提供するものである。本発明は、以下の内容を要旨とする。すなわち、 The present invention is for solving such a problem, and in a mixed gas supply apparatus using an adsorbent, the composition fluctuation is suppressed to a certain range without increasing the adsorbent filling amount of the packed tower. The present invention provides a mixed gas supply device that enables supply. The gist of the present invention is as follows. That is,
第1の発明は、ガス組成が経時的に変化する混合ガスを供給する供給ラインと、供給ライン中に介在する吸着材充填塔と、を備えた混合ガス供給装置であって、該吸着材充填塔は、混合ガス中の各成分ガスに対して、異なる吸着特性を有する吸着材を示す複数の吸着材を充填して成ることを特徴とする混合ガス供給装置である。
本発明において、「混合ガス」は、化学工業における原料ガス、副生ガス、排気ガス、バイオマスによる生成ガス等を含む概念である。
1st invention is a mixed gas supply apparatus provided with the supply line which supplies the mixed gas from which a gas composition changes with time, and the adsorbent packed tower interposed in a supply line, Comprising: Adsorbent filling The tower is a mixed gas supply device in which each component gas in the mixed gas is filled with a plurality of adsorbents showing adsorbents having different adsorption characteristics.
In the present invention, the “mixed gas” is a concept including a raw material gas, a by-product gas, an exhaust gas, a produced gas by biomass, and the like in the chemical industry.
「混合ガス」として、燃料ガスを用いることができ(第6の発明)、また、メタンを主成分とする都市ガスとすることができる(第7の発明)。
現在、全国の都市ガスはウオッベ指数及び燃焼速度指数に基づいて14種類のガスグループに分類され、都市ガス事業者は特定したガス種の都市ガスを供給域内の需要家に対して供給することが、ガス事業法により義務付けられている。例えば、CH4を主成分とする13A都市ガスについては、52.7≦WI≦57.8、35≦MCP≦47と定められている。ここにウオッベ指数(WI)は、ガスの発熱量H(MJ/m3)をガスの空気に対する比重sの平方根で割った数値、
WI=H/√s
で表され、ガス機器の完全燃焼性の指標となるものである。
また、燃焼速度指数(MCP)は、次式で表される。
As "mixed gas", can be used fuel gas (sixth invention), also can be a city gas containing methane as a main component (the seventh invention).
Currently, city gas nationwide is classified into 14 types of gas groups based on the Wobbe index and burning rate index, and city gas companies can supply city gas of the specified gas type to consumers in the supply area. As required by the Gas Business Law. For example, for 13A city gas mainly composed of CH4, it is determined that 52.7 ≦ WI ≦ 57.8 and 35 ≦ MCP ≦ 47. Here, the Wobbbe index (WI) is a numerical value obtained by dividing the calorific value H (MJ / m3) of the gas by the square root of the specific gravity s of the gas with respect to air.
WI = H / √s
This is an index of complete combustibility of gas equipment.
The combustion rate index (MCP) is expressed by the following equation.
従って、本発明による吸着材充填塔通過後の混合ガスのWI及びMCPを、上記13A都市ガスの範囲に制御することにより、供給域内で都市ガス13A用機器を良好に燃焼させることができる。
また、「吸着材」としては、活性炭、ゼオライト、シリカゲル、メソポーラスシリカ、活性アルミナ、有機金属錯体などを用いることができる。また、活性炭としては、石炭原料活性炭、ヤシガラ活性炭、木炭、石油原料活性炭、竹炭、フェノール樹脂活性炭、レーヨン由来活性炭、アクロニトリル由来活性炭、草炭、おがくず炭、泥炭などがある。
Therefore, by controlling the WI and MCP of the mixed gas after passing through the adsorbent packed tower according to the present invention within the range of the 13A city gas, the city gas 13A equipment can be burned well in the supply area.
As the “adsorbent”, activated carbon, zeolite, silica gel, mesoporous silica, activated alumina, organometallic complex, and the like can be used. Examples of the activated carbon include coal raw material activated carbon, coconut husk activated carbon, charcoal, petroleum raw material activated carbon, bamboo charcoal, phenol resin activated carbon, rayon-derived activated carbon, acrylonitrile-derived activated carbon, grass charcoal, sawdust charcoal, and peat.
複数の吸着材の充填方式としては、吸着材充填塔に吸着材を均一に混合して充填することができ(第2の発明)、また、複数の吸着材を層状に充填することもできる(第3の発明)。
前記複数の吸着材は、各吸着材の細孔径分布、又は、比表面積の少なくとも一方に起因する吸着・脱着特性の相違に基づいて選択されたものであることを特徴とする(第4の発明)。
前記複数の吸着材が、石炭原料活性炭、及び、ヤシガラ原料活性炭を含むことを特徴とする(第5の発明)。
The filler system of the plurality of adsorbent, can be filled by uniformly mixing the adsorbent to the adsorbent packed column (second invention), it can also be filled with a plurality of adsorbent in layers ( the third aspect of the present invention).
Wherein the plurality of adsorbent, the pore size distribution of each adsorbent, or, characterized in that based on the difference in adsorption and desorption characteristics due to at least one of the specific surface area are those selected (fourth invention ).
Wherein the plurality of adsorbent, coal base activated carbon, and, characterized in that it comprises a coconut shell base activated carbon (the fifth aspect of).
第8の発明は、第6又は第7の発明に係る混合ガス供給装置であって、さらに充填塔通過後の燃料ガス又は都市ガスの発熱量を所定の範囲内に調整可能に構成したことを特徴とする発熱量調整装置である。
第9の発明は、上記各混合ガス供給装置において、ガス組成が経時的に変動する混合ガスを、異なる吸着特性を有する複数の吸着材を充填した吸着材充填塔を通過させて、混合ガスの組成変動を所定の範囲内に調整することを特徴とする組成変動調整方法である。
混合ガスが燃料ガス又は都市ガスの場合、上記吸着材充填塔を通過させることにより、発熱量を所定の範囲内に調整することができる(第10の発明)。
An eighth invention, the adjustably be configured to the sixth or seventh a mixed gas supply apparatus according to the present invention, further packed column within a heating value of a given fuel gas or city gas after passing This is a heat generation amount adjusting device.
According to a ninth aspect of the present invention, in each of the above mixed gas supply devices, a mixed gas whose gas composition fluctuates with time is passed through an adsorbent packed tower packed with a plurality of adsorbents having different adsorption characteristics. The composition variation adjusting method is characterized in that the composition variation is adjusted within a predetermined range.
If mixed gas of the fuel gas or city gas, by passing the adsorbent-packed tower, it is possible to adjust the heating value within a predetermined range (tenth invention).
本発明により、充填塔の吸着材充填量を増やすことなく、組成変動を一定範囲に抑えてガス供給を可能とする混合ガス供給装置が可能となる。
また、混合ガスとして燃料ガス又は都市ガスを用いる発明にあっては、供給源から発熱量変動を伴うガスが供給された場合であっても、発熱量変動を一定範囲内に抑えて需要家に供給することが可能となる。
According to the present invention, it is possible to provide a mixed gas supply device that enables gas supply while suppressing composition fluctuation within a certain range without increasing the amount of adsorbent packed in the packed tower.
Further, in the invention using fuel gas or city gas as a mixed gas, even when gas accompanied by calorific value fluctuation is supplied from a supply source, the calorific value fluctuation is suppressed within a certain range and is used by consumers. It becomes possible to supply.
以下、本発明の実施形態について、図1乃至6を参照してさらに詳細に説明する。なお、重複記載を回避するため、各図において同一構成には同一符号を用いて示している。なお、本発明の範囲は特許請求の範囲記載のものであって、以下の実施形態に限定されないことはいうまでもない。
(第一の実施形態)
本実施形態は、「混合ガス」としてLNGを原料とする燃料ガスを用いるものである。LNGは軽質炭化水素であるメタン(CH4)を主成分とし、プロパン(C2H6)、その他重質炭化水素(CmHn)を含む。
図1は、本実施形態に係る燃料ガス供給装置1の全体構成を示す図である。燃料ガス供給装置1は、LNG貯槽5と、気化器3と、吸着材充填塔2と、これら装置間を接続する供給ラインL1乃至L3を備えている。LNG貯槽5には、不図示のタンクローリ等により運ばれるLNGが貯蔵されている。供給ラインL3の末端側には負荷装置(例えばガスエンジン)6が設置されている。吸着材充填塔2内には2種類の異なる吸着材、すなわち入口側の第1層には吸着材2a、出口側の第2層には吸着材2bが充填されている。各層の吸着材は、互いに吸着特性が異なるものを充填する必要がある。例えば、石炭原料活性炭及びヤシガラ原料活性炭を選択することができる。
Hereinafter, embodiments of the present invention will be described in more detail with reference to FIGS. In addition, in order to avoid duplication description, in each figure, the same structure is shown using the same code | symbol. Needless to say, the scope of the present invention is described in the claims and is not limited to the following embodiments.
(First embodiment)
In the present embodiment, a fuel gas using LNG as a raw material is used as the “mixed gas”. LNG is mainly composed of methane (CH4), which is a light hydrocarbon, and includes propane (C2H6) and other heavy hydrocarbons (CmHn).
FIG. 1 is a diagram illustrating an overall configuration of a fuel gas supply apparatus 1 according to the present embodiment. The fuel gas supply device 1 includes an LNG storage tank 5, a vaporizer 3, an adsorbent packed tower 2, and supply lines L1 to L3 that connect these devices. The LNG storage tank 5 stores LNG carried by a tank truck (not shown). A load device (for example, a gas engine) 6 is installed on the end side of the supply line L3. The adsorbent packed tower 2 is filled with two different adsorbents, that is, the first layer on the inlet side is filled with the adsorbent 2a, and the second layer on the outlet side is filled with the adsorbent 2b. The adsorbents in each layer need to be filled with different adsorbing characteristics. For example, coal raw material activated carbon and coconut shell raw material activated carbon can be selected.
以上の構成により、燃料ガス供給装置1はLNG貯槽5内のLNGを気化器3で気化して天然ガスとし、吸着材充填塔2を通過させて発熱量を平準化した後に、供給ラインL3を介して負荷装置6に供給する。この場合、吸着材充填塔2を通過させることにより、気化器始動時等、供給ガス中の重質炭化水素(重質ガス)の組成比が増大して発熱量が高いときは、重質ガスに対する吸着量の大きい吸着材(例えば吸着材2a)がまずこれらの成分を吸着し、その後、他の吸着材(例えば吸着材2b)も作用する。また、重質ガス組成比が減少して発熱量が低くなったときは、吸着時に後から作用した吸着材2bが先に作用して重質ガスを脱着し、その後吸着材2aが作用する。このように両吸着材が段階的に作用することにより、単一吸着材を用いた充填塔と比較して、発熱量平準化効果が高まる。
With the above configuration, the fuel gas supply apparatus 1 vaporizes the LNG in the LNG storage tank 5 with the vaporizer 3 to form natural gas, passes the adsorbent packed tower 2 to equalize the heat generation amount, and then supplies the supply line L3. To the
なお、本実施形態では、2種類の吸着材を用いた形態を示したが、3種類以上の吸着材を層状に配置することもできる。
また、吸着材充填の積層順序は吸着性能に関係しない。
In addition, although the form using two types of adsorbents was shown in this embodiment, three or more types of adsorbents can also be arranged in layers.
Further, the stacking order of the adsorbent filling is not related to the adsorption performance.
(第二の実施形態)
次に、本発明の他の実施形態について説明する。図2は、本実施形態に係る燃料ガス供給装置20の全体構成を示す図である。燃料ガス供給装置20が燃料ガス供給装置1と異なる点は、吸着材充填塔21内の吸着材の構成である。すなわち、吸着材充填塔21においては、吸着材2aと吸着材2bが層状に充填されているのではなく、両吸着材が均一に混合されて充填されていることである。その他の構成は燃料ガス供給装置1と同一であるので、説明を省略する。
燃料ガス供給装置20においても、上述と同様の吸着・脱着メカニズムにより単一の吸着材を充填した供給装置と比較して発熱量変動幅を小さくすることが可能となる。
(Second embodiment)
Next, another embodiment of the present invention will be described. FIG. 2 is a diagram illustrating an overall configuration of the fuel
Also in the fuel
次に本発明による発熱量平準化効果を確認するため、発熱量が周期的に変動するLNG気化ガスを本発明に係る吸着材充填容器に流入させ、充填容器出口におけるガス発熱量を測定した。比較のため、従来方式による吸着材充填容器を用いた測定も併せて行った。以下、その内容について説明する
(供試吸着材)
石炭原料活性炭及びヤシガラ原料活性炭の2種類の吸着材を用いた。以下、簡単のため石炭原料活性炭を活性炭A、ヤシガラ原料活性炭を活性炭Bと略称することがある。活性炭A,Bの特性を表1に、細孔径分布(窒素吸着DFT法による)を図3に示す。また、図7に活性炭A、Bのメタン、プロパンに対する圧力−吸脱着量特性を示す。同図は、各圧力における活性炭に対するガス吸着量及び脱着量を示している。この圧力−吸脱着特性は、真空状態(0KPa)から圧力を上げていく過程で、ガス吸着量を測定している。さらに、所定の圧力に達した後、圧力を下げていく過程で、活性炭からガスが脱着していくが、その状態で活性炭に吸着されている量を測定している。
Next, in order to confirm the calorific value leveling effect of the present invention, LNG vaporized gas whose calorific value fluctuates periodically was caused to flow into the adsorbent-filled container according to the present invention, and the gas calorific value at the outlet of the filled container was measured. For comparison, measurement using a conventional adsorbent-filled container was also performed. The contents are described below (test adsorbent)
Two kinds of adsorbents, ie, a coal raw material activated carbon and a coconut shell raw material activated carbon were used. Hereinafter, for the sake of simplicity, activated carbon A may be abbreviated as activated carbon A, and activated carbon B may be abbreviated as activated carbon B. The characteristics of the activated carbons A and B are shown in Table 1, and the pore size distribution (by nitrogen adsorption DFT method) is shown in FIG. FIG. 7 shows the pressure-adsorption / desorption characteristics of activated carbon A and B with respect to methane and propane. The figure shows the amount of gas adsorption and desorption on activated carbon at each pressure. This pressure-adsorption / desorption characteristic measures the gas adsorption amount in the process of increasing the pressure from a vacuum state (0 KPa). Furthermore, after reaching a predetermined pressure, gas is desorbed from the activated carbon in the process of decreasing the pressure, and the amount adsorbed on the activated carbon in this state is measured.
(充填容器及び充填方法)
表2中欄に、各実施例及び比較例における吸着材充填方法及び充填量を一覧にして示す。また、表2右欄のΔHは、発熱量最大値(Hmax)と最小値(Hmin)の差の1/2(ΔH=(Hmax−Hmin)/2)である。同表において、実施例1、2は上述の第一の実施形態に対応し、実施例1では第1層(入口側)に活性炭A、第2層(出口側)に活性炭Bを配置し、実施例2は第1層に活性炭Bを、第2層に活性炭Aを配置した。実施例3は第二の実施形態に対応し、活性炭A、Bを均一に混合し、容器に充填した。また、比較例1は活性炭Aのみを充填、比較例2は活性炭Bのみを充填した。なお、充填容器の内容積は30ccであり、実施例1〜3において、活性炭AとBをそれぞれ15ccとなるように充填した。
(Filling container and filling method)
The column in Table 2 shows a list of adsorbent filling methods and filling amounts in each Example and Comparative Example. Further, ΔH in the right column of Table 2 is 1/2 (ΔH = (Hmax−Hmin) / 2) of the difference between the maximum calorific value (Hmax) and the minimum value (Hmin). In the table, Examples 1 and 2 correspond to the first embodiment described above, and in Example 1, activated carbon A is disposed in the first layer (inlet side) and activated carbon B is disposed in the second layer (outlet side). In Example 2, activated carbon B was disposed in the first layer, and activated carbon A was disposed in the second layer. Example 3 corresponds to the second embodiment, and the activated carbons A and B were uniformly mixed and filled into a container. Comparative Example 1 was filled with activated carbon A only, and Comparative Example 2 was filled with activated carbon B only. In addition, the internal volume of the filling container is 30 cc, and in Examples 1 to 3, the activated carbon A and B were filled to 15 cc each.
(供試ガス物性及び測定方法)
供試ガスとして、2分間、LNG気化ガス(組成:CH4:90.8%、C2H6:5.0%、C3H8:3.0%、i-C4H10:0.6%、n-C4H10:0.6%)をそのまま流し、その後1分間、このガスにプロパンを添加するサイクルを繰り返して得られる組成の混合ガスを用いた。この供試ガスを、充填容器を通さず直接熱量計で測定したときの発熱量変動は、最小44.8MJ/m3、最大50.5MJ/m3であった。
上記組成の供試ガスを、温度25℃、空塔速度2000h-1にて充填容器に流入させ、容器から流出するガスの発熱量を熱量計(Advantica社製、製品名:GasPT)で測定した。測定回数は、実施例1、2については各3回、実施例3については2回、比較例については1回である。
(Test gas properties and measurement method)
LNG vapor (composition: CH4: 90.8%, C2H6: 5.0%, C3H8: 3.0%, i-C4H10: 0.6%, n-C4H10: 0.6%) was allowed to flow for 2 minutes as the test gas, and then for 1 minute. A mixed gas having a composition obtained by repeating the cycle of adding propane to this gas was used. When this sample gas was measured directly with a calorimeter without passing through the filled container, the calorific value fluctuation was a minimum of 44.8 MJ / m3 and a maximum of 50.5 MJ / m3.
A test gas having the above composition was allowed to flow into a filled container at a temperature of 25 ° C. and a superficial velocity of 2000 h −1 , and the calorific value of the gas flowing out of the container was measured with a calorimeter (product name: GasPT). . The number of measurements is 3 for each of Examples 1 and 2, 2 for Example 3, and 1 for the comparative example.
(測定結果)
図4乃至6に、各実施例及び比較例における発熱量変動の時間的経緯データ例を示す。また、表2右欄のΔHは、発熱量最大値(Hmax)と最小値(Hmin)の差の1/2(ΔH=(Hmax−Hmin)/2)であり、各測定の変動幅比較容易化のため用いたものである。同表から2種類の吸着材を用いた場合は、1種類のみ充填の場合と比べて充填方法によらず発熱量平準化効果が高いことが分かる。また、充填吸着材の積層順序は、ほとんど平準化効果に影響しないことが分かる。なお、吸着材充填容器を通さないときのΔHは、(50.5−44.8)/2=2.85(MJ/m3)である。
(Measurement result)
4 to 6 show examples of time history data of fluctuations in heat generation in each example and comparative example. ΔH in the right column of Table 2 is 1/2 of the difference between the maximum calorific value (Hmax) and the minimum value (Hmin) (ΔH = (Hmax−Hmin) / 2). It was used for conversion. It can be seen from the table that when two types of adsorbents are used, the calorific value leveling effect is higher regardless of the filling method than when only one type is filled. Moreover, it turns out that the lamination | stacking order of a filling adsorbent hardly influences the leveling effect. Note that ΔH when not passing through the adsorbent filling container is (50.5−44.8) /2=2.85 (MJ / m 3).
本発明は、燃料ガスの発熱量平準化に限らず、化学工業における原料ガス、副生ガス、排気ガス、バイオマスによる生成ガス等、組成変動する複数のガス成分からなる混合ガスの組成比調整に広く利用可能である。 The present invention is not limited to leveling the calorific value of fuel gas, but also for adjusting the composition ratio of a mixed gas composed of a plurality of gas components whose composition fluctuates such as raw material gas, by-product gas, exhaust gas, and produced gas from biomass in the chemical industry. Widely available.
1、20・・・・燃料ガス供給装置
2、21・・・・吸着材充填塔
2a、2b・・・・吸着材
3・・・・気化器
5・・・・LNG貯槽
6・・・・負荷装置
L1〜L3・・・・供給ライン
DESCRIPTION OF
Claims (6)
供給ライン中に介在する吸着材充填塔と、を備えた混合ガス供給装置であって、
該吸着材充填塔は、混合ガス中の各成分ガスに対して異なる吸着特性を有する複数の吸着材を充填して成り、
該複数の吸着材が、石炭原料活性炭、及び、ヤシガラ原料活性炭を含む、ことを特徴とする混合ガス供給装置。 A supply line for supplying a mixed gas whose gas composition varies over time;
A mixed gas supply device comprising an adsorbent packed tower interposed in a supply line,
Adsorption material packed column, Ri formed by filling the plurality of adsorbent having different adsorption characteristics for each component gas in the mixed gas,
The mixed gas supply device , wherein the plurality of adsorbents include coal raw material activated carbon and coconut shell raw material activated carbon .
ガス組成が経時的に変動する混合ガスを、異なる吸着特性を有する複数の吸着材を充填した吸着材充填塔を通過させて、混合ガスの組成変動を所定の範囲内に調整することを特徴とする混合ガス供給装置における組成変動調整方法。 In the mixed gas supply device according to any one of claims 1 to 3 ,
The mixed gas whose gas composition varies over time is passed through an adsorbent packed tower packed with a plurality of adsorbents having different adsorption characteristics, and the composition variation of the mixed gas is adjusted within a predetermined range. The composition fluctuation adjustment method in the mixed gas supply apparatus.
ガス組成が経時的に変化する燃料ガス又は都市ガスを、異なる吸着特性を有する複数の吸着材を充填した吸着材充填塔を通過させて、燃料ガス又は都市ガスの発熱量を所定の範囲内に調整することを特徴とする混合ガス供給装置における発熱量調整方法。
In the mixed gas supply device according to claim 2 or 3 ,
The fuel gas or city gas whose gas composition changes over time is passed through an adsorbent packed tower filled with a plurality of adsorbents having different adsorption characteristics so that the calorific value of the fuel gas or city gas falls within a predetermined range. A calorific value adjustment method in a mixed gas supply device, characterized in that the adjustment is performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007039384A JP5103030B2 (en) | 2007-02-20 | 2007-02-20 | Mixed gas supply device, calorific value adjustment device, and calorific value adjustment method in mixed gas supply device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007039384A JP5103030B2 (en) | 2007-02-20 | 2007-02-20 | Mixed gas supply device, calorific value adjustment device, and calorific value adjustment method in mixed gas supply device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008201890A JP2008201890A (en) | 2008-09-04 |
JP5103030B2 true JP5103030B2 (en) | 2012-12-19 |
Family
ID=39779720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007039384A Active JP5103030B2 (en) | 2007-02-20 | 2007-02-20 | Mixed gas supply device, calorific value adjustment device, and calorific value adjustment method in mixed gas supply device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5103030B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9193362B2 (en) | 2012-07-31 | 2015-11-24 | Electro-Motive Diesel, Inc. | Consist power system having auxiliary load management |
US8899158B2 (en) | 2012-07-31 | 2014-12-02 | Electro-Motive Diesel, Inc. | Consist having self-powered tender car |
US8960100B2 (en) | 2012-07-31 | 2015-02-24 | Electro-Motive Diesel, Inc. | Energy recovery system for a mobile machine |
US8919259B2 (en) | 2012-07-31 | 2014-12-30 | Electro-Motive Diesel, Inc. | Fuel system for consist having daughter locomotive |
US9073556B2 (en) | 2012-07-31 | 2015-07-07 | Electro-Motive Diesel, Inc. | Fuel distribution system for multi-locomotive consist |
US8955444B2 (en) | 2012-07-31 | 2015-02-17 | Electro-Motive Diesel, Inc. | Energy recovery system for a mobile machine |
US8925465B2 (en) | 2012-07-31 | 2015-01-06 | Electro-Motive Diesel, Inc. | Consist having self-propelled tender car |
WO2015022633A1 (en) * | 2013-08-15 | 2015-02-19 | Basf Se | Sorption store for gas with multiple adsorbent media |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4907845B2 (en) * | 2003-04-16 | 2012-04-04 | 東京瓦斯株式会社 | Method for adjusting calorific value of delivered fuel gas, method for stabilizing heat quantity, and apparatus therefor |
JP4407913B2 (en) * | 2004-03-24 | 2010-02-03 | 大阪瓦斯株式会社 | Liquefied natural gas vapor supply system |
-
2007
- 2007-02-20 JP JP2007039384A patent/JP5103030B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008201890A (en) | 2008-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5103030B2 (en) | Mixed gas supply device, calorific value adjustment device, and calorific value adjustment method in mixed gas supply device | |
Wu et al. | Adsorbed natural gas storage for onboard applications | |
WO2014010033A1 (en) | Lng terminal, and gas and/or lng supply method for lng terminal | |
SG186255A1 (en) | Method and system for storing natural gas | |
JP4407913B2 (en) | Liquefied natural gas vapor supply system | |
JP5473255B2 (en) | Activated carbon for gas component adjustment | |
JP5001031B2 (en) | Mixed gas supply device and composition variation adjustment method in mixed gas supply device | |
JP2011026144A (en) | Activated carbon for suppressing heat quantity fluctuation of fuel gas, and method and system for suppressing heat quantity fluctuation | |
Punpee et al. | Characteristics of CO2 adsorption and desorption on activated carbon in comparison with zeolite 13X and carbon molecular sieve and applications in biogas upgrading using vacuum pressure swing adsorption | |
US11149905B2 (en) | Mobile natural gas storage and transportation unit based on adsorption | |
JP6716048B1 (en) | Heat quantity fluctuation suppressing device, heat quantity fluctuation suppressing method | |
JP4931781B2 (en) | Mixed gas supply device and method for suppressing composition variation | |
US11644153B2 (en) | Systems and methods of use of carbon-based pellets in adsorbed natural gas facility | |
JP5001041B2 (en) | Mixed gas supply device, calorific value adjustment device, and variation adjustment method thereof | |
JP4823949B2 (en) | Mixed gas storage container | |
JP5207522B2 (en) | Mixing gas composition fluctuation suppression device | |
JP4859724B2 (en) | Mixed gas supply device and method for adjusting composition variation thereof | |
WO2010013303A1 (en) | Gas supply system and supply method | |
JP5313737B2 (en) | Mixed gas supply device and composition variation adjustment method in mixed gas supply device | |
JP5686989B2 (en) | Production of liquefied natural gas for automobiles | |
JP5160627B2 (en) | Method for adjusting calorific value of delivered fuel gas and calorific value adjusting device | |
JP4907845B2 (en) | Method for adjusting calorific value of delivered fuel gas, method for stabilizing heat quantity, and apparatus therefor | |
JP4812194B2 (en) | Natural gas adsorption storage device and adsorption storage method | |
Jokar et al. | Compressed, liquefied, and adsorbed natural gas processes simulation and modeling | |
JP3522493B2 (en) | Portable and replaceable fuel gas tank |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090313 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120106 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120515 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120808 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20120816 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120925 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121001 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151005 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5103030 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |