JP5313737B2 - Mixed gas supply device and composition variation adjustment method in mixed gas supply device - Google Patents

Mixed gas supply device and composition variation adjustment method in mixed gas supply device Download PDF

Info

Publication number
JP5313737B2
JP5313737B2 JP2009076403A JP2009076403A JP5313737B2 JP 5313737 B2 JP5313737 B2 JP 5313737B2 JP 2009076403 A JP2009076403 A JP 2009076403A JP 2009076403 A JP2009076403 A JP 2009076403A JP 5313737 B2 JP5313737 B2 JP 5313737B2
Authority
JP
Japan
Prior art keywords
gas
mixed gas
gas supply
supply device
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009076403A
Other languages
Japanese (ja)
Other versions
JP2010229230A (en
Inventor
晋 西尾
安彦 浦邊
威文 石倉
利康 浮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2009076403A priority Critical patent/JP5313737B2/en
Publication of JP2010229230A publication Critical patent/JP2010229230A/en
Application granted granted Critical
Publication of JP5313737B2 publication Critical patent/JP5313737B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mixed gas feeder suitable for stabilizing the calorific value of a fuel gas such as a town gas, and to provide a composition fluctuation-regulating method therefor. <P>SOLUTION: The mixed gas feeder is constituted as follows. An attaching position (X) of a gas offtake part is set based on the whole length (L) of the effective part of an adsorption column so as to satisfy the relation of L/2&lt;X&lt;L. A deviation is caused in the phases of the composition fluctuation between the gas from the gas outlet and the gas from the offtake part X. As a result, the composition fluctuation can be further reduced by canceling the fluctuations by mixing of both the gases downstream of the absorption column. Especially, it is proved that the composition fluctuation-reducing effect is maximized at the vicinity of X=0.75. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、混合ガス供給装置及びその組成変動調整方法に係り、特に、都市ガス等、燃料ガスの発熱量安定化に好適な混合ガス供給装置及びその組成変動調整方法に関する。 The present invention relates to a mixed gas supply device and a composition variation adjusting method thereof, and more particularly to a mixed gas supply device suitable for stabilizing a calorific value of fuel gas such as city gas and a composition variation adjusting method thereof.

近年、大都市圏から離れた地方における都市ガス需要の増加に伴い、LNG(液化天然ガス)サテライト基地が多く建設されている。LNGサテライト基地は、LNG貯槽と気化器を備えた設備であり、沿岸のLNG受入基地からローリーでLNGを輸送し、LNG貯槽に一旦貯蔵した後に、LNGを気化して工業団地や住宅地などに都市ガスとして供給するためのものである。
このようなLNGサテライト供給方式においては、気化器稼動開始時や負荷変動、気温変化等に伴う供給ガスの組成変動(発熱量変動)が問題となる場合がある。このため、供給ガスの発熱量安定化のための種々の技術が提案されているが、なかでも有用な技術として、吸着材を用いた発熱量調整方法およびシステムが開示されている(例えば、特許文献1乃至3)。
In recent years, LNG (liquefied natural gas) satellite bases have been built with increasing demand for city gas in regions far from metropolitan areas. The LNG satellite base is a facility equipped with an LNG storage tank and a vaporizer. After transporting LNG from the coastal LNG receiving terminal by lorry and storing it in the LNG storage tank, the LNG is vaporized to industrial parks and residential areas. It is for supply as city gas.
In such an LNG satellite supply system, there may be a problem of supply gas composition fluctuation (calorific value fluctuation) at the start of carburetor operation, load fluctuation, temperature change and the like. For this reason, various techniques for stabilizing the calorific value of the supply gas have been proposed. Among them, as a useful technique, a calorific value adjusting method and system using an adsorbent are disclosed (for example, patents). References 1 to 3).

出願人らは、より高度の組成変動安定化技術として、組成変動の位相に着目した技術を提案している。すなわち、特許文献4では、吸脱着特性の異なる2種類以上の吸着材を用いた発明を、特許文献5では、一以上の分岐配管を設けて変動の位相を重ね合わせる発明である。さらに、特許文献6は、吸脱着特性の異なる吸着材を充填した複数の吸着塔を配置し、ガス組成や温度に応じて最適な吸着塔を選択することにより、組成変動を抑制するものである。 The applicants have proposed a technique that focuses on the phase of composition variation as a more advanced composition variation stabilization technique. That is, Patent Document 4 is an invention using two or more kinds of adsorbents having different adsorption / desorption characteristics, and Patent Document 5 is an invention in which one or more branch pipes are provided to overlap the phases of fluctuation. Furthermore, Patent Document 6 suppresses composition fluctuation by arranging a plurality of adsorption towers filled with adsorbents having different adsorption / desorption characteristics and selecting an optimum adsorption tower according to the gas composition and temperature. .

図12は、特許文献5による燃焼ガス供給装置100の構成を示し、LNG貯槽101内のLNGは気化器102でガス化され、分岐配管105a、106a経路中に並列に設けられた吸着塔103、104に導かれる。各分岐配管経路中には、バルブ109、110が配設されている。ガスは、吸着塔内において吸着材の作用により発熱量変動が抑制され、吸着塔通過後に配管105b,106bを経由し、さらに合流後に燃料ガスとして供給される。ここに、配管105b側の延長は配管106b側より長く構成されており、さらに、配管105bには複数の流出口107が設けられていて、配管延長を可変としている。
燃焼ガス供給装置100は、熱量計108の計測値に基づいてバルブ109、110の開度調節による流量比調整、配管105bの配管延長調整を組み合わせて行い、発熱量変動の抑制を可能としている。
FIG. 12 shows a configuration of a combustion gas supply device 100 according to Patent Document 5, in which LNG in the LNG storage tank 101 is gasified by the vaporizer 102, and an adsorption tower 103 provided in parallel in the path of the branch pipes 105a and 106a. 104. Valves 109 and 110 are disposed in each branch pipe path. In the adsorption tower, the amount of generated heat is suppressed by the action of the adsorbent in the adsorption tower, passes through the pipes 105b and 106b after passing through the adsorption tower, and is supplied as fuel gas after merging. Here, the extension on the pipe 105b side is longer than the pipe 106b side, and the pipe 105b is provided with a plurality of outlets 107, and the pipe extension is variable.
The combustion gas supply device 100 performs a combination of flow rate ratio adjustment by adjusting the opening degree of the valves 109 and 110 and pipe extension adjustment of the pipe 105b based on the measurement value of the calorimeter 108, thereby enabling to suppress the calorific value fluctuation.

特開2004−331948号公報JP 2004-331948 A 特開2005−273753号公報JP 2005-273753 A 特開2005−305218号公報JP 2005-305218 A 特開2008−201890号公報JP 2008-201890 A 特開2008−214565号公報JP 2008-214565 A 特開2008−231357号公報JP 2008-231357 A

特許文献4乃至6によれば、従来の技術と比較してより高度の組成変動抑制が可能となる。しかしながら特許文献4の技術によれば、2種類以上の吸着特性の異なる吸着材を必要とし、また、特許文献5,6の技術は複数の吸着塔を要し、装置構成が複雑かつ大型化する。このため、より簡易な構成、かつ単一吸着材を用いた組成変動抑制技術を提供することが課題となる。   According to Patent Documents 4 to 6, a higher degree of composition fluctuation suppression can be achieved as compared with the conventional technique. However, according to the technique of Patent Document 4, two or more types of adsorbents having different adsorption characteristics are required, and the techniques of Patent Documents 5 and 6 require a plurality of adsorption towers, which makes the apparatus configuration complicated and large. . For this reason, it becomes a subject to provide a composition variation suppression technique using a simpler configuration and a single adsorbent.

本発明は、上記課題を解決するためのものであって、単一吸着材、かつ、吸着塔1基による混合ガス供給装置により、吸着塔の吸着材充填量を増やすことなく、組成変動を一定範囲に抑えてガス供給を可能とする混合ガス供給装置を提供するものである。
本発明は、以下の内容を要旨とする。すなわち、本発明に係る混合ガス供給装置は、
(1)ガス組成が時間経過とともに変動する混合ガスの供給ライン経路中に吸着材を充填した吸着塔を備えた混合ガス供給装置であって、該吸着塔は、供給ラインの上流側配管と接続するガス入口部と、供給ラインの下流側配管(メイン配管)と接続するガス出口部と、ガス入口部とガス出口部の中間より下流側の位置にガス取出部と、を備え、該吸着塔の下流側には、ガス取出部と下流側配管の合流点とを結ぶバイパス配管と、下流側配管の合流点までの経路中に、下流側配管及びバイパス配管を通過する混合ガスの流量比を調整して、合流後の混合ガスの組成変動幅を制御可能とする流量比制御手段と、を備えて成ることを特徴とする。
The present invention is for solving the above-described problem, and the composition variation is kept constant without increasing the adsorbent filling amount of the adsorption tower by the single adsorbent and the mixed gas supply device by one adsorption tower. It is an object of the present invention to provide a mixed gas supply device that enables gas supply while being limited to a range.
The gist of the present invention is as follows. That is, the mixed gas supply device according to the present invention is
(1) A mixed gas supply apparatus comprising an adsorption tower filled with an adsorbent in a mixed gas supply line path whose gas composition varies with time, and the adsorption tower is connected to an upstream pipe of the supply line An adsorbing tower, a gas outlet connected to a downstream pipe (main pipe) of a supply line, and a gas outlet at a position downstream from the middle of the gas inlet and the gas outlet. On the downstream side, the flow rate ratio of the mixed gas passing through the downstream pipe and the bypass pipe in the bypass pipe connecting the gas extraction part and the junction of the downstream pipe and the path to the junction of the downstream pipe And a flow rate ratio control unit that adjusts and can control the composition fluctuation range of the mixed gas after merging.

本来、吸着材充填量によりガス組成変動幅の抑制量は定まるが、本発明によれば吸着塔出口位置によりガス組成変動の位相差が異なることを利用して、上記限度を超えた変動幅抑制が可能となる。ここに「位相」とは、周期的あるいは非周期的な組成変動が起きたときに、下流側にその結果が現れるまでの時間及びタイミングを意味する概念である。さらに「位相差」とは、位相のずれを意味する概念である。
図1は、本発明の構成を模式的に示した図である。ガス取出部の取り付け位置(X)は、吸着塔有効部全長(L)に対して、L/2<X<L となるように設定される。この位置に設定することにより、ガス出口からのガスと取出部Xからのガスとの間に組成変動の位相にずれが生じる。従って、吸着塔下流側で両ガスを混合することにより、変動がキャンセルされて、組成変動のさらなる抑制が可能となる。
The amount of suppression of the gas composition fluctuation range is originally determined by the adsorbent filling amount, but according to the present invention, the fluctuation range suppression exceeding the above limit is made possible by utilizing the fact that the phase difference of the gas composition fluctuation differs depending on the position of the adsorption tower outlet. Is possible. Here, “phase” is a concept that means the time and timing until the result appears on the downstream side when a periodic or aperiodic composition fluctuation occurs. Furthermore, the “phase difference” is a concept that means a phase shift.
FIG. 1 is a diagram schematically showing the configuration of the present invention. The attachment position (X) of the gas extraction part is set so that L / 2 <X <L with respect to the full length (L) of the adsorption tower effective part. By setting at this position, a phase shift occurs in the composition variation between the gas from the gas outlet and the gas from the extraction portion X. Therefore, by mixing both gases on the downstream side of the adsorption tower, the fluctuation is canceled and the composition fluctuation can be further suppressed.

本発明において、「ガス組成の変動」は周期的な変動に限定されず、非周期的変動をも含み、また連続的な変動のみならず、単発的な変動も含む。
本発明において、「混合ガス」は、化学工業における原料ガス、副生ガス、排気ガス、バイオマスによる生成ガス等を含む概念である。
また、本発明に用いる「吸着材」としては、活性炭、ゼオライト、シリカゲル、メソポーラスシリカ、活性アルミナ、有機金属錯体などを用いることができる。また、活性炭としては、石炭原料活性炭、ヤシガラ活性炭、木炭、石油原料活性炭、竹炭、フェノール樹脂活性炭、レーヨン由来活性炭、アクロニトリル由来活性炭、草炭、おがくず炭、泥炭などがある。
In the present invention, “gas composition variation” is not limited to periodic variation, but includes non-periodic variation, and includes not only continuous variation but also single variation.
In the present invention, the “mixed gas” is a concept including a raw material gas, a by-product gas, an exhaust gas, a produced gas by biomass, and the like in the chemical industry.
In addition, as the “adsorbent” used in the present invention, activated carbon, zeolite, silica gel, mesoporous silica, activated alumina, organometallic complex, and the like can be used. Examples of the activated carbon include coal raw material activated carbon, coconut husk activated carbon, charcoal, petroleum raw material activated carbon, bamboo charcoal, phenol resin activated carbon, rayon-derived activated carbon, acrylonitrile-derived activated carbon, grass charcoal, sawdust charcoal, and peat.

(2)上記発明において、ガス取出部を、前記吸着塔の有効長さ(L)に対して、0.6L以上、かつ、1.0L未満の位置に設けることができる。
(3)より好ましくは、ガス取出部を、前記吸着塔有効長さ(L)に対して、0.75L近傍の位置に設けることができる。
後述するように、X=0.75近傍で組成変動抑制効果が最大となることが実証されている。
(4)上記各発明において、下流側配管又は前記バイパス配管の、少なくとも一方の経路中に組成変動位相差発生手段を、さらに備えて成ることを特徴とする。
両配管を通過するガスの組成変動の位相に差が生じることにより、合流後のガスの組成変動抑制をさらに促進することができる。
「位相差発生手段」としては、配管流路差、圧力差等を用いることができる。
(5)上記(4)において、位相差発生手段として、前記下流側配管又は前記バイパス配管の配管長を延長する手段を用いることができる。
いずれか一方の配管延長を長くすることにより、当該配管を通過する混合ガスの位相に遅れを生じさせることができる。
(6)上記各発明において、「混合ガス」として燃料ガスを用いることができ、
(7)また、メタンを主成分とする都市ガスとすることができる。
(2) In the above invention, the gas extraction portion can be provided at a position of 0.6 L or more and less than 1.0 L with respect to the effective length (L) of the adsorption tower.
(3) More preferably, a gas extraction part can be provided in the position of 0.75L vicinity with respect to the said adsorption tower effective length (L).
As will be described later, it has been proved that the composition variation suppressing effect is maximized in the vicinity of X = 0.75.
(4) In each of the above inventions, the composition fluctuation phase difference generating means is further provided in at least one of the downstream pipe or the bypass pipe.
By producing a difference in the phase of composition fluctuation of the gas passing through both pipes, it is possible to further promote suppression of composition fluctuation of the gas after merging.
As the “phase difference generating means”, a pipe flow path difference, a pressure difference, or the like can be used.
(5) In the above (4), as the phase difference generation means, means for extending the pipe length of the downstream pipe or the bypass pipe can be used.
By extending the length of either one of the pipes, the phase of the mixed gas passing through the pipe can be delayed.
(6) In each of the above inventions, fuel gas can be used as the “mixed gas”.
(7) Moreover, it can be set as city gas which has methane as a main component.

本発明に係る混合ガス供給装置の組成変動制御方法は、
(8)上記混合ガス供給装置において、流量比制御手段により流量比を調整することにより、合流後の混合ガスの組成変動を所望の範囲内に制御することを特徴とする。
(9)ガス組成が時間経過とともに変化する燃料ガス又は都市ガスを、前記流量比制御手段により流量比を調整することにより、合流後の燃料ガス又は都市ガスの発熱量を所定の範囲内に調整することを特徴とする。
また、本発明に係る発熱量調整装置は、
(10)上記(6)又は(7)に記載の混合ガス供給装置であって、さらに吸着塔通過後の燃料ガス又は都市ガスの発熱量を所定の範囲内に調整可能に構成したことを特徴とする。
現在、全国の都市ガスはウオッベ指数及び燃焼速度指数に基づいて14種類のガスグループに分類され、都市ガス事業者は特定したガス種の都市ガスを供給域内の需要家に対して供給することが、ガス事業法により義務付けられている。例えば、メタンを主成分とする13A都市ガスについては、52.7≦WI≦57.8、35≦MCP≦47と定められている。ここにWIはウオッベ指数、MCPは燃焼速度指数であり、その具体的数値等、詳細はガス事業法に示されているため、ここでは省略する。
従って、本発明による発熱量調整装置通過後の混合ガスのWI及びMCPを、例えば13A都市ガスの範囲に制御することにより、供給域内で都市ガス13A用機器を良好に燃焼させることができる。
The composition variation control method of the mixed gas supply apparatus according to the present invention is:
(8) The above mixed gas supply apparatus is characterized in that the composition fluctuation of the mixed gas after merging is controlled within a desired range by adjusting the flow ratio by the flow ratio control means.
(9) By adjusting the flow rate ratio of the fuel gas or city gas whose gas composition changes over time by the flow rate control means, the calorific value of the combined fuel gas or city gas is adjusted within a predetermined range. It is characterized by doing.
The calorific value adjustment device according to the present invention is
(10) The mixed gas supply apparatus according to the above (6) or (7), wherein the calorific value of the fuel gas or the city gas after passing through the adsorption tower can be adjusted within a predetermined range. And
Currently, city gas nationwide is classified into 14 types of gas groups based on the Wobbe index and burning rate index, and city gas companies can supply city gas of the specified gas type to consumers in the supply area. As required by the Gas Business Law. For example, 13A city gas mainly composed of methane is defined as 52.7 ≦ WI ≦ 57.8 and 35 ≦ MCP ≦ 47. Here, WI is the Wobbbe index, and MCP is the combustion rate index, and details such as specific numerical values are shown in the Gas Business Law, and are omitted here.
Therefore, by controlling the WI and MCP of the mixed gas after passing through the calorific value adjusting device according to the present invention within the range of, for example, 13A city gas, the city gas 13A equipment can be burned well in the supply area.

本発明により、単一吸着材、かつ単一吸着塔を用いるのみで、組成変動を一定範囲に抑えてガス供給を可能とする混合ガス供給装置が可能となる。
また、混合ガスとして燃料ガス又は都市ガスを用いる発明にあっては、供給元から発熱量変動を伴うガスが供給された場合であっても、発熱量変動を一定範囲に抑制して需要家に供給することが可能となる。
According to the present invention, it is possible to provide a mixed gas supply apparatus that enables gas supply while suppressing composition fluctuation within a certain range only by using a single adsorbent and a single adsorption tower.
Further, in the invention using fuel gas or city gas as the mixed gas, even if the gas accompanied by the calorific value fluctuation is supplied from the supply source, the calorific value fluctuation is suppressed to a certain range and the customer is It becomes possible to supply.

本発明の構成を模式的に示す図である。It is a figure which shows the structure of this invention typically. 試験に用いた吸着材である活性炭の細孔径分布を示す図である。It is a figure which shows the pore size distribution of the activated carbon which is an adsorbent used for the test. 同上活性炭のメタン、プロパンに対する圧力−吸着量特性を示す図である。It is a figure which shows the pressure-adsorption amount characteristic with respect to methane and propane of activated carbon same as the above. 実施例1の試験装置1の概要を示す図である。1 is a diagram showing an outline of a test apparatus 1 of Example 1. FIG. 実施例1における流量比80:20のときの発熱量変動時間推移を示す図である。It is a figure which shows the emitted-heat amount fluctuation | variation time transition at the flow rate ratio 80:20 in Example 1. FIG. 図5の部分拡大図である。It is the elements on larger scale of FIG. 実施例1における流量比62:38のときの発熱量変動時間推移を示す図である。It is a figure which shows the calorific value fluctuation | variation time transition at the time of the flow ratio 62:38 in Example 1. FIG. 図7の部分拡大図である。It is the elements on larger scale of FIG. 実施例1における取出口位置と変動幅、位相の時間差の関係を示す図である。It is a figure which shows the relationship between the taking-out position in Example 1, a fluctuation range, and the time difference of a phase. 実施例2の試験装置20の概要を示す図である。It is a figure which shows the outline | summary of the test apparatus 20 of Example 2. FIG. 実施例2において、流路差有無による発熱量変動幅の違いを示す図である。In Example 2, it is a figure which shows the difference in the emitted-heat amount fluctuation | variation width by the presence or absence of a flow-path difference. 従来の発熱量調整装置100の構成を示す図である。It is a figure which shows the structure of the conventional calorific value adjustment apparatus.

以下、本発明による組成変動抑制効果を確認するため、試験ガスとして周期的に組成(発熱量)が変動する燃焼ガスを用いた試験の内容について説明する。   Hereinafter, in order to confirm the composition variation suppressing effect according to the present invention, the contents of a test using a combustion gas whose composition (heat generation amount) periodically varies as a test gas will be described.

(供試吸着材)
吸着材として石炭原料活性炭を用いた。活性炭の物性を表1に、細孔径分布(窒素吸着DFT法による)を図2に示す。また、活性炭のメタン、プロパンに対する圧力−吸着量特性を図3に示す。
(Test adsorption material)
Coal activated carbon was used as the adsorbent. The physical properties of the activated carbon are shown in Table 1, and the pore size distribution (by nitrogen adsorption DFT method) is shown in FIG. FIG. 3 shows the pressure-adsorption amount characteristics of activated carbon for methane and propane.

Figure 0005313737
(試験ガス)
2分間、LNG気化ガス(組成:CH4:90.8%、C2H6:5.0%、C3H8:3.0%、i-C4H10:0.6%、n-C4H10:0.6%)を流し、その後1分間、このガスに添加用ガス(プロパン:ブタン=1:1)を添加するサイクルを繰り返すことにより、周期的に組成(発熱量)が変動するガスを調製した。試験ガスの発熱量変動は、44.5〜51.0(MJ/m3)であり、ΔH=3.25(MJ/m3)であった。ここに、ΔHは ΔH=(Hmax−Hmin)/2、すなわち発熱量最大値Hmaxと最小値Hminの差の1/2であり、発熱量変動幅比較の指標となる数値である。
Figure 0005313737
(Test gas)
Flow LNG vapor (composition: CH4: 90.8%, C2H6: 5.0%, C3H8: 3.0%, i-C4H10: 0.6%, n-C4H10: 0.6%) for 2 minutes, then add to this gas for 1 minute By repeating the cycle of adding gas (propane: butane = 1: 1), a gas whose composition (calorific value) fluctuates periodically was prepared. The calorific value variation of the test gas was 44.5 to 51.0 (MJ / m3), and ΔH = 3.25 (MJ / m3). Here, ΔH is ΔH = (Hmax−Hmin) / 2, that is, 1/2 of the difference between the maximum calorific value Hmax and the minimum value Hmin, and is a numerical value serving as an index for comparing the calorific value fluctuation range.

(試験装置)
図4に示すように、試験装置1は横置きした容器2(内容積30cc)に吸着材12gを充填して吸着塔として用いた。容器2には、ガス入口10、ガス出口11に加え、側面にガス取出口A,B,Cが設けてある。ガス取出口A,B,Cは容器全長(L)として、ガス入口10からそれぞれL/4、L/2、3L/4の位置に設定されている。
以下、取出口Cに接続する場合を例にとると、出口11を出てメイン配管4を通過するガスと、取出口Cを出てバイパス配管5を通過するガスとを下流側合流点6で合流させる。メイン配管4には絞り弁7及び熱量計8a(Advantica社製、製品名:GasPT)を、バイパス配管5には質量流量計(MFC)9及び熱量計8bを取り付けてある。取出口A,Bに接続する場合も同様である。但し、流路差により変動位相に差が生じないように、各取出口から質量流量計9までの配管長が一定になるように調整してある。
(Test equipment)
As shown in FIG. 4, the test apparatus 1 was used as an adsorption tower by filling a horizontally placed container 2 (with an internal volume of 30 cc) with 12 g of an adsorbent. In addition to the gas inlet 10 and the gas outlet 11, the container 2 is provided with gas outlets A, B, and C on the side surfaces. The gas outlets A, B, and C are set to positions L / 4, L / 2, and 3L / 4 from the gas inlet 10 as the total container length (L), respectively.
Hereinafter, taking the case of connecting to the outlet C as an example, the gas that exits the outlet 11 and passes through the main pipe 4 and the gas that exits the outlet C and passes through the bypass pipe 5 are connected at the downstream junction 6. Merge. A throttle valve 7 and a calorimeter 8a (manufactured by Advantica, product name: GasPT) are attached to the main pipe 4, and a mass flow meter (MFC) 9 and a calorimeter 8b are attached to the bypass pipe 5. The same applies when connecting to the outlets A and B. However, the pipe length from each outlet to the mass flow meter 9 is adjusted to be constant so that there is no difference in the fluctuation phase due to the flow path difference.

(試験方法)
容器2に、試験ガスを空塔速度2000h−1(供給量1L/min)、温度25℃の流入条件で流した。次いで、質量流量計9及び絞り弁7により、メイン配管4側流量とバイパス配管5側流量との流量比(F1:F2)を(a)80:20、又は(b)62:38 に調整した。その状態で、両配管を流れるガスの発熱量変動を、それぞれ熱量計8a、8bで測定した。バイパス配管5を取出口A,Bに接続した場合についても、同様の測定を行った。
(Test method)
A test gas was allowed to flow into the container 2 under an inflow condition of a superficial velocity of 2000 h −1 (supply amount 1 L / min) and a temperature of 25 ° C. Next, the mass flow meter 9 and the throttle valve 7 were used to adjust the flow ratio (F1: F2) between the main pipe 4 side flow rate and the bypass pipe 5 side flow rate to (a) 80:20 or (b) 62:38. . In this state, the calorific value fluctuation of the gas flowing through both pipes was measured by calorimeters 8a and 8b, respectively. The same measurement was performed when the bypass pipe 5 was connected to the outlets A and B.

(測定結果)
図5に、流量比80:20の場合の出口11、取出口A,B,Cから出たガスの、発熱量変動の時間的推移を示す。図6は、その一部拡大図である。また、表2に、出口11との位相時間差及び変動幅の数値を示す。これらより、出口11と取出口A,B,Cでは、明確に位相差が生じていることが分かる。さらに、取出口間にも位相差があることが分かる。
(Measurement result)
FIG. 5 shows the time transition of the calorific value fluctuation of the gas from the outlet 11 and the outlets A, B, C when the flow ratio is 80:20. FIG. 6 is a partially enlarged view thereof. Table 2 shows the numerical values of the phase time difference from the outlet 11 and the fluctuation range. From these, it can be seen that there is a clear phase difference between the outlet 11 and the outlets A, B, and C. It can also be seen that there is a phase difference between the outlets.

Figure 0005313737
Figure 0005313737

他の条件は上記測定と同一とし、流量比(F1:F2)のみ62:38に変えて、発熱量変動の時間的推移を測定した。図7、8に結果を示す。また、表3に出口11との時間差及び変動幅の数値を示す。 The other conditions were the same as the above measurement, and only the flow rate ratio (F1: F2) was changed to 62:38, and the temporal change of the calorific value variation was measured. The results are shown in FIGS. Table 3 shows the time difference from the outlet 11 and the numerical value of the fluctuation range.

Figure 0005313737
Figure 0005313737

(評価)
上記試験の結果を、取出口位置と変動幅、位相の時間差の関係をまとめると、図9の通りとなる。いずれの流量比についても、取出口Cにおいて変動幅は最小であり、出口11との変動位相差も最大であった。一方、取出口B位置では変動幅は出口11よりも大きく、また位相差もつきにくくなっている。
以上の結果から、出口11の変動幅を超えることなく、かつ、変動幅を相殺できる位相差が生じるのは、Lが0.6以上で、かつ、1.0未満の範囲といえる。さらに、L=0.75近傍が最適位置と考えられる。
(Evaluation)
The results of the above test are summarized as shown in FIG. 9 when the relationship between the outlet position, the fluctuation range, and the phase time difference is summarized. For any flow rate ratio, the fluctuation width at the outlet C was the smallest, and the fluctuation phase difference with the outlet 11 was also the largest. On the other hand, the fluctuation range is larger than that at the outlet 11 at the outlet B position, and the phase difference is less likely to occur.
From the above results, it can be said that the phase difference that can cancel out the fluctuation range without exceeding the fluctuation range of the outlet 11 occurs in a range where L is 0.6 or more and less than 1.0. Further, the vicinity of L = 0.75 is considered as the optimum position.

次に、図10に示すように、試験装置1に代えて、バイパス配管5を取出口Cに接続し、かつ、メイン配管4に位相差発生機構21(延長配管=38m)を取り付けて、配管間に流路差を設けた試験装置20を用いた。なお、熱量計8cは合流点6の下流側に配設した。流量比(F1:F2)を62:38に設定して、実施例1と同様の試験を行った。比較のため、流路差を設けない場合の試験も行った。
図11に発熱量変動の時間的推移拡大図を示す。流路差を設けた場合には、ΔH=0.47MJ/m3となり、流路差を設けない場合の値、0.70MJ/m3と比べて、さらに発熱量を安定化させることができた。
Next, as shown in FIG. 10, instead of the test apparatus 1, the bypass pipe 5 is connected to the outlet C and the phase difference generating mechanism 21 (extension pipe = 38 m) is attached to the main pipe 4. A test apparatus 20 having a flow path difference between them was used. The calorimeter 8c was disposed on the downstream side of the junction 6. The same test as in Example 1 was performed with the flow ratio (F1: F2) set to 62:38. For comparison, a test was conducted in the case where no flow path difference was provided.
FIG. 11 shows an enlarged view of the temporal change of the calorific value fluctuation. When the flow path difference was provided, ΔH = 0.47 MJ / m 3, and the calorific value could be further stabilized as compared with the value when the flow path difference was not provided, 0.70 MJ / m 3.

本発明は、燃料ガスの発熱量抑制に限らず、化学工業における原料ガス、副生ガス、排気ガス、バイオマスによる生成ガス等、組成変動する複数のガス成分からなる混合ガスの組成抑制に広く利用可能である。   The present invention is widely used not only for suppressing the calorific value of fuel gas but also for suppressing the composition of a mixed gas composed of a plurality of gas components whose composition varies, such as raw material gas, by-product gas, exhaust gas, and produced gas by biomass in the chemical industry. Is possible.

1、20・・・・試験装置
2・・・・容器(吸着塔)
4・・・・メイン配管
5・・・・バイパス配管
7・・・・絞り弁
8a、8b、8c・・・・熱量計
9・・・・質量流量計
10・・・ガス入口
11・・・ガス出口
A,B,C・・・・ガス取出口
1, 20 ··· Test device 2 ··· Container (adsorption tower)
4 ... Main piping 5 ... Bypass piping 7 ... Throttle valves 8a, 8b, 8c ... Calorimeter 9 ... Mass flow meter 10 ... Gas inlet 11 ... Gas outlet A, B, C ... Gas outlet

Claims (10)

ガス組成が時間経過とともに変化する混合ガスの供給ライン経路中に吸着材を充填した吸着塔を備えた混合ガス供給装置であって、
該吸着塔は、
供給ラインの上流側配管と接続するガス入口部と、
供給ラインの下流側配管と接続するガス出口部と、
ガス入口部とガス出口部の中間より下流側の所定の位置にガス取出部と、を備え、
該吸着塔の下流側には、ガス取出部と下流側配管の合流点とを結ぶバイパス配管と、
下流側配管の合流点までの経路中に、下流側配管及びバイパス配管を通過する混合ガスの流量比を調整する流量比制御手段と、
該流量比制御手段の流量比調整により、合流後の混合ガスの組成変動幅を所望の範囲内に抑制可能に構成した、ことを特徴とする混合ガス供給装置。
A mixed gas supply apparatus comprising an adsorption tower filled with an adsorbent in a mixed gas supply line path whose gas composition changes over time,
The adsorption tower is
A gas inlet connected to the upstream piping of the supply line;
A gas outlet connected to the downstream piping of the supply line;
A gas extraction part at a predetermined position downstream from the middle of the gas inlet part and the gas outlet part,
On the downstream side of the adsorption tower, a bypass pipe connecting the gas extraction part and the junction of the downstream pipe,
In the path leading to the merging point downstream piping, and Ru ratio of the flow amount adjustment pollock of the mixed gas flow ratio control means for passing the downstream pipe and the bypass pipe,
The flow rate ratio adjustment of the flow amount ratio control means, the composition fluctuation range of the mixed gas after merging and repressible configured within the desired range, the mixed gas supply apparatus characterized by.
前記所定の位置が、前記吸着塔の有効長さ(L)に対して、0.6L以上、かつ、1.0L未満の位置であることを特徴とする請求項1に記載の混合ガス供給装置。 Said predetermined position, the effective length of the adsorption tower (L), or 0.6 L, and mixed gas supply device according to claim 1, characterized in that the position of less than 1.0L . 前記所定の位置が、前記吸着塔有効長さ(L)に対して、0.75L近傍の位置であることを特徴とする請求項1に記載の混合ガス供給装置。 The mixed gas supply apparatus according to claim 1, wherein the predetermined position is a position in the vicinity of 0.75L with respect to the effective length (L) of the adsorption tower. 請求項1乃至3のいずれかにおいて、前記下流側配管又は前記バイパス配管の少なくとも一方の経路中に、配管流路差に基づいて混合ガスの組成変動に位相差を発生させる位相差発生手段を、さらに備えて成ることを特徴とする混合ガス供給装置。 In any one of Claims 1 thru | or 3 , The phase difference generation | occurrence | production means which produces | generates a phase difference in the composition fluctuation | variation of mixed gas based on a pipe flow path difference in at least one path | route of the said downstream piping or the said bypass piping, A mixed gas supply device, further comprising: 前記位相差発生手段が、前記下流側配管又は前記バイパス配管の延長配管であることを特徴とする請求項4に記載の混合ガス供給装置。   The mixed gas supply apparatus according to claim 4, wherein the phase difference generating means is an extension pipe of the downstream pipe or the bypass pipe. 前記混合ガスが、燃料ガスであることを特徴とする請求項1乃至5のいずれかに記載の混合ガス供給装置。 The mixed gas, mixed gas supply device according to any one of claims 1 to 5, characterized in that a fuel gas. 前記燃料ガスが、メタンを主成分とする都市ガスであることを特徴とする請求項6に記載の混合ガス供給装置。   The mixed gas supply device according to claim 6, wherein the fuel gas is a city gas containing methane as a main component. 請求項1乃至7のいずれかに記載の混合ガス供給装置において、
前記流量比制御手段により流量比を調整することにより、合流後の混合ガスの組成変動を所望の範囲内に抑制することを特徴とする混合ガス供給装置における組成変動制御方法。
The mixed gas supply apparatus according to any one of claims 1 to 7,
A composition fluctuation control method in a mixed gas supply apparatus, wherein the composition fluctuation of the mixed gas after merging is suppressed within a desired range by adjusting the flow ratio by the flow ratio control means.
請求項6又は7に記載の混合ガス供給装置において、
ガス組成が時間経過とともに変化する燃料ガス又は都市ガスを、前記流量比制御手段により流量比を調整することにより、合流後の燃料ガス又は都市ガスの発熱量をガス事業法により義務付けられた所定の範囲内に調整することを特徴とする混合ガス供給装置における発熱量調整方法。
The mixed gas supply apparatus according to claim 6 or 7,
By adjusting the flow rate ratio of the fuel gas or city gas whose gas composition changes over time by the flow rate control means, the calorific value of the combined fuel gas or city gas is required by the Gas Business Law . A calorific value adjustment method in a mixed gas supply device, wherein the adjustment is performed within a range.
請求項6又は7に記載の混合ガス供給装置であって、さらに合流後の燃料ガス又は都市ガスの発熱量を、ガス事業法により義務付けられた所定の範囲内に調整可能に構成したことを特徴とする発熱量調整装置。
8. The mixed gas supply device according to claim 6 or 7, wherein the calorific value of the combined fuel gas or city gas can be adjusted within a predetermined range required by the Gas Business Law. A calorific value adjustment device.
JP2009076403A 2009-03-26 2009-03-26 Mixed gas supply device and composition variation adjustment method in mixed gas supply device Active JP5313737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009076403A JP5313737B2 (en) 2009-03-26 2009-03-26 Mixed gas supply device and composition variation adjustment method in mixed gas supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009076403A JP5313737B2 (en) 2009-03-26 2009-03-26 Mixed gas supply device and composition variation adjustment method in mixed gas supply device

Publications (2)

Publication Number Publication Date
JP2010229230A JP2010229230A (en) 2010-10-14
JP5313737B2 true JP5313737B2 (en) 2013-10-09

Family

ID=43045345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009076403A Active JP5313737B2 (en) 2009-03-26 2009-03-26 Mixed gas supply device and composition variation adjustment method in mixed gas supply device

Country Status (1)

Country Link
JP (1) JP5313737B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102029098B (en) * 2010-10-29 2013-01-02 株洲南方燃气轮机成套制造安装有限公司 Adsorption tower for testing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4823861B2 (en) * 2006-11-08 2011-11-24 東京瓦斯株式会社 Gas storage and delivery method and apparatus
JP5001031B2 (en) * 2007-03-07 2012-08-15 東京瓦斯株式会社 Mixed gas supply device and composition variation adjustment method in mixed gas supply device
JP4859724B2 (en) * 2007-03-23 2012-01-25 東京瓦斯株式会社 Mixed gas supply device and method for adjusting composition variation thereof
JP4931781B2 (en) * 2007-12-04 2012-05-16 東京瓦斯株式会社 Mixed gas supply device and method for suppressing composition variation

Also Published As

Publication number Publication date
JP2010229230A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
JP5103030B2 (en) Mixed gas supply device, calorific value adjustment device, and calorific value adjustment method in mixed gas supply device
CA2903679C (en) Method and system to control the methane mass flow rate for the production of liquefied methane gas (lmg)
Molino et al. Experimental and simulation results for biomethane production using peek hollow fiber membrane
JP5313737B2 (en) Mixed gas supply device and composition variation adjustment method in mixed gas supply device
JP5001031B2 (en) Mixed gas supply device and composition variation adjustment method in mixed gas supply device
JP4407913B2 (en) Liquefied natural gas vapor supply system
JP6716048B1 (en) Heat quantity fluctuation suppressing device, heat quantity fluctuation suppressing method
JP4931781B2 (en) Mixed gas supply device and method for suppressing composition variation
JP4907845B2 (en) Method for adjusting calorific value of delivered fuel gas, method for stabilizing heat quantity, and apparatus therefor
JP5001041B2 (en) Mixed gas supply device, calorific value adjustment device, and variation adjustment method thereof
JP5207522B2 (en) Mixing gas composition fluctuation suppression device
JP5042364B2 (en) Gas supply system and supply method
JP5160627B2 (en) Method for adjusting calorific value of delivered fuel gas and calorific value adjusting device
Briggs The combustion and interchangeability of natural gas on domestic burners
JP2016191024A (en) Gas control device, combustion system and program
CN202195273U (en) Storage tank type liquefied natural gas supply terminal
KR102200359B1 (en) treatment system of boil-off gas and ship having the same
US20140338393A1 (en) Methods for blending liquefied natural gas
JP4859724B2 (en) Mixed gas supply device and method for adjusting composition variation thereof
JP4823861B2 (en) Gas storage and delivery method and apparatus
JP2017180573A (en) Gas supply system
EP3482055A1 (en) Internal combustion engine fuel gas blending system
JP5227697B2 (en) Gas mixer
CN205242214U (en) Pitch agitated vessel heating device
Cristescu et al. On Some Thermodynamic Processes Possibly Involved in the Technological Flow of Liquefied Natural Gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130704

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5313737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250