JP2008231357A - Mixed gas feeder, calorific value adjustment apparatus, and its variation adjustment method - Google Patents

Mixed gas feeder, calorific value adjustment apparatus, and its variation adjustment method Download PDF

Info

Publication number
JP2008231357A
JP2008231357A JP2007076597A JP2007076597A JP2008231357A JP 2008231357 A JP2008231357 A JP 2008231357A JP 2007076597 A JP2007076597 A JP 2007076597A JP 2007076597 A JP2007076597 A JP 2007076597A JP 2008231357 A JP2008231357 A JP 2008231357A
Authority
JP
Japan
Prior art keywords
calorific value
gas
mixed gas
composition
fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007076597A
Other languages
Japanese (ja)
Other versions
JP5001041B2 (en
Inventor
Susumu Nishio
晋 西尾
Yasuhiko Urabe
安彦 浦邊
Takefumi Ishikura
威文 石倉
Tomonori Nagasawa
知紀 長澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2007076597A priority Critical patent/JP5001041B2/en
Publication of JP2008231357A publication Critical patent/JP2008231357A/en
Application granted granted Critical
Publication of JP5001041B2 publication Critical patent/JP5001041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mixed gas feeder suitable for stabilization of a calorific value of a fuel gas such as town gas, and its composition variation adjustment method. <P>SOLUTION: In the initial setting stage, a switching valve Va is set to the opened state and a switching valve Vb is set in the closed state. A composition ratio of the fuel gas and an environment temperature at a periphery of a packed column are measured. Calorific value variation width ΔHa, ΔHb after passing through the packed column is operated based on these measurement value and a determination table, and ΔHa is further compared with ΔHb. When ΔHa is smaller than ΔHb, the switching valve Va is made opened and it passes through the packed column 2a. At the time of ΔHa>ΔHb, Vb is set in the opened state and Va is set in the closed state. The mixed gas is set so as to pass through the packed column 2b. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、混合ガス供給装置、発熱量調整装置及びその変動調整方法に係り、特に、都市ガス等、燃料ガスの発熱量安定化に好適な混合ガス供給装置、発熱量調整装置等に関する。   The present invention relates to a mixed gas supply device, a calorific value adjustment device, and a variation adjustment method thereof, and more particularly to a mixed gas supply device, a calorific value adjustment device, and the like suitable for stabilizing the calorific value of fuel gas such as city gas.

近年、大都市圏から離れた地方における都市ガス需要の増加に伴い、LNG(液化天然ガス)サテライト基地が多く建設されている。LNGサテライト基地は、LNG貯槽と気化器を備えた設備であり、沿岸のLNG受入基地からローリーでLNGを輸送し、LNG貯槽に一旦貯蔵した後に、LNGを気化して工業団地や住宅地などに都市ガスとして供給するためのものである。   In recent years, LNG (liquefied natural gas) satellite bases have been built with increasing demand for city gas in regions far from metropolitan areas. The LNG satellite base is a facility equipped with LNG storage tanks and vaporizers. After transporting LNG from the coastal LNG receiving terminal by lorry and storing it in the LNG storage tank, the LNG is vaporized to industrial parks and residential areas. It is for supply as city gas.

このようなLNGサテライト供給方式においては、気化器稼動開始時や負荷変動、気温変化等に伴う供給ガスの発熱量変動が問題となる場合があり、このため供給ガスの発熱量安定化のための種々の技術が開示されている。気化器自体の改良としては、LNG気化器の停止時にパージラインからLPGをパージする技術が提案されている(例えば特許文献1)。
また、吸着材を用いた発熱量調整装置として、気化器下流側に活性炭を充填した吸着材充填塔を設けて、発熱量を抑制する技術が提案されている(例えば特許文献2)。図7は、このような吸着材充填塔を用いた従来の発熱量調整装置100を示す。従来の発熱量調整装置100は、LNG貯槽101、外気を加熱源とする気化器102、吸着材充填塔103を主要構成とする。吸着材充填塔103内には細孔直径2.0〜3.0nmの活性炭が充填されている。このような構成により、タンクローリ105、ライン106を介して供給されるLNGをLNG貯槽101に一旦貯蔵し、気化器102で気化して天然ガスとし、さらに吸着材充填塔103を通過させる。これにより、気化器出側において高沸点(重質炭化水素)成分の組成比が高くガス発熱量が高いときには、高沸点成分を吸着材で吸着し、また低沸点成分であるメタンの組成比が高くガス発熱量が低いときには、吸着した高沸点成分を脱着させて発熱量を抑制する。
In such an LNG satellite supply system, there is a case where the heat generation amount fluctuation of the supply gas accompanying the start of operation of the carburetor, load fluctuation, temperature change or the like becomes a problem. Various techniques have been disclosed. As an improvement of the vaporizer itself, a technique for purging LPG from a purge line when the LNG vaporizer is stopped has been proposed (for example, Patent Document 1).
In addition, as a calorific value adjustment device using an adsorbent, a technique for suppressing the calorific value by providing an adsorbent packed tower filled with activated carbon on the downstream side of the vaporizer has been proposed (for example, Patent Document 2). FIG. 7 shows a conventional calorific value adjusting device 100 using such an adsorbent packed tower. A conventional calorific value adjusting device 100 mainly includes an LNG storage tank 101, a vaporizer 102 using outside air as a heat source, and an adsorbent packed tower 103. The adsorbent packed tower 103 is filled with activated carbon having a pore diameter of 2.0 to 3.0 nm. With such a configuration, the LNG supplied via the tank lorry 105 and the line 106 is temporarily stored in the LNG storage tank 101, vaporized by the vaporizer 102 to become natural gas, and further passed through the adsorbent packed tower 103. Thus, when the composition ratio of the high boiling point (heavy hydrocarbon) component is high and the gas calorific value is high on the outlet side of the vaporizer, the high boiling point component is adsorbed by the adsorbent, and the composition ratio of methane which is the low boiling point component is When the gas calorific value is high and the gas calorific value is low, the adsorbed high boiling point component is desorbed to suppress the calorific value.

特開平7−109476号公報JP-A-7-109476 特開2005-273753号公報JP 2005-273753 A

一般に吸着材の吸着量は高温下で低下し、低温下で増加することが知られている。しかしながら、吸着材を用いた発熱量変動調整方法に関しては、冬期に充填塔内を設定温度(35℃)に加熱して安定的に天然ガスを供給する技術が、特許文献2に開示されているものの、実用上想定される環境温度範囲に亘る発熱量調整方法の開示はない。このことは組成変動抑制技術についても同様である。
温度のほかにも、一般に吸着材の吸着量は吸着するガスの種類によって異なる。例えば、プロパンとブタンでは高沸点であるブタンがより吸着される。しかしながら、吸着材を用いた発熱量調整方法に関しては、発熱量の変動はプロパンやブタンの増加によるものとされている(特許文献2)が、変動時の具体的な組成比が示されておらず、実用上想定される変動時の組成比の範囲に亘る方法の開示はない。このことは組成変動抑制技術についても同様である。
In general, it is known that the amount of adsorbent adsorbed decreases at a high temperature and increases at a low temperature. However, with regard to the calorific value fluctuation adjusting method using an adsorbent, Patent Document 2 discloses a technique for stably supplying natural gas by heating the packed tower to a set temperature (35 ° C.) in winter. However, there is no disclosure of a calorific value adjustment method over the environmental temperature range assumed in practice. The same applies to the composition variation suppressing technique.
In addition to temperature, the amount of adsorbent adsorbed generally varies depending on the type of gas to be adsorbed. For example, propane and butane adsorb more butane having a high boiling point. However, regarding the calorific value adjustment method using the adsorbent, the fluctuation of the calorific value is caused by an increase in propane and butane (Patent Document 2), but a specific composition ratio at the time of fluctuation is not shown. In addition, there is no disclosure of a method over the range of the composition ratio at the time of fluctuation assumed in practice. The same applies to the composition variation suppressing technique.

本発明は、このような課題を解決するためのものであって、吸着材を用いた混合ガス供給装置において、実用上想定される広い温度及び混合ガス組成比の範囲で、組成変動を一定範囲に抑えてガス供給を可能とする混合ガス供給装置を提供するものである。本発明は、以下の内容を要旨とする。すなわち、
請求項1の発明は、成分の組成が経時的に変動する混合ガスを供給する供給ラインと、供給ライン経路中に複数の複数の分岐配管を備えた並列配管部と、各分岐配管経路中に配置され、それぞれ吸着特性の異なる吸着材を充填した複数の充填塔と、充填塔出口における組成変動量を最小にする充填塔を選択する最適充填塔選択手段と、混合ガス流路を、選択した最適充填塔側に、適宜、切り替える流路切替手段と、を備えて成ることを特徴とする混合ガス供給装置である。
The present invention is for solving such problems, and in a mixed gas supply apparatus using an adsorbent, composition fluctuations are within a certain range within a wide range of practically assumed temperatures and mixed gas composition ratios. It is an object of the present invention to provide a mixed gas supply device that can supply gas while suppressing the pressure to the minimum. The gist of the present invention is as follows. That is,
The invention of claim 1 includes a supply line that supplies a mixed gas whose composition changes over time, a parallel pipe section that includes a plurality of branch pipes in the supply line path, and each branch pipe path. A plurality of packed towers that are arranged and filled with adsorbents each having different adsorption characteristics, an optimal packed tower selection means that selects a packed tower that minimizes the amount of composition fluctuation at the outlet of the packed tower, and a mixed gas flow path are selected. It is a mixed gas supply apparatus characterized by comprising flow path switching means for switching appropriately on the optimum packed tower side.

本発明において「組成変動量」とは、混合ガス中のある一成分に注目したときに、その成分の濃度が、本来供給されるべき濃度から一時的に変化した量のことである。つまり、必ずしも混合ガス中の全成分の組成変動量に限らず、制御目的対象の変動に着目した変動量であってもよい。
本発明において、「混合ガス」は、化学工業における原料ガス、副生ガス、排気ガス、バイオマスによる生成ガス等を含む概念である。
また、本発明に用いる「吸着材」としては、活性炭、ゼオライト、シリカゲル、メソポーラスシリカ、活性アルミナ、有機金属錯体などを用いることができる。また、活性炭としては、石炭原料活性炭、ヤシガラ活性炭、木炭、石油原料活性炭、竹炭、フェノール樹脂活性炭、レーヨン由来活性炭、アクロニトリル由来活性炭、草炭、おがくず炭、泥炭などがある。
In the present invention, the “composition variation amount” is an amount in which the concentration of a component temporarily changes from the concentration to be supplied when attention is paid to a certain component in the mixed gas. That is, it is not necessarily limited to the composition variation amount of all components in the mixed gas, and may be a variation amount focusing on the variation of the control target.
In the present invention, the “mixed gas” is a concept including a raw material gas, a by-product gas, an exhaust gas, a produced gas by biomass, and the like in the chemical industry.
In addition, as the “adsorbent” used in the present invention, activated carbon, zeolite, silica gel, mesoporous silica, activated alumina, organometallic complex, and the like can be used. Examples of the activated carbon include coal raw material activated carbon, coconut husk activated carbon, charcoal, petroleum raw material activated carbon, bamboo charcoal, phenol resin activated carbon, rayon-derived activated carbon, acrylonitrile-derived activated carbon, grass charcoal, sawdust charcoal, and peat.

上記発明において、最適充填塔選択手段として、吸着材ごとの、混合ガスの組成比及び環境温度の組み合わせに対する組成変動量の違いを用いる手段とすることができる(請求項2)。
In the above invention, as the optimum packed tower selection means, it is possible to use a difference in the composition fluctuation amount with respect to the combination of the composition ratio of the mixed gas and the environmental temperature for each adsorbent (claim 2).

本発明により、任意の組成比及び環境温度の組み合わせに対応して、最適充填塔を選定することができる。なお、発熱量変動幅は、予め用いる吸着材ごとに各条件における吸着特性を得ることにより求めることができる。   According to the present invention, it is possible to select an optimum packed column corresponding to any combination of composition ratio and ambient temperature. The calorific value fluctuation range can be obtained by obtaining adsorption characteristics under each condition for each adsorbent used in advance.

請求項3の発明は、成分の発熱量が経時的に変動する燃料ガスを供給する供給ラインと、
供給ライン経路中に複数の複数の分岐配管を備えた並列配管部と、各分岐配管経路中に配置され、それぞれ吸着特性の異なる吸着材を充填した複数の充填塔と、吸着材ごとの、燃料ガスの組成比及び環境温度の組み合わせに対する組成変動量の違いを用いて、充填塔出口における発熱量変動量を最小にする充填塔を選択する最適充填塔選択手段と、燃料ガス流路を、選択した最適充填塔側に、適宜、切り替える流路切替手段と、を備えて成ることを特徴とする燃料ガスの発熱量調整装置である。
上記発明において、「燃料ガス」としてメタンを主成分とする都市ガスとすることができる(請求項4)。
現在、全国の都市ガスはウオッベ指数及び燃焼速度指数に基づいて14種類のガスグループに分類され、都市ガス事業者は特定したガス種の都市ガスを供給域内の需要家に対して供給することが、ガス事業法により義務付けられている。例えば、メタンを主成分とする13A都市ガスについては、52.7≦WI≦57.8、35≦MCP≦47と定められている。ここにウオッベ指数(WI)は、ガスの発熱量H(MJ/m3)をガスの空気に対する比重sの平方根で割った数値、
WI=H/√s
で表され、ガス機器の完全燃焼性の指標となるものである。
また、燃焼速度指数(MCP)は、次式で表される。
The invention of claim 3 is a supply line for supplying fuel gas in which the calorific value of the component fluctuates over time,
A parallel pipe section having a plurality of branch pipes in the supply line path, a plurality of packed towers arranged in each branch pipe path and filled with adsorbents having different adsorption characteristics, and fuel for each adsorbent Select the optimum packed tower selection means and fuel gas flow path to select the packed tower that minimizes the amount of heat generation fluctuation at the outlet of the packed tower using the difference in the composition fluctuation amount with respect to the combination of the gas composition ratio and the environmental temperature. A fuel gas calorific value adjustment device comprising a flow path switching means for switching appropriately on the optimum packed tower side.
In the said invention, it can be set as city gas which has methane as a main component as "fuel gas" (Claim 4).
Currently, city gas nationwide is classified into 14 types of gas groups based on the Wobbe index and burning rate index, and city gas companies can supply city gas of the specified gas type to consumers in the supply area. As required by the Gas Business Law. For example, 13A city gas mainly composed of methane is defined as 52.7 ≦ WI ≦ 57.8 and 35 ≦ MCP ≦ 47. Here, the Wobbbe index (WI) is a numerical value obtained by dividing the calorific value H (MJ / m3) of the gas by the square root of the specific gravity s of the gas with respect to air.
WI = H / √s
This is an index of complete combustibility of gas equipment.
The combustion rate index (MCP) is expressed by the following equation.

Figure 2008231357
上式において、Si、fiはそれぞれ都市ガス中の各可燃性ガスの燃焼速度及び係数、Aiは都市ガス中の各可燃性ガスの含有率(体積百分率)、Kは減衰係数である。各係数の具体的数値についてはガス事業法に示されているため、ここでは省略する。
従って、本発明において燃料ガス供給装置通過後の混合ガスのWI及びMCPを、例えば13A都市ガスの範囲とするように、適宜、充填塔を切り替えることにより、供給域内で都市ガス13A用機器を良好に燃焼させることができる。
Figure 2008231357
In the above equation, Si and fi are the burning rate and coefficient of each combustible gas in the city gas, Ai is the content (volume percentage) of each combustible gas in the city gas, and K is the attenuation coefficient. Specific numerical values for each coefficient are shown in the Gas Business Law, and are therefore omitted here.
Therefore, in the present invention, by appropriately switching the packed tower so that the WI and MCP of the mixed gas after passing through the fuel gas supply device are in the range of, for example, 13A city gas, the equipment for city gas 13A is improved in the supply area. Can be burned.

請求項5の発明は、上記混合ガス供給装置において、混合ガスの組成変動に対応して、組成変動幅を最小にする充填塔に、適宜、流路を切り替えることを特徴とする組成変動抑制方法である。
請求項6の発明は、上記各発熱量調整装置において、燃料ガスの発熱量変動に対応して、発熱量変動幅を最小にする充填塔に、適宜、流路を切り替えることを特徴とする発熱量変動抑制方法である。
According to a fifth aspect of the present invention, in the mixed gas supply apparatus, the composition fluctuation suppressing method is characterized by appropriately switching the flow path to a packed tower that minimizes the composition fluctuation width in response to the composition fluctuation of the mixed gas. It is.
According to a sixth aspect of the present invention, in each of the calorific value adjustment devices, the flow path is appropriately switched to a packed tower that minimizes the calorific value fluctuation range in response to fluctuations in the calorific value of the fuel gas. This is a method for suppressing variation in quantity.

本発明により、広い環境温度や変動時のガスの組成比範囲において、組成変動を最小限に抑えてガス供給を可能とする混合ガス供給装置が可能となる。
また、混合ガスとして燃料ガスを用いる発明にあっては、供給元から発熱量変動を伴うガスが供給された場合であっても、広い環境温度や変動時のガスの組成比の範囲で、発熱量変動を最小限に抑制して需要家に供給することが可能となる。
According to the present invention, it is possible to provide a mixed gas supply apparatus that can supply gas while minimizing composition fluctuations in a wide range of environmental temperatures and fluctuation gas composition ratios.
Further, in the invention using fuel gas as a mixed gas, even when a gas with fluctuation in calorific value is supplied from a supplier, heat is generated within a wide range of environmental temperatures and gas composition ratios at the time of fluctuation. It is possible to supply to customers with minimal fluctuations in quantity.

以下、本発明の一実施形態について、図1乃至3を参照してさらに詳細に説明する。なお、本発明の範囲は特許請求の範囲記載のものであって、以下の実施形態に限定されないことはいうまでもない。
本実施形態は、「混合ガス」として組成が経時的に変動する燃料ガス(LNG原料)を用いて、発熱量変動調整を図るものである。
図1は、本実施形態に係る燃料ガス供給装置1の全体構成を示す図である。燃料ガス供給装置1は、LNG貯槽4と、気化器3と、分岐配管L3、L4の経路中に並列に配置された2基の吸着材充填塔2a、2bと、供給ライン末端側に負荷装置5(例えばガスエンジン)を備えている。LNG貯槽4には、不図示のタンクローリ等により運ばれるLNGが貯蔵されている。各装置間は配管L1乃至L5により接続されている。充填塔2a内には吸着材Xaが、充填塔2a内には吸着材Xbが、それぞれ充填されている。吸着材Xa、Xbは、後述するように異なる吸着特性を有している。分岐配管L3、L4の充填塔上流側には、それぞれ切替弁Va、Vbが配設されている。配管L2経路中にはガス組成計測部6が配設されており、通過する混合ガスの組成を計測するように構成されている。さらに、充填塔内部には温度センサSa、Sbが配設されており、吸着材の環境温度を計測するように構成されている。
Hereinafter, an embodiment of the present invention will be described in more detail with reference to FIGS. Needless to say, the scope of the present invention is described in the claims and is not limited to the following embodiments.
In the present embodiment, the amount of heat generated is adjusted by using a fuel gas (LNG raw material) whose composition changes over time as a “mixed gas”.
FIG. 1 is a diagram illustrating an overall configuration of a fuel gas supply apparatus 1 according to the present embodiment. The fuel gas supply device 1 includes an LNG storage tank 4, a vaporizer 3, two adsorbent packed towers 2a and 2b arranged in parallel in the path of the branch pipes L3 and L4, and a load device at the end of the supply line. 5 (for example, a gas engine). The LNG storage tank 4 stores LNG carried by a tank truck (not shown). The devices are connected by pipes L1 to L5. The packed tower 2a is filled with the adsorbent Xa, and the packed tower 2a is filled with the adsorbent Xb. The adsorbents Xa and Xb have different adsorption characteristics as will be described later. Switching valves Va and Vb are disposed on the upstream side of the packed towers of the branch pipes L3 and L4, respectively. A gas composition measuring unit 6 is disposed in the pipe L2 path, and is configured to measure the composition of the mixed gas passing therethrough. Furthermore, temperature sensors Sa and Sb are disposed inside the packed tower, and are configured to measure the environmental temperature of the adsorbent.

さらに、燃料ガス供給装置1は発熱量調整制御を行う制御部7を備えている。制御部7は、混合ガス組成及び環境温度の組み合わせ(以下、供給条件という)に対する吸着材Xa、Xb通過後の発熱量変動幅に基づいて、いずれの充填塔を通過すると変動幅が最小になるかを選択するための演算テーブルを備えている。これにより、ガス組成計測装置6及び温度センサSa、Sbからの計測値に基づいて、最適充填塔を選択するように構成されている。
次に、上述の最適充填塔選択のための演算テーブルの内容について説明する。前提として、供給される燃料ガスが表1の組成をベースに、変動時に任意の組成のプロパンとブタンの混合ガスを添加しているものとする。

Figure 2008231357
Furthermore, the fuel gas supply apparatus 1 includes a control unit 7 that performs heat generation amount adjustment control. Based on the heat generation amount fluctuation range after passing through the adsorbents Xa and Xb with respect to the combination of the mixed gas composition and the environmental temperature (hereinafter referred to as supply conditions), the control unit 7 minimizes the fluctuation range when passing through any packed tower. An operation table for selecting the above is provided. Thus, the optimum packed tower is selected based on the measured values from the gas composition measuring device 6 and the temperature sensors Sa and Sb.
Next, the contents of the calculation table for selecting the optimum packed tower will be described. As a premise, the supplied fuel gas is based on the composition shown in Table 1, and a mixed gas of propane and butane having an arbitrary composition is added at the time of fluctuation.
Figure 2008231357

図2は、演算テーブルを概念的に示す図である。すなわち、演算テーブルとして、変動成分中のプロパン濃度rをパラメータとして、吸着材Xa、Xbについて発熱量変動幅ΔHの温度依存性をプロットしたデータを用いる。なお、発熱量変動幅ΔHは、ΔH=(Hmax−Hmin)/2、すなわち発熱量最大値Hmaxと最小値Hminの差の1/2で表される物理量である。
同図において、充填塔通過後のΔHの値が小さいほど、発熱量変動抑制性能が高いことを表す。例えば、環境温度=T1、r=0.6のときの発熱量変動幅は、吸着材XaについてはΔHa、吸着材XbについてはΔHbである。従って、ΔHaとΔHbとを比較して、いずれか小さい値である吸着材充填塔が最適充填塔ということになる。
制御部7は、ガス組成計測装置6及び温度センサSa、Sbからの計測値に基づき、上記演算テーブルを用いて最適充填塔を選択するように構成されている。
FIG. 2 is a diagram conceptually showing the calculation table. That is, as the calculation table, data plotting the temperature dependence of the calorific value fluctuation range ΔH for the adsorbents Xa and Xb using the propane concentration r in the fluctuation component as a parameter is used. The calorific value fluctuation range ΔH is a physical quantity represented by ΔH = (Hmax−Hmin) / 2, that is, 1/2 of the difference between the calorific value maximum value Hmax and the minimum value Hmin.
In the figure, the smaller the value of ΔH after passing through the packed tower, the higher the calorific value fluctuation suppressing performance. For example, when the environmental temperature = T1 and r = 0.6, the heat generation amount fluctuation range is ΔHa for the adsorbent Xa and ΔHb for the adsorbent Xb. Therefore, by comparing ΔHa and ΔHb, the adsorbent packed tower having a smaller value is the optimum packed tower.
The control unit 7 is configured to select the optimum packed tower using the calculation table based on the measured values from the gas composition measuring device 6 and the temperature sensors Sa and Sb.

次に、図3をも参照して、本実施形態における発熱量調整制御フローについて説明する。初期設定段階では切替弁Va開、Vb閉に設定されている(S101)。燃料ガスの組成比、及び充填塔周辺の環境温度が計測される(S102)。次いで、計測値及び上述の演算テーブルに基づいて、充填塔通過後の発熱量変動幅が演算され(S103)、さらにΔHaとΔHbとが比較される(S104)。ΔHaの方が小さいときは切替弁Va開となり充填塔2aを通過するようにする(S105)。ΔHa>ΔHbのときはVb開、Va閉に設定され、混合ガスは充填塔2bを通過するように設定される(S106)。
以上の制御を所定のインターバルで行うことにより、負荷装置に発熱量変動を抑制した燃料ガスが供給される。
Next, the heat generation amount adjustment control flow in this embodiment will be described with reference to FIG. In the initial setting stage, the switching valve Va is set to open and Vb is closed (S101). The composition ratio of the fuel gas and the ambient temperature around the packed tower are measured (S102). Next, based on the measured values and the above-described calculation table, the heat generation amount fluctuation range after passing through the packed tower is calculated (S103), and ΔHa and ΔHb are compared (S104). When ΔHa is smaller, the switching valve Va is opened so as to pass through the packed tower 2a (S105). When ΔHa> ΔHb, Vb is open and Va is closed, and the mixed gas is set so as to pass through the packed tower 2b (S106).
By performing the above control at a predetermined interval, the load gas is supplied with the fuel gas in which the calorific value fluctuation is suppressed.

また、本実施形態では2基の吸着材充填塔を並列に配置する形態を示したが、3基以上の充填塔を並列に配置し、それぞれ異なる吸着材を充填する形態とすることもできる。   Moreover, although the form which arrange | positions two adsorbent packed towers in parallel was shown in this embodiment, it can also be set as the form which arrange | positions three or more packed towers in parallel, and is filled with a respectively different adsorbent.

本発明による発熱量変動抑制効果を確認するため、以下の試験を行った。
(供試吸着材)
石炭原料活性炭及びヤシガラ原料活性炭の2種類の吸着材を用いた(以下、石炭原料活性炭を活性炭A、ヤシガラ原料活性炭を活性炭Bと略称することがある)。活性炭A,Bの物性を表2に、細孔径分布(窒素吸着DFT法による)を図4に示す。また、活性炭A、Bのメタン、プロパンに対する圧力−吸着量特性を図5に示す。
In order to confirm the effect of suppressing the amount of heat generation fluctuation according to the present invention, the following tests were conducted.
(Test adsorption material)
Two types of adsorbents, ie, coal raw material activated carbon and coconut shell raw material activated carbon were used (hereinafter, the coal raw material activated carbon may be abbreviated as activated carbon A and the coconut shell raw material activated carbon may be referred to as activated carbon B). The physical properties of the activated carbons A and B are shown in Table 2, and the pore size distribution (by nitrogen adsorption DFT method) is shown in FIG. FIG. 5 shows the pressure-adsorption amount characteristics of activated carbons A and B with respect to methane and propane.

Figure 2008231357
Figure 2008231357

(試験ガス)
表3に示す3種類の試験ガスを用いた。同図において、例えば試験ガス2は、2分間LNG気化ガス100%を流し、その後1分間、このガスに添加用ガス(プロパン:ブタン≒1:1)を添加するサイクルを繰り返すことにより、周期的に組成(発熱量)が変動するガスである。なお、LNG気化ガスの組成は、CH4:90.8%、C2H6:5.0%、C3H8:3.0%、i-C4H10:0.6%、n-C4H10:0.6%である。同表右欄は、各試験ガスの容器入側における発熱量最大値、最小値及び発熱量変動幅ΔHである。
(Test gas)
Three types of test gases shown in Table 3 were used. In the figure, for example, the test gas 2 is periodically flown by flowing a 100% LNG vaporized gas for 2 minutes and then adding a gas for addition (propane: butane≈1: 1) to this gas for 1 minute. It is a gas whose composition (calorific value) varies. The composition of the LNG vaporized gas is CH4: 90.8%, C2H6: 5.0%, C3H8: 3.0%, i-C4H10: 0.6%, and n-C4H10: 0.6%. The right column of the table shows the maximum value and minimum value of the calorific value on the inlet side of each test gas, and the calorific value fluctuation range ΔH 0 .

Figure 2008231357
Figure 2008231357

(試験装置及び試験方法)
充填容器(内容積合計30cc)に石炭原料活性炭又はヤシガラ原料活性炭を充填し、容器温度を2℃、25℃、40℃、60℃、80℃の各条件に保持した状態で、上記組成の供試ガスを空塔速度2000h-1にて充填容器に流入した。この間、容器前後のガス発熱量を熱量計(Advantica社製、製品名:GasPT)で測定し、各温度条件について変動幅ΔHを求めた。
(Test equipment and test method)
Filled containers (total volume 30 cc) with coal-activated carbon or coconut shell activated carbon and kept the container temperature at 2 ° C., 25 ° C., 40 ° C., 60 ° C., 80 ° C. The test gas flowed into the packed container at a superficial velocity of 2000 h- 1 . During this time, the calorific value of the gas before and after the container was measured with a calorimeter (product name: GasPT, manufactured by Advantica), and the fluctuation range ΔH was determined for each temperature condition.

(測定結果)
図6は、試験ガス1について、石炭原料活性炭及びヤシガラ原料活性炭の変動幅ΔHの温度依存性を比較した図である。同図より、約40℃以下では石炭原料活性炭のほうが変動幅が小さい(抑制性能が高い)が、この温度を超えると逆転することが分かる。
図7は、試験ガス2について同様の比較を示す図である。この場合は、約20℃が抑制性能の高い材料が変わる温度となる。さらに図8は、試験ガス3についての同様の比較を示す図である。この場合は、大部分の温度範囲で石炭原料活性炭の方が変動幅が小さいことが分かる。
測定結果に基づいて、添加ガスの組成比と環境温度をマトリックスとして、各条件において変動幅が小さい活性炭を選択すると表4の通りとなる。表4を、上述の「充填塔判定テーブル」として用いることも可能である。
なお、本実施例では添加ガスの組成比を3段階、温度を5段階とした測定を行ったが、それぞれの要素をさらに細分化した測定データを得ることにより、より高精度の選択が可能となる。
(Measurement result)
FIG. 6 is a graph comparing the temperature dependence of the fluctuation range ΔH of the coal raw material activated carbon and the coconut shell raw material activated carbon for the test gas 1. From this figure, it can be seen that the coal raw activated carbon has a smaller fluctuation range (higher suppression performance) at about 40 ° C. or less, but reverses when this temperature is exceeded.
FIG. 7 is a diagram showing a similar comparison for the test gas 2. In this case, about 20 ° C. is the temperature at which the material with high suppression performance changes. FIG. 8 is a diagram showing a similar comparison for the test gas 3. In this case, it is understood that the fluctuation range of the coal raw material activated carbon is smaller in most temperature ranges.
Based on the measurement results, when the activated carbon having a small fluctuation range under each condition is selected using the composition ratio of the additive gas and the environmental temperature as a matrix, Table 4 is obtained. Table 4 can also be used as the “packed tower determination table” described above.
In this example, the composition ratio of the additive gas was measured in three steps and the temperature was measured in five steps. However, by obtaining measurement data that further subdivides each element, it is possible to select with higher accuracy. Become.

Figure 2008231357
Figure 2008231357

本発明は、燃料ガスの発熱量変動抑制に限らず、化学工業における原料ガス、副生ガス、排気ガス、バイオマスによる生成ガス等、組成変動する複数のガス成分からなる混合ガスの組成抑制に広く利用可能である。   The present invention is not limited to the suppression of fluctuations in the calorific value of fuel gas, but is widely applicable to the suppression of the composition of mixed gas composed of a plurality of gas components whose composition varies, such as raw material gas, by-product gas, exhaust gas, and produced gas by biomass in the chemical industry. Is available.

本発明の一実施形態に係る燃料ガス供給装置1の構成を示す図である。It is a figure which shows the structure of the fuel gas supply apparatus 1 which concerns on one Embodiment of this invention. 充填塔出口における発熱量変動幅演算テーブルを概念的に示す図である。It is a figure which shows notionally the calorific value fluctuation width calculation table in a packed tower exit. 燃料ガス供給装置1における発熱量調整制御フローを示す図である。It is a figure which shows the emitted-heat amount adjustment control flow in the fuel gas supply apparatus. 供試吸着材である活性炭A、Bの細孔径分布を示す図である。It is a figure which shows the pore size distribution of activated carbon A and B which are test adsorption materials. 活性炭A、Bのメタン、プロパンに対する圧力−吸着量特性を示す図である。It is a figure which shows the pressure-adsorption amount characteristic with respect to methane and propane of activated carbon A and B. 試験ガス1についての、石炭原料活性炭及びヤシガラ原料活性炭の充填塔出口における変動幅の温度依存性を比較した図である。It is the figure which compared the temperature dependence of the fluctuation range in the packed tower exit of the coal raw material activated carbon and the coconut shell raw material activated carbon about the test gas 1. FIG. 試験ガス2についての、石炭原料活性炭及びヤシガラ原料活性炭の充填塔出口における変動幅の温度依存性を比較した図である。It is the figure which compared the temperature dependence of the fluctuation range in the packed tower exit of the coal raw material activated carbon and the coconut shell raw material activated carbon about the test gas 2. FIG. 試験ガス3についての、石炭原料活性炭及びヤシガラ原料活性炭の充填塔出口における変動幅の温度依存性を比較した図である。It is the figure which compared the temperature dependence of the fluctuation range in the packed tower exit of the coal raw material activated carbon and the coconut shell raw material activated carbon about the test gas 3. FIG. 従来の発熱量調整装置100の構成を示す図である。It is a figure which shows the structure of the conventional calorific value adjustment apparatus.

符号の説明Explanation of symbols

1・・・・燃料ガス供給装置
2a、2b・・・・充填塔
3・・・・気化器
4・・・・LNG貯槽
5・・・・負荷装置
6・・・・ガス組成計測部
7・・・・制御部
L1〜L5・・・・配管
Sa、Sb・・・・温度センサ
Va、Vb・・・・切替弁
Xa、Xb・・・・吸着材
DESCRIPTION OF SYMBOLS 1 ... Fuel gas supply apparatus 2a, 2b ... Packing tower 3 ... Vaporizer 4 ... LNG storage tank 5 ... Load device 6 ... Gas composition measurement part 7- ... Control units L1 to L5 ... Pipe Sa, Sb ... Temperature sensors Va, Vb ... Switch valves Xa, Xb ... Adsorbents

Claims (6)

成分の組成が経時的に変動する混合ガスを供給する供給ラインと、
供給ライン経路中に複数の複数の分岐配管を備えた並列配管部と、
各分岐配管経路中に配置され、それぞれ吸着特性の異なる吸着材を充填した複数の充填塔と、
充填塔出口における組成変動量を最小にする充填塔を選択する最適充填塔選択手段と、
混合ガス流路を、選択した最適充填塔側に、適宜、切り替える流路切替手段と、
を備えて成ることを特徴とする混合ガス供給装置。
A supply line for supplying a mixed gas whose component composition varies over time;
A parallel pipe section having a plurality of branch pipes in the supply line path;
A plurality of packed towers arranged in each branch pipe path and filled with adsorbents having different adsorption characteristics;
An optimum packed column selecting means for selecting a packed column that minimizes the amount of composition fluctuation at the packed column outlet;
A flow path switching means for appropriately switching the mixed gas flow path to the selected optimum packed tower side; and
A mixed gas supply apparatus comprising:
前記最適充填塔選択手段が、吸着材ごとの、混合ガスの組成比及び環境温度の組み合わせに対する組成変動量の違いを用いる手段であることを特徴とする請求項1に記載の混合ガス供給装置。 2. The mixed gas supply apparatus according to claim 1, wherein the optimum packed column selecting unit is a unit that uses a difference in composition variation with respect to a combination of a mixed gas composition ratio and an environmental temperature for each adsorbent. 3. 成分の発熱量が経時的に変動する燃料ガスを供給する供給ラインと、
供給ライン経路中に複数の複数の分岐配管を備えた並列配管部と、
各分岐配管経路中に配置され、それぞれ吸着特性の異なる吸着材を充填した複数の充填塔と、
吸着材ごとの、燃料ガスの組成比及び環境温度の組み合わせに対する組成変動量の違いを用いて、充填塔出口における発熱量変動量を最小にする充填塔を選択する最適充填塔選択手段と、
燃料ガス流路を、選択した最適充填塔側に、適宜、切り替える流路切替手段と、
を備えて成ることを特徴とする燃料ガスの発熱量調整装置。
A supply line for supplying fuel gas in which the calorific value of the component fluctuates over time;
A parallel pipe section having a plurality of branch pipes in the supply line path;
A plurality of packed towers arranged in each branch pipe path and filled with adsorbents having different adsorption characteristics;
Optimum packed tower selection means for selecting a packed tower that minimizes the calorific value fluctuation amount at the outlet of the packed tower using the difference in the composition fluctuation amount with respect to the combination of the fuel gas composition ratio and the environmental temperature for each adsorbent;
A flow path switching means for appropriately switching the fuel gas flow path to the selected optimum packed tower side; and
An apparatus for adjusting a calorific value of fuel gas, comprising:
前記燃料ガスが、メタンを主成分とする都市ガスであることを特徴とする請求項3に記載の発熱量調整装置。 The calorific value adjusting device according to claim 3, wherein the fuel gas is a city gas mainly composed of methane. 請求項1又は2に記載の混合ガス供給装置において、
混合ガスの組成変動に対応して、組成変動幅を最小にする充填塔に、適宜、流路を切り替えることを特徴とする組成変動調整方法。
The mixed gas supply apparatus according to claim 1 or 2,
A composition fluctuation adjusting method, wherein the flow path is appropriately switched to a packed tower that minimizes the composition fluctuation width corresponding to the composition fluctuation of the mixed gas.
請求項3又は4に記載の発熱量調整装置において、
燃料ガスの発熱量変動に対応して、発熱量変動幅を最小にする充填塔に、適宜、流路を切り替えることを特徴とする発熱量変動調整方法。

In the calorific value adjusting device according to claim 3 or 4,
A calorific value fluctuation adjusting method, wherein the flow path is appropriately switched to a packed tower that minimizes the calorific value fluctuation range in response to the calorific value fluctuation of the fuel gas.

JP2007076597A 2007-03-23 2007-03-23 Mixed gas supply device, calorific value adjustment device, and variation adjustment method thereof Active JP5001041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007076597A JP5001041B2 (en) 2007-03-23 2007-03-23 Mixed gas supply device, calorific value adjustment device, and variation adjustment method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007076597A JP5001041B2 (en) 2007-03-23 2007-03-23 Mixed gas supply device, calorific value adjustment device, and variation adjustment method thereof

Publications (2)

Publication Number Publication Date
JP2008231357A true JP2008231357A (en) 2008-10-02
JP5001041B2 JP5001041B2 (en) 2012-08-15

Family

ID=39904549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007076597A Active JP5001041B2 (en) 2007-03-23 2007-03-23 Mixed gas supply device, calorific value adjustment device, and variation adjustment method thereof

Country Status (1)

Country Link
JP (1) JP5001041B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026144A (en) * 2009-07-21 2011-02-10 Tokyo Gas Co Ltd Activated carbon for suppressing heat quantity fluctuation of fuel gas, and method and system for suppressing heat quantity fluctuation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214565A (en) * 2007-03-07 2008-09-18 Tokyo Gas Co Ltd Apparatus for supplying mixed gas and method for adjusting variation in composition in the apparatus for supplying mixed gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214565A (en) * 2007-03-07 2008-09-18 Tokyo Gas Co Ltd Apparatus for supplying mixed gas and method for adjusting variation in composition in the apparatus for supplying mixed gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026144A (en) * 2009-07-21 2011-02-10 Tokyo Gas Co Ltd Activated carbon for suppressing heat quantity fluctuation of fuel gas, and method and system for suppressing heat quantity fluctuation

Also Published As

Publication number Publication date
JP5001041B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP5103030B2 (en) Mixed gas supply device, calorific value adjustment device, and calorific value adjustment method in mixed gas supply device
JP5653563B2 (en) LNG base
JP5001031B2 (en) Mixed gas supply device and composition variation adjustment method in mixed gas supply device
JP4407913B2 (en) Liquefied natural gas vapor supply system
JP5001041B2 (en) Mixed gas supply device, calorific value adjustment device, and variation adjustment method thereof
JP2011026144A (en) Activated carbon for suppressing heat quantity fluctuation of fuel gas, and method and system for suppressing heat quantity fluctuation
JP6716048B1 (en) Heat quantity fluctuation suppressing device, heat quantity fluctuation suppressing method
JP5042364B2 (en) Gas supply system and supply method
JP4931781B2 (en) Mixed gas supply device and method for suppressing composition variation
JP5382583B2 (en) Gas odorant
JP2016191024A (en) Gas control device, combustion system and program
JP4823949B2 (en) Mixed gas storage container
JP5313737B2 (en) Mixed gas supply device and composition variation adjustment method in mixed gas supply device
JP5207522B2 (en) Mixing gas composition fluctuation suppression device
JP4859724B2 (en) Mixed gas supply device and method for adjusting composition variation thereof
JP4907845B2 (en) Method for adjusting calorific value of delivered fuel gas, method for stabilizing heat quantity, and apparatus therefor
JP5160627B2 (en) Method for adjusting calorific value of delivered fuel gas and calorific value adjusting device
JP4823861B2 (en) Gas storage and delivery method and apparatus
JP4812194B2 (en) Natural gas adsorption storage device and adsorption storage method
US20140338393A1 (en) Methods for blending liquefied natural gas
Cheung Green energy recovery by blending treated biogas into town gas pipeline networks
JP2002327897A (en) Natural gas adsorbing and storing device and method
Liss et al. Fuel issues for liquefied natural gas vehicles
Jokar et al. Compressed, liquefied, and adsorbed natural gas processes simulation and modeling
JP2003055674A (en) Fuel composition for combustor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120517

R150 Certificate of patent or registration of utility model

Ref document number: 5001041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250