JP2008208000A - Corrosion resistant member and gas nozzle using the same - Google Patents

Corrosion resistant member and gas nozzle using the same Download PDF

Info

Publication number
JP2008208000A
JP2008208000A JP2007047342A JP2007047342A JP2008208000A JP 2008208000 A JP2008208000 A JP 2008208000A JP 2007047342 A JP2007047342 A JP 2007047342A JP 2007047342 A JP2007047342 A JP 2007047342A JP 2008208000 A JP2008208000 A JP 2008208000A
Authority
JP
Japan
Prior art keywords
corrosion
aluminum nitride
resistant member
gas nozzle
crystal particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007047342A
Other languages
Japanese (ja)
Other versions
JP4884259B2 (en
Inventor
Kazuhiro Koto
数広 小藤
Yoshihiro Okawa
善裕 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007047342A priority Critical patent/JP4884259B2/en
Publication of JP2008208000A publication Critical patent/JP2008208000A/en
Application granted granted Critical
Publication of JP4884259B2 publication Critical patent/JP4884259B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Ceramic Products (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a corrosion resistant member such as a gas nozzle causing little occurrence of particles. <P>SOLUTION: The corrosion resistant member comprises a plurality of columnar aluminum nitride crystal grains forming a part of a substrate surface composed of an aluminum nitride sintered compact, and has a region where the maximum height difference between the peak of each columnar aluminum nitride crystal grain and the peak of each aluminum nitride crystal grain with a shape other than a columnar shape in all the directions of 20 μm with the above peak as the center is ≥4 μm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は窒化アルミニウム質焼結体からなる耐食性部材、およびこれを用いたガスノズルに関するものである。   The present invention relates to a corrosion-resistant member made of an aluminum nitride sintered body and a gas nozzle using the same.

窒化アルミニウム質焼結体は、CVD(chemical vapor deposition)装置などの薄膜形成装置に反応ガスを供給するためのガスノズルなどの耐食性部材や、耐食性部材の基体に用いられている。   The aluminum nitride sintered body is used for a corrosion resistant member such as a gas nozzle for supplying a reactive gas to a thin film forming apparatus such as a chemical vapor deposition (CVD) apparatus, or a base of a corrosion resistant member.

特許文献1には、窒化アルミニウム粉末と焼結助剤とを含む成形体を焼成し、得られた窒化アルミニウム質焼結体を研磨加工後、焼成温度よりも50℃以上低い温度で熱処理して得られた窒化アルミニウム質焼結体が記載されている。この熱処理によって、研磨加工の際に生成したマイクロクラック(ファインクラック)に焼結助剤の液相が充填されて強度が向上することができるとされている。
特開2001−102476号公報
In Patent Document 1, a molded body containing an aluminum nitride powder and a sintering aid is fired, and the obtained aluminum nitride-based sintered body is polished and then heat-treated at a temperature lower by 50 ° C. than the firing temperature. The resulting aluminum nitride sintered body is described. By this heat treatment, it is said that the liquid phase of the sintering aid is filled in the microcracks (fine cracks) generated during the polishing process, and the strength can be improved.
JP 2001-102476 A

しかしながら、特許文献1の窒化アルミニウム質焼結体は、窒化アルミニウムよりも耐食性の悪い焼結助剤が表面に多く形成されているため、耐食性が悪くなるという問題があった。   However, the aluminum nitride sintered body of Patent Document 1 has a problem that the corrosion resistance is deteriorated because a large amount of a sintering aid having a lower corrosion resistance than aluminum nitride is formed on the surface.

たとえば、シランガスなどの腐食性ガスはプラズマ中で、酸素と反応して珪素の酸化物となり、窒素と反応して珪素の窒化物となり、これらの酸化物や窒化物などの反応物が耐食面10に成膜されて堆積する。この反応物の堆積は、半導体製造過程におけるシリコンウエハへの成膜過程で、腐食性ガスを供給するためのガスノズルの外壁面などに起こる。堆積した反応物は、半導体製造装置に発生する機械的な振動、腐食性ガスの流れ、プラズマの熱による加熱などによって、一部が剥離するおそれがあり、パーティクルとなってシリコンウエハ上に飛散すると、シリコンウエハに成膜される珪素の酸化物や窒化物にピンホールや突起が発生してシリコンウエハの品質が低下するので、反応物が耐食性部材に厚く堆積しても、反応物が剥離しにくいようにする必要がある。   For example, a corrosive gas such as silane gas reacts with oxygen to form silicon oxide in plasma and reacts with nitrogen to form silicon nitride. These oxides and nitrides react with the corrosion-resistant surface 10. Is deposited and deposited. This deposition of the reaction product occurs on the outer wall surface of a gas nozzle for supplying a corrosive gas in a film formation process on a silicon wafer in a semiconductor manufacturing process. The deposited reactant may be partly peeled off due to mechanical vibrations generated in the semiconductor manufacturing equipment, the flow of corrosive gas, heating by plasma heat, etc. In addition, pinholes and protrusions occur in silicon oxides and nitrides deposited on silicon wafers, reducing the quality of the silicon wafer, so that the reactants are peeled off even if the reactants are deposited thick on the corrosion-resistant member. It needs to be difficult.

本発明はこの問題点に鑑み、耐食性に優れるとともに、表面からパーティクルが発生しにくい耐食性部材を提供することを目的とする。さらに、熱伝導率の高い耐食性部材を提供することを目的とする。   In view of this problem, an object of the present invention is to provide a corrosion-resistant member that is excellent in corrosion resistance and hardly generates particles from the surface. Furthermore, it aims at providing a corrosion-resistant member with high heat conductivity.

上記に鑑みて本発明は、窒化アルミニウム質焼結体からなる基体の表面の一部をなす複数の柱状の窒化アルミニウム結晶粒子を有し、前記柱状の窒化アルミニウム結晶粒子の頂点と、該頂点を中心とした20μm四方における柱状以外の窒化アルミニウム結晶粒子の頂点との最大高低差が4μm以上である領域を有することを特徴とする。   In view of the above, the present invention has a plurality of columnar aluminum nitride crystal particles forming a part of the surface of a substrate made of an aluminum nitride-based sintered body, and the apexes of the columnar aluminum nitride crystal particles and the apexes It has a region having a maximum height difference of 4 μm or more from the apex of aluminum nitride crystal grains other than the columnar shape in the center of 20 μm square.

さらに、前記基体の表面200μm四方中において、前記柱状の窒化アルミニウム結晶粒子を1個以上有することを特徴とする。   Further, the substrate has one or more columnar aluminum nitride crystal particles in a surface of 200 μm square.

さらに、前記窒化アルミニウム質焼結体中の酸素含有量が1質量%以下であることを特徴とする。   Furthermore, the oxygen content in the aluminum nitride sintered body is 1% by mass or less.

そして前記耐食性部材からなるガスノズルに適用できることを特徴とし、さらに、前記耐食性部材が内面を形成していることを特徴とする。   And it is applicable to the gas nozzle which consists of the said corrosion-resistant member, Furthermore, the said corrosion-resistant member forms the inner surface, It is characterized by the above-mentioned.

本発明によれば、反応物が剥離してパーティクルとなることが著しく抑制され、耐食面から発生するパーティクルを少なくすることができ、さらに、腐食性ガスによって腐蝕されにくい耐食性部材とすることができるとともに、耐食性部材の熱伝導率を高くすることができる。   According to the present invention, it is possible to remarkably suppress the reaction product from peeling and forming particles, to reduce particles generated from the corrosion-resistant surface, and to provide a corrosion-resistant member that is not easily corroded by corrosive gas. At the same time, the thermal conductivity of the corrosion-resistant member can be increased.

本発明を実施するための最良の形態について説明する。   The best mode for carrying out the present invention will be described.

図1は本発明の耐食性部材の耐食面を、走査型電子顕微鏡(SEM)を用いて斜め上方(耐食面に対して約30°の角度)から撮った写真の模式図である。   FIG. 1 is a schematic view of a photograph of the corrosion resistant surface of the corrosion resistant member of the present invention taken obliquely from above (an angle of about 30 ° with respect to the corrosion resistant surface) using a scanning electron microscope (SEM).

耐食性部材20は、シランガス等の腐食性ガスに曝される耐食面10を有し、窒化アルミニウム質焼結体からなる耐食性部材20であって、耐食面10に他の結晶粒子14より表面側に突出して存在する複数の柱状の窒化アルミニウムからなる結晶粒子12を有している。ここで図1は、結晶粒子12の長手方向の端部16が耐食面10から突出していることを示している。   The corrosion-resistant member 20 has a corrosion-resistant surface 10 that is exposed to a corrosive gas such as silane gas, and is a corrosion-resistant member 20 made of an aluminum nitride-based sintered body. It has crystal grains 12 made of a plurality of columnar aluminum nitrides that protrude. Here, FIG. 1 shows that the end 16 in the longitudinal direction of the crystal particle 12 protrudes from the corrosion-resistant surface 10.

本発明の耐食性部材20は、表面に突出して存在する複数の柱状の結晶粒子12が、耐食面10に堆積した腐食性ガスの反応物が剥離することを抑制するはたらきがあるので、反応物が剥離してパーティクルとなることを抑制し、耐食面10から発生するパーティクルを少なくすることができる。   In the corrosion-resistant member 20 of the present invention, the plurality of columnar crystal particles 12 projecting from the surface serve to suppress the separation of the corrosive gas reactant deposited on the corrosion-resistant surface 10. It can suppress that it peels and becomes a particle, and can reduce the particle which generate | occur | produces from the corrosion-resistant surface 10. FIG.

柱状の結晶粒子12は、耐食面10から突出している結晶粒子12を観察したとき、図2に示すL/Wの値が1.5以上の柱状の結晶粒子であり、さらに結晶粒子12の長手方向の一方の端部16が耐食面10から離れて存在しているものをいう。この結晶粒子12の形状が柱状であることは、走査型電子顕微鏡(SEM)を用いて耐食面10を観察することで確認することができる。   The columnar crystal particles 12 are columnar crystal particles having an L / W value of 1.5 or more shown in FIG. 2 when the crystal particles 12 protruding from the corrosion-resistant surface 10 are observed. This means that one end 16 of the direction exists away from the corrosion-resistant surface 10. It can be confirmed by observing the corrosion-resistant surface 10 using a scanning electron microscope (SEM) that the crystal particles 12 are columnar.

ここで、耐食面10には、耐食面10から突出していない結晶粒子14があり、結晶粒子14は柱状ではなく、例えばその表面形状は低背の山型形状からなるため、複数の結晶粒子14で形成される耐食面10の凹凸は、反応物の剥離を抑制する効果が殆どない。   Here, the corrosion-resistant surface 10 includes crystal particles 14 that do not protrude from the corrosion-resistant surface 10, and the crystal particles 14 are not columnar. For example, the surface shape is a low-profile mountain shape, and thus a plurality of crystal particles 14. The unevenness of the corrosion-resistant surface 10 formed by has almost no effect of suppressing the peeling of the reactant.

さらに柱状の結晶粒子12の平均の突出高さHは4μm以上であることが好ましい。結晶粒子12のそれぞれの突出高さHは、耐食面10をSEMで観察することにより測定することができる。耐食面10に対して角度が20°以内の斜め上方であって、かつ結晶粒子12の長手方向に対して垂直な方向から、耐食面10および結晶粒子12を含むSEM写真を撮り、突出高さHを求めることができる。結晶粒子12の突出高さの平均値は、少なくとも10個の結晶粒子12の突出高さHを測定し、これらの突出高さHの平均値とする。ここで、耐食面10に対して角度20°以内とすると厳密な意味での突出高さと相違する場合があるが、本発明において結晶粒子12の突出高さHはこのように測定するものとする。   Furthermore, the average protrusion height H of the columnar crystal particles 12 is preferably 4 μm or more. The protrusion height H of each crystal particle 12 can be measured by observing the corrosion-resistant surface 10 with an SEM. An SEM photograph including the corrosion-resistant surface 10 and the crystal particles 12 is taken from a direction perpendicular to the longitudinal direction of the crystal particles 12 with an angle of 20 ° or less with respect to the corrosion-resistant surface 10, and the protrusion height H can be obtained. The average value of the projecting heights of the crystal grains 12 is determined by measuring the projecting heights H of at least 10 crystal grains 12 and setting the average value of these projecting heights H. Here, if the angle is within 20 ° with respect to the corrosion-resistant surface 10, there is a case where the protruding height in a strict sense is different, but in the present invention, the protruding height H of the crystal grain 12 is measured in this way. .

さらに結晶粒子12のL/Wは2以上であることが好ましい。これによって、反応物が厚くなっても反応物を柱状結晶によるアンカー効果のはたらきにより強固に固定できることで、さらに反応物が剥がれにくくなるため、パーティクルの発生をさらに少なくすることができる。結晶粒子12のL/Wは、走査型電子顕微鏡を用いて耐食面10を観察することで確認することができる。図2は、結晶粒子12を走査型電子顕微鏡で観察し、そのL/Wを求める方法を示した模式図である。結晶粒子の長さLは、結晶粒子の長手方向の長さ(長径)、結晶粒子12の幅W(短径)は、長さLの半分のところの幅と規定することで、L/Wは求めることができる。なお、L/Wを測定する際は、結晶粒子12の長手方向に対して略垂直な方向から結晶粒子12を観察する。   Further, the L / W of the crystal particles 12 is preferably 2 or more. As a result, even when the reactant becomes thick, the reactant can be firmly fixed by the action of the anchor effect by the columnar crystals, and the reactant becomes more difficult to peel off, so that the generation of particles can be further reduced. The L / W of the crystal particles 12 can be confirmed by observing the corrosion-resistant surface 10 using a scanning electron microscope. FIG. 2 is a schematic diagram showing a method for observing the crystal particles 12 with a scanning electron microscope and obtaining the L / W. The length L of the crystal particles is defined as the length (long diameter) in the longitudinal direction of the crystal particles, and the width W (short diameter) of the crystal particles 12 is defined as a width at half the length L, thereby obtaining L / W Can be sought. When measuring L / W, the crystal particles 12 are observed from a direction substantially perpendicular to the longitudinal direction of the crystal particles 12.

さらに、結晶粒子12の大きさは平均でWが1μm以上、Lが3μm以上であることが好ましい。これにより、結晶粒子12の機械的強度が高まるので、反応物によって結晶粒子12に応力がかかっても結晶粒子12が破断したり亀裂が生じたりすることがなくなり、パーティクルの発生を特に抑制することができる。   Further, the average size of the crystal grains 12 is preferably such that W is 1 μm or more and L is 3 μm or more. As a result, the mechanical strength of the crystal particles 12 is increased, so that even if the crystal particles 12 are stressed by the reactant, the crystal particles 12 are not broken or cracked, and the generation of particles is particularly suppressed. Can do.

さらに、柱状の結晶粒子12の平均の突出角度αは平均で30°以上であることが好ましい。これにより、アンカー効果が高まることで反応物がより強固に固定されるため、パーティクルの発生を最も少なくすることができる。   Furthermore, the average protrusion angle α of the columnar crystal particles 12 is preferably 30 ° or more on average. Thereby, since the reactant is more firmly fixed by increasing the anchor effect, the generation of particles can be minimized.

結晶粒子12の平均の突出角度αは、次のようにして測定することができる。耐食面10に対して角度が20°以内の斜め上方であって、かつ結晶粒子12の長手方向に対して垂直な方向から結晶粒子12をSEM観察した状態で、耐食面10および結晶粒子12を含むSEM写真を撮り、この写真から突出角度αを測定する。結晶粒子12の突出角度αの平均値とは、10個の突出角度αの平均値とする。ここで、耐食面10に対して角度20°以内とすると厳密な意味での突出角度と相違する場合があるが、本発明において結晶粒子12の突出角度αはこのように測定するものとする。   The average protrusion angle α of the crystal particles 12 can be measured as follows. In a state where the crystal particles 12 are obliquely above the corrosion resistant surface 10 within an angle of 20 ° and observed from the direction perpendicular to the longitudinal direction of the crystal particles 12, the corrosion resistant surface 10 and the crystal particles 12 are A SEM photograph including the image is taken, and the protrusion angle α is measured from this photograph. The average value of the protrusion angles α of the crystal grains 12 is an average value of ten protrusion angles α. Here, if the angle is within 20 ° with respect to the corrosion-resistant surface 10, there is a case where the protruding angle in a strict sense is different, but in the present invention, the protruding angle α of the crystal grain 12 is measured in this way.

さらに、耐食性部材20を構成する窒化アルミニム質焼結体は、実質的に窒化アルミニウムのみからなることがさらに好ましい。この場合、結晶粒子12,14はいずれも窒化アルミニウムの結晶粒子からなる。これによって、耐食面10の全体を耐食性に優れた窒化アルミニウムの結晶で覆うことができるので、腐食性ガスによって特に腐蝕されにくい耐食性部材20とすることができる。   Further, it is more preferable that the aluminum nitride sintered body constituting the corrosion resistant member 20 is substantially made of only aluminum nitride. In this case, both of the crystal grains 12 and 14 are made of aluminum nitride crystal grains. As a result, the entire corrosion-resistant surface 10 can be covered with an aluminum nitride crystal having excellent corrosion resistance, so that the corrosion-resistant member 20 that is not particularly corroded by the corrosive gas can be obtained.

耐食性部材20が実質的に窒化アルミニウムのみからなることは、耐食性部材をCu−Kα線を用いたX線回折法により測定し、結晶相が窒化アルミニウムのみからなることで確認することができる。   It can be confirmed that the corrosion-resistant member 20 is substantially made only of aluminum nitride by measuring the corrosion-resistant member by an X-ray diffraction method using Cu-Kα rays and the crystal phase is made only of aluminum nitride.

さらに、耐食性部材20を構成する窒化アルミニム質焼結体は、実質的に窒化アルミニウムのみからなり、酸素含有量が1質量%以下であることが特に好ましい。これによって、耐食性部材20の熱伝導率を高くすることができる。耐食性部材20の熱伝導率が高いと、シリコンウエハへの成膜装置などに用いられる腐食性ガス供給用のガスノズルから腐食性ガスが供給される場合に、このガスノズルの加熱、冷却を早くすることができるので、シリコンウエハに成膜される膜厚を均一にすることができる。例えば、耐食性部材20の熱伝導率は60W/m・K以上であることが好ましい。   Furthermore, it is particularly preferable that the aluminum nitride sintered body constituting the corrosion-resistant member 20 is substantially made only of aluminum nitride and has an oxygen content of 1% by mass or less. Thereby, the thermal conductivity of the corrosion-resistant member 20 can be increased. When the thermal conductivity of the corrosion-resistant member 20 is high, when a corrosive gas is supplied from a gas nozzle for supplying a corrosive gas used in a film forming apparatus or the like on a silicon wafer, heating and cooling of the gas nozzle should be accelerated. Therefore, the film thickness formed on the silicon wafer can be made uniform. For example, the thermal conductivity of the corrosion-resistant member 20 is preferably 60 W / m · K or more.

熱伝導率は、レーザフラッシュ法を用いて熱拡散率を求め、熱拡散率と比重と比熱容量との積により得ることができる。   The thermal conductivity can be obtained by obtaining a thermal diffusivity using a laser flash method and multiplying the thermal diffusivity, specific gravity, and specific heat capacity.

耐食性部材20を構成する窒化アルミニウム質焼結体の酸素含有量は、ニッケル、錫の溶融金属を助燃剤として窒化アルミニム質焼結体を加熱、分解した際に発生する酸素を赤外吸収法により定量分析することで可能である。   The oxygen content of the aluminum nitride sintered body constituting the corrosion-resistant member 20 is determined by infrared absorption of oxygen generated when the aluminum nitride sintered body is heated and decomposed using a molten metal of nickel and tin as a combusting agent. This is possible by quantitative analysis.

本発明のガスノズルは、処理室内にシランガスなどの腐食性ガスを供給するために用いられ、耐食性部材20からなるものである。これによって、パーティクルの発生が少ないガスノズルとすることができるので、シリコンウエハなどの被処理物にパーティクルが堆積することを抑制できるガスノズルとすることができる。被処理物がシリコンウエハの場合、シリコンウエハにCVD法により薄膜を形成する際、ガスノズルからパーティクルが発生しにくいので、得られるシリコンウエハ上にパーティクルが付着することが抑制され、薄膜のピンホールなどを少なくすることが可能である。   The gas nozzle of the present invention is used to supply a corrosive gas such as silane gas into the processing chamber, and is composed of a corrosion-resistant member 20. Thereby, since it can be set as a gas nozzle with few generation | occurrence | production of a particle, it can be set as the gas nozzle which can suppress that a particle accumulates on to-be-processed objects, such as a silicon wafer. When the object to be processed is a silicon wafer, when forming a thin film on the silicon wafer by the CVD method, it is difficult for particles to be generated from the gas nozzle. Can be reduced.

図4に本発明ガスノズルの断面図を示す。   FIG. 4 shows a cross-sectional view of the gas nozzle of the present invention.

一般的にガスノズルは、ガスを噴出する口である噴射孔22、そしてその内壁面24、ガスを供給する供給孔26を有するものである。   In general, a gas nozzle has an injection hole 22 that is an outlet for ejecting gas, an inner wall surface 24 thereof, and a supply hole 26 for supplying gas.

本発明のガスノズルは反応物の剥離を少なくできるので、ガスノズルから放出されるガス中へのパーティクル量をも減らすことができる。これにより例えば、本発明のガスノズルをウエハ上に薄膜を形成させるCVD装置用のガスノズルとして用いた場合、ピンホールのさらに少ない高品質の薄膜が形成されたウエハを製造することができる。   Since the gas nozzle of the present invention can reduce the separation of reactants, the amount of particles into the gas discharged from the gas nozzle can also be reduced. Thus, for example, when the gas nozzle of the present invention is used as a gas nozzle for a CVD apparatus for forming a thin film on a wafer, a wafer on which a high-quality thin film with fewer pinholes can be produced.

耐食性部材20の製造方法は例えば次の通りである。耐食性部材20の形状が、噴出孔を有する筒状焼結体(ガスノズル)の場合を例にして説明する。   The manufacturing method of the corrosion-resistant member 20 is as follows, for example. The case where the shape of the corrosion-resistant member 20 is a cylindrical sintered body (gas nozzle) having ejection holes will be described as an example.

窒化アルミニウム粉末99〜99.99質量%と、焼結助剤として酸化イッテルビウム(Yb)、酸化ディスプロシウム(Dy)、酸化イットリウム(Y)、酸化エルビウム(Er)から選ばれる少なくとも1種の酸化物からなる粉末0.01〜1質量%とからなる混合粉末を出発原料として、この混合粉末に有機バインダーおよびエタノールを添加混合してスラリーを作製する。得られたスラリーを噴霧乾燥し、得られた顆粒をCIP成形(冷間等方加圧成形)し、得られた成形体を切削加工して筒状の成形体を作製する。この筒状の成形体を窒素ガス中、400〜800℃で0.5〜12時間熱処理して有機バインダーを脱脂した後、高純度の緻密質窒化アルミニウム焼結体からなる焼成用容器内に成形体を載置し、窒素ガス中、1850℃以上2000℃未満で1〜25時間、1次焼成することによって、密度が3.22g/cm以上、ガスノズルの噴射孔の粗孔をもつ窒化アルミニウム質の筒状1次焼結体(例:外形12mm、長さ45mm)を作製する。 99 to 99.99 mass% of aluminum nitride powder and ytterbium oxide (Yb 2 O 3 ), dysprosium oxide (Dy 2 O 3 ), yttrium oxide (Y 2 O 3 ), and erbium oxide (Er) as sintering aids 2 O 3 ) A powder comprising at least one oxide selected from 0.01 to 1% by mass is used as a starting material, and an organic binder and ethanol are added to and mixed with this mixed powder to produce a slurry. . The obtained slurry is spray-dried, the obtained granule is CIP-molded (cold isostatic pressing), and the obtained molded body is cut to produce a cylindrical molded body. This cylindrical shaped body is heat treated in nitrogen gas at 400 to 800 ° C. for 0.5 to 12 hours to degrease the organic binder, and then molded into a firing container made of a high-purity dense aluminum nitride sintered body. The body is placed and subjected to primary firing in nitrogen gas at 1850 ° C. or more and less than 2000 ° C. for 1 to 25 hours, so that the density is 3.22 g / cm 3 or more, and aluminum nitride having coarse holes of gas nozzle injection holes A quality cylindrical primary sintered body (example: outer diameter 12 mm, length 45 mm) is produced.

次に粗孔の穴径を精度良く仕上げるために、焼成後に室温まで冷却した後、タングステン製ワイヤー(例:線径φ0.398mm)に平均粒径1μmのダイヤモンド砥粒を塗布して、噴射孔の孔径が内径0.4±0.0004mmとなるように噴射孔22の内壁面24をワイヤーで研磨加工する。ワイヤー研磨加工後、高純度の緻密質窒化アルミニウム焼結体からなる焼成用容器にワイヤー研磨加工したものを載置し、窒素ガス中で、1次焼成よりも高い温度で2次焼成を行う。これにより、窒化アルミニウム質焼結体からなる耐食性部材20が得られる。   Next, in order to finish the hole diameter of the coarse hole with high accuracy, after cooling to room temperature after firing, diamond abrasive grains having an average particle diameter of 1 μm are applied to a tungsten wire (eg, wire diameter φ0.398 mm), and the injection hole The inner wall surface 24 of the injection hole 22 is polished with a wire such that the inner diameter of the injection hole 22 becomes 0.4 ± 0.0004 mm. After the wire polishing, the wire-polished one is placed in a firing container made of a high-purity dense aluminum nitride sintered body, and secondary firing is performed at a temperature higher than the primary firing in nitrogen gas. Thereby, the corrosion-resistant member 20 which consists of an aluminum nitride sintered body is obtained.

このように製造された耐食性部材20は、表面に他の結晶粒子14より表面側に突出して存在する複数の窒化アルミニウムからなる結晶粒子12を有している。この原因は明確ではないが、1次焼成後の焼結体の表面にあった窒化アルミニウムの結晶粒子が、2次焼成の過程で、固体から気体へ、さらに気体から固体へ昇華を繰り返すことで、結晶粒子12が表面から突出するものと考えられる。   The corrosion-resistant member 20 manufactured in this way has a plurality of crystal grains 12 made of aluminum nitride that protrude on the surface side from the other crystal grains 14 on the surface side. The cause of this is not clear, but the aluminum nitride crystal particles on the surface of the sintered body after the primary firing repeatedly sublimate from solid to gas and from gas to solid during the secondary firing. It is considered that the crystal particles 12 protrude from the surface.

結晶粒子12を柱状粒子とするには、上記の製造方法において、混合粉末の代わりに窒化アルミニウム粉末のみからなる粉末を用い、1次焼成の温度を1900℃以上1950℃未満、2次焼成の温度を1950以上2050℃以下とし、2次焼成の温度を1次焼成の温度よりも高くして製造する。結晶粒子12のL/Wを2以上とするには、1次焼成の温度を1950℃以上2000℃未満、2次焼成の温度を2000℃以上2050℃以下とする。また、これらの製造方法によって、実質的に窒化アルミニウムのみからなる耐食性部材を製造することができる。   In order to make the crystal particles 12 into columnar particles, in the manufacturing method described above, a powder consisting only of an aluminum nitride powder is used instead of the mixed powder, and the temperature of the primary firing is 1900 ° C. or higher and lower than 1950 ° C. Is made 1950 or more and 2050 ° C. or less, and the temperature of secondary baking is higher than the temperature of primary baking. In order to set the L / W of the crystal particles 12 to 2 or more, the primary firing temperature is set to 1950 ° C. or more and less than 2000 ° C., and the secondary firing temperature is set to 2000 ° C. or more and 2050 ° C. or less. Moreover, the corrosion-resistant member which consists only of aluminum nitride can be manufactured by these manufacturing methods.

さらに、耐食性部材20の酸素含有量を1質量%以下とするには、酸素含有量が1質量%以下の窒化アルミニウム粉末を用いる。   Furthermore, in order to set the oxygen content of the corrosion-resistant member 20 to 1% by mass or less, an aluminum nitride powder having an oxygen content of 1% by mass or less is used.

ガスノズルを製造する場合は、1次焼成の温度よりも2次焼成の温度を20℃以上高くすることが好ましい。これにより、ガスノズルの粗孔を研磨加工した際に発生する微細なクラックを2次焼成において無くすことができるため、クラックを起点として結晶粒子14が脱粒しにくくなるので、脱粒した結晶粒子14がパーティクルとなるおそれがなくなるからである。   When manufacturing a gas nozzle, it is preferable to make the temperature of secondary baking 20 degreeC or more higher than the temperature of primary baking. Thereby, since fine cracks generated when the rough holes of the gas nozzle are polished can be eliminated in the secondary firing, the crystal particles 14 are less likely to be degranulated starting from the cracks. This is because there is no risk of becoming.

本発明の実施例の試料は以下の要領で作成した。   The sample of the Example of this invention was created in the following ways.

平均粒径1.5μmの窒化アルミニウム粉末と、酸化イットリウム(Y)または酸化エルビウム(Er)の粉末とからなる混合粉末、または、窒化アルミニウム粉末のみを出発原料として、出発原料に有機バインダーおよびエタノールを添加混合してスラリーを作製した。得られたスラリーを噴霧乾燥し、得られた顆粒をCIP成形(冷間等方加圧成形)し、得られた成形体を切削加工して筒状の成形体を複数個作製した。得られた筒状の成形体を窒素ガス中、700℃で5時間熱処理して脱脂した後、高純度の緻密質窒化アルミニウム焼結体からなる焼成用容器内に成形体を載置し、窒素ガス中で1次焼成することによって、密度が3.22g/cm以上、ガスノズルの噴射孔の粗孔をもつ窒化アルミニウム質の筒状1次焼結体(例:外形12mm、長さ45mm)を作製した。なお、出発原料として焼結助剤である酸化物を用いた場合、混合粉末中に占める窒化アルミニウム粉末の割合は、100%から焼結助剤である酸化物の割合(%)を引いたものである。 A mixed powder composed of an aluminum nitride powder having an average particle size of 1.5 μm and a powder of yttrium oxide (Y 2 O 3 ) or erbium oxide (Er 2 O 3 ), or only aluminum nitride powder as a starting material. An organic binder and ethanol were added to and mixed with each other to prepare a slurry. The obtained slurry was spray-dried, the obtained granule was CIP-molded (cold isostatic pressing), and the resulting molded product was cut to produce a plurality of cylindrical molded products. The obtained cylindrical molded body was degreased by heat treatment in nitrogen gas at 700 ° C. for 5 hours, and then the molded body was placed in a firing container made of a high-purity dense aluminum nitride sintered body. A primary sintered body made of aluminum nitride having a density of 3.22 g / cm 3 or more and rough holes of gas nozzle injection holes by primary firing in gas (eg, 12 mm in outer diameter, 45 mm in length) Was made. In addition, when the oxide that is a sintering aid is used as a starting material, the proportion of the aluminum nitride powder in the mixed powder is 100% minus the proportion (%) of the oxide that is a sintering aid. It is.

次に粗孔の穴径を精度良く仕上げるために、焼成後に室温まで冷却した後、線径0.398mmのタングステン製ワイヤーに平均粒径1μmのダイヤモンド砥粒を塗布して、噴射孔22の孔径が内径0.4±0.0004mmとなるように噴射孔22の内壁面24をワイヤーで研磨加工した。ワイヤー研磨加工後、高純度の緻密質窒化アルミニウム焼結体からなる焼成用容器にワイヤー研磨加工したものを載置し、窒素ガス中で2次焼成し、本発明の試料であるガスノズルを作製した。その他の条件は表1に示す通りとした。   Next, in order to finish the hole diameter of the rough hole with high accuracy, after cooling to room temperature after firing, diamond abrasive grains having an average particle diameter of 1 μm are applied to a tungsten wire having a wire diameter of 0.398 mm, and the hole diameter of the injection holes 22 The inner wall surface 24 of the injection hole 22 was polished with a wire so that the inner diameter became 0.4 ± 0.0004 mm. After the wire polishing, the wire-polished one was placed in a firing container made of a high-purity dense aluminum nitride sintered body, and was secondarily fired in nitrogen gas to produce a gas nozzle that was a sample of the present invention. . Other conditions were as shown in Table 1.

得られた本発明の試料を次のようにして評価した。試料に含まれる希土類元素をICP発光分光分析により分析した結果、出発原料中の希土類元素の含有量と同じであった。結晶粒子12が窒化アルミニウムであることは微少部X線回折法により測定して確認した。突出した柱状の結晶粒子が複数あることは、試料の外壁面28を走査型電子顕微鏡(SEM)で観察して確認した。結晶粒子12のL/Wは、結晶粒子10個を選びそれぞれの長径Lの平均値、短径Wの平均値を求め、Lの平均値をWの平均値で割って求めた。試料に含まれる結晶粒子12の突出高さHの平均値はSEM写真から求めた。試料の酸素含有量はLECO株式会社のTC−600型分析装置を用いて測定した。試料を切り出してレーザフラッシュ法を用いて熱拡散率を求め、熱拡散率と比重と比熱容量との積により熱伝導率を求めた。   The obtained sample of the present invention was evaluated as follows. As a result of analyzing the rare earth element contained in the sample by ICP emission spectroscopic analysis, it was the same as the content of the rare earth element in the starting material. It was confirmed by measuring by microscopic X-ray diffraction that the crystal grains 12 were aluminum nitride. The presence of a plurality of protruding columnar crystal particles was confirmed by observing the outer wall surface 28 of the sample with a scanning electron microscope (SEM). The L / W of the crystal particles 12 was determined by selecting 10 crystal particles, calculating the average value of the major axis L and the average value of the minor axis W, and dividing the average value of L by the average value of W. The average value of the protrusion height H of the crystal particles 12 included in the sample was obtained from the SEM photograph. The oxygen content of the sample was measured using a TC-600 type analyzer manufactured by LECO Corporation. A sample was cut out to obtain the thermal diffusivity using a laser flash method, and the thermal conductivity was obtained from the product of the thermal diffusivity, specific gravity and specific heat capacity.

次に本発明のガスノズルで成膜するにあたり、クラス1000より高いレベルのクリーンルームで28kHz、1200Wの洗浄漕に、本発明の試料(ガスノズル)と純水を入れ、粗洗浄と仕上げ洗浄とに分けて順に各5分間超音波洗浄を行い乾燥した。乾燥後の試料8個をCVD装置の容器内に取付け、直径300mmのダミーのシリコンウエハをチャンバー内に固定し、次のようにしてウエハ上にシリコンの酸化膜を形成した。高真空に保持されたCVD装置の容器内にシリコンウエハを載置し、シランガス(SiHガス)を150SCCM(標準立方センチメートル毎分)、酸素ガスを900SCCMの流量で導入し、容器内の圧力を0.13Paとし、ウエハ温度を370℃に保持した。この状態で高周波電源を用いて2.45GHz、1.8kWの高周波を容器内に導入してシランガス、酸素ガスのプラズマを発生させ、300秒間保持した。これにより、シリコンウエハ上にシリコンの酸化膜が形成された。その後、シランガスと酸素ガスの供給を止めてプラズマ生成を停止した。 Next, when forming a film with the gas nozzle of the present invention, the sample (gas nozzle) of the present invention and pure water are placed in a cleaning chamber of 28 kHz and 1200 W in a clean room higher than class 1000, and divided into rough cleaning and finish cleaning. In turn, each was subjected to ultrasonic cleaning for 5 minutes and dried. Eight dried samples were mounted in a CVD apparatus container, a dummy silicon wafer having a diameter of 300 mm was fixed in the chamber, and a silicon oxide film was formed on the wafer as follows. A silicon wafer is placed in a container of a CVD apparatus maintained at a high vacuum, silane gas (SiH 4 gas) is introduced at a flow rate of 150 SCCM (standard cubic centimeter per minute), and oxygen gas is introduced at a flow rate of 900 SCCM, and the pressure in the container is reduced to 0. The wafer temperature was kept at 370 ° C. In this state, a high frequency of 2.45 GHz and 1.8 kW was introduced into the container using a high frequency power source to generate plasma of silane gas and oxygen gas and held for 300 seconds. As a result, a silicon oxide film was formed on the silicon wafer. Thereafter, supply of silane gas and oxygen gas was stopped to stop plasma generation.

試料であるガスノズルを取り外し、パーティクルの発生量を次のようにして測定した。まず、クラス1000より高いレベルのクリーンルームで28kHz、1200Wの洗浄漕に、本発明の試料と純水を入れ、粗洗浄と仕上げ洗浄とに分けて順に各5分間超音波洗浄を行った。超音波洗浄機(本多電子W−113)の浴槽に0.1μmフィルターを通して十分脱気した純水3Lを注ぎ、仕上げ洗浄後の試料を、樹脂製の釣り糸でぶらさげて超音波洗浄機の浴槽に触れないように純水中に浸着させた。このように浸漬させた状態で、周波数45kHz、30秒間超音波を印加した。超音波印加後に浴槽内にあるパーティクルを含む純水をサンプリングした。サンプリングした水に含まれるパーティクルの個数を、液中パーティクル測定装置(PARTICLE MEASURING SYSTEMS CLS−700)を用いて測定した。この測定において、粒径が0.2μm以上、1.0μm以上のそれぞれのパーティクルの個数の測定を行った。測定したパーティクルの個数は、試料表面の面積1cm当たりのパーティクルの発生個数に換算し、パーティクルの発生量(個数/cm)とした。 The sample gas nozzle was removed, and the amount of particles generated was measured as follows. First, the sample of the present invention and pure water were placed in a 28 kHz, 1200 W cleaning bowl in a clean room of a higher level than class 1000, and ultrasonic cleaning was performed for 5 minutes each in order, divided into rough cleaning and finishing cleaning. Pour 3 L of pure water sufficiently degassed through a 0.1 μm filter into the bathtub of an ultrasonic cleaner (Honda Electronics W-113), and hang the sample after finishing cleaning with a resin fishing line. Soaked in pure water so as not to touch. In the soaked state, ultrasonic waves were applied at a frequency of 45 kHz for 30 seconds. Pure water containing particles in the bath was sampled after application of ultrasonic waves. The number of particles contained in the sampled water was measured using an in-liquid particle measuring device (PARTICLE MEASURING SYSTEMS CLS-700). In this measurement, the number of each particle having a particle size of 0.2 μm or more and 1.0 μm or more was measured. The measured number of particles was converted to the number of particles generated per 1 cm 2 of the surface area of the sample, and the amount of particles generated (number / cm 2 ) was used.

結果を表1に示す。

Figure 2008208000
The results are shown in Table 1.
Figure 2008208000

本発明の試料No.1〜12は、突出した結晶粒子12が複数観察され、パーティクルの発生が少なかった。このうち結晶粒子12が柱状粒子からなる試料No.5〜12は、さらにパーティクルの発生が少なかった。特にL/Wが2以上の試料No.7〜12は特にパーティクルの発生が少なかった。酸素含有量が0.3質量%以下の試料No.3−8は、熱伝導率が68〜91W/m・Kとなり、本発明の試料において熱伝導率が高かった。   Sample No. of the present invention. In Nos. 1 to 12, a plurality of protruding crystal particles 12 were observed, and the generation of particles was small. Among these, the sample No. 1 in which the crystal particles 12 are columnar particles is used. No. 5 to 12 had fewer particles. In particular, sample No. with L / W of 2 or more. 7 to 12 had particularly few particles. Sample No. having an oxygen content of 0.3 mass% or less. 3-8 had a thermal conductivity of 68 to 91 W / m · K, and the thermal conductivity of the sample of the present invention was high.

次に比較例として、本発明の範囲外の試料No.13〜16は、実施例の試料と比べてパーティクルが非常に多く発生した。   Next, as a comparative example, a sample No. outside the scope of the present invention was used. In Nos. 13 to 16, very many particles were generated as compared with the sample of the example.

本発明の耐食性部材の耐食面の表面を斜め上方から見て拡大した表面模式図である。It is the surface schematic diagram which expanded the surface of the corrosion-resistant surface of the corrosion-resistant member of this invention seeing from diagonally upward. 本発明の耐食性部材の耐食面にある柱状の結晶粒子のL/Wを求める方法を示す模式断面図である。It is a schematic cross section which shows the method of calculating | requiring L / W of the columnar crystal grain in the corrosion-resistant surface of the corrosion-resistant member of this invention. LとWの関係を示す模式図である。It is a schematic diagram which shows the relationship between L and W. 本発明のガスノズルの噴出孔を含む部位を拡大した断面図である。It is sectional drawing to which the site | part containing the ejection hole of the gas nozzle of this invention was expanded.

符号の説明Explanation of symbols

10:耐食面
12、14:結晶粒子
16:端部
20:耐食性部材
22:噴射孔
24:内壁面
26:供給孔
H:突出高さ
L:長さ
W:幅
10: Corrosion resistant surface 12, 14: Crystal particle 16: End portion 20: Corrosion resistant member 22: Injection hole 24: Inner wall surface 26: Supply hole H: Projection height L: Length W: Width

Claims (5)

窒化アルミニウム質焼結体からなる基体の表面の一部をなす複数の柱状の窒化アルミニウム結晶粒子を有し、前記柱状の窒化アルミニウム結晶粒子の頂点と、該頂点を中心とした20μm四方における柱状以外の窒化アルミニウム結晶粒子の頂点との最大高低差が4μm以上である領域を有することを特徴とする耐食性部材。 A plurality of columnar aluminum nitride crystal particles forming a part of the surface of a substrate made of an aluminum nitride sintered body, and having a vertex other than the columnar shape in a 20 μm square centering on the vertex of the columnar aluminum nitride crystal particle A corrosion-resistant member having a region where the maximum height difference from the apex of the aluminum nitride crystal particles is 4 μm or more. 前記基体の表面200μm四方中において、前記柱状の窒化アルミニウム結晶粒子を1個以上有することを特徴とする請求項1に記載の耐食性部材。 2. The corrosion-resistant member according to claim 1, comprising one or more columnar aluminum nitride crystal particles in a surface of 200 μm square of the base. 前記窒化アルミニウム質焼結体中の酸素含有量が1質量%以下であることを特徴とする請求項1または2に記載の耐食性部材。 The corrosion-resistant member according to claim 1 or 2, wherein an oxygen content in the aluminum nitride sintered body is 1% by mass or less. 請求項1〜3のいずれかに記載の耐食性部材からなることを特徴とするガスノズル。 A gas nozzle comprising the corrosion-resistant member according to claim 1. 前記耐食性部材が内面を形成していることを特徴とする請求項4に記載のガスノズル。 The gas nozzle according to claim 4, wherein the corrosion-resistant member forms an inner surface.
JP2007047342A 2007-02-27 2007-02-27 Corrosion resistant member and gas nozzle for thin film forming apparatus using the same Expired - Fee Related JP4884259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007047342A JP4884259B2 (en) 2007-02-27 2007-02-27 Corrosion resistant member and gas nozzle for thin film forming apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007047342A JP4884259B2 (en) 2007-02-27 2007-02-27 Corrosion resistant member and gas nozzle for thin film forming apparatus using the same

Publications (2)

Publication Number Publication Date
JP2008208000A true JP2008208000A (en) 2008-09-11
JP4884259B2 JP4884259B2 (en) 2012-02-29

Family

ID=39784640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007047342A Expired - Fee Related JP4884259B2 (en) 2007-02-27 2007-02-27 Corrosion resistant member and gas nozzle for thin film forming apparatus using the same

Country Status (1)

Country Link
JP (1) JP4884259B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013173181A (en) * 2012-02-27 2013-09-05 Nisshin Steel Co Ltd Stainless steel diffusion bonded product and method of manufacturing the same
WO2017073679A1 (en) * 2015-10-30 2017-05-04 京セラ株式会社 Shower plate, semiconductor manufacturing apparatus, and shower plate manufacturing method
WO2020179637A1 (en) * 2019-03-01 2020-09-10 京セラ株式会社 Ceramic structure and supporting mechanism which is provided with said ceramic structure
JPWO2021060180A1 (en) * 2019-09-27 2021-04-01

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04331006A (en) * 1991-02-28 1992-11-18 Sumitomo Electric Ind Ltd Tool of surface-coated silicon-nitride sintered body
JP2000143348A (en) * 1998-10-30 2000-05-23 Kyocera Corp Aluminum nitride sintered compact and its production and member for apparatus for producing semiconductor using the same
JP2005167727A (en) * 2003-12-03 2005-06-23 Murata Mach Ltd Original reading apparatus
JP2005175508A (en) * 2000-01-20 2005-06-30 Sumitomo Electric Ind Ltd Gas shower body for semiconductor manufacturing device
JP2008013399A (en) * 2006-07-05 2008-01-24 Kyocera Corp Aluminum nitride based sintered compact and gas nozzle using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04331006A (en) * 1991-02-28 1992-11-18 Sumitomo Electric Ind Ltd Tool of surface-coated silicon-nitride sintered body
JP2000143348A (en) * 1998-10-30 2000-05-23 Kyocera Corp Aluminum nitride sintered compact and its production and member for apparatus for producing semiconductor using the same
JP2005175508A (en) * 2000-01-20 2005-06-30 Sumitomo Electric Ind Ltd Gas shower body for semiconductor manufacturing device
JP2005167727A (en) * 2003-12-03 2005-06-23 Murata Mach Ltd Original reading apparatus
JP2008013399A (en) * 2006-07-05 2008-01-24 Kyocera Corp Aluminum nitride based sintered compact and gas nozzle using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013173181A (en) * 2012-02-27 2013-09-05 Nisshin Steel Co Ltd Stainless steel diffusion bonded product and method of manufacturing the same
WO2017073679A1 (en) * 2015-10-30 2017-05-04 京セラ株式会社 Shower plate, semiconductor manufacturing apparatus, and shower plate manufacturing method
CN108352319A (en) * 2015-10-30 2018-07-31 京瓷株式会社 The manufacturing method of shower plate, semiconductor manufacturing apparatus and shower plate
JPWO2017073679A1 (en) * 2015-10-30 2018-09-27 京セラ株式会社 Shower plate, semiconductor manufacturing apparatus, and shower plate manufacturing method
US10920318B2 (en) 2015-10-30 2021-02-16 Kyocera Corporation Shower plate, semiconductor manufacturing apparatus, and method for manufacturing shower plate
WO2020179637A1 (en) * 2019-03-01 2020-09-10 京セラ株式会社 Ceramic structure and supporting mechanism which is provided with said ceramic structure
JPWO2020179637A1 (en) * 2019-03-01 2021-12-23 京セラ株式会社 A ceramic structure and a support mechanism comprising the ceramic structure.
JP7204879B2 (en) 2019-03-01 2023-01-16 京セラ株式会社 CERAMIC STRUCTURE AND SUPPORT MECHANISM INCLUDING THE CERAMIC STRUCTURE
JPWO2021060180A1 (en) * 2019-09-27 2021-04-01
WO2021060180A1 (en) * 2019-09-27 2021-04-01 京セラ株式会社 Part for plasma processing apparatus, manufacturing method thereof, and plasma processing apparatus
JP7329610B2 (en) 2019-09-27 2023-08-18 京セラ株式会社 Member for plasma processing apparatus, manufacturing method thereof, and plasma processing apparatus

Also Published As

Publication number Publication date
JP4884259B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
CN100545304C (en) The ceramic member that is used for semiconductor processing equipment
JP3362113B2 (en) Corrosion-resistant member, wafer mounting member, and method of manufacturing corrosion-resistant member
JP6046752B2 (en) Gas nozzle and plasma apparatus using the same
JP4884259B2 (en) Corrosion resistant member and gas nozzle for thin film forming apparatus using the same
KR102409290B1 (en) Electrode plate for plasma processing apparatus and method of regenerating electrode plate for plasma processing apparatus
JP3618048B2 (en) Components for semiconductor manufacturing equipment
US20020155940A1 (en) Corrosion-resistive ceramic materials, method of producing the same, and members for semiconductor manufacturing
JP7112491B2 (en) Ceramic sintered bodies and members for plasma processing equipment
KR102530856B1 (en) Gas nozzle, manufacturing method of gas nozzle, and plasma processing apparatus
KR20090101245A (en) Ceramic member and corrosion-resistant member
JP4641609B2 (en) Corrosion resistant material
JP3808245B2 (en) Chamber component for semiconductor manufacturing
CN117440939A (en) Yttria-zirconia sintered ceramic for plasma resistant material
JP2007290933A (en) Corrosion-resistant member, its manufacturing method and semiconductor/liquid crystal manufacturing apparatus using the same
JP3500278B2 (en) Corrosion resistant materials for semiconductor manufacturing
JP3769416B2 (en) Components for plasma processing equipment
JP2000239066A (en) Corrosionproof member and its production, and member for plasma treatment device using the same
JP7231367B2 (en) Alumina sintered body
JPH11278944A (en) Silicon nitride corrosion resistant member and its production
JP2008013399A (en) Aluminum nitride based sintered compact and gas nozzle using the same
JP7329610B2 (en) Member for plasma processing apparatus, manufacturing method thereof, and plasma processing apparatus
JP2005167227A (en) Gas jet head, its manufacturing method, semiconductor manufacturing device, and corrosion-resistant material
JP2002068864A (en) Plasma resistant member and method of manufacturing for the same
JP6861235B2 (en) A member for a plasma processing device and a plasma processing device including the member.
US20240010566A1 (en) Ceramic article, semiconductor apparatus for manufacturing a semiconductor structure and method of manufacturing a ceramic article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4884259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees