JP2008202414A - Exhaust emission control device of engine - Google Patents

Exhaust emission control device of engine Download PDF

Info

Publication number
JP2008202414A
JP2008202414A JP2007036161A JP2007036161A JP2008202414A JP 2008202414 A JP2008202414 A JP 2008202414A JP 2007036161 A JP2007036161 A JP 2007036161A JP 2007036161 A JP2007036161 A JP 2007036161A JP 2008202414 A JP2008202414 A JP 2008202414A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
nox catalyst
cycle
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007036161A
Other languages
Japanese (ja)
Other versions
JP4867694B2 (en
Inventor
Tomomi Watanabe
友巳 渡辺
Motokimi Fujii
幹公 藤井
Tatsuo Yamauchi
健生 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2007036161A priority Critical patent/JP4867694B2/en
Publication of JP2008202414A publication Critical patent/JP2008202414A/en
Application granted granted Critical
Publication of JP4867694B2 publication Critical patent/JP4867694B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device of an engine in which an S poisoning recovery performance is increased. <P>SOLUTION: This exhaust emission control device is used selectively between a first cycle W1 in which oxygen is supplied to an NOx catalyst 17 beyond the oxygen storage capacity of a catalytic converter rhodium 16, and a second cycle which is shorter than the first cycle W1 and in which oxygen is not supplied to the NOx catalyst 17 according to the oxygen storage capacity of the catalytic converter rhodium 16 as the cycle of fluctuation of the air-fuel ratio of the gas, when sulfur contents are removed from the front stage part 17a and the rear stage part 17b of the NOx catalyst 17. Consequently, a reduction atmosphere can be positively formed based on the second cycle W2 by promoting the oxidation reaction based on the first cycle W1 in the NOx catalyst 17. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、エンジンの排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an engine.

燃費性能の向上を図るリーンバーンエンジンではいわゆるNOx触媒が排気通路に備えられる。このNOx触媒はバリウムを主材とするNOx吸収剤を有し、空燃比がリーン(酸素過剰状態)のときに排ガス中のNOxを吸収し、空燃比がリッチ(酸素不足状態)になれば吸蔵していたNOxを還元・放出してNOxの浄化を行なう。   In a lean burn engine for improving fuel efficiency, a so-called NOx catalyst is provided in the exhaust passage. This NOx catalyst has a NOx absorbent mainly composed of barium, absorbs NOx in exhaust gas when the air-fuel ratio is lean (oxygen-excess state), and occludes when the air-fuel ratio becomes rich (oxygen-deficient state). NOx is reduced and released to purify NOx.

ところで、このNOx触媒には硫黄(S)被毒の問題がある。つまり燃料中のS成分等に基づきリーン空燃比排気中に硫黄酸化物(SOx)が含まれると、その排気中のSOxは、NOxと全く同様なメカニズムでNOx触媒に吸蔵、蓄積され、その吸蔵されたSOxに基づきNOxの吸蔵が阻害されることになっている。このため、この対策技術の一つとして、特許文献1に示すように、SOxをNOx触媒から放出できるようにすべく、NOx触媒を触媒前段部と触媒後段部とに分け、触媒前段部のS被毒回復処理時には、リーン空燃比排気とリッチ空燃比排気とを比較的短い周期で交互に供給し、触媒後段部のS被毒回復処理時には、前記周期よりも長い周期でリーン空燃比排気とリッチ空燃比排気とを交互に供給するものが提案されている。これによれば、NOx触媒にリーン空燃比排気とリッチ空燃比排気とを比較的短い切換え周期で供給することにより、主に触媒前段部を加熱、昇温することができ、NOx触媒にリーン空燃比排気とリッチ空燃比排気とを前記周期よりも長い切換え周期で供給することにより、主に触媒後段部を加熱、昇温することができることになり、触媒前段部及び触媒後段部のS被毒回復処理時の温度条件を好ましいものにできる。   By the way, this NOx catalyst has a problem of sulfur (S) poisoning. In other words, if sulfur oxide (SOx) is contained in the lean air-fuel ratio exhaust gas based on the S component in the fuel, the SOx in the exhaust gas is stored and accumulated in the NOx catalyst by the same mechanism as NOx. NOx occlusion is to be inhibited based on the SOx that has been made. For this reason, as one of the countermeasure techniques, as shown in Patent Document 1, the NOx catalyst is divided into a catalyst front part and a catalyst rear part so that SOx can be released from the NOx catalyst. During the poisoning recovery process, the lean air-fuel ratio exhaust gas and the rich air-fuel ratio exhaust gas are alternately supplied with a relatively short cycle. During the S poisoning recovery process at the rear stage of the catalyst, the lean air-fuel ratio exhaust gas is supplied at a cycle longer than the cycle. One that alternately supplies rich air-fuel ratio exhaust has been proposed. According to this, by supplying the lean air-fuel ratio exhaust gas and the rich air-fuel ratio exhaust gas to the NOx catalyst with a relatively short switching cycle, it is possible to mainly heat and raise the temperature of the front stage of the catalyst, and the NOx catalyst has the lean air fuel ratio. By supplying the fuel ratio exhaust gas and the rich air fuel ratio exhaust gas at a switching cycle longer than the above cycle, it is possible to mainly heat and raise the temperature of the catalyst rear stage, and the S poisoning of the catalyst front stage and the catalyst rear stage. The temperature conditions during the recovery process can be made preferable.

特開2005−325693号公報JP 2005-325693 A

しかし、上記排気浄化装置にあっては、リーン空燃比排気とリッチ空燃比排気との切換えは、S被毒回復処理時の温度条件の視点から行われているにすぎず、NOx触媒に対するS被毒回復処理として、未だ十分とは言えない。   However, in the above exhaust purification device, the switching between the lean air-fuel ratio exhaust and the rich air-fuel ratio exhaust is only performed from the viewpoint of the temperature condition at the time of the S poison recovery process, and the S coverage for the NOx catalyst. It is still not enough as a poison recovery process.

本発明は、上記事情に鑑みてなされたもので、その技術的課題は、硫黄被毒回復性能を高めることができるエンジンの排気浄化装置を提供することにある。   This invention is made | formed in view of the said situation, The technical subject is to provide the exhaust gas purification apparatus of the engine which can improve sulfur poisoning recovery performance.

前記技術的課題を達成するために本発明にあっては、
三元触媒と、該三元触媒の下流側に配置され空燃比がリーンのときNOxを吸蔵し空燃比がリッチのとき吸蔵されていたNOxを還元放出するNOx触媒と、該NOx触媒に付着した硫黄分を除去する際、空燃比を気筒毎に変更することによりリッチ空燃比排気とリーン空燃比排気とを交互に前記三元触媒側に向けて供給して排気空燃比を周期的に変動させる空燃比変動手段と、を備えたエンジンの排気浄化装置において、
前記空燃比変動手段が、前記NOx触媒における上流側の領域を占める前段部と、該前段部よりも下流側における後段部とに対する各硫黄分除去に際して、前記排気空燃比の変動の周期として、前記三元触媒の酸素吸蔵能力を超えて前記NOx触媒に酸素を供給することになる第1周期と、該第1周期よりも短くされて該三元触媒の酸素吸蔵能力に基づき前記NOx触媒に酸素を供給しないことになる第2周期とを切り換えて用いるように設定されている構成としてある。
In order to achieve the technical problem, the present invention provides:
A three-way catalyst, a NOx catalyst that is disposed downstream of the three-way catalyst, stores NOx when the air-fuel ratio is lean, and reduces and releases NOx stored when the air-fuel ratio is rich, and attached to the NOx catalyst When removing the sulfur content, by changing the air-fuel ratio for each cylinder, the rich air-fuel ratio exhaust gas and the lean air-fuel ratio exhaust gas are alternately supplied to the three-way catalyst side to periodically vary the exhaust air-fuel ratio. In an engine exhaust purification device comprising an air-fuel ratio fluctuation means,
When the air-fuel ratio fluctuation means removes sulfur from the front stage portion that occupies the upstream region of the NOx catalyst and the rear stage portion downstream of the front stage portion, A first period in which oxygen is supplied to the NOx catalyst beyond the oxygen storage capacity of the three-way catalyst, and an oxygen is supplied to the NOx catalyst based on the oxygen storage capacity of the three-way catalyst that is shorter than the first period. Is set so as to be used by switching between the second cycle in which no power is supplied.

上述の構成により、NOx触媒における前段部と後段部とに対する各硫黄分除去に際して、排気の変動の周期として、第1周期と第2周期とを切り換えて用いられることから、そのNOx触媒における前段部、後段部のいずれの硫黄分除去においても、排気空燃比の変動の周期を第1周期とすることに基づき酸化反応(HC等の可燃成分と酸素との酸化反応)を促進してNOx触媒の温度を所望の温度に高めることができ、さらには、第2周期により、NOx触媒中を積極的に還元雰囲気にして、その積極的に作られた還元雰囲気に基づき硫黄分(SOx)をNOx触媒から除去できる。   With the above-described configuration, when the sulfur content is removed from the front stage and the rear stage in the NOx catalyst, the first cycle and the second cycle are used as the cycle of the fluctuation of the exhaust gas. In any removal of the sulfur component in the rear stage, the oxidation reaction (oxidation reaction between flammable components such as HC and oxygen) is promoted based on the first cycle of the fluctuation of the exhaust air-fuel ratio, and the NOx catalyst The temperature can be increased to a desired temperature. Further, in the second period, the NOx catalyst is actively made a reducing atmosphere, and the sulfur content (SOx) is reduced based on the actively created reducing atmosphere. Can be removed.

請求項1の好ましい態様として、前記空燃比変動手段が、前記NOx触媒の前段部に対する硫黄分除去に際して、前記排気空燃比を前記第1周期と前記第2周期とをもって変動させると共に、該第1周期を該第2周期よりも先に実行させるように設定されている構成を採ることができる(請求項2対応)。この構成により、NOx触媒の前段部に対する硫黄分除去に際して、その前段部の温度を高めた上でその前段部を還元雰囲気にすることができ、NOx触媒の前段部から硫黄分を効果的に除去できる。
また、NOx触媒の前段部が排気通路上流側に位置されて、もともとその温度が後段部の温度よりも高くなる傾向にあることを利用して、NOx触媒の前段部の温度を高めるための第1周期を最初の1回だけにすることができ、排気空燃比の変動周期の切り換えを第1周期から第2周期への1回だけですませることができる。このため、切り換え制御を簡単化できる。
According to a preferred aspect of the present invention, the air-fuel ratio varying means varies the exhaust air-fuel ratio between the first period and the second period when removing sulfur from the front stage of the NOx catalyst. It is possible to adopt a configuration in which the cycle is set to be executed before the second cycle (corresponding to claim 2). With this configuration, when removing the sulfur content from the front part of the NOx catalyst, the temperature of the front part can be raised and the front part can be made into a reducing atmosphere, and the sulfur content can be effectively removed from the front part of the NOx catalyst. it can.
Further, the first stage of the NOx catalyst is positioned upstream of the exhaust passage, and the fact that the temperature tends to be higher than the temperature of the rear stage is used to increase the temperature of the front stage of the NOx catalyst. One cycle can be made only once, and the fluctuation cycle of the exhaust air-fuel ratio can be switched only once from the first cycle to the second cycle. For this reason, switching control can be simplified.

請求項1の好ましい態様として、前記空燃比変動手段が、前記NOx触媒の後段部に対する硫黄分除去に際して、前記排気空燃比を前記第1周期と前記第2周期との繰り返しをもって変動させるように設定されている構成を採ることができる(請求項3対応)。この構成により、排気空燃比を第1周期と第2周期との繰り返しをもって変動させることにより、NOx触媒の後段部の温度を所望の高温状態に維持できると共にそこにおいて還元雰囲気を作り出すことができ、NOx触媒の後段部から硫黄分を効果的に除去できる。   As a preferred aspect of claim 1, the air-fuel ratio changing means is set so as to change the exhaust air-fuel ratio by repeating the first period and the second period when removing sulfur from the rear stage of the NOx catalyst. It is possible to adopt the configuration described above (corresponding to claim 3). With this configuration, by changing the exhaust air-fuel ratio by repeating the first cycle and the second cycle, the temperature of the rear stage of the NOx catalyst can be maintained at a desired high temperature state, and a reducing atmosphere can be created there. Sulfur can be effectively removed from the rear stage of the NOx catalyst.

請求項1の好ましい態様として、前記空燃比変動手段が、前記NOx触媒の後段部に対する硫黄分除去に際して実行される前記排気空燃比の第1周期を前記NOx触媒の前段部に対する硫黄分除去に際して実行される前記排気空燃比の第1周期よりも長くするように設定されている構成を採ることができる(請求項4対応)。この構成により、HC等の可燃成分と酸素との混合を遅らせてそれらの酸化反応をNOx触媒の後段部において行わせるように調整することができ、NOx触媒の後段部から硫黄分を効果的に除去すべく、そのNOx触媒後段部における温度を高めることができる。   According to a preferred aspect of the present invention, the air-fuel ratio changing means executes the first period of the exhaust air-fuel ratio that is executed when the sulfur content is removed from the rear stage portion of the NOx catalyst when the sulfur content is removed from the front stage portion of the NOx catalyst. It is possible to adopt a configuration in which the exhaust air-fuel ratio is set to be longer than the first cycle. With this configuration, mixing of combustible components such as HC and oxygen can be delayed so that their oxidation reaction can be performed in the latter part of the NOx catalyst, and the sulfur content can be effectively removed from the latter part of the NOx catalyst. In order to remove, the temperature in the latter stage part of the NOx catalyst can be increased.

請求項1の好ましい態様として、前記空燃比変動手段が、前記NOx触媒の後段部から硫黄分を除去するに際して実行する第1周期のリーン期間を、該第1周期のリッチ期間よりも長くするように設定されている構成を採ることができる(請求項5対応)。この構成により、CO等の低減を図ると共にNOx触媒の酸素吸蔵能力を考慮した十分な酸素量を供給することができ、NOx触媒の後段部から硫黄分を効果的に除去すべく、そのNOx触媒後段部における温度を所望の温度まで高めることができる。   As a preferred aspect of claim 1, the lean period of the first cycle executed when the air-fuel ratio changing means removes the sulfur content from the rear stage of the NOx catalyst is made longer than the rich period of the first cycle. It is possible to adopt a configuration set to (corresponding to claim 5). With this configuration, it is possible to supply a sufficient amount of oxygen in consideration of the oxygen storage capacity of the NOx catalyst while reducing CO and the like. In order to effectively remove sulfur from the rear stage of the NOx catalyst, the NOx catalyst The temperature in the rear stage can be increased to a desired temperature.

請求項1の好ましい態様として、前記NOx触媒の触媒温度の上昇を抑制する温度抑制手段が備えられ、前記温度抑制手段が、少なくとも、前記空燃比変動手段が変動周期を第2周期から第1周期に変更することを条件として作動するように設定されている構成を採ることができる(請求項6対応)。この構成により、空燃比変動手段が変動周期を第2周期から第1周期に変更する際に、酸化雰囲気となってNOx触媒が急激に温度上昇することを抑制でき、NOx触媒の耐熱性が悪化することを抑制できる。   According to a preferred aspect of the present invention, a temperature suppression unit that suppresses an increase in the catalyst temperature of the NOx catalyst is provided, and the temperature suppression unit includes at least the air-fuel ratio fluctuation unit that changes the fluctuation cycle from the second cycle to the first cycle. It is possible to adopt a configuration that is set to operate on the condition that it is changed to (corresponding to claim 6). With this configuration, when the air-fuel ratio changing means changes the change period from the second period to the first period, it is possible to suppress the NOx catalyst from rapidly rising in temperature in an oxidizing atmosphere, and the heat resistance of the NOx catalyst is deteriorated. Can be suppressed.

請求項1の好ましい態様として、前記温度抑制手段が、前記排気空燃比の変動の振幅を減少する方向に変更するものである構成を採ることができる(請求項7対応)。この構成により、温度抑制手段を具体的に提供できる。   As a preferred aspect of claim 1, it is possible to adopt a configuration in which the temperature suppressing means changes in a direction to reduce the amplitude of fluctuation of the exhaust air-fuel ratio (corresponding to claim 7). With this configuration, temperature suppression means can be specifically provided.

請求項1の好ましい態様として、前記温度抑制手段が、前記第1周期を短縮する方向に変更するものである構成を採ることができる(請求項8対応)。この構成により、温度抑制手段を具体的に提供できる。   As a preferred aspect of claim 1, a configuration in which the temperature suppression means is changed in a direction to shorten the first period (corresponding to claim 8). With this configuration, temperature suppression means can be specifically provided.

請求項1の好ましい態様として、前記NOx触媒に硫黄分が付着する個所を推定する推定手段が備えられ、前記空燃比変動手段が、前記推定手段が推定する個所に応じて排気空燃比の変動の周期を変更するように設定されている構成を採ることができる(請求項9対応)。この構成により、NOx触媒における硫黄分付着個所に応じた周期を的確に設定でき、硫黄分除去を短期間で行うことができる。   According to a preferred aspect of the present invention, there is provided an estimation means for estimating a location where sulfur content adheres to the NOx catalyst, and the air-fuel ratio fluctuation means is configured to change the exhaust air-fuel ratio according to the location estimated by the estimation means. It is possible to adopt a configuration in which the cycle is changed (corresponding to claim 9). With this configuration, it is possible to accurately set the period according to the sulfur content adhesion location in the NOx catalyst, and to perform sulfur content removal in a short period of time.

本発明(請求項1に係る発明)によれば、S被毒回復性能を高めることができるエンジンの排気浄化装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention (invention which concerns on Claim 1), the exhaust purification apparatus of the engine which can improve S poison recovery performance can be provided.

以下、本発明の実施形態について、図面に基づいて説明する。
[システム構成]
図1に示すように、本実施形態に係るエンジン(オットーサイクルエンジン)1は、本体2に、複数のピストン3…3(そのうちの一つのみ図示)、各ピストン3によって画成された燃焼室4(多気筒)、各燃焼室4の上部中央に配設された点火プラグ5、各燃焼室4の側部に配置されて燃焼室4に燃料を直接噴射するインジェクタ6等を有する。燃焼室4には吸気弁7を介して吸気通路9が接続され、その吸気通路9には、上流側から下流側に向けてエアクリーナ11、エアフローセンサ12、スロットルバルブ13、サージタンク14等が、順次配設されている。サージタンク14の下流通路は各気筒ごとに分岐し、各分岐通路9aの下流部が2つの通路9b,9cに分割されている。一方の通路9cに備えられたスワール生成弁15を閉じると他方の9bから導入される吸気によって燃焼室4内にスワールが生成する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[System configuration]
As shown in FIG. 1, an engine (Otto cycle engine) 1 according to this embodiment includes a main body 2, a plurality of pistons 3... 3 (only one of which is shown), and a combustion chamber defined by each piston 3. 4 (multi-cylinder), a spark plug 5 disposed in the upper center of each combustion chamber 4, an injector 6 disposed on the side of each combustion chamber 4 and directly injecting fuel into the combustion chamber 4. An intake passage 9 is connected to the combustion chamber 4 via an intake valve 7, and an air cleaner 11, an air flow sensor 12, a throttle valve 13, a surge tank 14, and the like are connected to the intake passage 9 from the upstream side to the downstream side. They are arranged sequentially. The downstream passage of the surge tank 14 is branched for each cylinder, and the downstream portion of each branch passage 9a is divided into two passages 9b and 9c. When the swirl generating valve 15 provided in one passage 9c is closed, swirl is generated in the combustion chamber 4 by the intake air introduced from the other 9b.

燃焼室4には排気弁8を介して排気通路10が接続され、その排気通路10には、上流側から下流側に向けて、三元触媒16とNOx触媒17とが直列に配置されている。三元触媒16は、理論空燃比(A/F=14.7)近傍で排気ガス中のCO,HC,NOxを同時に除去する機能を有している。NOx触媒17は、バリウムを主成分とし、カリウム、マグネシウム、ストロンチウム、ランタン等のアルカリ金属、アルカリ土類金属、あるいは希土類と、白金等の化学反応触媒作用を有する貴金属とが担持されたNOx吸蔵材を内装しており、それは、本実施形態においては、上流側から下流側に向けて、前段部17aと、その前段部17aの下流側に配置される後段部17bとに分けられている。このNOx触媒17は、空燃比がリーンのときは三元触媒16で浄化されずに流れ込んでくるNOxを吸蔵して外部への排出を抑制し、空燃比がリッチのときは吸蔵していたNOxを排気ガス中のCO,HCと反応させて浄化する機能を有している。   An exhaust passage 10 is connected to the combustion chamber 4 via an exhaust valve 8. A three-way catalyst 16 and a NOx catalyst 17 are arranged in series in the exhaust passage 10 from the upstream side to the downstream side. . The three-way catalyst 16 has a function of simultaneously removing CO, HC and NOx in the exhaust gas in the vicinity of the theoretical air-fuel ratio (A / F = 14.7). The NOx catalyst 17 is mainly composed of barium, and an NOx occlusion material in which an alkali metal such as potassium, magnesium, strontium, or lanthanum, an alkaline earth metal, or a rare earth, and a noble metal having a chemical reaction catalytic action such as platinum is supported. In this embodiment, it is divided into a front stage part 17a and a rear stage part 17b arranged on the downstream side of the front stage part 17a from the upstream side toward the downstream side. This NOx catalyst 17 occludes NOx flowing in without being purified by the three-way catalyst 16 when the air-fuel ratio is lean, and suppresses discharge to the outside, and stores the NOx that was occluded when the air-fuel ratio is rich. Has a function of purifying by reacting with CO and HC in the exhaust gas.

図1において、符号20は、エンジン1のコントロールユニット(ECU)である。このECU20には、サージタンク14内の吸気負圧を検出するブーストセンサ23からの信号、インジェクタ6に供給される燃料の圧力を検出する燃圧センサ24からの信号、三元触媒16の上流側に設けられ、燃焼室4から排出される排ガス中の残存酸素濃度から燃焼室4に供給されている混合気の空燃比が理論空燃比よりリッチかリーンかを検出するO2センサでなる第1空燃比センサ26からの信号、NOx触媒17の前段部17aと後段部17bとの間に配置されて前段部17aの温度を検出する排気温センサ41からの信号、NOx触媒17の後段部17bの下流側に配置されて後段部17bの温度を検出する排気温センサ42からの信号、NOx触媒17の下流側に設けられNOx触媒17を通過した排気ガス中の残存酸素濃度を検出するO2センサでなる第2空燃比センサ28からの信号、エンジン1の回転数を検出するエンジン回転センサ29からの信号、アクセルペダル(図示せず)の踏み込み量を検出するアクセル開度センサ30からの信号等が入力される。その一方、ECU20は、インジェクタ6に制御信号を出力することにより、燃料噴射量制御、燃料噴射時期制御のほか、NOx触媒17から吸蔵中のNOxを放出させる処理(NOxパージ処理)や、NOx触媒17のイオウ被毒回復処理等を総合的に行う。この場合、ECU20は、ブーストセンサ23が検出した吸気負圧と、回転数センサ29が検出したエンジン回転数とに基づいて吸入空気量を算出し、その吸入空気量に基づき理論空燃比運転時又はリッチ空燃比運転時の燃料噴射量を制御し、アクセル開度センサ30が検出したアクセル開度と、回転数センサ29が検出したエンジン回転数とに基づいてリーン空燃比運転時の燃料噴射量を制御する。   In FIG. 1, reference numeral 20 denotes a control unit (ECU) of the engine 1. The ECU 20 includes a signal from a boost sensor 23 that detects intake negative pressure in the surge tank 14, a signal from a fuel pressure sensor 24 that detects the pressure of fuel supplied to the injector 6, and an upstream side of the three-way catalyst 16. A first air-fuel ratio provided by an O2 sensor that is provided and detects whether the air-fuel ratio of the air-fuel mixture supplied to the combustion chamber 4 is richer or leaner than the stoichiometric air-fuel ratio from the residual oxygen concentration in the exhaust gas discharged from the combustion chamber 4 A signal from the sensor 26, a signal from the exhaust temperature sensor 41 that is disposed between the front stage 17a and the rear stage 17b of the NOx catalyst 17 and detects the temperature of the front stage 17a, and downstream of the rear stage 17b of the NOx catalyst 17 A signal from the exhaust temperature sensor 42 that detects the temperature of the rear stage portion 17b and the concentration of residual oxygen in the exhaust gas that is provided downstream of the NOx catalyst 17 and passes through the NOx catalyst 17 A signal from the second air-fuel ratio sensor 28, which is an O2 sensor for detecting engine speed, a signal from the engine rotation sensor 29 for detecting the rotational speed of the engine 1, and an accelerator opening sensor for detecting the amount of depression of an accelerator pedal (not shown) A signal from 30 is input. On the other hand, the ECU 20 outputs a control signal to the injector 6 to control the fuel injection amount and the fuel injection timing, as well as a process for releasing the NOx being stored from the NOx catalyst 17 (NOx purge process), and a NOx catalyst. Performs 17 sulfur poisoning recovery treatments comprehensively. In this case, the ECU 20 calculates the intake air amount based on the intake negative pressure detected by the boost sensor 23 and the engine rotational speed detected by the rotational speed sensor 29, and based on the intake air amount during the theoretical air-fuel ratio operation or The fuel injection amount during the rich air-fuel ratio operation is controlled, and the fuel injection amount during the lean air-fuel ratio operation is determined based on the accelerator opening detected by the accelerator opening sensor 30 and the engine rotational speed detected by the rotational speed sensor 29. Control.

次に、NOxパージ処理、S被毒回復処理に関するECU20による制御内容の概略について説明する。
[NOxパージ処理]
リーン運転の継続に伴いNOx触媒17に吸収されるNOx量が増加していく。これをそのまま放置するとそのうち飽和状態となり、NOx触媒17の浄化能力が低下する。そこで、所定のタイミングで空燃比をリッチ化し、これにより、吸蔵したNOxを酸素と窒素とに分解放出させて触媒17の吸収能力を回復させる。なお、このNOxパージ処理の頻度はイオウ被毒回復処理の頻度に比べて一般に大きい。
Next, the outline of the control contents by the ECU 20 regarding the NOx purge process and the S poison recovery process will be described.
[NOx purge process]
As the lean operation continues, the amount of NOx absorbed by the NOx catalyst 17 increases. If this is left as it is, it becomes saturated and the purification capacity of the NOx catalyst 17 decreases. Therefore, the air-fuel ratio is enriched at a predetermined timing, whereby the stored NOx is decomposed and released into oxygen and nitrogen to restore the absorption capacity of the catalyst 17. The frequency of this NOx purge process is generally greater than the frequency of the sulfur poisoning recovery process.

[イオウ被毒回復処理]
NOx触媒17に対するS被毒回復処理としては、NOx触媒17内を所望の高温状態に維持しつつ還元雰囲気にすることが好ましい。このため、ECU20は、基本的に、NOx触媒17における前段部17aと後段部17bとに対する各硫黄分除去に際して、図2に示すように、リッチ空燃比排気とリーン空燃比排気とを交互に排気通路10に供給して排気(排気空燃比)を周期的に変動させると共に、その排気空燃比の変動の周期として、図3に示すように、第1周期W1と第2周期W2とを切り換えて用いている。
この場合、上記排気空燃比の変動は、リッチ空燃比運転に基づくリッチ空燃比排気と、リーン空燃比運転に基づくリーン空燃比排気とを交互に排出することにより得られ、その周期は、多気筒のうちの一部の気筒でリッチ空燃比運転、他の気筒でリーン空燃比運転を行ったり、全気筒において一定期間毎にリッチ空燃比運転とリーン空燃比運転とを順番に行ったりする等して、適宜調整される。第1周期W1,第2周期W2は、このような調整により設定されており、第1周期W1は、三元触媒16の酸素吸蔵能力を超えて(三元触媒16を通過して)NOx触媒17に酸素を供給することになる周期のものに設定され、第2周期W2は、第1周期W1よりも短く、三元触媒16の酸素吸蔵能力に基づきNOx触媒17に酸素を供給できないことになる周期のものに設定されている。
したがって、排気空燃比の変動の周期を第1周期W1とすることに基づき酸化反応(HC等の可燃成分と酸素との酸化反応)を促進してNOx触媒17の温度を所望の温度に高めることができ、第2周期W2を用いることにより、NOx触媒17中を還元雰囲気として、NOx触媒を所望の温度に高めた状態の下で、そのNOx触媒から硫黄分(SOx)を除去できる。
[Sulfur poisoning recovery process]
As the sulfur poisoning recovery process for the NOx catalyst 17, it is preferable that the NOx catalyst 17 is maintained in a desired high-temperature state while reducing atmosphere. For this reason, the ECU 20 basically exhausts the rich air-fuel ratio exhaust gas and the lean air-fuel ratio exhaust gas alternately as shown in FIG. 2 when removing the sulfur content from the front stage 17a and the rear stage 17b in the NOx catalyst 17. The exhaust gas (exhaust air / fuel ratio) is periodically changed by being supplied to the passage 10 and, as shown in FIG. 3, the exhaust air / fuel ratio is changed between a first period W1 and a second period W2 as shown in FIG. Used.
In this case, the variation in the exhaust air-fuel ratio is obtained by alternately discharging the rich air-fuel ratio exhaust based on the rich air-fuel ratio operation and the lean air-fuel ratio exhaust based on the lean air-fuel ratio operation, and the cycle thereof is Of these cylinders, rich air-fuel ratio operation is performed in some cylinders, lean air-fuel ratio operation is performed in other cylinders, rich air-fuel ratio operation and lean air-fuel ratio operation are performed in order for every fixed period in all cylinders, etc. And adjusted as appropriate. The first cycle W1 and the second cycle W2 are set by such adjustment, and the first cycle W1 exceeds the oxygen storage capacity of the three-way catalyst 16 (passes through the three-way catalyst 16) and the NOx catalyst. The second cycle W2 is shorter than the first cycle W1 and oxygen cannot be supplied to the NOx catalyst 17 based on the oxygen storage capacity of the three-way catalyst 16. It is set to the one of the cycle.
Therefore, the oxidation reaction (oxidation reaction of flammable components such as HC and oxygen) is promoted based on the change cycle of the exhaust air-fuel ratio being the first cycle W1, and the temperature of the NOx catalyst 17 is increased to a desired temperature. By using the second period W2, the sulfur content (SOx) can be removed from the NOx catalyst under a state in which the NOx catalyst 17 is raised to a desired temperature with the NOx catalyst 17 as a reducing atmosphere.

本実施形態においては、上記内容がより好ましい態様に設定されている。
NOx触媒17の前段部17aに対する硫黄分除去に際しては、図3に示すように、排気空燃比を第1周期W1と第2周期W2とをもって変動させると共に、その第1周期W1を第2周期W2よりも先に実行させている。NOx触媒前段部17aに対する硫黄分除去に際して、その前段部17aの温度を所望の温度に高めた上でその前段部17aを還元雰囲気にすることが、硫黄分を効果的に除去する観点から、好ましいからである。このとき、NOx触媒17の前段部17aが後段部17bよりも上流側に位置されて、その温度がもともと後段部17bの温度よりも高くなる傾向にあることを利用して、そのNOx触媒前段部17aの温度を高めるための第1周期W1を繰り返すことなく最初の1回だけとされている。これにより、排気空燃比の変動周期の切り換えを第1周期W1から第2周期W2への1回だけですませることができ、第1周期W1、第2周期W2の切り換え制御を簡単化することができる。
In the present embodiment, the above content is set in a more preferable aspect.
When the sulfur content is removed from the front stage portion 17a of the NOx catalyst 17, as shown in FIG. 3, the exhaust air-fuel ratio is varied between the first cycle W1 and the second cycle W2, and the first cycle W1 is changed to the second cycle W2. It is executed before. When removing the sulfur content from the NOx catalyst front stage portion 17a, it is preferable to raise the temperature of the front stage portion 17a to a desired temperature and then bring the front stage portion 17a into a reducing atmosphere from the viewpoint of effectively removing the sulfur content. Because. At this time, utilizing the fact that the front stage portion 17a of the NOx catalyst 17 is positioned upstream of the rear stage portion 17b and its temperature tends to be higher than the temperature of the rear stage portion 17b originally, the NOx catalyst front stage portion is used. The first cycle W1 for increasing the temperature of 17a is not repeated for the first time. As a result, the changeover cycle of the exhaust air-fuel ratio can be switched only once from the first cycle W1 to the second cycle W2, and the switching control of the first cycle W1 and the second cycle W2 can be simplified. it can.

一方、NOx触媒後段部17bに対する硫黄分除去に際しては、図3に示すように、排気空燃比を第1周期W1と第2周期W2との繰り返しをもって変動させている。これは、NOx触媒17前段部17aの温度が一般的に高くなる傾向があるのに対して、後段部17bにおいてはそのことを利用できないため、排気空燃比を第1周期W1と第2周期W2との繰り返しをもって変動させることにより、NOx触媒後段部17bの温度を所望の高温状態に維持すると共に還元雰囲気を作り出すこととしているのである。
しかもこのとき、このNOx触媒後段部17bに対する硫黄分除去に際して実行される第1周期W1−2(W1)には、図2に示すように、前記NOx触媒の前段部17aに対する硫黄分除去に際して実行される第1周期W1−1(W1)よりも長いものが用いられることになっている。三元触媒16を素通りするHC等の可燃成分と酸素との混合を遅らせて、それらの酸化反応をNOx触媒の後段部17bにおいて的確に行わせるためである。これにより、前段部17aの温度を過剰に高めることなく(熱劣化の防止を図りつつ)、NOx触媒後段部17bの温度を所望の温度まで高めることができる。尚、第1周期W1−2(W1)は、図2に示すように、NOx触媒17容量が多い場合とNOx触媒17容量が少ない場合に応じて、適宜使い分けられる。
On the other hand, when the sulfur content is removed from the NOx catalyst rear stage 17b, as shown in FIG. 3, the exhaust air-fuel ratio is changed by repeating the first cycle W1 and the second cycle W2. This is because the temperature of the front stage portion 17a of the NOx catalyst 17 generally tends to be higher, but this cannot be used in the rear stage portion 17b. Therefore, the exhaust air-fuel ratio is set to the first cycle W1 and the second cycle W2. Thus, the temperature of the NOx catalyst rear stage portion 17b is maintained at a desired high temperature state and a reducing atmosphere is created.
In addition, at this time, in the first period W1-2 (W1) executed when the sulfur content is removed from the NOx catalyst rear stage portion 17b, as shown in FIG. 2, it is executed when the sulfur content is removed from the front stage portion 17a of the NOx catalyst. A longer cycle than the first cycle W1-1 (W1) is to be used. This is because the mixing of combustible components such as HC passing through the three-way catalyst 16 and oxygen is delayed so that their oxidation reaction is accurately performed in the rear stage portion 17b of the NOx catalyst. This makes it possible to raise the temperature of the NOx catalyst rear stage portion 17b to a desired temperature without excessively raising the temperature of the front stage portion 17a (while preventing thermal degradation). As shown in FIG. 2, the first cycle W1-2 (W1) is appropriately used depending on whether the NOx catalyst 17 capacity is large or the NOx catalyst 17 capacity is small.

この場合、このNOx触媒後段部17bから硫黄分を除去するに際して実行する第1周期W1−2のリーン期間L2は、図4に示すように、その第1周期W1−2のリッチ期間L1よりも長くすることが好ましい。CO等の低減を図ると共にNOx触媒17の酸素吸蔵能力を考慮した十分な酸素量をNOx触媒後段部17bに供給でき、NOx触媒17の後段部17bから硫黄分を効果的に除去すべく、そのNOx触媒後段部17bにおける温度を所望の温度に高めることができるからである。   In this case, as shown in FIG. 4, the lean period L2 of the first cycle W1-2 executed when removing the sulfur content from the NOx catalyst rear stage portion 17b is longer than the rich period L1 of the first cycle W1-2. It is preferable to make it longer. A sufficient amount of oxygen in consideration of the oxygen storage capacity of the NOx catalyst 17 can be supplied to the NOx catalyst rear stage 17b, and the sulfur content can be effectively removed from the NOx catalyst 17 rear stage 17b. This is because the temperature at the NOx catalyst rear stage 17b can be increased to a desired temperature.

また、本実施形態においては、NOx触媒17の触媒温度の上昇を抑制する温度抑制手段が備えられ、その温度抑制手段は、少なくとも、変動周期を第2周期W2から第1周期W1に変更されることを条件として作動するように設定されている。排気空燃比の変動周期が第2周期W2から第1周期W1に変更する際に、酸化雰囲気となってNOx触媒17が急激に温度上昇することを抑制するためである。この温度抑制手段としては、排気空燃比変動の振幅を減少する方向に変更するもの、第1周期W1を短縮する方向に変更するものを用いることができる。   Further, in the present embodiment, a temperature suppression unit that suppresses an increase in the catalyst temperature of the NOx catalyst 17 is provided, and the temperature suppression unit changes at least the fluctuation cycle from the second cycle W2 to the first cycle W1. It is set to operate on the condition. This is because when the fluctuation cycle of the exhaust air-fuel ratio is changed from the second cycle W2 to the first cycle W1, the temperature of the NOx catalyst 17 is rapidly increased due to an oxidizing atmosphere. As this temperature suppression means, one that changes in the direction of decreasing the amplitude of the exhaust air-fuel ratio fluctuation, or one that changes in the direction of shortening the first period W1 can be used.

さらに、本実施形態においては、NOx触媒17に硫黄が付着する個所を推定する推定手段が備えられ、その推定手段が推定する個所に応じて排気空燃比の変動の周期を変更するように設定されている。NOx触媒17における硫黄付着個所に応じた周期を的確に設定して、硫黄分除去を短期間で行うようにするためである。この推定手段として、具体的には、リーン運転の積算時間を用いることができる。排気中のSOxは、NOx触媒17の前端側(流入端側)から後端側に向けて徐々に吸蔵されることになるからである。   Further, in the present embodiment, an estimation means for estimating the location where sulfur adheres to the NOx catalyst 17 is provided, and is set so as to change the cycle of fluctuation of the exhaust air-fuel ratio in accordance with the location estimated by the estimation means. ing. This is because the period corresponding to the sulfur adhering location in the NOx catalyst 17 is accurately set so that the sulfur content can be removed in a short period of time. As this estimation means, specifically, the accumulated operation time of the lean operation can be used. This is because SOx in the exhaust gas is gradually stored from the front end side (inflow end side) of the NOx catalyst 17 toward the rear end side.

次に、S被毒回復処理の制御例を図5、図6に示すフローチャートに基づき具体的に説明する。
先ず、Q1〜Q3において、S被毒回復処理を開始するか否かが判別される。具体的には、リーン運転時におけるNOx触媒17のS被毒が燃料に含まれる硫黄分が主な原因であることから、Q1においてリーン運転時間の燃料量が求められ、その燃料量に基づき、Q2においてS被毒量が算出される。そして次のQ3において、Q2のS被毒量がNOx触媒前段部17aのS被毒相当量FS0(設定値)よりも多いか否かが判別され、Q3がNOのときには、S被毒回復処理の必要はないと判断されてQ1に戻される一方、Q3がYESのときには、S被毒回復処理を開始する必要があるとして、次のQ4に進む。
Next, a control example of the S poisoning recovery process will be specifically described based on the flowcharts shown in FIGS.
First, in Q1 to Q3, it is determined whether or not to start the S poison recovery process. Specifically, the sulfur poisoning of the NOx catalyst 17 during lean operation is mainly due to the sulfur content in the fuel, so the fuel amount during the lean operation time is determined in Q1, and based on the fuel amount, In Q2, the S poisoning amount is calculated. Then, in the next Q3, it is determined whether or not the S poisoning amount of Q2 is larger than the S poisoning equivalent amount FS0 (set value) of the NOx catalyst front stage 17a. If Q3 is NO, the S poisoning recovery process is performed. On the other hand, when Q3 is YES, it is determined that the S poison recovery process needs to be started, and the process proceeds to the next Q4.

Q4においては、S被毒回復処理時間tがt=0にセットされ、続いて、Q5において、各気筒に対する空燃比のリッチ、リーン調整により、排気通路にリッチ空燃比の排気とリーン空燃比の排気とが交互に第1周期W1−1の状態をもって供給される。NOx触媒前段部17aでのS被毒回復処理を促進すべく、酸化反応に基づきその前段部17aの温度を所望の温度まで高めるためである。このため、この第1周期W1−1をもって変動する排気は、前述の如く、三元触媒16を通過する際、その酸素吸蔵能力に基づき酸素が吸蔵されても、未だ酸素をNOx触媒に供給できるよう設定されていると共に、その第1周期W1−1に基づきHC等の可燃成分と酸素とが前段部17aにおいて的確に混合されるように設定されている。   In Q4, the S poisoning recovery processing time t is set to t = 0. Subsequently, in Q5, the rich air-fuel ratio and lean air-fuel ratio for each cylinder are adjusted in the exhaust passage by rich-lean adjustment of the air-fuel ratio. The exhaust gas is supplied alternately with the state of the first cycle W1-1. This is to increase the temperature of the front stage portion 17a to a desired temperature based on the oxidation reaction in order to promote the S poison recovery process at the NOx catalyst front stage portion 17a. For this reason, when the exhaust gas that fluctuates in the first period W1-1 passes through the three-way catalyst 16, as described above, even if oxygen is occluded based on its oxygen occlusion capacity, oxygen can still be supplied to the NOx catalyst. In addition, based on the first cycle W1-1, the combustible component such as HC and oxygen are set to be accurately mixed in the front stage portion 17a.

次のQ6においては、NOx触媒前段部17aの温度Tf(排気温センサ41検出)が設定温度T1(例えば700℃〜750℃(好ましくは700℃))以上になったか否かが判別される。この判別は、NOx触媒前段部17aの温度Tfが所望の温度まで上昇したか否かを判断するもので、この判別がNOのときには、この第1周期W1−1の下での排気の変動が続行されて、NOx触媒前段部17aに対して加熱が続けられる一方、Q6がYESのときには、S被毒回復処理を促進できる温度に至ったとして、次のQ7において、排気の変動周期が前記第1周期W1−1よりも短い第2周期W2に変更される。S被毒回復処理を促進できる温度の下で、NOx触媒前段部17aを還元雰囲気にし、その還元雰囲気に基づきSOxを放出するためである。このため、排気の第2周期W2は、排気が三元触媒16を通過する際、その酸素吸蔵能力に基づき酸素が吸蔵されてNOx触媒17に酸素が供給されないように設定されている。   In the next Q6, it is determined whether or not the temperature Tf (detected by the exhaust temperature sensor 41) of the NOx catalyst front stage 17a has become equal to or higher than a set temperature T1 (for example, 700 ° C. to 750 ° C. (preferably 700 ° C.)). This determination is made to determine whether or not the temperature Tf of the NOx catalyst front stage portion 17a has risen to a desired temperature. When this determination is NO, fluctuations in the exhaust gas under the first period W1-1 occur. On the other hand, while the NOx catalyst front stage 17a continues to be heated, when Q6 is YES, it is assumed that the temperature has reached a temperature at which the S poison recovery process can be promoted. The second period W2 is shorter than the one period W1-1. This is because the NOx catalyst front stage portion 17a is brought into a reducing atmosphere at a temperature that can promote the S poisoning recovery process, and SOx is released based on the reducing atmosphere. For this reason, the second period W2 of the exhaust gas is set so that when the exhaust gas passes through the three-way catalyst 16, oxygen is occluded based on the oxygen storage capacity and oxygen is not supplied to the NOx catalyst 17.

次に、Q8において、S被毒量がS被毒相当量BS0(設定値)よりも多いか否かが判別される。これは、S被毒量がNOx触媒17における前段部17aを超えて後段部17bにも及んでいるか否かを判断するものであり、このため、S被毒相当量BS0は、前述のS被毒相当量FS0よりも大きくされている。このQ8の判別がYESのときには、S被毒量がNOx触媒17における前段部17aを超えて後段部17bにも及んでいるとして、先ずはQ9において、NOx触媒前段部17aにおけるS被毒回復処理時間を確実に確保すべく、S被毒回復処理開始からの経過時間(S被毒回復処理時間)tが設定時間t1以上になったか否かが判別される。このQ9の判別がNOのときには、第2周期W2をもって変動する排気がNOx触媒17に供給され続ける一方、Q9の判別がYESのときには、Q10に進む。   Next, in Q8, it is determined whether or not the S poisoning amount is larger than the S poisoning equivalent amount BS0 (set value). This is to determine whether or not the S poison amount exceeds the front stage portion 17a and also reaches the rear stage portion 17b in the NOx catalyst 17. For this reason, the S poison equivalent amount BS0 is equal to the aforementioned S poison amount. The poison equivalent amount is larger than FS0. When the determination of Q8 is YES, it is assumed that the S poisoning amount exceeds the front stage 17a in the NOx catalyst 17 and reaches the rear stage 17b. First, in Q9, the S poison recovery process in the NOx catalyst front stage 17a. In order to ensure the time, it is determined whether or not the elapsed time (S poisoning recovery processing time) t from the start of the S poisoning recovery processing is equal to or longer than the set time t1. When the determination of Q9 is NO, the exhaust gas that fluctuates with the second cycle W2 continues to be supplied to the NOx catalyst 17, while when the determination of Q9 is YES, the process proceeds to Q10.

Q10においては、NOx触媒後段部17bの温度Tb(排気温センサ検出)が設定温度T2(例えば600℃)以下になったか否かが判別される。NOx触媒後段部17bにおけるS被毒回復処理を行うために、NOx触媒後段部17bにおける温度が低下しすぎていないかを判断するためである。Q10がNOのときには、第2周期W2の変動周期をもって排気がNOx触媒17に供給し続けられる一方、Q10がYESのときには、排気の変動周期が第2周期W2よりも長い第1周期W1−2に変更される。NOx触媒後段部17bの温度をS被毒回復処理を促進できる所望の温度にすべく、そのNOx触媒後段部17bにおいて酸化作用を促進して、その後段部17bにおける温度を所望の温度まで高めるためである。この場合、このQ11の第1周期W1−2は、前記Q5の第1周期W1−1よりも長くなっている(図2参照)。これは、NOx触媒17の後段部17bが前段部17aに対して流れ方向において離れていることを考慮し、HC等の可燃成分と酸素との混合を遅らせてそれらの酸化反応をNOx触媒の後段部17bにおいて的確に行わせるためである。特にこのときには、供給すべき酸素量を増大させる観点から、第1周期W1−2のリーン期間L2をその第1周期W1−2のリッチ期間L1よりも長くすることが好ましい(図4参照)。   In Q10, it is determined whether or not the temperature Tb (exhaust temperature sensor detection) of the NOx catalyst rear stage 17b has become equal to or lower than a set temperature T2 (for example, 600 ° C.). This is to determine whether or not the temperature in the NOx catalyst rear stage portion 17b has decreased too much in order to perform the S poison recovery process in the NOx catalyst rear stage portion 17b. When Q10 is NO, the exhaust gas continues to be supplied to the NOx catalyst 17 with a fluctuation cycle of the second cycle W2, while when Q10 is YES, the first cycle W1-2 whose exhaust fluctuation cycle is longer than the second cycle W2. Changed to In order to increase the temperature of the rear stage portion 17b to the desired temperature by promoting the oxidation action in the rear stage portion 17b of the NOx catalyst so that the temperature of the rear stage portion 17b of the NOx catalyst becomes a desired temperature that can promote the S poison recovery process. It is. In this case, the first cycle W1-2 of Q11 is longer than the first cycle W1-1 of Q5 (see FIG. 2). In consideration of the fact that the rear stage part 17b of the NOx catalyst 17 is separated from the front stage part 17a in the flow direction, the mixing of the flammable components such as HC and oxygen is delayed so that their oxidation reaction is performed in the rear stage of the NOx catalyst. This is for the purpose of accurately performing in the portion 17b. In particular, at this time, from the viewpoint of increasing the amount of oxygen to be supplied, it is preferable to make the lean period L2 of the first period W1-2 longer than the rich period L1 of the first period W1-2 (see FIG. 4).

この排気の変動周期を第2周期W2から第1周期W1−2に変更するに際して(Q11)、Q12において、NOx触媒後段部17bの温度Tbが設定温度T3(例えば680℃)以上になったか否かが判別される。この判別は、排気の変動周期を第2周期W2から第1周期W1に変更する際に、酸化雰囲気となってNOx触媒後段部17bが急激に温度上昇するか否かを判断するためのものであり、このため、Q12がYESのときには、NOx触媒後段部17bが急激に温度上昇しているとして、Q13において、そのNOx触媒後段部17bの温度抑制処理(第1周期W1−2の振幅を減少する方向に変更、第1周期W1−2を短縮する方向に変更等)が実行され、それが実行された後、次のQ13に進む。一方、Q12がNOのときには、上記Q13を迂回してQ14に進む。   When changing the fluctuation cycle of the exhaust gas from the second cycle W2 to the first cycle W1-2 (Q11), in Q12, whether or not the temperature Tb of the NOx catalyst rear stage portion 17b has become equal to or higher than a set temperature T3 (for example, 680 ° C.). Is determined. This determination is for determining whether or not the NOx catalyst rear stage 17b suddenly rises in temperature in the oxidizing atmosphere when the exhaust fluctuation period is changed from the second period W2 to the first period W1. For this reason, when Q12 is YES, it is assumed that the temperature of the NOx catalyst rear stage portion 17b is rapidly increased. In Q13, the temperature suppression process (the amplitude of the first cycle W1-2 is reduced) of the NOx catalyst rear stage portion 17b. Change to the direction to be changed, change to the direction to shorten the first cycle W1-2, etc.) are executed, and after that, the process proceeds to the next Q13. On the other hand, when Q12 is NO, the process bypasses Q13 and proceeds to Q14.

Q14においては、NOx触媒後段部17bの温度Tbが前記Q6の設定温度T1と同じ設定温度T1以上になったか否かが判別される。NOx触媒後段部17bがS被毒回復処理にとって所望の温度になったか否かを判断するためである。このQ14の判別がNOのときには、第1周期W1−2の下で排気が変動され続ける一方、Q14の判別がYESのときには、NOx触媒後段部17b内に還元雰囲気を作るべく、Q15において、排気の変動周期が第2周期W2に変更される。これにより、NOx触媒後段部17bにおいては、所望の温度の下で還元雰囲気が作り出され、その後段部17bにおいて、的確にS被毒回復処理が行われる。   In Q14, it is determined whether or not the temperature Tb of the NOx catalyst rear stage 17b is equal to or higher than the set temperature T1 that is the same as the set temperature T1 of Q6. This is to determine whether the NOx catalyst rear stage 17b has reached a desired temperature for the S poison recovery process. When the determination of Q14 is NO, the exhaust continues to fluctuate under the first cycle W1-2, while when the determination of Q14 is YES, the exhaust gas is exhausted at Q15 to create a reducing atmosphere in the NOx catalyst rear stage 17b. Is changed to the second period W2. As a result, a reducing atmosphere is created at a desired temperature in the NOx catalyst rear stage 17b, and the S poisoning recovery process is accurately performed in the rear stage 17b.

次に、Q16において、NOx触媒後段部17bにおけるS被毒回復処理時間を確実に確保すべく、S被毒回復処理開始からの経過時間tが設定時間t2(t2>t1)以上になったか否かが判別される。Q16の判別がNOのときには、前記Q10に戻されて、これまでの処理が繰り返される一方(図3参照)、このQ15の判別がYESのときには、S被毒回復処理が終了される(Q17)。このように、NOx触媒後段部17bにおけるS被毒回復処理においては、S被毒回復処理時間t2までの間、排気は、第1周期W1−2と第2周期W2との繰り返しをもって変動される。   Next, in Q16, whether or not the elapsed time t from the start of the S poison recovery process is equal to or longer than the set time t2 (t2> t1) in order to ensure the S poison recovery process time in the NOx catalyst rear stage 17b. Is determined. When the determination of Q16 is NO, the process returns to Q10 and the processing so far is repeated (see FIG. 3), while when the determination of Q15 is YES, the S poison recovery process is terminated (Q17). . Thus, in the S poison recovery process in the NOx catalyst rear stage 17b, the exhaust gas is fluctuated with repetition of the first period W1-2 and the second period W2 until the S poison recovery process time t2. .

一方、前記Q8がNOのときには、S被毒がNOx触媒前段部17aにとどまっているとして、Q18において、S被毒回復処理開始からの経過時間tが設定時間t1以上になったか否かが判別される。NOx触媒前段部17aにおけるS被毒回復処理時間を確実に確保するためである。このQ18の判別がNOのときには、第2周期W2をもって変動する排気がNOx触媒17に供給され続けて還元雰囲気が作りされる(S被毒回復処理)一方、Q18の判別がYESのときには、NOx触媒前段部17aに対して必要なS被毒回復処理時間だけ、S被毒回復処理が行われたとして、S被毒回復処理を終了する(Q17)。   On the other hand, when Q8 is NO, it is determined whether or not the elapsed time t from the start of the S poison recovery process is equal to or longer than the set time t1 in Q18, assuming that the S poison remains in the NOx catalyst front stage 17a. Is done. This is to ensure the S poisoning recovery processing time in the NOx catalyst front stage 17a. When the determination of Q18 is NO, exhaust gas that fluctuates with the second period W2 is continuously supplied to the NOx catalyst 17 to create a reducing atmosphere (S poisoning recovery process), while when the determination of Q18 is YES, NOx Assuming that the S poison recovery process is performed for the S poison recovery process time required for the catalyst front stage 17a, the S poison recovery process is terminated (Q17).

実施形態に係るエンジンの制御システム構成図。The engine control system block diagram which concerns on embodiment. 排気(排気機空燃比)の変動周期の違いを説明する説明図。Explanatory drawing explaining the difference in the fluctuation cycle of exhaust (exhaust machine air fuel ratio). NOx触媒に対するS被毒回復処理の内容を説明する説明図。Explanatory drawing explaining the content of the S poison recovery process with respect to a NOx catalyst. 排気空燃比が第1周期W1−2をもって変動する場合の変形例を示す図。The figure which shows the modification in case an exhaust air fuel ratio fluctuates with 1st period W1-2. S被毒回復処理に係る制御例を示すフローチャート。The flowchart which shows the example of control which concerns on S poison recovery process. 図5の続きを示すフローチャート。6 is a flowchart showing a continuation of FIG.

符号の説明Explanation of symbols

1 エンジン
4 燃焼室(気筒)
6 インジェクタ(空燃比変動手段)
16 三元触媒
17 NOx触媒
17a 前段部
17b 後段部
20 コントロールユニット(空燃比変動手段)
W1−1 第1周期
W1−2 第1周期
W2 第2周期



1 Engine 4 Combustion chamber (cylinder)
6 Injector (Air-fuel ratio fluctuation means)
16 Three-way catalyst 17 NOx catalyst 17a Front stage part 17b Rear stage part 20 Control unit (air-fuel ratio fluctuation means)
W1-1 1st period W1-2 1st period W2 2nd period



Claims (9)

三元触媒と、該三元触媒の下流側に配置され空燃比がリーンのときNOxを吸蔵し空燃比がリッチのとき吸蔵されていたNOxを還元放出するNOx触媒と、該NOx触媒に付着した硫黄分を除去する際、空燃比を気筒毎に変更することによりリッチ空燃比排気とリーン空燃比排気とを交互に前記三元触媒側に向けて供給して排気空燃比を周期的に変動させる空燃比変動手段と、を備えたエンジンの排気浄化装置において、
前記空燃比変動手段が、前記NOx触媒における上流側の領域を占める前段部と、該前段部よりも下流側における後段部とに対する各硫黄分除去に際して、前記排気空燃比の変動の周期として、前記三元触媒の酸素吸蔵能力を超えて前記NOx触媒に酸素を供給することになる第1周期と、該第1周期よりも短くされて該三元触媒の酸素吸蔵能力に基づき前記NOx触媒に酸素を供給しないことになる第2周期とを切り換えて用いるように設定されている、
ことを特徴とするエンジンの排気浄化装置。
A three-way catalyst, a NOx catalyst that is disposed downstream of the three-way catalyst, stores NOx when the air-fuel ratio is lean, and reduces and releases NOx stored when the air-fuel ratio is rich, and attached to the NOx catalyst When removing the sulfur content, by changing the air-fuel ratio for each cylinder, the rich air-fuel ratio exhaust gas and the lean air-fuel ratio exhaust gas are alternately supplied to the three-way catalyst side to periodically vary the exhaust air-fuel ratio. In an engine exhaust purification device comprising an air-fuel ratio fluctuation means,
When the air-fuel ratio fluctuation means removes sulfur from the front stage portion that occupies the upstream region of the NOx catalyst and the rear stage portion downstream of the front stage portion, A first period in which oxygen is supplied to the NOx catalyst beyond the oxygen storage capacity of the three-way catalyst, and an oxygen is supplied to the NOx catalyst based on the oxygen storage capacity of the three-way catalyst that is shorter than the first period. Is set to be used by switching to the second cycle that will not supply
An exhaust emission control device for an engine.
請求項1において、
前記空燃比変動手段が、前記NOx触媒の前段部に対する硫黄分除去に際して、前記排気空燃比を前記第1周期と前記第2周期とをもって変動させると共に、該第1周期を該第2周期よりも先に実行させるように設定されている、
ことを特徴とするエンジンの排気浄化装置。
In claim 1,
The air-fuel ratio changing means changes the exhaust air-fuel ratio between the first period and the second period and removes the first period from the second period when removing sulfur from the front stage of the NOx catalyst. Set to run first,
An exhaust emission control device for an engine.
請求項1において、
前記空燃比変動手段が、前記NOx触媒の後段部に対する硫黄分除去に際して、前記排気空燃比を前記第1周期と前記第2周期との繰り返しをもって変動させるように設定されている、
ことを特徴とするエンジンの排気浄化装置。
In claim 1,
The air-fuel ratio changing means is set so as to change the exhaust air-fuel ratio by repeating the first cycle and the second cycle when removing sulfur from the subsequent stage of the NOx catalyst.
An exhaust emission control device for an engine.
請求項1において、
前記空燃比変動手段が、前記NOx触媒の後段部に対する硫黄分除去に際して実行される前記排気空燃比の第1周期を前記NOx触媒の前段部に対する硫黄分除去に際して実行される前記排気空燃比の第1周期よりも長くするように設定されている、
ことを特徴とするエンジンの排気浄化装置。
In claim 1,
The first period of the exhaust air-fuel ratio, which is executed when the sulfur content is removed from the rear stage portion of the NOx catalyst, is changed by the air-fuel ratio changing means. Set to be longer than one cycle,
An exhaust emission control device for an engine.
請求項3において、
前記空燃比変動手段が、前記NOx触媒の後段部から硫黄分を除去するに際して実行する第1周期のリーン期間を、該第1周期のリッチ期間よりも長くするように設定されている、
ことを特徴とするエンジンの排気浄化装置。
In claim 3,
The air-fuel ratio changing means is set to make the lean period of the first cycle executed when removing the sulfur content from the rear stage portion of the NOx catalyst longer than the rich period of the first cycle.
An exhaust emission control device for an engine.
請求項1において、
前記NOx触媒の触媒温度の上昇を抑制する温度抑制手段が備えられ、
前記温度抑制手段が、少なくとも、前記空燃比変動手段が変動周期を第2周期から第1周期に変更することを条件として作動するように設定されている、
ことを特徴とするエンジンの排気浄化装置。
In claim 1,
Temperature suppression means for suppressing an increase in the catalyst temperature of the NOx catalyst is provided,
The temperature suppression means is set to operate on condition that at least the air-fuel ratio changing means changes the changing period from the second period to the first period;
An exhaust emission control device for an engine.
請求項6において、
前記温度抑制手段が、前記排気空燃比の変動の振幅を減少する方向に変更するものである、
ことを特徴とするエンジンの排気浄化装置。
In claim 6,
The temperature suppression means changes in a direction to decrease the amplitude of fluctuation of the exhaust air-fuel ratio.
An exhaust emission control device for an engine.
請求項6において、
前記温度抑制手段が、前記第1周期を短縮する方向に変更するものである、
ことを特徴とするエンジンの排気浄化装置。
In claim 6,
The temperature suppression means changes in a direction to shorten the first period.
An exhaust emission control device for an engine.
請求項1において、
前記NOx触媒に硫黄分が付着する個所を推定する推定手段が備えられ、
前記空燃比変動手段が、前記推定手段が推定する個所に応じて排気空燃比の変動の周期を変更するように設定されている、
ことを特徴とするエンジンの排気浄化装置。


In claim 1,
Estimating means for estimating the location where sulfur content adheres to the NOx catalyst is provided,
The air-fuel ratio changing means is set to change the cycle of fluctuation of the exhaust air-fuel ratio according to the location estimated by the estimating means;
An exhaust emission control device for an engine.


JP2007036161A 2007-02-16 2007-02-16 Engine exhaust purification system Expired - Fee Related JP4867694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007036161A JP4867694B2 (en) 2007-02-16 2007-02-16 Engine exhaust purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007036161A JP4867694B2 (en) 2007-02-16 2007-02-16 Engine exhaust purification system

Publications (2)

Publication Number Publication Date
JP2008202414A true JP2008202414A (en) 2008-09-04
JP4867694B2 JP4867694B2 (en) 2012-02-01

Family

ID=39780192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007036161A Expired - Fee Related JP4867694B2 (en) 2007-02-16 2007-02-16 Engine exhaust purification system

Country Status (1)

Country Link
JP (1) JP4867694B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150059535A (en) * 2013-11-22 2015-06-01 현대자동차주식회사 System and method of purifying exhaust gas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002501585A (en) * 1997-04-11 2002-01-15 フォード、グローバル、テクノロジーズ、インコーポレーテッド Heating the storage trap
JP2002161781A (en) * 2000-11-29 2002-06-07 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2006322344A (en) * 2005-05-17 2006-11-30 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002501585A (en) * 1997-04-11 2002-01-15 フォード、グローバル、テクノロジーズ、インコーポレーテッド Heating the storage trap
JP2002161781A (en) * 2000-11-29 2002-06-07 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2006322344A (en) * 2005-05-17 2006-11-30 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150059535A (en) * 2013-11-22 2015-06-01 현대자동차주식회사 System and method of purifying exhaust gas
KR101684502B1 (en) 2013-11-22 2016-12-08 현대자동차 주식회사 System and method of purifying exhaust gas

Also Published As

Publication number Publication date
JP4867694B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
US6502391B1 (en) Exhaust emission control device of internal combustion engine
JP3901194B2 (en) Exhaust gas purification method and exhaust gas purification system
WO2000043647A1 (en) Exhaust emission control device for internal combustion engines
JP4462107B2 (en) Exhaust gas purification device for internal combustion engine
JP2010013974A (en) Filter regenerating system and filter regenerating method
JP2007170218A (en) Exhaust emission control device of internal combustion engine
JP2000230447A (en) Engine exhaust emission control system
JP2007046515A (en) Exhaust emission control device of internal combustion engine
JP4492776B2 (en) Exhaust gas purification device for internal combustion engine
JP4867694B2 (en) Engine exhaust purification system
JP3552603B2 (en) Exhaust gas purification device for internal combustion engine
JP4357918B2 (en) Exhaust gas purification device for internal combustion engine
JP2010031737A (en) Air-fuel ratio control device and hybrid vehicle
JP3582582B2 (en) Exhaust purification system for in-cylinder injection internal combustion engine
JP2004251188A (en) Exhaust emission control system for internal combustion engine
JP3496572B2 (en) Exhaust gas purification device for internal combustion engine
JP2004346844A (en) Exhaust emission control system
KR102365178B1 (en) Exhaust system of turbo gasoline direct injection engine and control method thereof
JP2007255209A (en) Exhaust emission control device of internal combustion engine
JP4063743B2 (en) Fuel injection timing control device for internal combustion engine
JP2011106352A (en) Fuel injection control device of internal combustion engine
JP2008121596A (en) Exhaust emission control device for internal combustion engine
JP4000435B2 (en) Exhaust gas purification device for in-cylinder injection internal combustion engine
JP3603724B2 (en) Engine exhaust purification device
JP4075643B2 (en) Engine exhaust purification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R150 Certificate of patent or registration of utility model

Ref document number: 4867694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees