JP2006322344A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2006322344A
JP2006322344A JP2005144402A JP2005144402A JP2006322344A JP 2006322344 A JP2006322344 A JP 2006322344A JP 2005144402 A JP2005144402 A JP 2005144402A JP 2005144402 A JP2005144402 A JP 2005144402A JP 2006322344 A JP2006322344 A JP 2006322344A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
exhaust
exhaust gas
cylinder group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005144402A
Other languages
Japanese (ja)
Other versions
JP4428286B2 (en
Inventor
Takayuki Demura
隆行 出村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005144402A priority Critical patent/JP4428286B2/en
Publication of JP2006322344A publication Critical patent/JP2006322344A/en
Application granted granted Critical
Publication of JP4428286B2 publication Critical patent/JP4428286B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To make a three-way catalyst effectively function as early as possible after completion of a sulfur poisoning recovery control of a NOx catalyst. <P>SOLUTION: An exhaust emission control device for an internal combustion engine has a plurality of cylinders #1 to #4. The cylinders are divided into at least two cylinder groups. The cylinder groups are respectively connected with exhaust branch pipes 5, 6, and the exhaust branch pipes are merged downstream to be connected with a common exhaust pipe 7. The three-way catalysts 8, 9 are respectively disposed in the exhaust pipes, and the NOx catalyst 10 is disposed in the common exhaust pipe. The exhaust emission control device performs a sulfur poisoning recovery control of the NOx catalyst, by discharging exhaust gas of a rich air-fuel ratio from one cylinder group and discharging exhaust gas of a lean air-fuel radio from the other cylinder group. When the sulfur poisoning recovery control is completed, an exhaust air-fuel ratio reverse control is performed to discharge the exhaust gas of the lean air-fuel ratio from the cylinder group which has discharged the exhaust gas of the rich air-fuel ratio during the sulfur poisoning recovery control. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

内燃機関から排出される排気ガス中の窒素酸化物(NOx)を還元浄化する触媒として、そこに流入する排気ガスの空燃比が理論空燃比よりもリーンであるときに排気ガス中のNOxを吸収し或いは吸蔵することによって保持すると共にそこに流入する排気ガスの空燃比が理論空燃比または理論空燃比よりもリッチとなるとそこに保持しているNOxを還元浄化するタイプの触媒(以下「NOx触媒」という)が知られている。また、そこに流入する排気ガスの空燃比が理論空燃比またはその近傍であるときに排気ガス中のNOx、一酸化炭素(CO)、および、炭化水素(HC)を同時に高い浄化率で浄化する触媒として、三元触媒が知られている。これらNOx触媒や三元触媒を備えた内燃機関が特許文献1に開示されている。   As a catalyst for reducing and purifying nitrogen oxide (NOx) in exhaust gas discharged from an internal combustion engine, it absorbs NOx in exhaust gas when the air-fuel ratio of the exhaust gas flowing into it is leaner than the stoichiometric air-fuel ratio Or a catalyst of the type that reduces and purifies NOx retained when the air-fuel ratio of the exhaust gas flowing into it becomes richer than the stoichiometric air-fuel ratio or the stoichiometric air-fuel ratio (hereinafter referred to as “NOx catalyst”). ") Is known. Further, when the air-fuel ratio of the exhaust gas flowing into the exhaust gas is at or near the stoichiometric air-fuel ratio, NOx, carbon monoxide (CO), and hydrocarbon (HC) in the exhaust gas are simultaneously purified with a high purification rate. A three-way catalyst is known as a catalyst. Patent Document 1 discloses an internal combustion engine provided with these NOx catalyst and three-way catalyst.

特許文献1に開示されている内燃機関は、6つの気筒を備え、これら気筒が2つの気筒群に分けられている。そして、各気筒群にそれぞれ排気管(以下「排気枝管」という)が接続され、これら排気枝管は、下流で合流して共通の1つの排気管(以下「共通排気管」という)となる。そして、各排気枝管にはそれぞれ三元触媒が配置されており、共通排気管にはNOx触媒が配置されている。   The internal combustion engine disclosed in Patent Document 1 includes six cylinders, and these cylinders are divided into two cylinder groups. An exhaust pipe (hereinafter referred to as “exhaust branch pipe”) is connected to each cylinder group, and these exhaust branch pipes merge downstream to form one common exhaust pipe (hereinafter referred to as “common exhaust pipe”). . A three-way catalyst is disposed in each exhaust branch pipe, and a NOx catalyst is disposed in the common exhaust pipe.

ところで、排気ガス中には、NOxの他に、硫黄酸化物(SOx)も含まれている。そして、NOxがNOx触媒に保持されるとき、SOxもNOx触媒に保持されてしまう。このように、NOx触媒にSOxが保持されてしまう(すなわち、NOx触媒が硫黄成分によって被毒されてしまう)と、その分、NOx触媒が保持することができるNOxの量が少なくなってしまう。このため、NOx触媒のNOx保持能力をできるだけ高く維持しておくためには、NOx触媒からSOxを除去する必要がある。そして、NOx触媒からSOxを除去する(すなわち、NOx触媒を硫黄成分による被毒から回復させる)ためには、NOx触媒の温度をSOxを除去可能な温度にまで上昇させると共に、NOx触媒に流入する排気ガスの空燃比を理論空燃比またはリッチ(弱リッチ)にする必要がある。   By the way, the exhaust gas contains sulfur oxide (SOx) in addition to NOx. When NOx is held in the NOx catalyst, SOx is also held in the NOx catalyst. Thus, if SOx is retained in the NOx catalyst (that is, the NOx catalyst is poisoned by the sulfur component), the amount of NOx that can be retained by the NOx catalyst is reduced accordingly. For this reason, in order to maintain the NOx retention capacity of the NOx catalyst as high as possible, it is necessary to remove SOx from the NOx catalyst. In order to remove SOx from the NOx catalyst (that is, to recover the NOx catalyst from poisoning by the sulfur component), the temperature of the NOx catalyst is raised to a temperature at which SOx can be removed, and flows into the NOx catalyst. It is necessary to make the air-fuel ratio of the exhaust gas the stoichiometric air-fuel ratio or rich (weakly rich).

そこで、特許文献1では、NOx触媒からSOxを除去するために、次のような硫黄被毒回復制御を行うようにしている。すなわち、一方の気筒群から排出される排気ガスの空燃比をリッチとし、他方の気筒群から排出される排気ガスの空燃比をリーンとし、これらリッチ空燃比の排気ガス(以下「リッチ排気ガス」という)とリーン空燃比の排気ガス(以下「リーン排気ガス」という)とをNOx触媒上流で合流させた後にNOx触媒に流入させるようにしている。ここで、特許文献1では、リッチ排気ガスとリーン排気ガスとが合流せしめられたときに、排気ガスのトータルの空燃比が理論空燃比となるように、リッチ排気ガスのリッチ度合およびリーン排気ガスのリーン度合が調整されている。   Therefore, in Patent Document 1, in order to remove SOx from the NOx catalyst, the following sulfur poisoning recovery control is performed. That is, the air-fuel ratio of exhaust gas discharged from one cylinder group is made rich, and the air-fuel ratio of exhaust gas discharged from the other cylinder group is made lean, and these rich air-fuel ratio exhaust gases (hereinafter referred to as “rich exhaust gas”) And a lean air-fuel ratio exhaust gas (hereinafter referred to as “lean exhaust gas”) are combined upstream of the NOx catalyst and then flowed into the NOx catalyst. Here, in Patent Document 1, when the rich exhaust gas and the lean exhaust gas are merged, the rich degree of the rich exhaust gas and the lean exhaust gas are set such that the total air-fuel ratio of the exhaust gas becomes the stoichiometric air-fuel ratio. The lean degree of has been adjusted.

これによれば、NOx触媒に流入する排気ガスの空燃比は理論空燃比となっており、さらに、リッチ排気ガスとリーン排気ガスとが合流すると、リッチ排気ガス中のHCがリーン排気ガス中の酸素と反応し、その反応熱でもって排気ガスの温度が上昇せしめられ、結果として、NOx触媒の温度が上昇せしめられる。こうして、特許文献1では、NOx触媒の温度をSOxを除去することができる温度にまで上昇させると共にNOx触媒に理論空燃比の排気ガスを供給して、NOx触媒からSOxを除去するようにしている。   According to this, the air-fuel ratio of the exhaust gas flowing into the NOx catalyst is the stoichiometric air-fuel ratio. Further, when the rich exhaust gas and the lean exhaust gas merge, the HC in the rich exhaust gas is in the lean exhaust gas. It reacts with oxygen, and the heat of reaction raises the temperature of the exhaust gas. As a result, the temperature of the NOx catalyst is raised. Thus, in Patent Document 1, the temperature of the NOx catalyst is raised to a temperature at which SOx can be removed, and exhaust gas having a stoichiometric air-fuel ratio is supplied to the NOx catalyst to remove SOx from the NOx catalyst. .

特開2004−68690号公報JP 2004-68690 A 特開平11−343836号公報Japanese Patent Laid-Open No. 11-343836 特開2000−18025号公報JP 2000-18025 A

ところで、上述した硫黄被毒回復制御を行っているとき、一方の三元触媒には、リッチ排気ガスが流入し続けると共に、他方の三元触媒には、リーン排気ガスが流入し続ける。このため、硫黄被毒回復制御が終了したとき、一方の三元触媒がリッチ排気ガス中のCOやHCによって被毒されていたり、他方の三元触媒がリーン排気ガス中の酸素によって被毒されていたりする。このため、硫黄被毒回復制御が終了した後に、三元触媒が機能するはずの条件が整ったとしても、三元触媒が有効に機能しないことがある。   By the way, when performing the above-described sulfur poisoning recovery control, rich exhaust gas continues to flow into one of the three-way catalysts, and lean exhaust gas continues to flow into the other three-way catalyst. For this reason, when the sulfur poisoning recovery control is finished, one of the three-way catalysts is poisoned by CO or HC in the rich exhaust gas, or the other three-way catalyst is poisoned by oxygen in the lean exhaust gas. I'm going. For this reason, even if the conditions under which the three-way catalyst should function after the completion of the sulfur poisoning recovery control are satisfied, the three-way catalyst may not function effectively.

そこで、本発明の目的は、上述したように三元触媒とNOx触媒とを備えた内燃機関の排気浄化装置において、NOx触媒の硫黄被毒回復制御が終了した後、できるだけ早期に、三元触媒が有効に機能可能な状態とし、或いは、NOx触媒の硫黄被毒回復制御が終了したときに三元触媒が有効に機能可能な状態としておくことにある。   Therefore, an object of the present invention is to provide a three-way catalyst as early as possible after the sulfur poisoning recovery control of the NOx catalyst is completed in the exhaust gas purification apparatus for an internal combustion engine provided with the three-way catalyst and the NOx catalyst as described above. Is to enable the three-way catalyst to function effectively when the sulfur poisoning recovery control of the NOx catalyst is completed.

上記課題を解決するために、1番目の発明では、複数の気筒を備え、これら気筒を少なくとも2つの気筒群に分け、各気筒群にそれぞれ排気枝管を接続すると共にこれら排気枝管を下流側で合流させて共通の1つの排気管に接続した内燃機関の排気浄化装置であって、各排気枝管内に三元触媒をそれぞれ配置すると共に上記共通の1つの排気管内にNOx触媒を配置し、該NOx触媒の硫黄被毒回復制御として、一方の気筒群からはリッチ空燃比の排気ガスを排出させ、他方の気筒群からはリーン空燃比の排気ガスを排出させる制御を行う排気浄化装置において、上記硫黄被毒回復制御を終了するとき、該硫黄被毒回復制御中にリッチ空燃比の排気ガスを排出していた気筒群からリーン空燃比の排気ガスを排出させる排気空燃比逆転制御を行う。   In order to solve the above-mentioned problem, in the first invention, a plurality of cylinders are provided, these cylinders are divided into at least two cylinder groups, exhaust branch pipes are connected to the respective cylinder groups, and these exhaust branch pipes are connected to the downstream side. In which the three-way catalyst is disposed in each exhaust branch pipe, and the NOx catalyst is disposed in the one common exhaust pipe. In the exhaust purification apparatus that performs control for exhausting rich air-fuel ratio exhaust gas from one cylinder group and exhausting lean air-fuel ratio exhaust gas from the other cylinder group as sulfur poisoning recovery control of the NOx catalyst, When the sulfur poisoning recovery control is terminated, exhaust air / fuel ratio reverse control is performed to exhaust the lean air / fuel ratio exhaust gas from the cylinder group that exhausted the rich air / fuel ratio exhaust gas during the sulfur poisoning recovery control. .

2番目の発明では、1番目の発明において、上記排気空燃比逆転制御では、硫黄被毒回復制御中にリッチ空燃比の排気ガスを排出していた気筒群からリーン空燃比の排気ガスを排出させた後、該気筒群からリッチ空燃比の排気ガスとリーン空燃比の排気ガスとを交互に排出させる。
3番目の発明では、1または2番目の発明において、上記排気空燃比逆転制御では、硫黄被毒回復制御中にリーン空燃比の排気ガスを排出していた気筒群からリッチ空燃比の排気ガスを排出させる。
In the second invention, in the first invention, in the exhaust air-fuel ratio reverse control, the lean air-fuel ratio exhaust gas is discharged from the cylinder group that has exhausted the rich air-fuel ratio exhaust gas during the sulfur poisoning recovery control. After that, the rich air-fuel ratio exhaust gas and the lean air-fuel ratio exhaust gas are alternately discharged from the cylinder group.
In the third aspect of the invention, in the first or second aspect of the invention, in the exhaust air-fuel ratio reverse control, the rich air-fuel ratio exhaust gas is discharged from the cylinder group that has exhausted the lean air-fuel ratio during the sulfur poisoning recovery control. Let it drain.

4番目の発明では、3番目の発明において、上記排気空燃比逆転制御では、硫黄被毒回復制御中にリーン空燃比の排気ガスを排出していた気筒群からリッチ空燃比の排気ガスを排出させた後、該気筒群からリーン空燃比の排気ガスとリッチ空燃比の排気ガスとを交互に排出させる。
5番目の発明では、1または2番目の発明において、上記排気空燃比逆転制御では、硫黄被毒回復制御中にリーン空燃比の排気ガスを排出していた気筒群では通常運転にて行われるべき燃焼が行われる。
6番目の発明では、1〜5番目の発明のいずれか1つにおいて、上記排気空燃比逆転制御中に特定の気筒群からリーン空燃比の排気ガスを排出させるときの該排気ガスの空燃比は理論空燃比に近いリーンであり、上記排気空燃比逆転制御中に特定の気筒群からリッチ空燃比の排気ガスを排出させるときの該排気ガスの空燃比は理論空燃比に近いリッチである。
In the fourth aspect of the invention, in the third aspect of the invention, in the exhaust air-fuel ratio reverse control, the rich air-fuel ratio exhaust gas is discharged from the cylinder group that has discharged the lean air-fuel ratio exhaust gas during the sulfur poisoning recovery control. Thereafter, the lean air-fuel ratio exhaust gas and the rich air-fuel ratio exhaust gas are alternately discharged from the cylinder group.
In the fifth aspect of the invention, in the first or second aspect of the invention, the above-described exhaust air-fuel ratio reverse control should be performed in the normal operation in the cylinder group that has exhausted the exhaust gas having the lean air-fuel ratio during the sulfur poisoning recovery control. Combustion takes place.
In a sixth aspect of the invention, in any one of the first to fifth aspects, the air-fuel ratio of the exhaust gas when exhaust gas having a lean air-fuel ratio is discharged from a specific cylinder group during the exhaust air-fuel ratio reverse control is as follows. The lean air-fuel ratio is close to the stoichiometric air-fuel ratio. When exhaust gas having a rich air-fuel ratio is discharged from a specific cylinder group during the exhaust air-fuel ratio reverse rotation control, the air-fuel ratio of the exhaust gas is rich near the stoichiometric air-fuel ratio.

上記課題を解決するために、7番目の発明では、複数の気筒を備え、これら気筒を2つの気筒群に分け、各気筒群にそれぞれ排気枝管を接続すると共にこれら排気枝管を下流側で合流させて共通の1つの排気管に接続した内燃機関の排気浄化装置であって、各排気枝管内に三元触媒をそれぞれ配置すると共に上記共通の1つの排気管内にNOx触媒を配置し、該NOx触媒の硫黄被毒回復制御として、一方の気筒群からはリッチ空燃比の排気ガスを排出させ、他方の気筒群からはリーン空燃比の排気ガスを排出させる制御を行う排気浄化装置において、上記硫黄被毒回復制御中、リッチ空燃比の排気ガスを排出させる気筒群とリーン空燃比の排気ガスを排出させる気筒群とを繰り返し交替させる。   In order to solve the above-mentioned problems, in the seventh invention, a plurality of cylinders are provided, these cylinders are divided into two cylinder groups, exhaust branch pipes are connected to the respective cylinder groups, and these exhaust branch pipes are connected downstream. An exhaust purification device for an internal combustion engine that is joined and connected to a common exhaust pipe, wherein a three-way catalyst is disposed in each exhaust branch pipe, and a NOx catalyst is disposed in the common exhaust pipe, In the exhaust purification apparatus for performing control for exhausting the rich air-fuel ratio from one cylinder group and exhausting the lean air-fuel ratio exhaust from the other cylinder group as the sulfur poisoning recovery control of the NOx catalyst, During the sulfur poisoning recovery control, the cylinder group for exhausting the rich air-fuel ratio exhaust gas and the cylinder group for discharging the lean air-fuel ratio exhaust gas are repeatedly switched.

8番目の発明では、7番目の発明において、上記硫黄被毒回復制御の終了が要求されたとき、該硫黄被毒回復制御において最初にリッチ空燃比の排気ガスを排出させる気筒群とされた気筒群からリーン空燃比の排気ガスが排出されると共に最初にリーン空燃比の排気ガスを排出させる気筒群とされた気筒群からリッチ空燃比の排気ガスが排出されたときに、該硫黄被毒回復制御を終了させる。   According to an eighth aspect, in the seventh aspect, when the end of the sulfur poisoning recovery control is requested, the cylinders are made to be a cylinder group that exhausts exhaust gas having a rich air-fuel ratio first in the sulfur poisoning recovery control. When the exhaust gas having a lean air-fuel ratio is discharged from the group and the exhaust gas having a rich air-fuel ratio is discharged from a cylinder group that first discharges the exhaust gas having a lean air-fuel ratio, the sulfur poisoning recovery is performed. End control.

9番目の発明では、7または8番目の発明において、上記内燃機関が各気筒に充填される混合気の空燃比を目標空燃比に制御する空燃比制御として三元触媒下流の排気枝管または排気管に配置された空燃比センサの出力を利用して上記混合気の空燃比を目標空燃比に制御する空燃比制御を行うと共に該空燃比制御の制御対象に対する制御量を学習する学習制御を行う内燃機関である場合において、上記硫黄被毒回復制御が終了してから所定期間、上記学習制御の実行を禁止する。   According to a ninth aspect, in the seventh or eighth aspect, an exhaust branch pipe or an exhaust gas downstream of the three-way catalyst is used as air-fuel ratio control for controlling the air-fuel ratio of the air-fuel mixture filled in each cylinder to the target air-fuel ratio. An air-fuel ratio control for controlling the air-fuel ratio of the air-fuel mixture to a target air-fuel ratio is performed using an output of an air-fuel ratio sensor arranged in a pipe, and a learning control for learning a control amount for the control target of the air-fuel ratio control In the case of an internal combustion engine, execution of the learning control is prohibited for a predetermined period after the completion of the sulfur poisoning recovery control.

1つ目の発明(1〜6番目の発明)によれば、硫黄被毒回復制御中にリッチ空燃比の排気ガスが流入していた三元触媒には、該硫黄被毒回復制御が終了した後、リーン空燃比の排気ガスが供給されるので、より早期に、三元触媒が有効に機能可能な状態とされる。
また、2つ目の発明(7〜9番目の発明)によれば、硫黄被毒回復制御中に三元触媒にはリッチ空燃比の排気ガスとリーン空燃比の排気ガスとが交互に流入するので、該硫黄被毒回復制御が終了したときに三元触媒が有効に機能可能な状態とされている。
According to the first invention (the first to sixth inventions), the sulfur poisoning recovery control is completed for the three-way catalyst into which the exhaust gas having a rich air-fuel ratio has flowed during the sulfur poisoning recovery control. Thereafter, since the lean air-fuel ratio exhaust gas is supplied, the three-way catalyst can be effectively functioned earlier.
According to the second invention (the seventh to ninth inventions), the rich air-fuel ratio exhaust gas and the lean air-fuel ratio exhaust gas alternately flow into the three-way catalyst during the sulfur poisoning recovery control. Therefore, when the sulfur poisoning recovery control is finished, the three-way catalyst can be effectively functioned.

以下、図面を参照して本発明の実施の形態を説明する。図1は、本発明の排気浄化装置を備えた内燃機関を示している。図1において、1は内燃機関の本体を示し、♯1〜♯4はそれぞれ第1気筒、第2気筒、第3気筒、第4気筒を示している。各気筒には、それぞれ対応して、燃料噴射弁21,22,23,24が設けられている。また、各気筒には、それぞれ対応する吸気枝管3を介して吸気管4が接続されている。また、第1気筒および第4気筒には、第1の排気枝管5が接続されており、第2気筒および第3気筒には、第2の排気枝管6が接続されている。すなわち、第1気筒と第4気筒とをまとめて第1気筒群と称し、第2気筒と第3気筒とをまとめて第2気筒群と称したとき、第1気筒群には、第1の排気枝管5が接続されており、第2気筒群には、第2の排気枝管6が接続されている。そして、これら排気枝管5,6は、下流側において合流し、共通の1つの排気管7に接続されている。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an internal combustion engine equipped with the exhaust emission control device of the present invention. In FIG. 1, 1 indicates a main body of an internal combustion engine, and # 1 to # 4 indicate a first cylinder, a second cylinder, a third cylinder, and a fourth cylinder, respectively. Each cylinder is provided with fuel injection valves 21, 22, 23, 24 correspondingly. Each cylinder is connected to an intake pipe 4 via a corresponding intake branch pipe 3. Further, a first exhaust branch pipe 5 is connected to the first cylinder and the fourth cylinder, and a second exhaust branch pipe 6 is connected to the second cylinder and the third cylinder. That is, when the first cylinder and the fourth cylinder are collectively referred to as a first cylinder group, and the second cylinder and the third cylinder are collectively referred to as a second cylinder group, the first cylinder group includes the first cylinder group. An exhaust branch pipe 5 is connected, and a second exhaust branch pipe 6 is connected to the second cylinder group. These exhaust branch pipes 5 and 6 merge on the downstream side and are connected to a common exhaust pipe 7.

なお、第1の排気枝管5は、下流側では1つの排気枝管であるが、上流側では2つに分岐しており、これら2つに分岐した排気枝管がそれぞれ第1気筒および第4気筒に接続されている。同様に、第2の排気枝管6も、下流側では1つの排気枝管であるが、上流側では2つに分岐しており、これら2つに分岐した排気枝管がそれぞれ第2気筒および第3気筒に接続されている。以下の説明では、排気枝管5,6の上流側の2つに分かれている部分を特定して表現する場合、これを「排気枝管の分岐部分」と表現し、排気枝管5,6の下流側の1つの部分を特定して表現する場合、これを「排気枝管の集合部分」と表現する。   The first exhaust branch pipe 5 is one exhaust branch pipe on the downstream side, but is branched into two on the upstream side, and the exhaust branch pipes branched into these two are the first cylinder and the first cylinder, respectively. It is connected to 4 cylinders. Similarly, the second exhaust branch pipe 6 is also one exhaust branch pipe on the downstream side, but is branched into two on the upstream side, and the two exhaust branch pipes branched into the second cylinder and the second branch branch pipe, respectively. Connected to the third cylinder. In the following description, when a portion divided into two on the upstream side of the exhaust branch pipes 5 and 6 is specified and expressed, this is expressed as “a branch portion of the exhaust branch pipe”, and the exhaust branch pipes 5 and 6 are expressed. In the case where one portion on the downstream side is specified and expressed, this is expressed as “a collection portion of exhaust branch pipes”.

各排気枝管5,6の集合部分には、それぞれ、三元触媒8,9が配置されており、排気管7には、NOx触媒10が配置されている。また、各三元触媒5,6上流の排気枝管5,6の集合部分には、それぞれ、空燃比センサ11,12が配置されている。また、NOx触媒10上流および下流の排気管7にも、それぞれ、空燃比センサ13,14が配置されている。   Three-way catalysts 8 and 9 are disposed in the gathering portions of the exhaust branch pipes 5 and 6, respectively, and a NOx catalyst 10 is disposed in the exhaust pipe 7. In addition, air-fuel ratio sensors 11 and 12 are arranged at the collection portions of the exhaust branch pipes 5 and 6 upstream of the three-way catalysts 5 and 6, respectively. Air-fuel ratio sensors 13 and 14 are also disposed in the exhaust pipe 7 upstream and downstream of the NOx catalyst 10, respectively.

三元触媒8,9は、図2に示されているように、その温度が或る温度(いわゆる、活性温度)以上であって、且つ、そこに流入する排気ガスの空燃比が理論空燃比近傍(図2の領域X内)にあるときに、排気ガス中の窒素酸化物(NOx)、一酸化炭素(CO)、および、炭化水素(HC)を同時に高い浄化率にて浄化する。一方、三元触媒は、そこに流入する排気ガスの空燃比が理論空燃比よりもリーンであるときには、排気ガス中の酸素を吸収し、そこに流入する排気ガスの空燃比が理論空燃比よりもリッチであるときには、吸収した酸素を放出する酸素吸放出能力を有する。この酸素吸放出能力が正常に機能する限り流入する排気ガスの空燃比が理論空燃比よりもリーンであってもリッチであっても、三元触媒内の雰囲気の空燃比がほぼ理論空燃比近傍に維持されるので、排気ガス中のNOx、CO、HCが同時に高い浄化率で浄化される。   As shown in FIG. 2, the three-way catalysts 8 and 9 have a temperature equal to or higher than a certain temperature (so-called activation temperature), and the air-fuel ratio of the exhaust gas flowing into the three-way catalysts 8 and 9 is the stoichiometric air-fuel ratio. When in the vicinity (in the region X of FIG. 2), nitrogen oxide (NOx), carbon monoxide (CO), and hydrocarbon (HC) in the exhaust gas are simultaneously purified at a high purification rate. On the other hand, when the air-fuel ratio of the exhaust gas flowing into the three-way catalyst is leaner than the stoichiometric air-fuel ratio, the three-way catalyst absorbs oxygen in the exhaust gas, and the air-fuel ratio of the exhaust gas flowing into the exhaust gas is greater than the stoichiometric air-fuel ratio. When it is also rich, it has an oxygen absorption / release capability of releasing absorbed oxygen. As long as this oxygen absorption / release capability functions normally, the air / fuel ratio of the exhaust gas flowing in is leaner or richer than the stoichiometric air / fuel ratio. Therefore, NOx, CO, and HC in the exhaust gas are simultaneously purified with a high purification rate.

NOx触媒10は、その温度が或る温度(いわゆる、活性温度)以上であって、且つ、そこに流入する排気ガスの空燃比が理論空燃比よりもリーンであるとき(大きいとき)に排気ガス中のNOxを吸収または吸蔵することによって保持し、そこに流入する排気ガスの空燃比が理論空燃比または理論空燃比よりもリッチとなると保持しているNOxを還元浄化する。   The NOx catalyst 10 has an exhaust gas when its temperature is higher than a certain temperature (so-called activation temperature) and the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 10 is leaner (larger) than the stoichiometric air-fuel ratio. It is retained by absorbing or storing NOx therein, and when the air-fuel ratio of the exhaust gas flowing therein becomes richer than the stoichiometric air-fuel ratio or stoichiometric air-fuel ratio, the retained NOx is reduced and purified.

ところで、NOx触媒10にNOxが保持される条件において、排気ガス中にSOxが含まれていると、このSOxもNOx触媒に保持されてしまう。上述したように、NOx触媒にSOxが保持されると、その分、NOx触媒が保持することができるNOxの量が少なくなってしまう。このため、NOx触媒のNOx保持能力をできるだけ高く維持しておくためには、NOx触媒からSOxを除去する必要がある。ここで、NOx触媒の温度をSOxを除去可能な温度にした状態で、NOx触媒に理論空燃比またはリッチ(好ましくは、理論空燃比に極めて近いリッチ)の排気ガスを供給すれば、NOx触媒からSOxを除去することができる。云い換えれば、本実施形態のNOx触媒は、その温度を或る温度にした状態でそこに理論空燃比またはリッチ空燃比の排気ガスが供給されると、SOxを放出するものであると言える。   By the way, if SOx is contained in the exhaust gas under the condition in which NOx is held in the NOx catalyst 10, this SOx is also held in the NOx catalyst. As described above, when SOx is held in the NOx catalyst, the amount of NOx that can be held by the NOx catalyst is reduced accordingly. For this reason, in order to maintain the NOx retention capacity of the NOx catalyst as high as possible, it is necessary to remove SOx from the NOx catalyst. Here, if the exhaust gas having a stoichiometric air-fuel ratio or rich (preferably, very close to the stoichiometric air-fuel ratio) is supplied to the NOx catalyst while the temperature of the NOx catalyst is set to a temperature at which SOx can be removed, the NOx catalyst SOx can be removed. In other words, it can be said that the NOx catalyst of the present embodiment releases SOx when the stoichiometric or rich air-fuel ratio exhaust gas is supplied to the NOx catalyst in a state where the temperature is set to a certain temperature.

そこで、NOx触媒10からSOxを除去することが要求されたときには、本実施形態では、以下の硫黄被毒回復制御を実行することによって、NOx触媒の温度をSOxを除去可能な温度にすると共にNOx触媒に理論空燃比またはリッチ空燃比の排気ガスを供給する。すなわち、本実施形態の硫黄被毒回復制御では、第1気筒および第4気筒(すなわち、第1気筒群)からリッチ空燃比の排気ガス(以下「リッチ排気ガス」という)が排出されると共に第2気筒および第3気筒(すなわち、第2気筒群)からリーン空燃比の排気ガス(以下「リーン排気ガス」という)が排出されるように、各気筒に充填される混合気の空燃比を制御する。   Therefore, when it is required to remove SOx from the NOx catalyst 10, in the present embodiment, the following sulfur poisoning recovery control is executed, so that the temperature of the NOx catalyst is set to a temperature at which SOx can be removed and NOx. An exhaust gas having a stoichiometric or rich air-fuel ratio is supplied to the catalyst. That is, in the sulfur poisoning recovery control of the present embodiment, rich air-fuel ratio exhaust gas (hereinafter referred to as “rich exhaust gas”) is discharged from the first cylinder and the fourth cylinder (that is, the first cylinder group) and the first. The air-fuel ratio of the air-fuel mixture filled in each cylinder is controlled so that the exhaust gas having a lean air-fuel ratio (hereinafter referred to as “lean exhaust gas”) is discharged from the second cylinder and the third cylinder (that is, the second cylinder group). To do.

ここで、各気筒から排出させるリッチ排気ガスのリッチ度合およびリーン排気ガスのリーン度合は、これらリッチ排気ガスとリーン排気ガスとがNOx触媒10上流で混ざり合ってNOx触媒に流入するときに、トータルの排気ガスの空燃比が理論空燃比または所望のリッチ空燃比となるように調整される。   Here, the richness of the rich exhaust gas discharged from each cylinder and the leanness of the lean exhaust gas are determined when the rich exhaust gas and the lean exhaust gas are mixed upstream of the NOx catalyst 10 and flow into the NOx catalyst. The air-fuel ratio of the exhaust gas is adjusted so as to be the stoichiometric air-fuel ratio or a desired rich air-fuel ratio.

一般的に、NOx触媒10からSOxを除去可能な温度(以下「SOx除去可能温度」という)は、NOx触媒にNOxを保持させたり還元浄化させたりする温度よりも高いので、NOx触媒からSOxを除去するためには、NOx触媒の温度を上昇させる必要がある。これに関し、本実施形態の硫黄被毒回復制御によれば、リッチ排気ガスとリーン排気ガスとが混ざり合ってリッチ排気ガス中のHCとリーン排気ガス中の酸素とが反応することで、反応熱が発生し、この反応熱により、NOx触媒の温度をSOx除去可能温度まで上昇させることができる。   Generally, the temperature at which SOx can be removed from the NOx catalyst 10 (hereinafter referred to as “the temperature at which SOx can be removed”) is higher than the temperature at which the NOx catalyst holds NOx or purifies NOx, so that SOx is removed from the NOx catalyst. In order to remove it, it is necessary to raise the temperature of the NOx catalyst. In this regard, according to the sulfur poisoning recovery control of the present embodiment, the rich exhaust gas and the lean exhaust gas are mixed and the HC in the rich exhaust gas reacts with the oxygen in the lean exhaust gas, so that the reaction heat This reaction heat can raise the temperature of the NOx catalyst to a temperature at which SOx can be removed.

そして、上述したように、NOx触媒10からSOxを除去するためには、NOx触媒に流入する排気ガスの空燃比を理論空燃比またはリッチ空燃比とすることが必要である。これに関し、本実施形態の硫黄被毒回復制御によれば、NOx触媒に流入する排気ガスの空燃比は理論空燃比またはリッチ空燃比となっている。こうして、本実施形態の硫黄被毒回復制御によれば、NOx触媒10からSOxを除去することができる。   As described above, in order to remove SOx from the NOx catalyst 10, it is necessary to set the air-fuel ratio of the exhaust gas flowing into the NOx catalyst to the stoichiometric air-fuel ratio or the rich air-fuel ratio. In this regard, according to the sulfur poisoning recovery control of the present embodiment, the air-fuel ratio of the exhaust gas flowing into the NOx catalyst is the stoichiometric air-fuel ratio or the rich air-fuel ratio. Thus, according to the sulfur poisoning recovery control of the present embodiment, SOx can be removed from the NOx catalyst 10.

なお、硫黄被毒回復制御において各気筒から排出させるリッチ排気ガスの空燃比は、理論空燃比に近いリッチ空燃比であることが好ましく、したがって、硫黄被毒回復制御において各気筒から排出させるリーン排気ガスの空燃比も、理論空燃比に近いリーン空燃比であることが好ましい。   Note that the air-fuel ratio of the rich exhaust gas discharged from each cylinder in the sulfur poisoning recovery control is preferably a rich air-fuel ratio close to the stoichiometric air-fuel ratio. Therefore, the lean exhaust gas discharged from each cylinder in the sulfur poisoning recovery control. The air / fuel ratio of the gas is also preferably a lean air / fuel ratio close to the stoichiometric air / fuel ratio.

ところで、硫黄被毒回復制御中、一方の三元触媒8には常にリッチ排気ガスが流入する。このように、リッチ排気ガスのみが三元触媒に流入し続けると、リッチ排気ガス中のHCやCOが三元触媒に付着する。そして、このような三元触媒の状態が硫黄被毒回復制御の終了後も継続していると、本来であれば三元触媒が有効に機能する条件が整ったとしても、三元触媒が有効に機能しない可能性がある。また、硫黄被毒回復制御中、他方の三元触媒9には常にリーン排気ガスが流入する。このように、リーン排気ガスのみが三元触媒に流入し続けると、リーン排気ガス中の酸素が三元触媒に付着する。そして、このような三元触媒の状態が硫黄被毒回復制御の終了後も継続していると、本来であれば三元触媒が有効に機能する条件が整ったとしても、三元触媒が有効に機能しない可能性がある。   By the way, during the sulfur poisoning recovery control, the rich exhaust gas always flows into one of the three-way catalysts 8. Thus, if only rich exhaust gas continues to flow into the three-way catalyst, HC and CO in the rich exhaust gas will adhere to the three-way catalyst. If such a three-way catalyst state continues even after the end of the sulfur poisoning recovery control, the three-way catalyst is effective even if conditions for the three-way catalyst to function effectively are prepared. May not work. Further, during the sulfur poisoning recovery control, lean exhaust gas always flows into the other three-way catalyst 9. As described above, when only the lean exhaust gas continues to flow into the three-way catalyst, oxygen in the lean exhaust gas adheres to the three-way catalyst. If such a three-way catalyst state continues even after the end of the sulfur poisoning recovery control, the three-way catalyst is effective even if conditions for the three-way catalyst to function effectively are prepared. May not work.

そこで、本実施形態では、硫黄被毒回復制御の終了後、以下の三元触媒被毒回復制御を実行することによって、三元触媒に付着しているHCやCO、或いは、酸素を三元触媒から除去する。すなわち、本実施形態の三元触媒被毒回復制御では、第1気筒群からリーン排気ガスが排出されると共に第2気筒群からリッチ排気ガスが排出されるように、各気筒に充填される混合気の空燃比を制御する。すなわち、云い換えると、硫黄被毒回復制御中にリッチ排気ガスを排出していた気筒群からはリーン排気ガスを排出させ、硫黄被毒回復制御中にリーン排気ガスを排出していた気筒群からはリッチ排気ガスを排出させる。   Therefore, in the present embodiment, after completion of the sulfur poisoning recovery control, the following three-way catalyst poisoning recovery control is executed, so that HC, CO, or oxygen adhering to the three-way catalyst is removed from the three-way catalyst. Remove from. That is, in the three-way catalyst poisoning recovery control of the present embodiment, the mixture filled in each cylinder so that the lean exhaust gas is discharged from the first cylinder group and the rich exhaust gas is discharged from the second cylinder group. Control the air / fuel ratio of the air. That is, in other words, lean exhaust gas is discharged from the cylinder group that exhausted the rich exhaust gas during the sulfur poisoning recovery control, and from the cylinder group that discharged the lean exhaust gas during the sulfur poisoning recovery control. Exhausts rich exhaust gas.

これによれば、硫黄被毒回復制御中にリッチ排気ガスのみが流入していたことによってHCやCOが付着している三元触媒8には、リーン排気ガスが供給されることになる。これによると、供給されたリーン排気ガス中の酸素が三元触媒8に付着しているHCやCOと反応してこれらHCやCOを除去することになる。一方、硫黄被毒回復制御中にリーン排気ガスのみが流入していたことによって酸素が付着している三元触媒9には、リッチ排気ガスが供給されることになる。これによると、供給されたリッチ排気ガス中のHCやCOが三元触媒9に付着している酸素と反応してこの酸素を除去することになる。   According to this, lean exhaust gas is supplied to the three-way catalyst 8 to which HC and CO are attached because only rich exhaust gas has flowed in during the sulfur poisoning recovery control. According to this, oxygen in the supplied lean exhaust gas reacts with HC and CO adhering to the three-way catalyst 8 to remove these HC and CO. On the other hand, rich exhaust gas is supplied to the three-way catalyst 9 to which oxygen is attached because only lean exhaust gas has flowed in during the sulfur poisoning recovery control. According to this, HC and CO in the supplied rich exhaust gas react with oxygen adhering to the three-way catalyst 9 to remove this oxygen.

次に、本発明の第2実施形態について説明する。本実施形態では、三元触媒被毒回復制御において、硫黄被毒回復制御中にリッチ排気ガスを排出していた気筒群からリーン排気ガスを排出させると共に硫黄被毒回復制御中にリーン排気ガスを排出していた気筒群からリッチ排気ガスを排出させた後、リーン排気ガスを排出させる気筒群とリッチ排気ガスを排出させる気筒群とを交互に切り替える。   Next, a second embodiment of the present invention will be described. In the present embodiment, in the three-way catalyst poisoning recovery control, the lean exhaust gas is discharged from the cylinder group that has exhausted the rich exhaust gas during the sulfur poisoning recovery control, and the lean exhaust gas is discharged during the sulfur poisoning recovery control. After exhausting the rich exhaust gas from the exhausted cylinder group, the cylinder group that exhausts the lean exhaust gas and the cylinder group that exhausts the rich exhaust gas are alternately switched.

このように、三元触媒被毒回復制御を実行することには、以下のような利点がある。すなわち、本実施形態によれば、三元触媒被毒回復制御中、HCやCOの付着によって被毒された三元触媒8にリーン排気ガスのみを供給するのではなく、リーン排気ガスとリッチ排気ガスとが交互に供給されることになる。このため、単に、リーン排気ガスのみを供給する場合に比べ、三元触媒8での反応に刺激を多く与えることになるので、三元触媒8からHCやCOを迅速に除去することができる。また、本実施形態によれば、三元触媒被毒回復制御中、酸素の付着によって被毒された三元触媒9にリッチ排気ガスのみを供給するのではなく、リッチ排気ガスとリーン排気ガスとが交互に供給されるので、上と同じ理由で、三元触媒9から酸素を迅速に除去することができる。   Thus, performing the three-way catalyst poisoning recovery control has the following advantages. That is, according to the present embodiment, during the three-way catalyst poisoning recovery control, not only the lean exhaust gas is supplied to the three-way catalyst 8 poisoned by the adhesion of HC or CO, but the lean exhaust gas and the rich exhaust gas are not supplied. Gas is supplied alternately. For this reason, compared with the case where only lean exhaust gas is supplied, the reaction at the three-way catalyst 8 is more stimulated, so that HC and CO can be rapidly removed from the three-way catalyst 8. Further, according to the present embodiment, during the three-way catalyst poisoning recovery control, not only the rich exhaust gas is supplied to the three-way catalyst 9 poisoned by the adhesion of oxygen, but the rich exhaust gas, the lean exhaust gas, Since oxygen is supplied alternately, oxygen can be quickly removed from the three-way catalyst 9 for the same reason as above.

なお、リーン排気ガスを排出させる気筒群とリッチ排気ガスを排出させる気筒群とを切り替えるタイミングは、例えば、単に一定時間が経過したタイミングでもよいし、別の何らかのパラメータに基づいて算出されるタイミングでもよい。   Note that the timing of switching between the cylinder group that discharges lean exhaust gas and the cylinder group that discharges rich exhaust gas may be, for example, a timing at which a fixed time has elapsed or a timing calculated based on some other parameter. Good.

次に、本発明の第3実施形態について説明する。本実施形態では、三元触媒被毒回復制御において、第1気筒群からはリーン排気ガスが排出されるように第1気筒群の各気筒に充填される混合気の空燃比を制御するが、第2気筒群からは必ずしもリッチ排気ガスが排出されるようには第2気筒群の各気筒に充填される混合気の空燃比を制御せず、通常運転にて行われる空燃比制御を行う。云い換えると、硫黄被毒回復制御中にリッチ排気ガスを排出していた気筒群からはリーン排気ガスを排出させるが、硫黄被毒回復制御中にリーン排気ガスを排出していた気筒群からは必ずしもリッチ排気ガスを排出させるのではなく、この気筒群では、通常運転を行わせる。   Next, a third embodiment of the present invention will be described. In the present embodiment, in the three-way catalyst poisoning recovery control, the air-fuel ratio of the air-fuel mixture charged in each cylinder of the first cylinder group is controlled so that lean exhaust gas is discharged from the first cylinder group. The air-fuel ratio control performed in the normal operation is performed without controlling the air-fuel ratio of the air-fuel mixture filled in each cylinder of the second cylinder group so that the rich exhaust gas is necessarily discharged from the second cylinder group. In other words, lean exhaust gas is discharged from the cylinder group that exhausted the rich exhaust gas during the sulfur poisoning recovery control, but from the cylinder group that exhausted the lean exhaust gas during the sulfur poisoning recovery control. Rich exhaust gas is not necessarily exhausted, and normal operation is performed in this cylinder group.

三元触媒被毒回復制御をこのように行う理由は、酸素の付着による三元触媒9の被毒は、HCやCOの付着による三元触媒8の被毒に比べて、被毒の程度が小さいと言え、こうした意味では、少なくとも、HCやCOの付着によって被毒されている三元触媒8に対してのみ被毒回復制御を行えば十分であるとできるからである。そして、こうすることで、一方の気筒群において通常運転とは異なる運転を行う必要がなくなるので、機関運転制御がよりシンプルなものとなるという利点が得られる。   The reason why the three-way catalyst poisoning recovery control is performed in this manner is that the poisoning of the three-way catalyst 9 due to the adhesion of oxygen is less poisonous than the poisoning of the three-way catalyst 8 due to the adhesion of HC or CO. In this sense, it can be said that it is sufficient to perform poisoning recovery control only on the three-way catalyst 8 that is poisoned by the adhesion of HC or CO. In this way, it is not necessary to perform an operation different from the normal operation in one cylinder group, so that an advantage that the engine operation control becomes simpler can be obtained.

なお、第3実施形態の三元触媒被毒回復制御において、硫黄被毒回復制御中にリッチ排気ガスを排出していた気筒群からリーン排気ガスを排出させた後、リッチ排気ガスとリーン排気ガスとを交互に排出させるようにしてもよい。この場合、リーン排気ガスとリッチ排気ガスとを切り替えるタイミングは、例えば、単に一定時間が経過したタイミングでもよいし、別の何らかのパラメータに基づいて算出されるタイミングでもよい。   In the three-way catalyst poisoning recovery control of the third embodiment, after exhausting the lean exhaust gas from the cylinder group that has exhausted the rich exhaust gas during the sulfur poisoning recovery control, the rich exhaust gas and the lean exhaust gas are exhausted. May be discharged alternately. In this case, the timing for switching between the lean exhaust gas and the rich exhaust gas may be, for example, a timing at which a fixed time has elapsed or a timing calculated based on some other parameter.

図3は、上述した硫黄被毒回復制御と三元触媒被毒回復制御とを行うルーチンの一例を示している。図3のルーチンでは、始めに、ステップ10において、SOx保持量Sが所定量SRよりも多い(S>SR)か否かが判別される。ここで、SOx保持量とは、NOx触媒10に現在保持されているSOxの量である。ステップ10において、S≦SRであると判別されたときには、現時点では、NOx触媒からSOxを除去する必要はないと判断し、ルーチンが終了する。一方、ステップ10において、S>SRであると判別されたときには、NOx触媒10からSOxを除去する必要があると判断し、次のステップ11において、上述した硫黄被毒回復制御が開始される。   FIG. 3 shows an example of a routine for performing the above-described sulfur poisoning recovery control and three-way catalyst poisoning recovery control. In the routine of FIG. 3, first, at step 10, it is determined whether or not the SOx retention amount S is larger than the predetermined amount SR (S> SR). Here, the SOx retention amount is the amount of SOx currently retained in the NOx catalyst 10. If it is determined in step 10 that S ≦ SR, it is determined that it is not necessary to remove SOx from the NOx catalyst at the present time, and the routine ends. On the other hand, when it is determined in step 10 that S> SR, it is determined that SOx needs to be removed from the NOx catalyst 10, and in the next step 11, the above-described sulfur poisoning recovery control is started.

次いで、ステップ12において、SOx保持量Sが零になった(S=0)か否かが判別される。ここで、S≠0であると判別されたときには、硫黄被毒回復制御を続ける必要があると判断し、ルーチンはステップ12に戻る。そして、ステップ12において、S=0であると判別されるまで、ステップ12が繰り返され、この間、硫黄被毒回復制御が続けられる。ステップ12において、S=0であると判別されたときには、ステップ13において、硫黄被毒回復制御が終了され、次いで、ステップ14において、上述したいずれかの三元触媒被毒回復制御が開始される。   Next, at step 12, it is judged if the SOx retention amount S has become zero (S = 0). If it is determined that S ≠ 0, it is determined that the sulfur poisoning recovery control needs to be continued, and the routine returns to step 12. Then, step 12 is repeated until it is determined at step 12 that S = 0, and during this time, the sulfur poisoning recovery control is continued. If it is determined in step 12 that S = 0, the sulfur poisoning recovery control is terminated in step 13, and then any of the above-described three-way catalyst poisoning recovery control is started in step 14. .

次いで、ステップ15において、三元触媒被毒回復制御が開始されてから経過した時間Tが所定時間TRを超えた(T>TR)か否かが判別される。ここで、T≦TRであると判別されたときには、三元触媒被毒回復制御を続ける必要があると判断し、ルーチンはステップ15に戻る。そして、ステップ15において、T>TRであると判別されるまで、ステップ15が繰り返され、この間、三元触媒被毒回復制御が続けられる。ステップ15において、T>TRであると判別されたときには、ステップ16において、三元触媒被毒回復制御が終了される。   Next, in step 15, it is determined whether or not the time T that has elapsed since the start of the three-way catalyst poisoning recovery control has exceeded a predetermined time TR (T> TR). If it is determined that T ≦ TR, it is determined that the three-way catalyst poisoning recovery control needs to be continued, and the routine returns to step 15. Then, step 15 is repeated until it is determined in step 15 that T> TR. During this time, the three-way catalyst poisoning recovery control is continued. When it is determined in step 15 that T> TR, the three-way catalyst poisoning recovery control is ended in step 16.

次に、本発明の第4実施形態について説明する。本実施形態では、硫黄被毒回復制御において、始めに、第1気筒群からリッチ排気ガスが排出されると共に第2気筒群からリーン排気ガスが排出されるように、各気筒に充填される混合気の空燃比を制御した後、リッチ排気ガスが排出される気筒群とリーン排気ガスが排出される気筒群とが切り替わるように、各気筒に充填される混合気の空燃比を制御する。これにより、NOx触媒10からSOxを除去することができる。   Next, a fourth embodiment of the present invention will be described. In the present embodiment, in the sulfur poisoning recovery control, first, the mixture filled in each cylinder so that the rich exhaust gas is discharged from the first cylinder group and the lean exhaust gas is discharged from the second cylinder group. After controlling the air-fuel ratio of the air, the air-fuel ratio of the air-fuel mixture charged in each cylinder is controlled so that the cylinder group from which the rich exhaust gas is discharged and the cylinder group from which the lean exhaust gas is discharged are switched. Thereby, SOx can be removed from the NOx catalyst 10.

さらに、硫黄被毒回復制御中、各三元触媒8,9には、リッチ排気ガスとリーン排気ガスとが交互に流入するので、硫黄被毒回復制御の終了時、HCやCOの付着による三元触媒の被毒や酸素の付着による三元触媒の被毒はほとんどない。このため、硫黄被毒回復制御の終了直後から、三元触媒は有効に機能する状態となっている。   Further, during the sulfur poisoning recovery control, the rich exhaust gas and the lean exhaust gas alternately flow into the three-way catalysts 8 and 9, so that at the end of the sulfur poisoning recovery control, the three-catalyst by the attachment of HC and CO There is almost no poisoning of the three-way catalyst due to poisoning of the original catalyst or adhesion of oxygen. For this reason, the three-way catalyst is in a state of functioning effectively immediately after the end of the sulfur poisoning recovery control.

なお、第4実施形態において、硫黄被毒回復制御の終了が要求されたとき、該硫黄被毒回復制御において最初にリッチ排気ガスを排出させる気筒群とされた気筒群(上述した例では、第1気筒群)からリーン排気ガスが排出され、同硫黄被毒回復制御において最初にリーン排気ガスを排出させる気筒群とされた気筒群(上述した例では、第2気筒群)からリッチ排気ガスが排出されたときに、硫黄被毒回復制御を終了させると好ましい。すなわち、これによると、硫黄被毒回復制御中に各三元触媒8,9に流入した排気ガスの空燃比を平均してみると理論空燃比となることから、HCやCOの付着による三元触媒の被毒や酸素の付着による三元触媒の被毒を抑制するという観点から好ましい。   In the fourth embodiment, when the end of the sulfur poisoning recovery control is requested, the cylinder group that is the cylinder group that first exhausts the rich exhaust gas in the sulfur poisoning recovery control (in the above-described example, The lean exhaust gas is discharged from the one cylinder group), and the rich exhaust gas is discharged from the cylinder group (the second cylinder group in the above example) that is the cylinder group that first discharges the lean exhaust gas in the sulfur poisoning recovery control. When exhausted, it is preferable to terminate the sulfur poisoning recovery control. That is, according to this, since the air-fuel ratio of the exhaust gas flowing into each of the three-way catalysts 8, 9 during the sulfur poisoning recovery control is averaged, it becomes the stoichiometric air-fuel ratio. This is preferable from the viewpoint of suppressing poisoning of the catalyst and poisoning of the three-way catalyst due to adhesion of oxygen.

また、第4実施形態において、リーン排気ガスを排出させる気筒群とリッチ排気ガスを排出させる気筒群とを切り替えるタイミングは、例えば、単に一定時間が経過したタイミングでもよいし、別の何らかのパラメータに基づいて算出されるタイミングでもよい。   In the fourth embodiment, the timing for switching between the cylinder group that discharges the lean exhaust gas and the cylinder group that discharges the rich exhaust gas may be, for example, a timing at which a fixed time has elapsed, or based on some other parameter. May be calculated at the timing.

ところで、空燃比センサとしては、例えば、図4に示されている特性でもって電流を出力するいわゆるリニア空燃比センサがある。このリニア空燃比センサは、排気ガスの空燃比が理論空燃比であるとき、0Aの電流を出力し、排気ガスの空燃比が理論空燃比よりもリッチであるほど大きな0A以下の電流を出力し、排気ガスの空燃比が理論空燃比よりもリーンであるほど大きな0A以上の電流を出力する。すなわち、リニア空燃比センサは、排気ガスの空燃比に応じてリニアに変化する電流を出力する。   Incidentally, as the air-fuel ratio sensor, for example, there is a so-called linear air-fuel ratio sensor that outputs a current with the characteristics shown in FIG. This linear air-fuel ratio sensor outputs a current of 0 A when the air-fuel ratio of the exhaust gas is the stoichiometric air-fuel ratio, and outputs a current of 0 A or less that is larger as the air-fuel ratio of the exhaust gas is richer than the stoichiometric air-fuel ratio. As the air-fuel ratio of the exhaust gas becomes leaner than the stoichiometric air-fuel ratio, a larger current of 0 A or more is output. That is, the linear air-fuel ratio sensor outputs a current that changes linearly according to the air-fuel ratio of the exhaust gas.

また、別の空燃比センサとしては、例えば、図5に示されている特性でもって電圧を出力するいわゆるOセンサがある。このOセンサは、排気ガスの空燃比が理論空燃比よりもリーンであるとき、略0Vの電圧を出力し、理論空燃比よりもリッチであるとき、略1Vの電圧を出力する。そして、出力電圧は、排気ガスの空燃比が理論空燃比近傍にある領域で急激に変化して、0.5Vを横切る。すなわち、Oセンサは、排気ガスの空燃比が理論空燃比に対してリーンであるかリッチであるかに応じて異なる一定の電圧を出力する。 As another air-fuel ratio sensor, for example, there is a so-called O 2 sensor that outputs a voltage with the characteristics shown in FIG. This O 2 sensor outputs a voltage of approximately 0 V when the air-fuel ratio of the exhaust gas is leaner than the stoichiometric air-fuel ratio, and outputs a voltage of approximately 1 V when it is richer than the stoichiometric air-fuel ratio. The output voltage rapidly changes in a region where the air-fuel ratio of the exhaust gas is in the vicinity of the theoretical air-fuel ratio and crosses 0.5V. That is, the O 2 sensor outputs a constant voltage that varies depending on whether the air-fuel ratio of the exhaust gas is lean or rich with respect to the stoichiometric air-fuel ratio.

本発明の実施形態では、三元触媒8,9上流の空燃比センサ11,12および三元触媒とNOx触媒10との間の空燃比センサ13として、リニア空燃比センサを採用し、NOx触媒下流の空燃比センサ14として、Oセンサを採用している。そして、本実施形態では、これらセンサからの出力に基づいて、各気筒に充填される混合気の空燃比を目標空燃比に制御している。次に、こうした空燃比の制御の一例として、通常運転時に各気筒に充填される混合気の空燃比を理論空燃比に制御する本実施形態の制御(以下「通常ストイキ制御」という)を説明する。 In the embodiment of the present invention, a linear air-fuel ratio sensor is adopted as the air-fuel ratio sensor 11, 12 upstream of the three-way catalyst 8, 9 and the air-fuel ratio sensor 13 between the three-way catalyst and the NOx catalyst 10, and the NOx catalyst downstream. As the air-fuel ratio sensor 14, an O 2 sensor is employed. In this embodiment, the air-fuel ratio of the air-fuel mixture filled in each cylinder is controlled to the target air-fuel ratio based on the outputs from these sensors. Next, as an example of such air-fuel ratio control, the control of the present embodiment for controlling the air-fuel ratio of the air-fuel mixture charged in each cylinder to the stoichiometric air-fuel ratio during normal operation (hereinafter referred to as “normal stoichiometric control”) will be described. .

まず、本実施形態の通常ストイキ制御の概略を説明する。三元触媒8,9上流の空燃比センサ(以下「リニア空燃比センサ」という)11,12が排気ガスの空燃比(以下「排気空燃比」という)が理論空燃比よりもリーンであることを示しているときには、対応する気筒に充填される混合気の空燃比(機関空燃比)は理論空燃比よりもリーンであるので、対応する気筒における機関空燃比が理論空燃比に近づくように燃料噴射弁から噴射される燃料の量(以下「燃料噴射量」という)が増量される。逆に、リニア空燃比センサ11,12が排気空燃比が理論空燃比よりもリッチであることを示しているときには、対応する気筒における機関空燃比が理論空燃比に近づくように燃料噴射量が減量される。   First, the outline of the normal stoichiometric control of this embodiment will be described. The air-fuel ratio sensors (hereinafter referred to as “linear air-fuel ratio sensors”) 11 and 12 upstream of the three-way catalysts 8 and 9 indicate that the air-fuel ratio of the exhaust gas (hereinafter referred to as “exhaust air-fuel ratio”) is leaner than the stoichiometric air-fuel ratio. In the illustrated case, since the air-fuel ratio (engine air-fuel ratio) of the air-fuel mixture filled in the corresponding cylinder is leaner than the stoichiometric air-fuel ratio, fuel injection is performed so that the engine air-fuel ratio in the corresponding cylinder approaches the stoichiometric air-fuel ratio. The amount of fuel injected from the valve (hereinafter referred to as “fuel injection amount”) is increased. Conversely, when the linear air-fuel ratio sensors 11 and 12 indicate that the exhaust air-fuel ratio is richer than the stoichiometric air-fuel ratio, the fuel injection amount is reduced so that the engine air-fuel ratio in the corresponding cylinder approaches the stoichiometric air-fuel ratio. Is done.

このように燃料噴射量を制御することにより、基本的には、機関空燃比は理論空燃比に制御されるはずである。ところが、リニア空燃比センサ11,12に出力誤差があると、機関空燃比は理論空燃比に制御されない。例えば、リニア空燃比センサが実際の排気空燃比に対応する電流値よりもリッチ側にずれた空燃比に対応する電流値を出力してしまう傾向にあると、排気空燃比が理論空燃比になっていたとしても、排気空燃比は理論空燃比よりもリッチであることになってしまう。このため、燃料噴射量が少なくされ、結果的に、機関空燃比は理論空燃比よりもリーンに制御されてしまう。逆に、リニア空燃比センサが実際の排気空燃比に対応する電流値よりもリーン側にずれた空燃比に対応する電流値を出力してしまう傾向にあると、機関空燃比は理論空燃比よりもリッチに制御されてしまう。   By controlling the fuel injection amount in this way, basically, the engine air-fuel ratio should be controlled to the stoichiometric air-fuel ratio. However, if the linear air-fuel ratio sensors 11 and 12 have an output error, the engine air-fuel ratio is not controlled to the stoichiometric air-fuel ratio. For example, if the linear air-fuel ratio sensor tends to output a current value corresponding to the air-fuel ratio that is shifted to a richer side than the current value corresponding to the actual exhaust air-fuel ratio, the exhaust air-fuel ratio becomes the stoichiometric air-fuel ratio. Even if this is the case, the exhaust air-fuel ratio will be richer than the stoichiometric air-fuel ratio. For this reason, the fuel injection amount is reduced, and as a result, the engine air-fuel ratio is controlled to be leaner than the stoichiometric air-fuel ratio. On the other hand, if the linear air-fuel ratio sensor tends to output a current value corresponding to the air-fuel ratio that deviates to a leaner side than the current value corresponding to the actual exhaust air-fuel ratio, the engine air-fuel ratio is less than the stoichiometric air-fuel ratio. Is also richly controlled.

そこで、本実施形態では、こうしたリニア空燃比センサ11,12の出力誤差をNOx触媒10下流のOセンサ14の出力値を利用して補償する。すなわち、リニア空燃比センサに出力誤差がなく、機関空燃比が理論空燃比に制御されていれば、NOx触媒から流出する排気ガスの空燃比は理論空燃比になっているはずであり、このとき、Oセンサは理論空燃比に対応する0.5V(以下「基準電圧値」という)を出力する。 Therefore, in the present embodiment, such output errors of the linear air-fuel ratio sensors 11 and 12 are compensated using the output value of the O 2 sensor 14 downstream of the NOx catalyst 10. That is, if the linear air-fuel ratio sensor has no output error and the engine air-fuel ratio is controlled to the stoichiometric air-fuel ratio, the air-fuel ratio of the exhaust gas flowing out from the NOx catalyst should be the stoichiometric air-fuel ratio. The O 2 sensor outputs 0.5 V (hereinafter referred to as “reference voltage value”) corresponding to the theoretical air-fuel ratio.

しかしながら、リニア空燃比センサ11,12に出力誤差があって、例えば、機関空燃比が理論空燃比よりもリッチに制御されていると、NOx触媒10から流出する排気ガスの空燃比は理論空燃比よりもリッチになっている。このとき、Oセンサ14は理論空燃比よりもリッチな空燃比に対応する電圧値を出力する。ここで、このときにOセンサから出力される電圧値と基準電圧値との差は、リニア空燃比センサの出力誤差を示している。そこで、本実施形態では、このOセンサから実際に出力される電圧値と基準電圧値との差に基づいて、リニア空燃比センサの出力誤差が補償されるように、リニア空燃比センサの出力電流値を補正する。 However, if there is an output error in the linear air-fuel ratio sensors 11 and 12 and the engine air-fuel ratio is controlled to be richer than the stoichiometric air-fuel ratio, for example, the air-fuel ratio of the exhaust gas flowing out from the NOx catalyst 10 is the stoichiometric air-fuel ratio. It is richer than. At this time, the O 2 sensor 14 outputs a voltage value corresponding to an air-fuel ratio richer than the theoretical air-fuel ratio. Here, the difference between the voltage value output from the O 2 sensor at this time and the reference voltage value indicates an output error of the linear air-fuel ratio sensor. Therefore, in this embodiment, the output of the linear air-fuel ratio sensor is compensated so that the output error of the linear air-fuel ratio sensor is compensated based on the difference between the voltage value actually output from the O 2 sensor and the reference voltage value. Correct the current value.

逆に、リニア空燃比センサ11,12に出力誤差があって、機関空燃比が理論空燃比よりもリーンに制御されているときにも、Oセンサ14から出力される電圧値と基準電圧値との差に基づいて、リーン空燃比センサの出力誤差が補償されるように、リニア空燃比センサの出力電流値を補正する。 Conversely, when the linear air-fuel ratio sensors 11 and 12 have an output error and the engine air-fuel ratio is controlled to be leaner than the stoichiometric air-fuel ratio, the voltage value output from the O 2 sensor 14 and the reference voltage value Based on the difference, the output current value of the linear air-fuel ratio sensor is corrected so that the output error of the lean air-fuel ratio sensor is compensated.

次に、本実施形態の通常ストイキ制御をより具体例に説明する。本実施形態では、機関空燃比を理論空燃比とするのに基準となる燃料噴射弁の開弁時間(以下「基準開弁時間」という)が次式1に従って決定される。
TAUB=α×Ga/Ne …(1)
ここで、αは定数、Gaは吸入空気量(気筒に吸入される空気の量)、Neは機関回転数である。すなわち、本実施形態によれば、基準開弁時間は、単位機関回転数当たりの吸入空気量に基づいて算出され、単位機関回転数当たりの吸入空気量が多いほど長くなる傾向にある。
Next, the normal stoichiometric control of this embodiment will be described as a more specific example. In the present embodiment, the valve opening time (hereinafter referred to as “reference valve opening time”) of the fuel injection valve that is a reference for setting the engine air-fuel ratio to the stoichiometric air-fuel ratio is determined according to the following equation 1.
TAUB = α × Ga / Ne (1)
Here, α is a constant, Ga is the intake air amount (the amount of air taken into the cylinder), and Ne is the engine speed. That is, according to the present embodiment, the reference valve opening time is calculated based on the intake air amount per unit engine speed, and tends to become longer as the intake air amount per unit engine speed increases.

そして、燃料噴射弁の実際の開弁時間(以下「実開弁時間」という)TAUが次式2に従って算出される。
TAU=TAUB×F1×β×γ …(2)
ここで、F1は後述するようにして求められる補正係数(以下「メイン補正係数」ともいう)であり、β,γはそれぞれ機関運転状態に応じて決まる定数である。
Then, the actual valve opening time (hereinafter referred to as “actual valve opening time”) TAU of the fuel injection valve is calculated according to the following equation 2.
TAU = TAUB × F1 × β × γ (2)
Here, F1 is a correction coefficient (hereinafter also referred to as “main correction coefficient”) obtained as described later, and β and γ are constants determined according to the engine operating state.

メイン補正係数F1は、次式3に従って算出される。
F1=Kp1×(I−F2−I)+Ki1×∫(I−F2−I)dt+Kd1×d(I−F2−I)/dt …(3)
ここで、Iは排気ガスの空燃比が理論空燃比であるときにリニア空燃比センサ11,12から出力されるべき電流値であり、Iはリニア空燃比センサ11,12から実際に出力される電流値であり、F2は後述するようにして求められる補正係数(以下「サブ補正係数」ともいう)であり、Kp1は比例ゲインであり、Ki1は積分ゲインであり、Kd1は微分ゲインである。すなわち、これによれば、メイン補正係数F1はPID制御されることになる。
The main correction coefficient F1 is calculated according to the following equation 3.
F1 = Kp1 × (I−F2−I 0 ) + Ki1 × ∫ (I−F2−I 0 ) dt + Kd1 × d (I−F2−I 0 ) / dt (3)
Here, I 0 is a current value to be output from the linear air-fuel ratio sensors 11 and 12 when the air-fuel ratio of the exhaust gas is the stoichiometric air-fuel ratio, and I is actually output from the linear air-fuel ratio sensors 11 and 12. F2 is a correction coefficient (hereinafter also referred to as “sub-correction coefficient”) obtained as described later, Kp1 is a proportional gain, Ki1 is an integral gain, and Kd1 is a differential gain. . That is, according to this, the main correction coefficient F1 is PID-controlled.

一方、サブ補正係数F2は、次式4に従って算出される。
F2=Kp2×(V−V)+Ki2×∫(V−V)dt+Kd2×d(V−V)/dt …(4)
ここで、Vは排気ガスの空燃比が理論空燃比であるときにOセンサ14から出力されるべき電圧値であり、VはOセンサ14から実際に出力される電圧値であり、Kp2は比例ゲインであり、Ki2は積分ゲインであり、Kd2は微分ゲインである。すなわち、これによれば、サブ補正係数F2もPID制御されることになる。
On the other hand, the sub correction coefficient F2 is calculated according to the following equation 4.
F2 = Kp2 × (V 0 -V ) + Ki2 × ∫ (V 0 -V) dt + Kd2 × d (V 0 -V) / dt ... (4)
Here, V 0 is a voltage value that should be output from the O 2 sensor 14 when the air-fuel ratio of the exhaust gas is the stoichiometric air-fuel ratio, V is a voltage value that is actually output from the O 2 sensor 14, Kp2 is a proportional gain, Ki2 is an integral gain, and Kd2 is a differential gain. That is, according to this, the sub correction coefficient F2 is also PID-controlled.

こうして、本実施形態によれば、機関空燃比が理論空燃比に維持される。   Thus, according to this embodiment, the engine air-fuel ratio is maintained at the stoichiometric air-fuel ratio.

ところで、本発明の実施形態では、サブ補正係数F2を学習するようにしている。ここで、「学習」とは、或る値を記憶すると共に、その記憶した値を次々と算出される最新の値に適宜更新することを意味する。すなわち、上式4に従って時々刻々と求められるサブ補正係数F2は、リニア空燃比センサの恒常的な出力誤差に対応してこれを補償するものであるから、例えば、通常ストイキ制御(機関空燃比を理論空燃比に制御する制御)が中断された後にこの通常ストイキ制御が再開されたとき、サブ補正係数F2を一から求め直すよりも、通常ストイキ制御の中断前に記憶しておいたサブ補正係数F2を通常ストイキ制御が再開されたときから使用したほうが、より早く、機関空燃比を理論空燃比に制御することができる。本実施形態において、サブ補正係数F2を記憶しておくのは、こうした理由からである。   By the way, in the embodiment of the present invention, the sub correction coefficient F2 is learned. Here, “learning” means storing a certain value and appropriately updating the stored value to the latest value calculated one after another. That is, the sub-correction coefficient F2 obtained every moment according to the above equation 4 compensates for the constant output error of the linear air-fuel ratio sensor. For example, normal stoichiometric control (engine air-fuel ratio is reduced). When the normal stoichiometric control is resumed after the control for controlling the stoichiometric air-fuel ratio is interrupted, the sub correction coefficient stored before the normal stoichiometric control is interrupted, rather than re-determining the sub correction coefficient F2 from scratch. The engine air-fuel ratio can be controlled to the stoichiometric air-fuel ratio earlier when F2 is used from the time when the normal stoichiometric control is resumed. In this embodiment, the sub correction coefficient F2 is stored for this reason.

ところで、上述したように、通常ストイキ制御中、サブ補正係数F2が学習されるとすれば、機関制御が硫黄被毒回復制御から通常ストイキ制御に移行した後も、サブ補正係数F2が学習されることになる。ところが、機関制御が硫黄被毒回復制御から通常ストイキ制御に移行した直後は、三元触媒の酸素吸放出能力が有効には働いていない可能性が高い。すなわち、このとき、三元触媒から流出する排気ガスの空燃比が理論空燃比から大きくずれている可能性が高い。このため、機関制御が硫黄被毒回復制御から通常ストイキ制御に移行した直後に算出されるサブ補正係数F2は、通常算出される値から大きくずれたものになっている可能性が高い。   By the way, as described above, if the sub correction coefficient F2 is learned during the normal stoichiometric control, the sub correction coefficient F2 is also learned after the engine control shifts from the sulfur poisoning recovery control to the normal stoichiometric control. It will be. However, immediately after the engine control shifts from the sulfur poisoning recovery control to the normal stoichiometric control, there is a high possibility that the oxygen absorption / release capability of the three-way catalyst does not work effectively. That is, at this time, there is a high possibility that the air-fuel ratio of the exhaust gas flowing out from the three-way catalyst is greatly deviated from the stoichiometric air-fuel ratio. For this reason, there is a high possibility that the sub correction coefficient F2 calculated immediately after the engine control shifts from the sulfur poisoning recovery control to the normal stoichiometric control is greatly deviated from the normally calculated value.

ここで、サブ補正係数F2の学習を行っていた場合において、機関制御が通常ストイキ制御から別の制御に移行すると、この通常算出される値から大きくずれたサブ補正係数F2が学習値として記憶されることになる。そして、この場合、機関制御が再び通常ストイキ制御に移行したとき、この通常算出される値から大きくずれたサブ補正係数F2がサブ補正係数の初期値として利用されることになる。ここで、三元触媒の酸素吸放出能力が有効に機能していて、サブ補正係数F2が通常算出される値であれば、機関空燃比が理論空燃比に正確に制御されるのであるが、サブ補正係数F2が通常算出される値から大きくずれていると、機関空燃比が理論空燃比から大きくずれた空燃比となってしまう。   Here, in the case where the learning of the sub correction coefficient F2 is performed, when the engine control is shifted from the normal stoichiometric control to another control, the sub correction coefficient F2 greatly deviating from the normally calculated value is stored as a learning value. Will be. In this case, when the engine control again shifts to the normal stoichiometric control, the sub correction coefficient F2 greatly deviated from the normally calculated value is used as the initial value of the sub correction coefficient. Here, if the oxygen absorption / release capability of the three-way catalyst is functioning effectively and the sub correction coefficient F2 is a value that is normally calculated, the engine air-fuel ratio is accurately controlled to the stoichiometric air-fuel ratio. If the sub correction coefficient F2 is greatly deviated from the normally calculated value, the engine air-fuel ratio is greatly deviated from the stoichiometric air-fuel ratio.

もちろん、或る一定の時間が経過したときには、サブ補正係数F2は通常算出される値となるのであるが、こうなるまでは、機関空燃比が理論空燃比から大きくずれた空燃比となってしまっていることになる。   Of course, when a certain period of time has elapsed, the sub correction coefficient F2 is a value that is normally calculated, but until this time, the engine air-fuel ratio has become an air-fuel ratio that deviates greatly from the stoichiometric air-fuel ratio. Will be.

こうした不都合を回避するために、本発明の実施形態では、硫黄被毒回復制御が終了してから所定の期間は、通常ストイキ制御が行われているとしても、サブ補正係数F2の学習は禁止する。   In order to avoid such an inconvenience, in the embodiment of the present invention, learning of the sub correction coefficient F2 is prohibited for a predetermined period after the completion of the sulfur poisoning recovery control even if the normal stoichiometric control is performed. .

なお、このように学習を禁止するという技術思想は、三元触媒下流の空燃比センサからの出力を利用して機関空燃比を制御し、その制御によって算出される制御係数を学習するようにしている場合にも適用可能である。   The technical idea of prohibiting learning in this way is to control the engine air-fuel ratio using the output from the air-fuel ratio sensor downstream of the three-way catalyst and learn the control coefficient calculated by the control. It is also applicable when

なお、上述した実施形態において、硫黄被毒回復制御中は、図6〜図8を参照して説明した制御において三元触媒8,9上流のリニア空燃比センサ11,12からの出力を利用するのに代えて、三元触媒とNOx触媒10との間のリニア空燃比センサ13からの出力を利用し、NOx触媒に流入する排気ガスの空燃比が理論空燃比となるように、機関空燃比(すなわち、燃料噴射量)が制御される。   In the above-described embodiment, during the sulfur poisoning recovery control, the outputs from the linear air-fuel ratio sensors 11 and 12 upstream of the three-way catalysts 8 and 9 are used in the control described with reference to FIGS. Instead of using the output from the linear air-fuel ratio sensor 13 between the three-way catalyst and the NOx catalyst 10, the engine air-fuel ratio is adjusted so that the air-fuel ratio of the exhaust gas flowing into the NOx catalyst becomes the stoichiometric air-fuel ratio. (That is, the fuel injection amount) is controlled.

なお、上述では、4つの気筒を2つの気筒群に分けた場合に本発明を適用した例について説明したが、複数の気筒を2つ以上の気筒群に分けた場合にも本発明を適用可能である。   In the above description, an example in which the present invention is applied when four cylinders are divided into two cylinder groups has been described. However, the present invention can also be applied when a plurality of cylinders are divided into two or more cylinder groups. It is.

本発明の排気浄化装置を備えた内燃機関の一例を示した図である。It is the figure which showed an example of the internal combustion engine provided with the exhaust gas purification device of this invention. 三元触媒の浄化特性を示した図である。It is the figure which showed the purification characteristic of a three-way catalyst. 本発明の硫黄被毒・三元触媒被毒回復を行うルーチンの一例を示した図である。It is the figure which showed an example of the routine which performs sulfur poisoning and the three-way catalyst poisoning recovery of this invention. リニア空燃比センサの出力特性を示した図である。It is the figure which showed the output characteristic of the linear air fuel ratio sensor. センサの出力特性を示した図である。O 2 is a graph showing the output characteristics of the sensor.

符号の説明Explanation of symbols

1 機関本体
4 吸気管
5,6 排気枝管
7 排気管
8,9 三元触媒
10 NOx触媒
11〜14 空燃比センサ
21〜24 燃料噴射弁
DESCRIPTION OF SYMBOLS 1 Engine body 4 Intake pipe 5,6 Exhaust branch pipe 7 Exhaust pipe 8,9 Three way catalyst 10 NOx catalyst 11-14 Air fuel ratio sensor 21-24 Fuel injection valve

Claims (9)

複数の気筒を備え、これら気筒を少なくとも2つの気筒群に分け、各気筒群にそれぞれ排気枝管を接続すると共にこれら排気枝管を下流側で合流させて共通の1つの排気管に接続した内燃機関の排気浄化装置であって、各排気枝管内に三元触媒をそれぞれ配置すると共に上記共通の1つの排気管内にNOx触媒を配置し、該NOx触媒の硫黄被毒回復制御として、一方の気筒群からはリッチ空燃比の排気ガスを排出させ、他方の気筒群からはリーン空燃比の排気ガスを排出させる制御を行う排気浄化装置において、上記硫黄被毒回復制御を終了するとき、該硫黄被毒回復制御中にリッチ空燃比の排気ガスを排出していた気筒群からリーン空燃比の排気ガスを排出させる排気空燃比逆転制御を行うことを特徴とする排気浄化装置。   An internal combustion engine comprising a plurality of cylinders, divided into at least two cylinder groups, each connected to an exhaust branch pipe and connected to one common exhaust pipe by joining the exhaust branch pipes downstream. An exhaust emission control device for an engine, wherein a three-way catalyst is arranged in each exhaust branch pipe and a NOx catalyst is arranged in one common exhaust pipe, and one cylinder is used as sulfur poisoning recovery control of the NOx catalyst. When the sulfur poisoning recovery control is terminated in an exhaust purification system that controls exhaust of rich air-fuel ratio from the group and exhaust of lean air-fuel ratio from the other cylinder group, An exhaust gas purification apparatus that performs exhaust air-fuel ratio reverse control for exhausting a lean air-fuel ratio exhaust gas from a group of cylinders that exhausted a rich air-fuel ratio exhaust gas during poison recovery control. 上記排気空燃比逆転制御では、硫黄被毒回復制御中にリッチ空燃比の排気ガスを排出していた気筒群からリーン空燃比の排気ガスを排出させた後、該気筒群からリッチ空燃比の排気ガスとリーン空燃比の排気ガスとを交互に排出させることを特徴とする請求項1に記載の排気浄化装置。   In the exhaust air-fuel ratio reverse control, after exhausting the lean air-fuel ratio from the cylinder group that has exhausted the rich air-fuel ratio during the sulfur poisoning recovery control, exhaust the rich air-fuel ratio from the cylinder group. The exhaust emission control device according to claim 1, wherein the gas and the exhaust gas having a lean air-fuel ratio are alternately discharged. 上記排気空燃比逆転制御では、硫黄被毒回復制御中にリーン空燃比の排気ガスを排出していた気筒群からリッチ空燃比の排気ガスを排出させることを特徴とする請求項1または2に記載の排気浄化装置。   3. The exhaust air / fuel ratio inversion control according to claim 1, wherein the exhaust gas having a rich air / fuel ratio is exhausted from a cylinder group that has exhausted the exhaust gas having a lean air / fuel ratio during the sulfur poisoning recovery control. Exhaust purification equipment. 上記排気空燃比逆転制御では、硫黄被毒回復制御中にリーン空燃比の排気ガスを排出していた気筒群からリッチ空燃比の排気ガスを排出させた後、該気筒群からリーン空燃比の排気ガスとリッチ空燃比の排気ガスとを交互に排出させることを特徴とする請求項3に記載の排気浄化装置。   In the exhaust air-fuel ratio reverse control, after exhausting the rich air-fuel ratio from the cylinder group that has exhausted the lean air-fuel ratio during the sulfur poisoning recovery control, the exhaust gas having the lean air-fuel ratio is exhausted from the cylinder group. The exhaust emission control device according to claim 3, wherein the gas and the rich air-fuel ratio exhaust gas are alternately discharged. 上記排気空燃比逆転制御では、硫黄被毒回復制御中にリーン空燃比の排気ガスを排出していた気筒群では通常運転にて行われるべき燃焼が行われることを特徴とする請求項1または2に記載の排気浄化装置。   3. In the exhaust air-fuel ratio reverse control, combustion that should be performed in a normal operation is performed in a cylinder group that has discharged exhaust gas having a lean air-fuel ratio during sulfur poisoning recovery control. Exhaust gas purification device described in 1. 上記排気空燃比逆転制御中に特定の気筒群からリーン空燃比の排気ガスを排出させるときの該排気ガスの空燃比は理論空燃比に近いリーンであり、上記排気空燃比逆転制御中に特定の気筒群からリッチ空燃比の排気ガスを排出させるときの該排気ガスの空燃比は理論空燃比に近いリッチであることを特徴とする請求項1〜5のいずれか1つに記載の排気浄化装置。   When exhaust gas having a lean air-fuel ratio is discharged from a specific cylinder group during the exhaust air-fuel ratio reverse control, the air-fuel ratio of the exhaust gas is lean near the stoichiometric air-fuel ratio. 6. The exhaust emission control device according to claim 1, wherein when exhaust gas having a rich air-fuel ratio is discharged from a cylinder group, the air-fuel ratio of the exhaust gas is rich close to the stoichiometric air-fuel ratio. . 複数の気筒を備え、これら気筒を2つの気筒群に分け、各気筒群にそれぞれ排気枝管を接続すると共にこれら排気枝管を下流側で合流させて共通の1つの排気管に接続した内燃機関の排気浄化装置であって、各排気枝管内に三元触媒をそれぞれ配置すると共に上記共通の1つの排気管内にNOx触媒を配置し、該NOx触媒の硫黄被毒回復制御として、一方の気筒群からはリッチ空燃比の排気ガスを排出させ、他方の気筒群からはリーン空燃比の排気ガスを排出させる制御を行う排気浄化装置において、上記硫黄被毒回復制御中、リッチ空燃比の排気ガスを排出させる気筒群とリーン空燃比の排気ガスを排出させる気筒群とを繰り返し交替させることを特徴とする排気浄化装置。   An internal combustion engine having a plurality of cylinders, divided into two cylinder groups, each having an exhaust branch pipe connected to each cylinder group, and joining these exhaust branch pipes on the downstream side to one common exhaust pipe The exhaust purification apparatus of the present invention includes a three-way catalyst disposed in each exhaust branch pipe and a NOx catalyst disposed in the common one exhaust pipe, and as a sulfur poisoning recovery control of the NOx catalyst, one cylinder group Exhaust gas having a rich air-fuel ratio is discharged from the other cylinder group, and exhaust gas having a lean air-fuel ratio is discharged from the other cylinder group. An exhaust emission control device that repeatedly replaces a cylinder group to be discharged and a cylinder group to discharge exhaust gas having a lean air-fuel ratio. 上記硫黄被毒回復制御の終了が要求されたとき、該硫黄被毒回復制御において最初にリッチ空燃比の排気ガスを排出させる気筒群とされた気筒群からリーン空燃比の排気ガスが排出されると共に最初にリーン空燃比の排気ガスを排出させる気筒群とされた気筒群からリッチ空燃比の排気ガスが排出されたときに、該硫黄被毒回復制御を終了させることを特徴とする請求項7に記載の排気浄化装置。   When the end of the sulfur poisoning recovery control is requested, the lean air-fuel ratio exhaust gas is discharged from the cylinder group that is the first cylinder group that discharges the rich air-fuel ratio exhaust gas in the sulfur poisoning recovery control. The sulfur poisoning recovery control is terminated when rich air-fuel ratio exhaust gas is exhausted from the cylinder group that is the cylinder group that first discharges lean air-fuel ratio exhaust gas. Exhaust gas purification device described in 1. 上記内燃機関が各気筒に充填される混合気の空燃比を目標空燃比に制御する空燃比制御として三元触媒下流の排気枝管または排気管に配置された空燃比センサの出力を利用して上記混合気の空燃比を目標空燃比に制御する空燃比制御を行うと共に該空燃比制御の制御対象に対する制御量を学習する学習制御を行う内燃機関である場合において、上記硫黄被毒回復制御が終了してから所定期間、上記学習制御の実行を禁止することを特徴とする請求項7または8に記載の排気浄化装置。   As the air-fuel ratio control for controlling the air-fuel ratio of the air-fuel mixture filled in each cylinder to the target air-fuel ratio, the internal combustion engine uses the output of the air-fuel ratio sensor disposed in the exhaust branch pipe or the exhaust pipe downstream of the three-way catalyst. In the case of an internal combustion engine that performs air-fuel ratio control for controlling the air-fuel ratio of the air-fuel mixture to a target air-fuel ratio and performs learning control for learning a control amount for the control target of the air-fuel ratio control, the sulfur poisoning recovery control is The exhaust emission control device according to claim 7 or 8, wherein execution of the learning control is prohibited for a predetermined period after the end.
JP2005144402A 2005-05-17 2005-05-17 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4428286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005144402A JP4428286B2 (en) 2005-05-17 2005-05-17 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005144402A JP4428286B2 (en) 2005-05-17 2005-05-17 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006322344A true JP2006322344A (en) 2006-11-30
JP4428286B2 JP4428286B2 (en) 2010-03-10

Family

ID=37542215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005144402A Expired - Fee Related JP4428286B2 (en) 2005-05-17 2005-05-17 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4428286B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202414A (en) * 2007-02-16 2008-09-04 Mazda Motor Corp Exhaust emission control device of engine
JP2016223386A (en) * 2015-06-02 2016-12-28 トヨタ自動車株式会社 Control device of internal combustion engine
CN110892138A (en) * 2017-07-24 2020-03-17 马自达汽车株式会社 Exhaust device of engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202414A (en) * 2007-02-16 2008-09-04 Mazda Motor Corp Exhaust emission control device of engine
JP2016223386A (en) * 2015-06-02 2016-12-28 トヨタ自動車株式会社 Control device of internal combustion engine
CN110892138A (en) * 2017-07-24 2020-03-17 马自达汽车株式会社 Exhaust device of engine
CN110892138B (en) * 2017-07-24 2021-11-05 马自达汽车株式会社 Exhaust device of engine

Also Published As

Publication number Publication date
JP4428286B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
JP3528739B2 (en) Engine exhaust purification device
JP3680217B2 (en) Air-fuel ratio control device for internal combustion engine
JP4466474B2 (en) Exhaust gas purification device for internal combustion engine
EP1052393B1 (en) Air-fuel ratio control apparatus and method of internal combustion engine
US7797925B2 (en) Exhaust gas purifying system for internal combustion engine
JPH11311142A (en) Air-fuel ratio controller for internal combustion engine
JP5686036B2 (en) Control device for internal combustion engine
JP2009174443A (en) Exhaust emission control device for internal combustion engine
JP4428286B2 (en) Exhaust gas purification device for internal combustion engine
JP5534020B2 (en) Exhaust gas purification device for internal combustion engine
JP4389141B2 (en) Exhaust gas purification device for internal combustion engine
JP4501769B2 (en) Exhaust gas purification device for internal combustion engine
JP4479603B2 (en) Exhaust gas purification device for internal combustion engine
JP2008303816A (en) Exhaust emission control device for internal combustion engine
JP2005140011A (en) Fuel injection control device for internal combustion engine
JP3478135B2 (en) Exhaust gas purification device for internal combustion engine
JP3777788B2 (en) Lean combustion internal combustion engine
JPH08303280A (en) O2 sensor control device for internal combustion engine
JP3684929B2 (en) Engine exhaust purification system
JP3890775B2 (en) Air-fuel ratio control device for internal combustion engine
JPH05272329A (en) Degradation detecting method and device for engine exhaust gas purifying catalyst
JP4867694B2 (en) Engine exhaust purification system
JP2010242674A (en) Catalyst deterioration determination device
JP2004225665A (en) Exhaust emission control device of internal combustion engine
JP4506348B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees