JP4506348B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4506348B2
JP4506348B2 JP2004237416A JP2004237416A JP4506348B2 JP 4506348 B2 JP4506348 B2 JP 4506348B2 JP 2004237416 A JP2004237416 A JP 2004237416A JP 2004237416 A JP2004237416 A JP 2004237416A JP 4506348 B2 JP4506348 B2 JP 4506348B2
Authority
JP
Japan
Prior art keywords
elimination operation
poisoning elimination
catalyst
exhaust
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004237416A
Other languages
Japanese (ja)
Other versions
JP2006057467A (en
Inventor
佳亮 河本
茂樹 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004237416A priority Critical patent/JP4506348B2/en
Publication of JP2006057467A publication Critical patent/JP2006057467A/en
Application granted granted Critical
Publication of JP4506348B2 publication Critical patent/JP4506348B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は内燃機関の排気浄化装置に関し、詳細には排気中の特定成分を吸蔵することにより排気浄化性能が低下する排気浄化触媒を備えた内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly to an exhaust gas purification apparatus for an internal combustion engine including an exhaust gas purification catalyst whose exhaust gas purification performance is reduced by occluding specific components in the exhaust gas.

内燃機関の排気通路に配置した排気浄化触媒を備え、排気中の有害物質を浄化する排気浄化装置が知られている。このような排気浄化触媒には、使用とともに排気中の特定の成分(被毒物質)を吸収、吸着等により吸蔵し、被毒物質の吸蔵量増大とともに排気浄化能力が低下するものがある。   2. Description of the Related Art There is known an exhaust purification device that includes an exhaust purification catalyst disposed in an exhaust passage of an internal combustion engine and purifies harmful substances in exhaust. Some of these exhaust purification catalysts absorb specific components (toxic substances) in the exhaust as they are used and store them by absorption, adsorption, etc., and the exhaust purification capacity decreases as the amount of stored poisonous substances increases.

例えば排気浄化触媒として、流入する排気空燃比がリーンのときに排気中の窒素酸化物(NOX)を吸収、吸着またはその両方により吸蔵し、流入する排気空燃比がリッチになったときに吸蔵したNOXを還元浄化するNOX吸蔵還元触媒が知られているが、排気中に硫黄酸化物(SOX)が含まれると、NOX吸蔵還元触媒にはNOXと同様にSOXが吸蔵される問題が生じる。 For example, as an exhaust purification catalyst, when the inflowing exhaust air-fuel ratio is lean, it absorbs nitrogen oxide (NO x ) in the exhaust by absorption, adsorption or both, and occludes when the inflowing exhaust air-fuel ratio becomes rich and although the NO X storage reduction catalyst that reduces and purifies NO X is known the and include sulfur oxides (sO X) in the exhaust gas, the NO X storage is the reduction catalyst similar to the NO X sO X is occluded Problems arise.

SOXはNOX吸蔵還元触媒内で安定した硫酸塩を形成するため、NOX吸蔵還元触媒からNOXが放出される条件下でも触媒から放出されない場合がある。このため、NOX吸蔵還元触媒中に吸蔵された硫黄成分の量は徐々に増大し、それにつれてNOXの吸蔵能力が低下する。すなわち、NOX吸蔵還元触媒は排気中の特定成分としての硫黄を吸蔵し、排気浄化能力の低下(硫黄による被毒)を生じる。 SO X in order to form the stable sulfate in the NO X storage reduction catalyst, there is a case where NO X from the NO X storage reduction catalyst is not released from the catalyst under conditions to be released. For this reason, the amount of the sulfur component stored in the NO X storage reduction catalyst gradually increases, and the NO X storage capacity decreases accordingly. That is, the NO X storage reduction catalyst stores sulfur as a specific component in the exhaust gas, resulting in a decrease in exhaust purification capability (poisoning by sulfur).

NOX吸蔵還元触媒の硫黄被毒を解消するためには、排気空燃比を理論空燃比またはリッチ空燃比に維持した状態で触媒温度を通常運転時より高い所定の温度まで上昇させる被毒解消操作が必要となる。 In order to eliminate sulfur poisoning of the NO X occluding and reducing catalyst, the poisoning recovery operation the catalyst temperature is raised to a predetermined temperature higher than the normal operation while maintaining the exhaust air-fuel ratio to the stoichiometric air-fuel ratio or a rich air-fuel ratio Is required.

被毒解消操作時に触媒温度を通常運転時より高い所定温度まで上昇させるためには、触媒に未燃燃料などの炭化水素(HC)やCO成分を比較的多量に供給するとともに、充分な酸素を供給してHCやCO成分を触媒上で燃焼させることが有効である。   In order to raise the catalyst temperature during the poisoning elimination operation to a predetermined temperature higher than that during normal operation, a relatively large amount of hydrocarbon (HC) such as unburned fuel or CO component is supplied to the catalyst, and sufficient oxygen is supplied. It is effective to supply and burn HC and CO components on the catalyst.

このため、例えば多気筒機関では、被毒解消操作時に一部の気筒をリッチ空燃比で運転し、他の気筒をリーン空燃比で運転することにより触媒にHCやCO成分を多量に含んだリッチ空燃比排気と、酸素を多量に含んだリーン空燃比排気とを供給し、触媒上で両者を混合させることにより理論空燃比近傍のややりリッチな混合排気を形成することが行われる。このように、触媒上でHC、CO成分と酸素とを比較的多量に含んだ混合排気を形成することにより、触媒上でHC、CO成分を燃焼させ、ややリッチ空燃比の雰囲気で触媒温度を上昇させることができる。   For this reason, for example, in a multi-cylinder engine, some cylinders are operated at a rich air-fuel ratio during the poisoning elimination operation, and other cylinders are operated at a lean air-fuel ratio, so that a rich HC or CO component is contained in the catalyst. By supplying the air-fuel ratio exhaust gas and the lean air-fuel ratio exhaust gas containing a large amount of oxygen and mixing them on the catalyst, a slightly rich mixed exhaust gas near the stoichiometric air-fuel ratio is formed. Thus, by forming a mixed exhaust gas containing a relatively large amount of HC, CO component and oxygen on the catalyst, the HC, CO component is combusted on the catalyst, and the catalyst temperature is raised in a slightly rich air-fuel ratio atmosphere. Can be raised.

ところが、このように、被毒解消操作時に一部の気筒をリッチ空燃比運転することにより触媒温度を上昇させる場合には、余分な燃料をリッチ空燃比運転する気筒に供給する必要が生じ、被毒解消操作を頻繁に実行すると機関の燃費が悪化する問題かがある。   However, when the catalyst temperature is increased by operating some of the cylinders at the rich air-fuel ratio during the poisoning elimination operation, it is necessary to supply excess fuel to the cylinders operating at the rich air-fuel ratio. If the poison elimination operation is executed frequently, there is a problem that the fuel consumption of the engine deteriorates.

そこで、被毒解消操作を特定の機関運転状態が成立したときにのみ実行し、被毒解消操作の頻繁な実施による機関燃費の悪化を防止することが行われている。
この種の内燃機関の排気浄化装置の例としては、特許文献1に記載されたものがある。
Therefore, the poisoning elimination operation is executed only when a specific engine operation state is established to prevent deterioration in engine fuel consumption due to frequent implementation of the poisoning elimination operation.
An example of this type of internal combustion engine exhaust gas purification apparatus is disclosed in Patent Document 1.

特許文献1の装置では、上記のように機関の一部の気筒をリッチ空燃比で運転し他の気筒をリーン空燃比で運転することにより、NOX吸蔵還元触媒の硫黄被毒解消操作を行う。また、特許文献1の装置は、特定の機関運転状態でのみこの硫黄被毒解消操作を実行することにより、被毒解消操作が頻繁に行われて機関の燃費が悪化することを防止するとともに、NOX吸蔵還元触媒のSOX吸蔵量が増大するほど、被毒解消操作を実行する機関運転条件を拡大することにより、NOX吸蔵還元触媒のSOX吸蔵量が増大した状態での運転が長時間継続することを防止している。 In the apparatus of Patent Document 1, as described above, the sulfur poisoning elimination operation of the NO x storage reduction catalyst is performed by operating some cylinders of the engine at a rich air-fuel ratio and other cylinders at a lean air-fuel ratio. . In addition, the apparatus of Patent Document 1 executes the sulfur poisoning elimination operation only in a specific engine operation state, thereby preventing the poisoning elimination operation from being frequently performed and deteriorating the fuel consumption of the engine. As the SO X storage amount of the NO X storage reduction catalyst increases, the engine operation condition for executing the poisoning elimination operation is expanded, so that the operation in the state where the SO X storage amount of the NO X storage reduction catalyst increases is longer. Prevents the duration.

すなわち、特許文献1の装置ではNOX吸蔵還元触媒のSOX吸蔵量が少ない場合には例えば、NOX吸蔵還元触媒の床温が比較的高温になる機関運転条件にならなければ被毒解消操作を開始しない。また、SOX吸蔵量が増大すると触媒床温が比較的低温になる機関運転条件でも被毒解消操作を開始するようにして被毒解消操作を行う機関運転条件を拡大する。 That is, when SO X storage amount of the NO X occluding and reducing catalyst is small in the apparatus of Patent Document 1, for example, the NO X storage reduction catalyst bed temperature is relatively unless not the engine operating conditions become hot contamination-removing operation Do not start. Further, the engine operating conditions for performing the poisoning elimination operation are expanded by starting the poisoning elimination operation even under the engine operating conditions in which the catalyst bed temperature becomes relatively low as the SO X storage amount increases.

これにより、特許文献1の装置ではSOX吸蔵量が少ない場合には被毒解消操作が実行されにくくなり、小刻みな被毒解消操作が頻繁に行われることが防止されるとともに、SOX吸蔵量が増大すると被毒解消操作が実行されやすくなり、NOX吸蔵還元触媒のSOX吸蔵量が増大した状態で長時間運転が継続されることが防止される。 Thereby, in the apparatus of Patent Document 1, when the SO X storage amount is small, the poisoning elimination operation becomes difficult to be performed, and frequent poisoning elimination operation is prevented from being performed frequently, and the SO X storage amount is reduced. When the NO increases, the poisoning elimination operation is easily performed, and the operation is prevented from continuing for a long time in a state where the SO X storage amount of the NO X storage reduction catalyst is increased.

特開2000−18025号公報JP 2000-18025 A 特開2002−256858号公報JP 2002-256858 A 特開平11−107811号公報JP 11-107811 A 特開2000−303825号公報JP 2000-303825 A 特開平11−190209号公報JP-A-11-190209 特開2003−155925号公報JP 2003-155925 A

上述したように特許文献1の排気浄化装置では、NOX吸蔵還元触媒のSOX吸蔵量が増大するほど被毒解消操作が実行されやすくなる。このため、例えばSOX吸蔵量が大きくなると、触媒温度が比較的低い状態でも被毒解消操作が実行されるようになる。 As described above, in the exhaust gas purification device of Patent Document 1, the poisoning elimination operation becomes easier to execute as the SO X storage amount of the NO X storage reduction catalyst increases. For this reason, for example, when the SO X storage amount becomes large, the poisoning elimination operation is executed even when the catalyst temperature is relatively low.

ところが、被毒解消操作では触媒温度を所定の回復温度(NOX吸蔵還元触媒から硫黄が放出される温度、例えば、約870度K以上)まで上昇させる必要があるため、被毒解消操作開始時の触媒温度が低ければ低いほど、被毒解消操作開始時に触媒温度を上記回復温度まで昇温するために消費されるエネルギーが増大し、機関の燃費が悪化する問題がある。 However, in the poisoning elimination operation, it is necessary to raise the catalyst temperature to a predetermined recovery temperature (a temperature at which sulfur is released from the NO x storage reduction catalyst, for example, about 870 degrees K or more). The lower the catalyst temperature is, the more energy is consumed to raise the catalyst temperature to the recovery temperature at the start of the poisoning elimination operation, resulting in a problem that the fuel consumption of the engine deteriorates.

また、特許文献1の装置では逆にNOX吸蔵還元触媒のSOX吸蔵量が小さいほど被毒解消操作が実行されにくくなる。このため、例えば触媒温度が比較的高くなっており、被毒解消操作開始時に回復温度まで触媒温度を上昇させるのに消費されるエネルギーが小さい状態になっているにもかかわらずSOX吸蔵量が比較的小さい間は被毒解消操作が実行されない場合が生じる。 On the contrary, in the apparatus of Patent Document 1, the poisoning elimination operation becomes difficult to be performed as the SO X storage amount of the NO X storage reduction catalyst is smaller. For this reason, for example, the catalyst temperature is relatively high, and the SO X occlusion amount is low even though the energy consumed to raise the catalyst temperature to the recovery temperature at the start of the poisoning elimination operation is small. During a relatively small period, the poisoning elimination operation may not be executed.

このため、特許文献1の装置では被毒解消操作実行による燃費の増大を十分に抑制することができない問題がある。   For this reason, the apparatus of Patent Document 1 has a problem that an increase in fuel consumption due to execution of poisoning elimination operation cannot be sufficiently suppressed.

本発明は、上記従来技術の問題に鑑み、排気浄化触媒の温度を上昇させる被毒解消操作を行う際に、機関燃費の増大を十分に抑制し効率的な被毒解消操作を行うことを可能とする内燃機関の排気浄化装置を提供することを目的としている。   In view of the above-described problems of the prior art, the present invention can perform an efficient poisoning elimination operation by sufficiently suppressing an increase in engine fuel consumption when performing a poisoning elimination operation for raising the temperature of an exhaust purification catalyst. An object of the present invention is to provide an exhaust gas purification apparatus for an internal combustion engine.

請求項1に記載の発明によれば、流入する排気がリーン空燃比のときに排気中のNO X 成分を吸蔵し、流入する排気がリッチ空燃比になったときに吸蔵したNO X を還元浄化するとともに、排気中のSO X 成分を吸蔵して排気浄化能力が低下する排気浄化触媒を備え、前記排気浄化触媒のSO X 成分の吸蔵量が増大して所定の開始値に到達したときに前記排気浄化触媒の温度を上昇させて前記吸蔵したSO X 成分を排気浄化触媒から放出させる被毒解消操作を開始する内燃機関の排気浄化装置において、前記被毒解消操作開始前の排気浄化触媒温度に応じて、前記被毒解消操作実行による機関燃費の増大を抑制するように前記開始値を変更する内燃機関の排気浄化装置が提供される。 According to the invention described in claim 1, it reduces and purifies NO X exhaust is occluded NO X components in the exhaust gas when a lean air-fuel ratio, the exhaust gas flowing is occluded when it becomes a rich air-fuel ratio flowing into And an exhaust purification catalyst that reduces the exhaust purification capacity by storing the SO X component in the exhaust, and when the storage amount of the SO X component of the exhaust purification catalyst increases to reach a predetermined start value, In an exhaust gas purification apparatus for an internal combustion engine that starts a poisoning elimination operation in which the temperature of the exhaust purification catalyst is raised to release the stored SO X component from the exhaust purification catalyst, the exhaust purification catalyst temperature before the start of the poisoning elimination operation is Accordingly, there is provided an exhaust gas purification apparatus for an internal combustion engine that changes the start value so as to suppress an increase in engine fuel consumption due to execution of the poisoning elimination operation .

すなわち、請求項1の発明では被毒解消操作を開始する特定成分吸蔵量の値を排気浄化触媒温度に応じて変更する。
被毒解消操作開始前の排気浄化触媒温度は被毒解消操作に消費されるエネルギー量に密接に関連する。例えば、排気浄化触媒温度が高い状態で被毒解消操作を開始すれば少ないエネルギー量で触媒の温度を上昇させることができるため、比較的頻繁に被毒解消操作を行った方が効率的な場合がある。
That is, in the first aspect of the invention, the value of the specific component storage amount for starting the poisoning elimination operation is changed according to the exhaust purification catalyst temperature.
The exhaust purification catalyst temperature before the start of the poisoning elimination operation is closely related to the amount of energy consumed in the poisoning elimination operation. For example, if the poisoning elimination operation is started with the exhaust purification catalyst temperature being high, the temperature of the catalyst can be raised with a small amount of energy. There is.

また、排気浄化触媒温度が低い場合には、触媒の温度上昇に消費されるエネルギー量が大きくなるため、被毒解消操作実行頻度が比較的少ない方がエネルギー損失が小さくなる。
一方、排気浄化触媒の特定成分吸蔵量に応じて被毒解消操作を行う場合には、吸蔵量の開始値は被毒解消操作の実行頻度に大きく影響する。
In addition, when the exhaust purification catalyst temperature is low, the amount of energy consumed for increasing the temperature of the catalyst increases, so that the energy loss is smaller when the poisoning elimination operation frequency is relatively low.
On the other hand, when the poisoning elimination operation is performed according to the specific component occlusion amount of the exhaust purification catalyst, the starting value of the occlusion amount greatly affects the execution frequency of the poisoning elimination operation.

このため、排気浄化触媒温度に応じて被毒解消操作の開始値を変更することにより、排気浄化触媒温度に応じて被毒解消操作の実行頻度を変えることができるようになり、触媒温度に応じた適切な排気浄化触媒の被毒解消操作実行頻度を設定することが可能となる。
従って、本発明によれば効率的な排気浄化触媒の被毒解消操作を行うことが可能となる。
For this reason, by changing the start value of the poisoning elimination operation according to the exhaust purification catalyst temperature, the execution frequency of the poisoning elimination operation can be changed according to the exhaust purification catalyst temperature. In addition, it is possible to set an appropriate execution frequency of the poisoning elimination operation of the exhaust purification catalyst.
Therefore, according to the present invention, it is possible to efficiently perform the poisoning elimination operation of the exhaust purification catalyst.

請求項2に記載の発明によれば、更に、前記被毒解消操作実行中に前記排気浄化触媒の前記SO X 成分の吸蔵量が低下して所定の終了値に到達したときに被毒解消操作を終了するとともに、前記被毒解消操作開始前の排気浄化触媒温度に応じて、前記被毒解消操作実行による機関燃費の増大を抑制するように記終了値を変更する、請求項1に記載の内燃機関の排気浄化装置が提供される。 According to the invention described in claim 2, the poisoning elimination operation is further performed when the storage amount of the SO X component of the exhaust purification catalyst decreases and reaches a predetermined end value during execution of the poisoning elimination operation. with ends of the in accordance with the exhaust purifying catalyst temperature before start-poisoning removing operation, the changes the pre tight Ryochi to suppress an increase in engine fuel consumption due to poisoning removing operation performed, in claim 1 An internal combustion engine exhaust gas purification apparatus is provided.

すなわち、請求項2の発明では、被毒解消操作の開始値に加えて、被毒解消操作を終了する特定成分吸蔵量である終了値を排気浄化触媒温度に応じて変更する。これにより、開始値のみを排気浄化触媒温度に応じて変更する場合に較べて更に正確に被毒解消操作実行頻度を設定することが可能となる。また、被毒解消操作時の排気浄化触媒からの特定成分放出速度は排気浄化触媒の特定成分吸蔵量に応じて変化する。このため、終了値を排気温度に応じて変更することにより、被毒解消操作の実行頻度とともに、被毒解消操作が行われる排気浄化触媒の特定成分吸蔵量の範囲(すなわち、被毒解消操作実行時の特定成分の放出速度)を設定することができる。
従って、本発明によれば更に効率的な排気浄化触媒の被毒解消操作を行うことが可能となる。
That is, according to the second aspect of the invention, in addition to the start value of the poisoning elimination operation, the end value that is the specific component occlusion amount for ending the poisoning elimination operation is changed according to the exhaust purification catalyst temperature. This makes it possible to set the poisoning elimination operation execution frequency more accurately than when only the start value is changed according to the exhaust purification catalyst temperature. In addition, the specific component release rate from the exhaust purification catalyst during the poisoning elimination operation varies according to the specific component storage amount of the exhaust purification catalyst. Therefore, by changing the end value according to the exhaust gas temperature, the range of the specific component occlusion amount of the exhaust purification catalyst in which the poisoning elimination operation is performed (that is, the poisoning elimination operation execution is performed) along with the frequency of execution of the poisoning elimination operation. The release rate of the specific component at the time) can be set.
Therefore, according to the present invention, it is possible to perform a more efficient exhaust gas elimination catalyst poisoning operation.

請求項3に記載の発明によれば、前記被毒解消操作開始前の排気浄化触媒温度が高いほど、前記開始値の値が小さくなるように前記開始値の値を変更する、請求項1に記載の内燃機関の排気浄化装置が提供される。   According to the invention of claim 3, the value of the start value is changed so that the value of the start value becomes smaller as the exhaust purification catalyst temperature before the start of the poisoning elimination operation is higher. An internal combustion engine exhaust gas purification apparatus is provided.

請求項4に記載の発明によれば、前記被毒解消操作開始前の排気浄化触媒温度が高いほど、前記開始値と前記終了値の値が小さくなるように前記開始値と終了値の値を変更する、請求項2に記載の内燃機関の排気浄化装置が提供される。   According to a fourth aspect of the present invention, the start value and the end value are set such that the higher the exhaust purification catalyst temperature before the start of the poisoning elimination operation, the smaller the start value and the end value. An exhaust emission control device for an internal combustion engine according to claim 2 is provided.

すなわち、請求項3と請求項4の発明では、開始値及び終了値の変更はいずれも被毒解消操作開始前の排気浄化触媒温度が高いほど、開始値、終了値の値が小さくなるように変更する。   That is, in the third and fourth aspects of the invention, both the start value and the end value are changed so that the higher the exhaust purification catalyst temperature before the start of the poisoning elimination operation, the smaller the start value and the end value. change.

これにより、請求項3と請求項4の発明では排気浄化触媒温度が高い場合に被毒解消操作実行頻度を多く、低い場合に少なく設定することができるため、効率的な排気浄化触媒の被毒解消操作を行うことができる。また、請求項4の発明では、排気浄化触媒温度が低いほど排気浄化触媒の特定成分吸蔵量が多い領域(特定成分の放出速度が大きい領域)で被毒解消操作が実行されるようになるため、更に効率的に被毒解消操作を行うことが可能となる。   Thus, according to the third and fourth aspects of the invention, the frequency of execution of the poisoning elimination operation can be increased when the exhaust purification catalyst temperature is high, and can be set low when the exhaust purification catalyst temperature is low. Canceling operation can be performed. In the invention of claim 4, the poisoning elimination operation is executed in a region where the specific component storage amount of the exhaust purification catalyst is large (region where the release rate of the specific component is large) as the exhaust purification catalyst temperature is low. In addition, the poisoning elimination operation can be performed more efficiently.

各請求項に記載の発明によれば、排気浄化触媒温度に応じて被毒解消操作実行頻度を変えることにより、効率的な排気浄化触媒の被毒解消操作を行うことが可能となる共通の効果を奏する。   According to the inventions described in the respective claims, the common effect of enabling an efficient exhaust purification catalyst poisoning elimination operation by changing the frequency of performing the poisoning elimination operation according to the exhaust purification catalyst temperature. Play.

以下、添付図面を用いて本発明の実施形態について説明する。
図1は、本発明を自動車用内燃機関に適用した場合の、実施形態の概略構成を説明する図である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a diagram illustrating a schematic configuration of an embodiment when the present invention is applied to an automobile internal combustion engine.

図1において、1は自動車用内燃機関を示す。本実施形態では、機関1は#1から#4の4つの気筒を備えた4気筒ガソリン機関とされ、#1から#4気筒には直接気筒内に燃料を噴射する燃料噴射弁111から114が設けられている。後述するように、本実施形態の内燃機関1は、理論空燃比より高い(リーンな)空燃比で運転可能なリーンバーンエンジンとされている。   In FIG. 1, reference numeral 1 denotes an automobile internal combustion engine. In this embodiment, the engine 1 is a four-cylinder gasoline engine having four cylinders # 1 to # 4, and the fuel injection valves 111 to 114 for injecting fuel directly into the cylinders are provided for the # 1 to # 4 cylinders. Is provided. As will be described later, the internal combustion engine 1 of the present embodiment is a lean burn engine that can be operated at an air / fuel ratio that is higher (lean) than the stoichiometric air / fuel ratio.

また、本実施形態では#1から#4の気筒は互いに点火時期が連続しない2つの気筒からなる2つの気筒群にグループ分けされている。(例えば、図1の実施形態では、気筒点火順序は1−3−4−2であり、#1、#4の気筒と#2、#3の気筒とがそれぞれ気筒群を構成している。)また、各気筒の排気ポートは気筒群毎に排気マニホルドに接続され、気筒群毎の排気通路に接続されている。   In the present embodiment, the cylinders # 1 to # 4 are grouped into two cylinder groups including two cylinders whose ignition timings are not continuous with each other. (For example, in the embodiment of FIG. 1, the cylinder firing order is 1-3-4-2, and the cylinders # 1 and # 4 and the cylinders # 2 and # 3 each constitute a cylinder group. In addition, the exhaust port of each cylinder is connected to an exhaust manifold for each cylinder group, and is connected to an exhaust passage for each cylinder group.

図1において、21aは#1、#4気筒からなる気筒群の排気ポートを個別排気通路2aに接続する排気マニホルド、21bは#2、#3気筒からなる気筒群の排気ポートを個別排気通路2bに接続する排気マニホルドである。本実施形態では、個別排気通路2a、2b上には、三元触媒からなるスタートキャタリスト(以下「SC」と呼ぶ)5aと5bがそれぞれ配置されている。また、個別排気通路2a、2bはSC下流側で共通の排気通路2に合流している。   In FIG. 1, reference numeral 21a denotes an exhaust manifold for connecting the exhaust ports of the cylinder group consisting of # 1 and # 4 cylinders to the individual exhaust passage 2a, and 21b denotes the exhaust port of the cylinder group consisting of # 2 and # 3 cylinders to the individual exhaust passage 2b. Is an exhaust manifold connected to In the present embodiment, start catalysts (hereinafter referred to as “SC”) 5a and 5b made of a three-way catalyst are disposed on the individual exhaust passages 2a and 2b, respectively. Further, the individual exhaust passages 2a and 2b merge with the common exhaust passage 2 on the downstream side of the SC.

共通排気通路2上には、後述するNOX吸蔵還元触媒7が配置されている。図1に29a、29bで示すのは、個別排気通路2a、2bのスタートキャタリスト5a、5b上流側に配置された上流側空燃比センサ、31で示すのは、排気通路2のコンバータ70出口に配置された下流側空燃比センサである。空燃比センサ29a、29b及び31は、広い空燃比範囲で排気空燃比に対応する電圧信号を出力する、いわゆるリニア空燃比センサとされているが、リニア空燃比センサの代わりに、排気中の酸素濃度を検出し出力が理論空燃比を境に急激に変化する、いわゆるZ型出力特性を有するO2センサを使用することも可能である。 On the common exhaust passage 2, a NO x storage reduction catalyst 7 to be described later is disposed. In FIG. 1, 29 a and 29 b indicate upstream air-fuel ratio sensors disposed upstream of the start catalysts 5 a and 5 b of the individual exhaust passages 2 a and 2 b, and 31 indicates the converter 70 outlet of the exhaust passage 2. It is the downstream air-fuel ratio sensor arranged. The air-fuel ratio sensors 29a, 29b, and 31 are so-called linear air-fuel ratio sensors that output a voltage signal corresponding to the exhaust air-fuel ratio in a wide air-fuel ratio range, but instead of the linear air-fuel ratio sensor, oxygen in the exhaust gas It is also possible to use an O 2 sensor having a so-called Z-type output characteristic in which the concentration is detected and the output rapidly changes with the theoretical air-fuel ratio as a boundary.

更に、図1に30で示すのは機関1の電子制御ユニット(ECU)である。ECU30は、本実施形態ではRAM、ROM、CPUを備えた公知の構成のマイクロコンピュータとされ、機関1の点火時期制御や燃料噴射制御等の基本制御を行っている。また、本実施形態では、ECU30は上記の基本制御を行う他に、後述するようにNOX吸蔵還元触媒7のNOX吸蔵状態に応じてリーン空燃比運転中に燃料噴射弁111から114の燃料噴射量を変更して、短時間機関をリッチ空燃比で運転し、NOX吸蔵還元触媒7から吸蔵したNOXを放出させるするリッチスパイク操作を行う。 Further, an electronic control unit (ECU) of the engine 1 is indicated by 30 in FIG. In this embodiment, the ECU 30 is a microcomputer having a known configuration including a RAM, a ROM, and a CPU, and performs basic control such as ignition timing control and fuel injection control of the engine 1. Further, in the present embodiment, the ECU 30 performs the basic control as described above, and the fuel of the fuel injection valves 111 to 114 during the lean air-fuel ratio operation according to the NO X storage state of the NO X storage reduction catalyst 7 as described later. A rich spike operation is performed in which the injection amount is changed, the engine is operated at a rich air-fuel ratio for a short time, and the stored NO X is released from the NO X storage reduction catalyst 7.

また、ECU30はNOX吸蔵還元触媒に吸蔵した硫黄成分をNOX吸蔵還元触媒の温度を上昇させることにより放出させる、後述する硫黄被毒回復操作をおこなう。
これらの制御を行うため、ECU30の入力ポートには、図示しない機関吸気マニホルドに設けられた吸気圧センサ33から機関の吸気圧力に対応する信号と、機関クランク軸(図示せず)近傍に配置された回転数センサ35から機関回転数に対応する信号、機関1のアクセルペダル(図示せず)近傍に配置したアクセル開度センサ37から運転者のアクセルペダル踏込み量(アクセル開度)を表す信号、及び機関1の冷却水通路に配置された冷却水温度センサ39から機関冷却水温度を表す信号がそれぞれ入力されている他、空燃比センサ29a、29bからそれぞれ#1、#4気筒と#2、#3気筒からの排気空燃比が、空燃比センサ31からNOX吸蔵還元触媒7出口の排気空燃比が、それぞれ入力されている。
Further, ECU 30 causes the release by causing the sulfur component occluded in the NO X occluding and reducing catalyst to increase the temperature of the NO X occluding and reducing catalyst, performs sulfur poisoning recovery operation to be described later.
In order to perform these controls, a signal corresponding to the intake pressure of the engine from an intake pressure sensor 33 provided in an engine intake manifold (not shown) and an engine crankshaft (not shown) are arranged in the input port of the ECU 30. A signal corresponding to the engine speed from the rotation speed sensor 35, a signal indicating the accelerator pedal depression amount (accelerator opening) of the driver from an accelerator opening sensor 37 disposed in the vicinity of the accelerator pedal (not shown) of the engine 1, In addition, signals representing the engine coolant temperature are input from the coolant temperature sensor 39 disposed in the coolant passage of the engine 1, respectively, and # 1, # 4 and # 2, respectively, from the air-fuel ratio sensors 29a and 29b. # exhaust air-fuel ratio from 3 cylinders, NO X occluding and reducing catalyst 7 exhaust gas air-fuel ratio at the outlet from the air-fuel ratio sensor 31 are input respectively.

本実施形態では、ECU30は吸気圧センサ33で検出した機関吸気圧力と回転数センサ35で検出した機関回転数とに基づいて機関1の吸入空気流量を算出し、機関の理論空燃比またはリッチ空燃比運転時の燃料噴射量を制御する。
また、ECU30はアクセル開度センサ37で検出したアクセル開度と機関回転数とに基づいて機関のリーン空燃比運転時の燃料噴射量を制御する。
In the present embodiment, the ECU 30 calculates the intake air flow rate of the engine 1 based on the engine intake pressure detected by the intake pressure sensor 33 and the engine rotational speed detected by the rotational speed sensor 35, and calculates the stoichiometric air-fuel ratio of the engine or rich air. Controls the fuel injection amount at the time of fuel ratio operation.
Further, the ECU 30 controls the fuel injection amount during the lean air-fuel ratio operation of the engine based on the accelerator opening detected by the accelerator opening sensor 37 and the engine speed.

また、ECU30の出力ポートは、各気筒への燃料噴射量と燃料噴射時期を制御するために、図示しない燃料噴射回路を介して各気筒の燃料噴射弁111から114に接続されている。
これらの燃料噴射制御としては、いずれの公知の制御を用いることができるため、ここでは詳細な説明は省略する。
The output port of the ECU 30 is connected to the fuel injection valves 111 to 114 of each cylinder via a fuel injection circuit (not shown) in order to control the fuel injection amount and fuel injection timing to each cylinder.
As these fuel injection controls, any known control can be used, and a detailed description thereof will be omitted here.

次に、本実施形態のNOX吸蔵還元触媒7について説明する。
本実施形態のNOX吸蔵還元触媒7は、例えばハニカム状に形成したコージェライト等の担体を用いて、この担体表面にアルミナのコーティングを形成し、アルミナ層上に、例えばカリウムK、ナトリウムNa 、リチウムLi 、セシウムCs のようなアルカリ金属、バリウムBa 、カルシウムCa のようなアルカリ土類、ランタンLa 、セリウムCe、イットリウムYのような希土類から選ばれた少なくとも一つの成分と、白金Ptのような貴金属とを担持させたものである。NOX吸蔵還元触媒は流入する排気ガスの空燃比がリーンのときに、排気中のNOX(NO2、NO)を吸収、吸着またはその両方により吸蔵し、流入排気ガス中の酸素濃度が低下すると吸蔵したNOXをNO2の形で放出するNOXの吸放出作用を行う。
Next, the NO x storage reduction catalyst 7 of this embodiment will be described.
The NO x storage reduction catalyst 7 of the present embodiment uses a carrier such as cordierite formed in a honeycomb shape, for example, and forms an alumina coating on the surface of the carrier. On the alumina layer, for example, potassium K, sodium Na, At least one component selected from alkali metals such as lithium Li and cesium Cs, alkaline earths such as barium Ba and calcium Ca, lanthanum La, cerium Ce and yttrium Y, and platinum Pt It carries a precious metal. When the air-fuel ratio of the exhaust gas the NO X storage reduction catalyst is flowing is lean, NO X in the exhaust gas (NO 2, NO) absorbed occludes by adsorption or both, decrease the oxygen concentration in the inflowing exhaust gas then perform absorption and release action of the NO X to release the occluded NO X in the form of NO 2.

例えば、機関1がリーン空燃比で運転されNOX吸蔵還元触媒7に流入する排気がリーン空燃比である場合には、排気中のNOX(NO、NO2)はNOX吸蔵還元触媒7に吸蔵され、NOX吸蔵還元触媒7を通過した排気中のNOX濃度はほぼゼロになる。
また、流入排気中の酸素濃度が大幅に低下すると(すなわち、排気の空燃比が理論空燃比またはリッチ空燃比になると)、NOX吸蔵還元触媒7に吸蔵されたNOXは排気中のCOやH2等還元剤として機能する成分やHC成分(以下、還元成分等)により還元され、NO2の形でNOX吸蔵還元触媒7から放出される。
For example, when the engine 1 is operated at a lean air-fuel ratio and the exhaust gas flowing into the NO X storage reduction catalyst 7 has a lean air-fuel ratio, NO X (NO, NO 2 ) in the exhaust is transferred to the NO X storage reduction catalyst 7. The NO x concentration in the exhaust gas that has been occluded and passed through the NO x storage reduction catalyst 7 becomes almost zero.
Further, when the oxygen concentration in the inflowing exhaust gas is greatly reduced (i.e., when the air-fuel ratio of the exhaust gas becomes stoichiometric or rich air-fuel ratio), NO X occluded in the NO X occluding and reducing catalyst 7 Ya CO in the exhaust It is reduced by a component that functions as a reducing agent such as H 2 or an HC component (hereinafter referred to as a reducing component) and released from the NO x storage reduction catalyst 7 in the form of NO 2 .

本実施形態では、ECU30はNOX吸蔵還元触媒7に吸蔵されたNOXの量が所定値に到達する毎に機関1を短時間リッチ空燃比で運転し、NOX吸蔵還元触媒にリッチ空燃比の排気を供給するリッチスパイク操作を行う。これにより、NOX吸蔵還元触媒7から吸蔵されたNOXがNO2の形で放出され、NOX吸蔵還元触媒が吸収したNOXにより飽和することが防止される。
なお、本実施形態におけるリッチスパイク操作としては公知のいずれの方法を用いることができるため、ここでは詳細な説明は省略する。
In the present embodiment, ECU 30 is operated in a short time a rich air-fuel ratio of the engine 1 every time the amount of the NO X occluded in the NO X occluding and reducing catalyst 7 reaches a predetermined value, the rich air-fuel ratio to the NO X occluding and reducing catalyst Rich spike operation is performed to supply exhaust gas. Thus, NO X occluding and reducing catalyst 7 occluded NO X from is released in the form of NO 2, NO X occluding and reducing catalyst can be prevented from being saturated by the absorbed NO X.
Since any known method can be used as the rich spike operation in the present embodiment, detailed description thereof is omitted here.

ところが、上記のようなNOX吸蔵還元触媒7を排気浄化触媒として使用する場合には、排気中に硫黄酸化物(SOX)等の特定成分が含まれると問題が生じる。
すなわち、リーン空燃比排気中にSOX等が含まれていると、排気中のSOXはNOXと全く同様なメカニズムでNOX吸蔵還元触媒7に吸蔵される。しかし、SOXはNOX吸蔵還元触媒に吸蔵された状態ではNOXよりはるかに安定な化合物を形成するため、単に触媒7にリッチ空燃比の排気を供給するだけのリッチスパイク操作を行ったのでは、NOXを放出させることはできてもSOXを放出させるには不十分である。
However, when the NO x storage reduction catalyst 7 as described above is used as an exhaust purification catalyst, there is a problem if a specific component such as sulfur oxide (SO x ) is contained in the exhaust.
That is, when contains SO X or the like during the lean air-fuel ratio exhaust, SO X in the exhaust gas is occluded in the NO X occluding and reducing catalyst 7 in exactly the same mechanism as the NO X. However, since SO x forms a compound that is much more stable than NO x when it is occluded in the NO x storage-reduction catalyst, a rich spike operation was performed simply by supplying the exhaust gas with a rich air-fuel ratio to the catalyst 7. Then, even though NO x can be released, it is insufficient to release SO x .

このため、排気中にSOXが含まれるとリッチスパイク操作を定期的に行っていても触媒7内には次第にSOXが蓄積されるようになり、NOX吸蔵還元触媒7の吸蔵可能なNOX量(NOX吸蔵能力)は触媒内に吸蔵されたSOXの量だけ低下するようになる。従って、吸蔵されたSOXの量が増大すると、NOX吸蔵還元触媒7は排気中のNOXを吸蔵することができなくなり、未浄化のNOXが吸蔵されないままNOX吸蔵還元触媒7を通過するようになる。 For this reason, if SO x is contained in the exhaust gas, even if the rich spike operation is periodically performed, SO x gradually accumulates in the catalyst 7, so that the NO x storage reduction catalyst 7 can store NO. The amount of X (NO X storage capacity) decreases by the amount of SO X stored in the catalyst. Therefore, the amount of occluded SO X increases, the the NO X storage reduction catalyst 7 will not be able to occlude NO X in the exhaust gas, the the NO X storage and reduction catalyst 7 still unpurified of the NO X is not occluded passage To come.

すなわち、NOX吸蔵還元触媒7は、排気中の特定成分としてのSOXを吸蔵することにより排気浄化能力が低下する、いわゆる硫黄被毒が生じるのである。 That is, the NO x storage-reduction catalyst 7 causes so-called sulfur poisoning in which the exhaust purification ability is reduced by storing SO x as a specific component in the exhaust.

NOX吸蔵還元触媒7に吸蔵されたSOXは、NOX吸蔵還元触媒7を理論空燃比またはリッチ空燃比雰囲気で所定の高温状態(例えば870度K以上)に維持することによりNOX吸蔵還元触媒7から放出されることが知られている。このため、排気中にSOXが含まれる場合にはNOX吸蔵還元触媒7に吸蔵されたSOX量が増大する毎に、NOX吸蔵還元触媒7に理論空燃比またはリッチ空燃比の排気を供給しつつ通常の運転温度よりも高い温度にNOX吸蔵還元触媒7を保持する、被毒解消操作を行う必要がある。 The NO X storage and reduction catalyst 7 is occluded in the SO X is, the NO X storage reduction by maintaining the NO X storage reduction catalyst 7 in a predetermined high-temperature state at the stoichiometric air-fuel ratio or a rich air-fuel ratio atmosphere (e.g. 870 degrees or more K) It is known to be released from the catalyst 7. For this reason, when SO X is contained in the exhaust gas, every time the amount of SO X stored in the NO X storage reduction catalyst 7 increases, the NO X storage reduction catalyst 7 is supplied with exhaust gas having a stoichiometric or rich air fuel ratio. It is necessary to carry out the poisoning elimination operation of holding the NO x storage reduction catalyst 7 at a temperature higher than the normal operating temperature while supplying it.

例えば、前述の特許文献1では触媒に交互にリーン空燃比とリッチ空燃比の排気を供給して触媒上でリッチ空燃比排気中のHC等をリーン空燃比排気中の酸素を用いて燃焼させることにより触媒を昇温して被毒解消操作を行っている。   For example, in Patent Document 1 described above, exhaust gas having a lean air-fuel ratio and a rich air-fuel ratio are alternately supplied to the catalyst, and HC in the rich air-fuel ratio exhaust gas is burned on the catalyst using oxygen in the lean air-fuel ratio exhaust gas. The temperature of the catalyst is raised by this to perform the poisoning elimination operation.

このように、リーン空燃比とリッチ空燃比の排気を交互に触媒に供給して触媒を昇温することにより、別途触媒上流側の排気通路にHC等や二次空気を供給する装置を設けることなく、簡易に触媒にHC等の可燃成分と酸素とを供給することができる。   In this way, by separately supplying lean air-fuel ratio and rich air-fuel ratio exhaust gas to the catalyst to raise the temperature of the catalyst, a device for separately supplying HC or the like or secondary air to the exhaust passage upstream of the catalyst is provided. In addition, flammable components such as HC and oxygen can be easily supplied to the catalyst.

しかし、特許文献1の装置では、前述したようにNOX吸蔵還元触媒7のSOX吸蔵量に応じて被毒解消操作を実行する触媒温度を変更、すなわちSOX吸蔵量が増大するほど低い触媒温度から被毒解消操作を行うようにしているため、必ずしも効率的に被毒解消操作を行うことができない問題があった。 However, in the apparatus of Patent Document 1, as described above, the catalyst temperature for performing the poisoning elimination operation is changed according to the SO X storage amount of the NO X storage reduction catalyst 7, that is, the catalyst becomes lower as the SO X storage amount increases. Since the poisoning elimination operation is performed from the temperature, there is a problem that the poisoning elimination operation cannot always be performed efficiently.

本実施形態では、以下に説明するように被毒解消操作開始前の排気浄化触媒温度に応じて被毒解消操作の実行頻度を変えることにより上記問題を解決している。   In this embodiment, as described below, the above problem is solved by changing the execution frequency of the poisoning elimination operation according to the exhaust purification catalyst temperature before the start of the poisoning elimination operation.

本実施形態においても、NOX吸蔵還元触媒7の被毒解消操作はNOX吸蔵還元触媒7のSOX吸蔵量に基づいて実行される。すなわち、本実施形態においては、ECU30は後述するように機関運転状態に基づいてNOX吸蔵還元触媒7のSOX吸蔵量を推定し、SOX吸蔵量が所定の開始値まで増大した場合には触媒温度にかかわらず被毒解消操作を開始する。また、被毒解消操作実行中、NOX吸蔵還元触媒7のSOX吸蔵量は放出により低下して行くが、本実施形態ではNOX吸蔵還元触媒7のSOX吸蔵量が所定の終了値まで低下した場合に被毒解消操作を終了する。 In the present embodiment, the poisoning removing operation of the NO X occluding and reducing catalyst 7 is performed based on the SO X storage amount of the NO X occluding and reducing catalyst 7. That is, in the present embodiment, the ECU 30 estimates the SO X storage amount of the NO X storage reduction catalyst 7 based on the engine operating state as will be described later, and when the SO X storage amount increases to a predetermined start value. Start poisoning elimination operation regardless of catalyst temperature. While the poisoning elimination operation is being executed, the SO X storage amount of the NO X storage reduction catalyst 7 decreases due to the release, but in this embodiment, the SO X storage amount of the NO X storage reduction catalyst 7 reaches a predetermined end value. When it drops, the poisoning elimination operation is terminated.

しかし、本実施形態では、上記被毒解消操作の開始値は一定値ではなく、被毒解消操作開始前のNOX吸蔵還元触媒7床温に応じて、床温が高いほど開始値が小さい値になるように変更する。 However, in the present embodiment, the start value of the contamination-removing operation is not a constant value, depending on the contamination-removing operation before the start of the NO X occluding and reducing catalyst 7 bed temperature, the higher the bed temperature start value is smaller Change to be.

図2は、本実施形態における開始値の設定と排気温度との関係の一例を示す図である。
図2の縦軸はNOX吸蔵還元触媒7のSOX吸蔵量、横軸は被毒解消操作開始前の状態のNOX吸蔵還元触媒7床温(触媒温度)を示す。また、図2の実線は被毒解消操作を開始するSOX吸蔵量(すなわち、開始値)、点線は被毒解消操作を終了するSOX吸蔵量(終了値)である。
FIG. 2 is a diagram illustrating an example of the relationship between the setting of the start value and the exhaust temperature in the present embodiment.
The vertical axis of FIG. 2 indicates the SO X storage amount of the NO X storage reduction catalyst 7, and the horizontal axis indicates the NO X storage reduction catalyst 7 bed temperature (catalyst temperature) in a state before the start of the poisoning elimination operation. Also, the solid line in FIG. 2 is the SO X storage amount (that is, the start value) at which the poisoning elimination operation is started, and the dotted line is the SO X storage amount (the end value) at which the poisoning elimination operation is completed.

図2に示すように、本実施形態では被毒解消操作の開始値は排気浄化触媒温度の上昇とともに直線的に低下するように設定されており、終了値は触媒温度に無関係に一定の値に設定される。
図2の例では、機関のリーン空燃比運転中SOX吸蔵量が増大して開始値(実線)に到達する毎にNOX吸蔵還元触媒7の被毒解消操作が開始され、被毒解消操作実行中にSOXの放出によりNOX吸蔵還元触媒7中のSOX吸蔵量が図2の終了値(点線)まで低下するとSOXの被毒解消操作が終了する。
As shown in FIG. 2, in this embodiment, the start value of the poisoning elimination operation is set so as to decrease linearly as the exhaust purification catalyst temperature rises, and the end value becomes a constant value regardless of the catalyst temperature. Is set.
In the example of FIG. 2, every time the SO X storage amount increases during the lean air-fuel ratio operation of the engine and reaches the start value (solid line), the poisoning elimination operation of the NOx storage reduction catalyst 7 is started, and the poisoning elimination operation is executed. the NO X storage reduction SO X storage amount in the catalyst 7 is the end value of 2 (dotted line) poisoning removing operation of the drops SO X until finished by the release of SO X in.

このため、開始値と終了値との間隔は、一回の被毒解消操作で放出されるSOX量(すなわち、被毒解消操作終了後次の被毒解消操作が開始されるまでに吸蔵するSOX量)を表すことになる。この量を被毒操作一回当たりの処理SOX量と称すると、図2に示すようにこの処理SOX量は、NOX吸蔵還元触媒7温度が高いほど小さくなり、低温時ではΔSL、中温時ではΔSM、高温時にはΔSHとなる(ΔSL>ΔSM>ΔSH)。 For this reason, the interval between the start value and the end value is stored in the amount of SO X released in one poisoning elimination operation (that is, until the next poisoning elimination operation is started after the poisoning elimination operation is completed). SO x amount). When this amount is referred to as the processing SO X amount per poisoning operation, as shown in FIG. 2, this processing SO X amount becomes smaller as the temperature of the NO X storage reduction catalyst 7 becomes higher. At times, ΔSM, and at high temperatures, ΔSH (ΔSL>ΔSM> ΔSH).

このため、仮に排気浄化触媒の各温度におけるNOX吸蔵還元触媒7の単位時間当たり吸蔵量(機関1のSOX発生量)が同一であれば、排気浄化触媒が高温であるほど短い間隔で被毒解消操作が繰り返されるようになる。実際には、被毒解消操作前のNOX吸蔵還元触媒7温度が高くなる運転領域では、排気温度が高く機関負荷も増大しているためNOX吸蔵還元触媒7温度が低くなる運転領域(機関負荷が低く排気温度が低い運転領域)よりも機関の単位時間当たりSOX発生量も増大しているため、更にNOX吸蔵還元触媒7温度が高くなるほど被毒解消操作実行間隔は短くなる。 For this reason, if the storage amount per unit time of the NO x storage reduction catalyst 7 at each temperature of the exhaust purification catalyst (the amount of SO x generated in the engine 1) is the same, the higher the exhaust purification catalyst, the shorter the coverage. The poison elimination operation is repeated. Actually, in the operation region in which the temperature of the NO x storage reduction catalyst 7 becomes high before the poisoning elimination operation, the exhaust temperature is high and the engine load is also increased, so the operation region in which the temperature of the NO x storage reduction catalyst 7 is lowered (engine) since the load is also increased SO X generation amount per unit time the engine than the exhaust temperature is low operating region) lower, the more contamination-removing operation execution interval increases further the NO X storage reduction catalyst 7 temperature is shortened.

前述したように、NOX吸蔵還元触媒7温度が高い領域では少ないエネルギーでNOX吸蔵還元触媒7を被毒解消に必要な温度まで昇温することができるため、被毒解消操作による燃費の悪化も少なくなる。 As described above, in a region where the temperature of the NO x storage reduction catalyst 7 is high, the temperature of the NO x storage reduction catalyst 7 can be raised to a temperature necessary for elimination of poisoning with less energy. Less.

このため、図2のように被毒解消操作開始値を排気温度に応じて変化させ、排気温度が高い程小さな値になるように設定することにより、例えば車両の高速走行時等のように、排気温度(NOX吸蔵還元触媒7温度)が高く効率的な被毒解消操作を実行することができる領域では小刻みに短い間隔で被毒解消操作を実行し、車両の低速走行時等のように、排気温度が低く被毒解消操作実行に要するエネルギーが増大する運転領域では、被毒解消操作実行間隔を長く設定することが可能となる。 Therefore, by changing the poisoning elimination operation start value according to the exhaust temperature as shown in FIG. 2 and setting it to be a smaller value as the exhaust temperature is higher, for example, when the vehicle is traveling at high speed, In an area where the exhaust gas temperature (the temperature of the NO X storage reduction catalyst 7) is high and an efficient poisoning elimination operation can be executed, the poisoning elimination operation is executed at short intervals in small increments, such as when the vehicle is running at a low speed. In the operation region where the exhaust gas temperature is low and the energy required for performing the poisoning elimination operation increases, it is possible to set the poisoning elimination operation execution interval longer.

すなわち、本実施形態によれば、効率的な被毒解消操作を実行可能な機関運転状態では被毒解消操作実行頻度を多く設定し、効率的な被毒解消操作を実行することができない機関運転状態では被毒解消操作実行頻度を少なく設定することができるため、全体として被毒解消操作を効率的に行うことが可能となり、機関の燃費の悪化を抑制することが可能となる。   That is, according to the present embodiment, in the engine operation state in which an efficient poisoning elimination operation can be performed, the poisoning elimination operation execution frequency is set frequently, and the engine operation in which the efficient poisoning elimination operation cannot be performed. Since the frequency of performing the poisoning elimination operation can be set low in the state, it is possible to efficiently perform the poisoning elimination operation as a whole, and to suppress the deterioration of the fuel consumption of the engine.

次に、図3、図4を用いて本発明の別の実施形態について説明する。
図3は、本実施形態における被毒解消操作の開始値と終了値との設定を示す図である。図2の実施形態では、被毒解消操作の開始値のみをNOX吸蔵還元触媒7温度に応じて変更していたが、本実施形態では図3に示すように開始値とともに終了値もNOX吸蔵還元触媒7温度に応じて変更している点が図2の実施形態と相違している。
Next, another embodiment of the present invention will be described with reference to FIGS.
FIG. 3 is a diagram showing the setting of the start value and end value of the poisoning elimination operation in the present embodiment. In the embodiment of FIG. 2, it had been changed in accordance with only the start value of the contamination-removing operation in the NO X occluding and reducing catalyst 7 temperature, end value with start value as shown in FIG. 3 in the present embodiment is also NO X The point which is changed according to the temperature of the storage reduction catalyst 7 is different from the embodiment of FIG.

本実施形態では、被毒解消操作の終了値も開始値と同様に、被毒解消操作解消前のNOX吸蔵還元触媒7床温が高いほど小さな値に設定される(なお、図3は、終了値を開始値と平行な直線とした場合を示している)。
このように、被毒解消操作の終了値も開始値とともにNOX吸蔵還元触媒7温度に応じて変更することにより、被毒解消操作を更に効率的に行うことが可能となる。
In the present embodiment, the end value of the poisoning elimination operation is set to a smaller value as the bed temperature of the NO X storage reduction catalyst 7 before the elimination of the poisoning elimination operation is higher, as in the case of the start value (in FIG. The end value is shown as a straight line parallel to the start value).
Thus, the poisoning elimination operation can be performed more efficiently by changing the end value of the poisoning elimination operation together with the start value in accordance with the temperature of the NO x storage reduction catalyst 7.

すなわち、NOX吸蔵還元触媒7の被毒解消操作時にはNOX吸蔵還元触媒7から吸蔵したSOXが放出されるが、この放出速度は被毒解消操作時のNOX吸蔵還元触媒温度が同一であれば、NOX吸蔵還元触媒が吸蔵したSOX量が多いほど大きくなる。 That is, SO X during the poisoning recovery operation occluding from the NO X storage reduction catalyst 7 of the NO X occluding and reducing catalyst 7 is released, the release rate is the NO X storage reduction catalyst temperature during the poisoning recovery operation is the same If so, the larger the amount of SO X stored by the NO X storage reduction catalyst, the larger the amount.

図4は、一定温度下で被毒解消操作を行った場合の、NOX吸蔵還元触媒からのSOX放出(脱離)速度(mg/秒)とNOX吸蔵還元触媒に吸蔵されたSOX量(mg)との関係を模式的に示す図である。 4, in the case of performing contamination-removing operation at a constant temperature, NO X from storage reduction catalyst SO X release (desorption) rate (mg / sec) and the NO X storage reduction catalyst occluded the SO X It is a figure which shows typically the relationship with quantity (mg).

図4に示すように、SOX放出速度はNOX吸蔵還元触媒のSOX吸蔵量(保持量)が増大するにつれて急激に大きくなる。図3のように開始値と終了値とが互いに平行な直線になるように設定した場合には、NOX吸蔵還元触媒温度にかかわらず一回の被毒操作におけるSOX放出量(SOX処理量)は同一の値(図3、ΔS)になる。 As shown in FIG. 4, the SO X release rate increases rapidly as the SO X storage amount (retention amount) of the NO X storage reduction catalyst increases. When the start value and the end value are set to be straight lines parallel to each other as shown in FIG. 3, the SO X release amount (SO X treatment) in one poisoning operation regardless of the NO X storage reduction catalyst temperature. Amount) has the same value (FIG. 3, ΔS).

ところが、同じΔSの量のSOXを放出する場合であっても、図4に示すようにNOX吸蔵還元触媒のSOX吸蔵量が多い領域(図3にAで示す)と少ない領域(同、Bで示す)とでは、放出速度が大幅に異なるため、放出に要する時間、すなわち被毒解消操作に要する時間も大幅に異なってくる。 However, even when SO X having the same amount of ΔS is released, as shown in FIG. 4, the NO X storage reduction catalyst has a large SO X storage amount (indicated by A in FIG. 3) and a small region (the same , B)), the release speed is significantly different, so the time required for release, that is, the time required for the poisoning elimination operation is also significantly different.

図3の例では、開始値と終了値とは互いに平行な直線になるように設定されているため、一回の被毒解消操作におけるSOX処理量は同一の値ΔSとなっている。しかし、図3から判るように、触媒温度が低い場合にはNOX吸蔵還元触媒の被毒解消操作はSOX吸蔵量が多い領域で行われるようになる。上述したように、この領域では被毒解消操作時のSOX放出速度が非常に大きくなっているためSOX吸蔵量が少ない領域に較べて短時間でΔSの量のSOXを放出することができる。このことは、SOX吸蔵量が多い領域では、同一の量のSOXを処理する被毒解消操作に要する時間を短くすることができ、それに応じて被毒解消操作に消費されるエネルギー量を低減することができることを意味している。 In the example of FIG. 3, since the start value and the end value are set to be straight lines parallel to each other, the SO X processing amount in one poisoning elimination operation is the same value ΔS. However, as can be seen from FIG. 3, the poisoning removing operation of the NO X occluding and reducing catalyst when the catalyst temperature is low is to be done in the area SO X storage amount is large. As described above, in this region, the SO X release speed at the time of the poisoning elimination operation is very high, so that the amount of SO X of ΔS can be released in a shorter time compared to the region where the SO X storage amount is small. it can. This means that in a region where the SO X storage amount is large, the time required for the poisoning elimination operation for processing the same amount of SO X can be shortened, and the amount of energy consumed for the poisoning elimination operation can be reduced accordingly. It means that it can be reduced.

このため、図3のように被毒解消操作の開始値のみならず、終了値も触媒温度が高い程小さく(触媒温度が低い程大きく)設定することにより、触媒温度が低い場合にも効率的な被毒解消操作を行うことが可能となるのである。   For this reason, not only the start value of the poisoning elimination operation as shown in FIG. 3 but also the end value is set to be smaller as the catalyst temperature is higher (larger as the catalyst temperature is lower), so that it is efficient even when the catalyst temperature is low. This makes it possible to perform a simple poisoning elimination operation.

また、図3のように、開始値と終了値とを互いに平行な直線として設定した場合には、NOX吸蔵還元触媒温度が低い運転状態では機関のSOX発生量も小さくなるため、ΔSの量のSOXがNOX吸蔵還元触媒に吸蔵されるのに要する時間はNOX吸蔵還元触媒が高温の場合に較べて長くなる。 Further, as shown in FIG. 3, when the start value and the end value are set as straight lines parallel to each other, the amount of SO x generated in the engine becomes small in the operating state where the NO x storage reduction catalyst temperature is low, and therefore ΔS time required for the amount of SO X is occluded in the NO X occluding and reducing catalyst is the NO X storage reduction catalyst becomes longer as compared with the case of high temperature.

このため、図3の例でも被毒解消操作の実行頻度はNOX吸蔵還元触媒7温度が高いほど多くなる。これにより、本実施形態においては、効率の良い高温領域での被毒解消操作の実行頻度が大きくなるとともに、更に比較的実行頻度の少ない定温領域においても効率的な被毒解消操作を行うことが可能となるため、全体として極めて効率の良い被毒解消操作を行うことができる。 Therefore, even in the example of FIG. 3, the frequency of performing the poisoning elimination operation increases as the temperature of the NO x storage reduction catalyst 7 increases. As a result, in the present embodiment, the frequency of performing the poisoning elimination operation in the high-temperature region with high efficiency is increased, and the efficient poisoning elimination operation can be performed in the constant-temperature region with a relatively low frequency of execution. Therefore, it is possible to perform a highly efficient poisoning elimination operation as a whole.

なお、図3では被毒解消操作の開始値と終了値とを平行な直線になるように設定しているが、例えばNOX吸蔵還元触媒7の温度が低い場合には高い場合に較べて開始値と終了値との差(すなわち、1回の被毒解消操作におけるSOX処理量)が小さくなるように図3点線で示したように終了値を設定して、NOX吸蔵還元触媒温度が低い場合にも被毒解消操作の実行頻度がそれほど低下しないようにすることも可能である。この場合には、低温領域での被毒解消操作の実行頻度が増大するが、前述したように低温領域ではSOX吸蔵量が多くSOX放出速度が大きい状態で被毒解消操作が行われるため、被毒解消操作の実行頻度が増大しても機関の燃費増大が抑制されるようになる。 In FIG. 3, the start value and the end value of the poisoning elimination operation are set to be parallel straight lines. For example, when the temperature of the NO x storage reduction catalyst 7 is low, the start value is higher than when it is high. The end value is set as shown by the dotted line in FIG. 3 so that the difference between the value and the end value (that is, the SO X processing amount in one poisoning elimination operation) becomes small, and the NO X storage reduction catalyst temperature becomes Even when the frequency is low, it is possible to prevent the frequency of performing the poisoning elimination operation from decreasing so much. In this case, although the frequency of performing the poisoning elimination operation in the low temperature region increases, as described above, the poisoning elimination operation is performed in a state where the SO X storage amount is large and the SO X release rate is high in the low temperature region. Even if the execution frequency of the poisoning elimination operation increases, an increase in the fuel consumption of the engine is suppressed.

図5は本実施形態の被毒解消操作を具体的に説明するフローチャートである。
本実施形態では、図5の操作は、ECU30により一定時間毎に実行されるルーチンとして行われる。
FIG. 5 is a flowchart specifically explaining the poisoning elimination operation of the present embodiment.
In the present embodiment, the operation of FIG. 5 is performed as a routine executed by the ECU 30 at regular intervals.

図5において操作がスタートすると、ステップ501では被毒解消操作実行フラグSの値が1にセットされているか否かが判定される。フラグSは、現在被毒解消操作が実行中であるか否かを表すフラグであり、後述するステップ513で被毒解消操作開始とともに1(実行中)にセットされ、ステップ521で被毒解消操作終了とともに0(非実行中)にセットされる。   When the operation starts in FIG. 5, it is determined in step 501 whether the value of the poisoning elimination operation execution flag S is set to 1. The flag S is a flag indicating whether or not the poisoning elimination operation is currently being executed. The flag S is set to 1 (execution) at the start of the poisoning elimination operation in step 513 described later, and the poisoning elimination operation in step 521. Set to 0 (not running) upon completion.

ステップ501でS≠1、すなわち現在被毒解消操作実行中でなかった場合には、次にステップ503に進み現在のNOX吸蔵還元触媒7床温が読み込まれる。
NOX吸蔵還元触媒7床温は、触媒床に温度センサを配置して直接検出することも可能であるが、本実施形態では機関運転状態に基づいて触媒床温度を算出(推定)している。
If S ≠ 1 in step 501, that is, if the poisoning elimination operation is not currently being executed, the process proceeds to step 503, where the current NO X storage reduction catalyst 7 bed temperature is read.
The NO x storage reduction catalyst 7 bed temperature can be directly detected by arranging a temperature sensor in the catalyst bed, but in this embodiment, the catalyst bed temperature is calculated (estimated) based on the engine operating state. .

すなわち、NOX吸蔵還元触媒7の単位時間当たりの温度変化は、触媒温度と排気温度との差と排気流量との関数となる。そこで、本実施形態では、予め触媒と排気との温度差、排気流量を変えて単位時間当たりの触媒温度上昇を実測し、触媒と排気との温度差、排気流量と単位時間当たりの触媒温度上昇幅との関係を求めて、ECU30のROMに数値テーブルの形で格納してある。また、機関運転状態(負荷、回転数)と排気温度、排気流量との関係についても実験などにより求めて同様な数値テーブルの形でECU30のROMに格納してある。 That is, the temperature change per unit time of the NO x storage reduction catalyst 7 is a function of the difference between the catalyst temperature and the exhaust gas temperature and the exhaust gas flow rate. Therefore, in this embodiment, the temperature difference between the catalyst and the exhaust gas and the exhaust gas flow rate are changed in advance to actually measure the catalyst temperature rise per unit time, and the temperature difference between the catalyst and the exhaust gas, the exhaust gas flow rate and the catalyst temperature rise per unit time are measured. The relationship with the width is obtained and stored in the ROM of the ECU 30 in the form of a numerical table. Further, the relationship between the engine operating state (load, rotation speed), the exhaust temperature, and the exhaust flow rate is obtained through experiments and stored in the ROM of the ECU 30 in the form of a similar numerical table.

ECU30は、別途実行する図示しない触媒温度算出操作で、機関始動時から一定時間毎に機関運転状態に基づいて排気温度と排気流量とを算出するとともに、機関始動時の冷却水温度をNOX吸蔵還元触媒7温度の初期値として、算出した排気温度、流量と触媒温度とから単位時間当たりの触媒温度変化量を算出し、上記温度変化量を逐次積算することにより現在のNOX吸蔵還元触媒温度を算出している。 The ECU 30 calculates the exhaust temperature and the exhaust flow rate based on the engine operating state at regular intervals from the start of the engine by a catalyst temperature calculation operation (not shown) that is separately executed, and stores the cooling water temperature at the start of the engine in the NO X storage. As the initial value of the reduction catalyst 7 temperature, the catalyst temperature change amount per unit time is calculated from the calculated exhaust temperature, flow rate and catalyst temperature, and the current NO X storage reduction catalyst temperature is obtained by sequentially integrating the temperature change amount. Is calculated.

ステップ503では、上記触媒温度算出操作により算出した現在のNOX吸蔵還元触媒7温度が読み込まれる。
そして、ステップ505では上記により読み込んだNOX吸蔵還元触媒7温度を用いて、図3の関係から被毒解消操作の開始値CSSと終了値CSEとが設定される。
次いで、ステップ507では現在のNOX吸蔵還元触媒7のSOX吸蔵量CSが読み込まれる。
In step 503, the current NO x storage reduction catalyst 7 temperature calculated by the catalyst temperature calculation operation is read.
In step 505, the start value CSS and the end value CSE of the poisoning elimination operation are set from the relationship shown in FIG. 3 using the NO x storage reduction catalyst 7 temperature read in the above.
Next, at step 507, the current SO X storage amount CS of the NO X storage reduction catalyst 7 is read.

本実施形態では、ECU30は別途実行する図示しないSOX吸蔵量算出操作によりNOX吸蔵還元触媒7のSOX吸蔵量を算出(推定)している。
リーン空燃比運転中に単位時間当たりにNOX吸蔵還元触媒に吸蔵されるSOX量は機関1のSOX発生量に比例する。一方、機関のSOX発生量のほぼ全量は燃料中の硫黄分の燃焼によるものなので、機関の単位時間当たりのSOX発生量は機関の燃料噴射量に比例する。従って、単位時間当たりにNOX吸蔵還元触媒7が吸蔵するSOX量は機関の燃料噴射量に比例することになる。
In the present embodiment, the ECU 30 calculates (estimates) the SO X storage amount of the NO X storage reduction catalyst 7 by a SO X storage amount calculation operation (not shown) that is separately executed.
The amount of SO X stored in the NO X storage reduction catalyst per unit time during lean air-fuel ratio operation is proportional to the amount of SO X generated in the engine 1. On the other hand, since almost the entire amount of SO x generated in the engine is due to the combustion of sulfur in the fuel, the amount of SO x generated per unit time of the engine is proportional to the amount of fuel injection of the engine. Therefore, the amount of SO X stored by the NO X storage reduction catalyst 7 per unit time is proportional to the fuel injection amount of the engine.

そこで、上記SOX吸蔵量算出操作では、機関のリーン空燃比運転中、ECU30は単位時間当たりの機関の燃料噴射量を求め、この燃料噴射量に予め実験により求めた係数を乗じた値をNOX吸蔵還元触媒が単位時間当たりに吸蔵したSOX量としている。従って、リーン空燃比運転中に上記単位時間当たりのSOX吸蔵量を積算することにより、NOX吸蔵還元触媒の現在のSOX吸蔵量CSが精度良く算出(推定)される。
ステップ507では上記SOX吸蔵量算出操作により算出された現在のSOX吸蔵量が読み込まれる。
Therefore, in the SO X storage amount calculation operation, during the lean air-fuel ratio operation of the engine, the ECU 30 obtains the fuel injection amount of the engine per unit time, and the value obtained by multiplying the fuel injection amount by a coefficient obtained in advance by experiment is NO. The amount of SO X stored per unit time by the X storage reduction catalyst. Accordingly, the current SO X storage amount CS of the NO X storage reduction catalyst is accurately calculated (estimated) by integrating the SO X storage amount per unit time during the lean air-fuel ratio operation.
In step 507 the current SO X storage amount calculated by the SO X storage amount calculation operation is read.

なお、機関が理論空燃比またはリッチ空燃比で運転されている場合には、排気中のSOXはNOX吸蔵還元触媒に吸蔵されないため、上記SOX吸蔵量の算出はリーン空燃比運転時のみ行われる。また、後述するように被毒回復操作の実行中は、SOXの放出に応じてSOX吸蔵量は低減される。 Note that when the engine is operated at the stoichiometric air-fuel ratio or rich air-fuel ratio, SO X in the exhaust is not stored in the NO X storage reduction catalyst, so the calculation of the SO X storage amount is performed only during lean air-fuel ratio operation. Done. Further, during the execution of the poisoning recovery operation as will be described later, SO X storage amount in accordance with the release of SO X is reduced.

上記によりNOX吸蔵還元触媒7のSOX吸蔵量を読み込んだ後、ステップ509では現在のNOX吸蔵還元触媒7のSOX吸蔵量CSが、ステップ505で設定した被毒解消操作開始値CSS以上になっているか否かを判定する。 After reading the SO X storage amount of the NO X storage reduction catalyst 7 as described above, in step 509, the current SO X storage amount CS of the NO X storage reduction catalyst 7 is equal to or greater than the poisoning elimination operation start value CSS set in step 505. It is determined whether or not.

ステップ509でCS≧CSSであった場合には、現在のNOX吸蔵還元触媒7のSOX吸蔵量が被毒解消操作解消操作の開始値CSSを越えて増大しているため、ステップ511に進み被毒解消操作を開始する。 If CS ≧ CSS in step 509, the current SO X storage amount of the NO X storage reduction catalyst 7 has increased beyond the start value CSS of the poisoning elimination operation elimination operation, and the process proceeds to step 511. Start poisoning elimination operation.

前述したように、本実施形態では被毒解消操作は一部の気筒をリッチ空燃比で運転することにより行う。
すなわち、ステップ511で被毒解消操作が開始されるとECU30は、機関1の#1、#4気筒をリッチ空燃比で運転し、#2、#3気筒をリーン空燃比で運転する。また、上記リーン空燃比とリッチ空燃比とは、機関1全体としての平均運転空燃比が理論空燃比よりややリッチ側になる値に選択される。
As described above, in this embodiment, the poisoning elimination operation is performed by operating some cylinders at a rich air-fuel ratio.
That is, when the poisoning elimination operation is started in step 511, the ECU 30 operates the # 1 and # 4 cylinders of the engine 1 with a rich air-fuel ratio and the # 2 and # 3 cylinders with a lean air-fuel ratio. The lean air-fuel ratio and the rich air-fuel ratio are selected so that the average operating air-fuel ratio of the engine 1 as a whole is slightly richer than the stoichiometric air-fuel ratio.

これにより、NOX吸蔵還元触媒7には未燃HC、CO等の可燃成分を多量に含む#1、#4気筒からのリッチ空燃比排気と、酸素を多量に含む#2、#3気筒からのリーン空燃比排気とが到達し、触媒上で両者が混合して未燃HC、CO成分が燃焼するようになり、燃焼熱により触媒温度が上昇する。 As a result, the NO x storage reduction catalyst 7 has a rich air-fuel ratio exhaust from the # 1 and # 4 cylinders containing a large amount of combustible components such as unburned HC and CO, and a # 2 and # 3 cylinder containing a large amount of oxygen. The lean air-fuel ratio exhaust gas reaches the exhaust gas, and both of them are mixed on the catalyst and unburned HC and CO components are combusted, and the catalyst temperature rises due to the combustion heat.

なお、被毒解消操作では、NOX吸蔵還元触媒7温度を、SOX放出が生じる所定温度(約870度K以上、好ましくは約900度K以上)にまで床温させる間は上記リッチ空燃比運転気筒の空燃比とリーン空燃比運転気筒との空燃比差を大きく(#1、#4気筒の運転空燃比をかなりリッチに、#2、#3気筒の運転空燃比をかなりリーンに)設定するが、NOX吸蔵還元触媒7の温度が上記所定温度に到達した後は上記空燃比差はNOX吸蔵還元触媒7を上記所定温度に維持するのに十分な程度の比較的小さな値に設定される。 In the poisoning elimination operation, the rich air-fuel ratio is kept while the temperature of the NO x storage reduction catalyst 7 is brought to a predetermined temperature (about 870 ° K or higher, preferably about 900 ° K or higher) at which SO X release occurs. Set the air-fuel ratio difference between the operating cylinder and the lean air-fuel ratio to be large (the operating air-fuel ratios of the # 1 and # 4 cylinders are very rich, and the operating air-fuel ratios of the # 2 and # 3 cylinders are very lean) However, after the temperature of the NO x storage reduction catalyst 7 reaches the predetermined temperature, the air-fuel ratio difference is set to a relatively small value sufficient to maintain the NO x storage reduction catalyst 7 at the predetermined temperature. Is done.

ステップ511で被毒解消操作を開始後、ステップ513では前述の被毒解消操作実行フラグSの値が1に設定される。   After the poisoning elimination operation is started in step 511, the value of the aforementioned poisoning elimination operation execution flag S is set to 1 in step 513.

なお、ステップ509でNOX吸蔵還元触媒7のSOX吸蔵量CSが被毒解消操作開始値CSSに到達していない場合には、ステップ511、513は実行せずにステップ509の後、直ちに今回の操作の実行を終了する。この場合には、被毒解消操作は開始は行われず通常の運転が続行される。 If the SO X storage amount CS of the NO X storage reduction catalyst 7 has not reached the poisoning elimination operation start value CSS in step 509, steps 511 and 513 are not executed, but immediately after step 509, this time. The execution of the operation is terminated. In this case, the poisoning elimination operation is not started and normal operation is continued.

一方、ステップ513で被毒解消操作実行フラグSの値が1にセットされた場合には、次回の本操作実行時にはステップ501でS=1(被毒解消操作実行中)と判定される。
この場合には、次にステップ515が実行され、現在のNOX吸蔵還元触媒7のSOX吸蔵量CSが読み込まれる。
On the other hand, if the value of the poisoning elimination operation execution flag S is set to 1 in step 513, it is determined that S = 1 (during the execution of poisoning elimination operation) in step 501 when the next main operation is executed.
In this case, step 515 is executed next, and the current SO X storage amount CS of the NO X storage reduction catalyst 7 is read.

前述したように、被毒解消操作実行中はNOX吸蔵還元触媒7から吸蔵したSOXが放出されるため、NOX吸蔵還元触媒7のSOX吸蔵量は減少する。また、その減少速度はNOX吸蔵還元触媒からのSOX放出速度に等しい。 As described above, in the poisoning removing operation performed for SO X occluding from the NO X storage reduction catalyst 7 is released, SO X storage amount of the NO X occluding and reducing catalyst 7 is reduced. Further, the decrease rate is equal to the SO X release rate from the NO X storage reduction catalyst.

本実施形態では、ECU30が別途実行するSOX吸蔵量算出操作では、被毒解消操作実行中一定時間毎にSOX吸蔵量CSの値が減量される。また、SOX吸蔵量CSの一回当たりの減量量は、現在のSOX吸蔵量CSの値から図4の関係に基づいて決定されるSOX放出速度に比例した値とされる。これにより、CSの値は被毒解消操作実行中も正確に実際のNOX吸蔵還元触媒7のSOX吸蔵量に対応するようになる。 In the present embodiment, in the SO X storage amount calculation operation separately executed by the ECU 30, the value of the SO X storage amount CS is decreased at regular intervals during execution of the poisoning elimination operation. The weight loss per single SO X storage amount CS is a value proportional to the SO X release rate is determined based on the current value of SO X storage amount CS in relation of FIG. Thus, the value of CS accurately corresponds to the actual SO X storage amount of the NO X storage reduction catalyst 7 even during the execution of the poisoning elimination operation.

ステップ515でSOX吸蔵量CSを読み込んだ後、ステップ517では現在のSOX吸蔵量CSが、ステップ505で設定した被毒解消操作終了値CSEまで低下したか否かを判定する。
ステップ517でSOX吸蔵量CSが被毒解消操作終了値CSEまで低下していた場合(CS≦CSE)には、次にステップ519が実行され被毒解消操作が停止される。
After the SO X storage amount CS is read in Step 515, it is determined in Step 517 whether or not the current SO X storage amount CS has decreased to the poisoning elimination operation end value CSE set in Step 505.
If the SO X storage amount CS has decreased to the poisoning elimination operation end value CSE in step 517 (CS ≦ CSE), then step 519 is executed to stop the poisoning elimination operation.

この場合、ECU30は#1から#4の気筒の被毒解消操作開始前の空燃比(全気筒同一のリーン空燃比)での運転を再開する。これにより、NOX吸蔵還元触媒7のSOX吸蔵量は再度増大を開始する。
また、ステップ517でCS>CSEであった場合には、ステップ517の後、今回の本操作の実行は終了し、被毒解消操作は続行される。
In this case, the ECU 30 resumes the operation at the air-fuel ratio (lean air-fuel ratio that is the same for all cylinders) before starting the poisoning elimination operation of the cylinders # 1 to # 4. Thereby, the SO X storage amount of the NO X storage reduction catalyst 7 starts to increase again.
If CS> CSE in step 517, the execution of this operation is terminated after step 517, and the poisoning elimination operation is continued.

なお、図2の例のように被毒解消操作開始値のみを排気温度に応じて変化させる場合には、ステップ505では、開始値CSSの値のみが図2の関係に基づいてNOX吸蔵還元触媒7温度に応じて設定され、終了値CSEの値は適宜な一定値とされる。 Incidentally, in the case of changing in accordance with the exhaust temperature poisoning recovery operation start value only as in the example of FIG. 2, NO X occluding and reducing on the basis of step 505, only the value of the start value CSS is the relationship of FIG. 2 It is set according to the temperature of the catalyst 7, and the end value CSE is set to an appropriate constant value.

本発明を自動車用内燃機関に適用した場合の、実施形態の概略構成を説明する図である。It is a figure explaining schematic structure of an embodiment at the time of applying the present invention to an internal-combustion engine for vehicles. 触媒温度に応じた被毒解消操作開始値の設定例を示す図である。It is a figure which shows the example of a setting of the poisoning elimination operation start value according to a catalyst temperature. 触媒温度に応じた被毒解消操作開始値及び終了値の設定例を示す図である。It is a figure which shows the example of a setting of the poisoning elimination operation start value and end value according to a catalyst temperature. NOX吸蔵還元触媒からのSOX放出速度とSOX吸蔵量との関係を模式的に示す図である。The relationship between the SO X release rate and SO X storage amount from the NO X storage reduction catalyst is a diagram schematically illustrating. 本発明の被毒解消操作の一例を具体的に説明するフローチャートである。It is a flowchart explaining an example of poisoning elimination operation of this invention concretely.

符号の説明Explanation of symbols

1 機関本体
2 排気通路
5a、5b スタートキャタリスト(SC)
7 NOX吸蔵還元触媒
30 ECU(電子制御ユニット)
1 Engine body 2 Exhaust passage 5a, 5b Start catalyst (SC)
7 NO X storage reduction catalyst 30 ECU (electronic control unit)

Claims (4)

流入する排気がリーン空燃比のときに排気中のNO X 成分を吸蔵し、流入する排気がリッチ空燃比になったときに吸蔵したNO X を還元浄化するとともに、排気中のSO X 成分を吸蔵して排気浄化能力が低下する排気浄化触媒を備え、前記排気浄化触媒のSO X 成分の吸蔵量が増大して所定の開始値に到達したときに前記排気浄化触媒の温度を上昇させて前記吸蔵したSO X 成分を排気浄化触媒から放出させる被毒解消操作を開始する内燃機関の排気浄化装置において、
前記被毒解消操作開始前の排気浄化触媒温度に応じて、前記被毒解消操作実行による機関燃費の増大を抑制するように前記開始値を変更する内燃機関の排気浄化装置。
With the exhaust gas flowing the occluding NO X components in the exhaust gas when a lean air-fuel ratio, the exhaust gas flowing to reduction purification of occluded NO X when it is rich air-fuel ratio, storing the SO X components in the exhaust The exhaust purification catalyst has a reduced exhaust purification capability, and when the storage amount of the SO X component of the exhaust purification catalyst increases and reaches a predetermined start value, the temperature of the exhaust purification catalyst is raised to increase the storage In the exhaust gas purification apparatus for an internal combustion engine that starts the poisoning elimination operation for releasing the released SO X component from the exhaust gas purification catalyst,
An exhaust gas purification apparatus for an internal combustion engine that changes the start value so as to suppress an increase in engine fuel consumption due to execution of the poisoning elimination operation in accordance with an exhaust purification catalyst temperature before the poisoning elimination operation is started.
更に、前記被毒解消操作実行中に前記排気浄化触媒の前記SO X 成分の吸蔵量が低下して所定の終了値に到達したときに被毒解消操作を終了するとともに、前記被毒解消操作開始前の排気浄化触媒温度に応じて、前記被毒解消操作実行による機関燃費の増大を抑制するように記終了値を変更する、請求項1に記載の内燃機関の排気浄化装置。 Further, when the poisoning elimination operation is executed, when the storage amount of the SO X component of the exhaust purification catalyst decreases and reaches a predetermined end value, the poisoning elimination operation is terminated and the poisoning elimination operation is started. depending on the front of the exhaust gas purifying catalyst temperature, the change of the pre-tight Ryochi to suppress an increase in engine fuel consumption due to poisoning removing operation performed, the exhaust purification system of an internal combustion engine according to claim 1. 前記被毒解消操作開始前の排気浄化触媒温度が高いほど、前記開始値の値が小さくなるように前記開始値の値を変更する、請求項1に記載の内燃機関の排気浄化装置。   The exhaust purification device for an internal combustion engine according to claim 1, wherein the value of the start value is changed so that the value of the start value becomes smaller as the exhaust purification catalyst temperature before the start of the poisoning elimination operation is higher. 前記被毒解消操作開始前の排気浄化触媒温度が高いほど、前記開始値と前記終了値の値が小さくなるように前記開始値と終了値の値を変更する、請求項2に記載の内燃機関の排気浄化装置。   3. The internal combustion engine according to claim 2, wherein the start value and the end value are changed so that the start value and the end value become smaller as the exhaust purification catalyst temperature before the start of the poisoning elimination operation is higher. Exhaust purification equipment.
JP2004237416A 2004-08-17 2004-08-17 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4506348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004237416A JP4506348B2 (en) 2004-08-17 2004-08-17 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004237416A JP4506348B2 (en) 2004-08-17 2004-08-17 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006057467A JP2006057467A (en) 2006-03-02
JP4506348B2 true JP4506348B2 (en) 2010-07-21

Family

ID=36105161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004237416A Expired - Fee Related JP4506348B2 (en) 2004-08-17 2004-08-17 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4506348B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4816606B2 (en) * 2007-09-18 2011-11-16 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269148A (en) * 2002-03-15 2003-09-25 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2003328739A (en) * 2002-05-16 2003-11-19 Nissan Motor Co Ltd Exhaust emission control device of internal-combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269148A (en) * 2002-03-15 2003-09-25 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2003328739A (en) * 2002-05-16 2003-11-19 Nissan Motor Co Ltd Exhaust emission control device of internal-combustion engine

Also Published As

Publication number Publication date
JP2006057467A (en) 2006-03-02

Similar Documents

Publication Publication Date Title
EP0971101B1 (en) An exhaust gas purification device for an internal combustion engine
EP0971104B1 (en) An exhaust gas purification device for an internal combustion engine
JP3901194B2 (en) Exhaust gas purification method and exhaust gas purification system
US7963103B2 (en) Exhaust gas purification method and system
JP5217102B2 (en) NOx purification system control method and NOx purification system
JP2008286042A (en) CONTROL METHOD OF NOx PURIFICATION SYSTEM AND NOx PURIFICATION SYSTEM
JP5163809B2 (en) Exhaust gas purification device for internal combustion engine
JP3624815B2 (en) Exhaust gas purification device for internal combustion engine
JP6988648B2 (en) Exhaust purification device for internal combustion engine
JP3552603B2 (en) Exhaust gas purification device for internal combustion engine
JP4120563B2 (en) Exhaust gas purification device for internal combustion engine
JP4357918B2 (en) Exhaust gas purification device for internal combustion engine
JP3788087B2 (en) Exhaust gas purification device for internal combustion engine
JP4506348B2 (en) Exhaust gas purification device for internal combustion engine
JP3509482B2 (en) Exhaust gas purification device for internal combustion engine
JP2001003782A (en) Exhaust emission control device for internal combustion engine
JP4144584B2 (en) Exhaust gas purification device for internal combustion engine
JP3496557B2 (en) Exhaust gas purification device for internal combustion engine
JP2001227325A (en) Exhaust emission control device for internal combustion engine
JP2005325693A (en) Exhaust emission control device for internal combustion engine
JP2000352308A (en) Exhaust emission control system for internal combustion engine
JP2009046994A (en) Deterioration diagnostic system of nox catalyst
JP2000145438A (en) Exhaust emission control device for internal combustion engine
JP4329378B2 (en) Exhaust gas purification device for internal combustion engine
JP2000170525A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4506348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees