JPH11311142A - Air-fuel ratio controller for internal combustion engine - Google Patents
Air-fuel ratio controller for internal combustion engineInfo
- Publication number
- JPH11311142A JPH11311142A JP10117123A JP11712398A JPH11311142A JP H11311142 A JPH11311142 A JP H11311142A JP 10117123 A JP10117123 A JP 10117123A JP 11712398 A JP11712398 A JP 11712398A JP H11311142 A JPH11311142 A JP H11311142A
- Authority
- JP
- Japan
- Prior art keywords
- air
- fuel ratio
- rich
- catalyst
- deterioration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0842—Nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9495—Controlling the catalytic process
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0814—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/0275—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2250/00—Combinations of different methods of purification
- F01N2250/12—Combinations of different methods of purification absorption or adsorption, and catalytic conversion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2430/00—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
- F01N2430/06—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2570/00—Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
- F01N2570/16—Oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/08—Exhaust gas treatment apparatus parameters
- F02D2200/0816—Oxygen storage capacity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2451—Methods of calibrating or learning characterised by what is learned or calibrated
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Exhaust Gas After Treatment (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、空燃比リーン領域
でのリーン燃焼を行わせる内燃機関の空燃比制御装置に
適用され、リーン燃焼時に発生する排ガス中の窒素酸化
物(NOx)を浄化するためのNOx吸蔵還元型触媒を
有する内燃機関の空燃比制御装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to an air-fuel ratio control device for an internal combustion engine that performs lean combustion in an air-fuel ratio lean region, and purifies nitrogen oxides (NOx) in exhaust gas generated during lean combustion. For controlling the air-fuel ratio of an internal combustion engine having a NOx storage-reduction type catalyst for the purpose.
【0002】[0002]
【従来の技術】近年における内燃機関の空燃比制御装置
では、燃費改善を図るべく理論空燃比よりもリーン側で
燃料を燃焼させる、いわゆるリーンバーン制御を実施す
る技術が多用化されつつある。こうしたリーン燃焼を行
わせる場合、内燃機関から排出される排ガスにはNOx
が多く含まれ、このNOxを浄化するためのリーンNO
x触媒が必要となる。2. Description of the Related Art In recent years, in an air-fuel ratio control apparatus for an internal combustion engine, a technique of performing so-called lean burn control, in which fuel is burned on a lean side from a stoichiometric air-fuel ratio, in order to improve fuel efficiency, is being used frequently. When performing such lean combustion, NOx is contained in exhaust gas discharged from the internal combustion engine.
NO for purifying this NOx
x catalyst is required.
【0003】例えば特許番号第2600492号公報に
は、排ガスの空燃比がリーンである時にNOxを吸収す
ると共に、排ガスの酸素濃度が低下された時に、すなわ
ちリッチ化された時に前記吸収したNOxを放出するN
Ox吸収剤(NOx吸蔵還元型触媒)と、同NOx吸収
剤を備えた排気浄化装置とが開示されている。また、上
記公報の装置では、機関排気通路の上流側に三元触媒
を、下流側にNOx触媒をそれぞれ設置した構成が開示
されている。For example, Japanese Patent No. 2600492 discloses that NOx is absorbed when the air-fuel ratio of exhaust gas is lean, and is released when the oxygen concentration of the exhaust gas is reduced, that is, when the exhaust gas is enriched. N
An Ox absorbent (NOx storage-reduction catalyst) and an exhaust gas purification device provided with the NOx absorbent are disclosed. Further, the apparatus disclosed in the above publication discloses a configuration in which a three-way catalyst is installed upstream of an engine exhaust passage and a NOx catalyst is installed downstream.
【0004】一方、リーン燃焼時に発生するNOxをN
Ox触媒にて吸収するシステムでは、NOx触媒でNO
xが飽和状態になるとNOx浄化能力が限界に達する。
そのため、NOx触媒の浄化能力を回復させてNOxの
排出を抑制すべく、一時的にリッチ燃焼を行わせるよう
にした技術が知られている。例えば特開平8−2610
41号公報には、NOx触媒(NOx吸収剤)の劣化度
合を検出し、該検出したNOx触媒の劣化度合に応じて
空燃比リッチ時間を長くする装置が開示されている。On the other hand, NOx generated during lean combustion is reduced to N
In a system that absorbs with an Ox catalyst, the NOx catalyst
When x becomes saturated, the NOx purification capacity reaches the limit.
Therefore, there is known a technique in which rich combustion is temporarily performed in order to recover the purification ability of the NOx catalyst and suppress the emission of NOx. For example, JP-A-8-2610
Japanese Patent Publication No. 41 discloses an apparatus that detects the degree of deterioration of a NOx catalyst (NOx absorbent) and extends the air-fuel ratio rich time in accordance with the detected degree of deterioration of the NOx catalyst.
【0005】[0005]
【発明が解決しようとする課題】ところで、機関排気通
路の上流側に三元触媒を、下流側にNOx触媒をそれぞ
れ配設した装置では、三元触媒に酸素やリッチ成分が一
時的に貯蔵(ストレージ)されることで、その下流側の
NOx触媒に供給される排ガス成分が変動する。つま
り、NOx触媒の吸蔵NOxを還元し放出すべくリーン
燃焼をリッチ燃焼に切り換えても、三元触媒下流側の排
ガスの空燃比(NOx触媒に給送される排ガスの空燃
比)は直ぐにはリーンからリッチに移行せず、三元触媒
における貯蔵酸素との反応を終えた後、リッチに移行す
る。従って、NOx触媒の吸蔵NOxを確実に還元し放
出するには、上述の貯蔵酸素との反応時間を見込んでリ
ッチ燃焼のためのリッチ時間が設定されることになる。In an apparatus in which a three-way catalyst is disposed upstream of an engine exhaust passage and a NOx catalyst is disposed downstream thereof, oxygen and rich components are temporarily stored in the three-way catalyst (see FIG. 1). By performing the storage, the exhaust gas component supplied to the NOx catalyst on the downstream side fluctuates. That is, even if the lean combustion is switched to the rich combustion in order to reduce and release the stored NOx of the NOx catalyst, the air-fuel ratio of the exhaust gas downstream of the three-way catalyst (the air-fuel ratio of the exhaust gas supplied to the NOx catalyst) is immediately increased to the lean state. After the reaction with the stored oxygen in the three-way catalyst is completed, the fuel does not shift to rich. Therefore, in order to reliably reduce and release the stored NOx of the NOx catalyst, a rich time for rich combustion is set in consideration of the above-described reaction time with the stored oxygen.
【0006】またここで、三元触媒の例えば新品時と劣
化時とを比べると、新品時の方が酸素貯蔵能力が高く、
リーン燃焼時において比較的多量の酸素を貯蔵する。換
言すれば、三元触媒の劣化が進行すると酸素貯蔵能力が
低下する。そのため、三元触媒の新品時と劣化時とで、
同様のリッチ燃焼制御を実施すると、劣化時においてN
Ox触媒側に給送されるリッチ成分(HC,CO)が過
多となり、そのリッチ成分が浄化されずに排出されるお
それがあった。それを図14を用いて簡単に説明する。[0006] Here, when the three-way catalyst is compared, for example, when it is new and when it is deteriorated, the new catalyst has a higher oxygen storage capacity.
Stores relatively large amounts of oxygen during lean combustion. In other words, as the three-way catalyst deteriorates, the oxygen storage capacity decreases. Therefore, when the three-way catalyst is new and deteriorated,
When the same rich combustion control is performed, N
The rich components (HC, CO) supplied to the Ox catalyst side become excessive, and the rich components may be discharged without being purified. This will be briefly described with reference to FIG.
【0007】図14は、三元触媒の劣化時における空燃
比や排ガス成分の推移を示すタイムチャートである。図
14において、時刻t31では制御空燃比がリーンから
リッチに切り換えられ、三元触媒前方及び後方の空燃比
がリッチへと移行する。時刻t32では、三元触媒前方
及び後方の空燃比が理論空燃比(λ=1)に達し、本
来、三元触媒が新品時と同等の酸素貯蔵能力を有してい
れば、三元触媒後方の空燃比は理論空燃比で所定時間
(貯蔵酸素との反応時間)だけ保持されるが、三元触媒
が劣化し貯蔵酸素量が少ないために、直後の時刻t33
で同空燃比がリッチ側に移行する。時刻t33以降、リ
ッチ成分がNOx触媒側に供給されるために同触媒の吸
蔵NOxが還元・放出され、その後、時刻t34では、
制御空燃比が元のリーンに戻される。FIG. 14 is a time chart showing changes in the air-fuel ratio and exhaust gas components when the three-way catalyst is deteriorated. In FIG. 14, at time t31, the control air-fuel ratio is switched from lean to rich, and the air-fuel ratio in front of and behind the three-way catalyst shifts to rich. At time t32, if the air-fuel ratio in front of and behind the three-way catalyst reaches the stoichiometric air-fuel ratio (λ = 1), and the three-way catalyst originally has the same oxygen storage capacity as when new, the three-way catalyst rearward The air-fuel ratio is maintained at the stoichiometric air-fuel ratio for a predetermined time (reaction time with stored oxygen), but since the three-way catalyst has deteriorated and the amount of stored oxygen is small, immediately after time t33
, The air-fuel ratio shifts to the rich side. After time t33, since the rich component is supplied to the NOx catalyst side, the stored NOx of the catalyst is reduced and released, and thereafter, at time t34,
The control air-fuel ratio is returned to the original lean state.
【0008】かかる場合、制御空燃比がリッチに制御さ
れる期間(時刻t31〜t34のリッチ時間)は、三元
触媒の新品時を基準として同触媒の貯蔵酸素量をも見込
んで予め設定される。しかしながら上記のように三元触
媒が劣化すると、貯蔵酸素量が当初の見込み量よりも減
少し、その減少分だけNOx触媒に供給されるリッチ成
分が過剰となる。そのため、吸蔵NOxの還元終了後に
もリッチ成分が供給され、HC,COといった排ガス成
分が浄化されずに排出されることになる。In this case, the period during which the control air-fuel ratio is controlled to be rich (the rich time from time t31 to time t34) is set in advance in consideration of the stored oxygen amount of the three-way catalyst based on when the three-way catalyst is new. . However, when the three-way catalyst is deteriorated as described above, the stored oxygen amount becomes smaller than the initially expected amount, and the amount of the rich component supplied to the NOx catalyst becomes excessive by the reduced amount. Therefore, the rich component is supplied even after the end of the reduction of the stored NOx, and the exhaust gas components such as HC and CO are discharged without being purified.
【0009】また逆に、三元触媒の劣化時を基準として
リッチ時間を設定すると、三元触媒の新品時において、
吸蔵NOxの還元・放出に必要なリッチ成分が不足し、
NOxが浄化されずに排出されるおそれが生ずる。Conversely, if the rich time is set on the basis of the deterioration of the three-way catalyst, the rich time becomes
Insufficient rich components required for reduction and release of stored NOx,
There is a possibility that NOx is discharged without being purified.
【0010】上記不具合は、例えば特許番号第2600
492号に開示された装置で生じうる。また、特開平8
−261041号公報に開示された装置では、NOx触
媒の劣化度合を空燃比リッチ制御に反映させているが、
三元触媒についての記載はなく、上記図14で説明した
ような不具合を解消できるものではなかった。因みに、
NOx触媒の劣化と三元触媒の劣化とはその原因や進行
速さが相違する。NOx触媒の劣化は硫酸塩BaSO4
の生成が主たる原因であるのに対し、三元触媒の劣化は
熱害が主たる原因であると考えられる。[0010] The above-mentioned problem is caused, for example, in Japanese Patent No. 2600.
No. 492. Also, Japanese Patent Application Laid-Open
In the device disclosed in Japanese Patent Application No. -261041, the degree of deterioration of the NOx catalyst is reflected in the air-fuel ratio rich control.
There is no description of a three-way catalyst, and the problem described with reference to FIG. 14 cannot be solved. By the way,
The cause and the speed of progress of the deterioration of the NOx catalyst are different from those of the three-way catalyst. Deterioration of NOx catalyst is caused by sulfate BaSO4
It is thought that the main cause is the generation of, while the deterioration of the three-way catalyst is mainly caused by heat damage.
【0011】本発明は、上記問題に着目してなされたも
のであって、その目的とするところは、NOx触媒の上
流側に位置する触媒の劣化状態に拘わらず、常に良好な
排ガス浄化を行うことができる内燃機関の空燃比制御装
置を提供することである。The present invention has been made in view of the above-mentioned problem, and an object thereof is to always perform good exhaust gas purification irrespective of the deterioration state of a catalyst located on the upstream side of the NOx catalyst. It is an object of the present invention to provide an air-fuel ratio control device for an internal combustion engine that can perform the above-mentioned operations.
【0012】[0012]
【課題を解決するための手段】本発明の空燃比制御装置
は、機関排気通路の上流側に設けられ、少なくとも酸化
作用を有する上流側触媒と、機関排気通路の下流側に設
けられ、NOx吸蔵還元作用を有する下流側触媒とを備
える内燃機関に適用され、空燃比リーン領域でのリーン
燃焼を行わせると共に、リーン燃焼時に排出される排ガ
ス中のNOxを前記下流側触媒で吸蔵し、さらに空燃比
を一時的にリッチに制御して吸蔵NOxを下流側触媒か
ら放出することを前提とする。An air-fuel ratio control apparatus according to the present invention is provided at an upstream side of an engine exhaust passage and has at least an upstream catalyst having an oxidizing effect, and is provided at a downstream side of the engine exhaust passage. The present invention is applied to an internal combustion engine having a downstream catalyst having a reducing action, performs lean combustion in an air-fuel ratio lean region, and stores NOx in exhaust gas discharged at the time of lean combustion by the downstream catalyst. It is assumed that the fuel ratio is temporarily controlled to be rich to release the stored NOx from the downstream catalyst.
【0013】そして、請求項1に記載の発明では、上流
側触媒の劣化度合を検出する劣化検出手段と、前記検出
した上流側触媒の劣化度合に基づいて、空燃比のリッチ
制御を実施するリッチ制御手段とを備える。According to the first aspect of the present invention, the deterioration detecting means for detecting the degree of deterioration of the upstream catalyst and the rich control for performing the rich control of the air-fuel ratio based on the detected degree of deterioration of the upstream catalyst. Control means.
【0014】要するに、例えば三元触媒や酸化触媒にて
実現される上流側触媒は、酸素貯蔵能力を有するが、そ
の酸素貯蔵量は同触媒の劣化度合に応じて変化する。こ
の場合、上流側触媒が劣化すると、酸素貯蔵能力が低下
し、上流側触媒前の排ガスの空燃比変化が直ぐに触媒後
の空燃比変化に現れるようになる。本発明の場合には、
上流側触媒の劣化度合を検出し、その劣化度合に応じて
空燃比リッチ制御を変更する。そのために、従来装置の
ように上流側触媒の劣化時に過剰なリッチ成分(HC,
CO,H2 等)が供給され、結果としてHC,COが多
量に排出されるといった不具合が解消される。In short, for example, an upstream catalyst realized by a three-way catalyst or an oxidation catalyst has an oxygen storage capacity, and the amount of stored oxygen changes according to the degree of deterioration of the catalyst. In this case, when the upstream catalyst deteriorates, the oxygen storage capacity decreases, and the change in the air-fuel ratio of the exhaust gas before the upstream catalyst immediately appears in the change in the air-fuel ratio after the catalyst. In the case of the present invention,
The degree of deterioration of the upstream catalyst is detected, and the air-fuel ratio rich control is changed according to the degree of deterioration. Therefore, when the upstream side catalyst deteriorates as in the conventional apparatus, the excess rich component (HC,
CO, H2, etc.) are supplied, and as a result, a problem that HC and CO are discharged in large amounts is eliminated.
【0015】その結果、NOx触媒の上流側に位置する
触媒の劣化状態に拘わらず、常に良好な排ガス浄化を行
うことができる。また上記発明は、三元触媒の個体差や
使用温度により個々の酸素貯蔵能力が相違する場合にも
有効であって、かかる場合にも良好なる排ガス浄化を実
施することが可能となる。As a result, good exhaust gas purification can always be performed regardless of the state of deterioration of the catalyst located upstream of the NOx catalyst. The above-described invention is also effective when individual oxygen storage capacities differ depending on individual differences and operating temperatures of the three-way catalyst, and in such a case, it becomes possible to implement good exhaust gas purification.
【0016】実際には、請求項2に記載したように、前
記リッチ制御手段は、上流側触媒の劣化度合に基づき空
燃比リッチ制御時の基準リッチ量を求め、該求めた基準
リッチ量に応じてリッチ制御を実施する。またより詳細
には、請求項3に記載したように、前記リッチ制御手段
は、空燃比リッチ制御時におけるリッチ量積分値を算出
する手段と、該算出したリッチ量積分値と前記基準リッ
チ量とを比較し、前者の値(リッチ量積分値)が後者の
値(基準リッチ量)に達した際に空燃比リッチ制御を終
了する手段とを備えるとよい。Actually, as described in claim 2, the rich control means obtains a reference rich amount at the time of air-fuel ratio rich control based on the degree of deterioration of the upstream side catalyst, and according to the obtained reference rich amount. To perform rich control. More specifically, as described in claim 3, the rich control means calculates a rich amount integrated value at the time of air-fuel ratio rich control, and calculates the rich amount integrated value and the reference rich amount. And a means for terminating the air-fuel ratio rich control when the former value (rich amount integral value) reaches the latter value (reference rich amount).
【0017】上記請求項2,3の発明によれば、上流側
触媒の劣化度合に応じた基準リッチ量分だけ空燃比リッ
チ制御が実施される。これにより、触媒劣化時にも過不
足のないリッチ制御を実施することができる。According to the second and third aspects of the present invention, the air-fuel ratio rich control is performed by the reference rich amount corresponding to the degree of deterioration of the upstream side catalyst. Thus, rich control without excess or deficiency can be performed even when the catalyst is deteriorated.
【0018】また、請求項4に記載の発明では、前記リ
ッチ制御手段は、上流側触媒の劣化度合が大きいほど、
基準リッチ量を小さい値に設定する。すなわち、既述の
通り上流側触媒の劣化が進行すると、同触媒の酸素貯蔵
能力が低下する。そのために、触媒劣化度合が大きいほ
ど、空燃比リッチ制御時において上流側触媒の貯蔵酸素
と反応するリッチ成分が減少し、その減少分だけリッチ
時間が短縮されるようになる。[0018] In the invention described in claim 4, the rich control means determines that the degree of deterioration of the upstream side catalyst is greater,
Set the reference rich amount to a small value. That is, as described above, as the deterioration of the upstream catalyst progresses, the oxygen storage capacity of the catalyst decreases. Therefore, as the degree of catalyst deterioration increases, the rich component that reacts with the stored oxygen of the upstream catalyst during the air-fuel ratio rich control decreases, and the rich time is shortened by the reduced amount.
【0019】請求項5に記載の発明では、前記劣化検出
手段は、内燃機関が始動してから前記上流側触媒が所定
温度に達するまでに該触媒内で浄化されないガス成分量
を算出する手段と、該算出した未浄化のガス成分量に基
づいて上流側触媒の劣化度合を検出する手段とからな
る。According to a fifth aspect of the present invention, the deterioration detecting means includes means for calculating an amount of a gas component that is not purified within the catalyst after the internal combustion engine is started until the upstream catalyst reaches a predetermined temperature. Means for detecting the degree of deterioration of the upstream-side catalyst based on the calculated unpurified gas component amount.
【0020】つまり、上流側触媒の劣化前(新品時)と
劣化後とを比較すると、同触媒内で浄化されないガス成
分量(未浄化ガス成分量)が相違する。これに着目し
て、例えば機関始動から触媒が暖機されるまでの間に未
浄化ガス成分量を算出し、その未浄化ガス成分量に基づ
いて触媒劣化を検出する。それにより、触媒活性前のエ
ミッション増加を考慮した触媒劣化検出を精度良く実施
することができる。なお、触媒暖機前には、触媒劣化度
合の違いによる浄化率の差が大きく、触媒劣化を容易且
つ正確に検出することが可能となる。That is, when comparing the upstream catalyst before deterioration (when it is new) and after deterioration, the amount of gas components not purified in the catalyst (the amount of unpurified gas components) is different. Focusing on this, for example, the amount of the unpurified gas component is calculated from the time the engine is started until the catalyst is warmed up, and the deterioration of the catalyst is detected based on the amount of the unpurified gas component. As a result, it is possible to accurately detect catalyst deterioration in consideration of an increase in emissions before the catalyst is activated. Note that, before the catalyst is warmed up, the difference in the purification rate due to the difference in the degree of catalyst deterioration is large, and it is possible to easily and accurately detect catalyst deterioration.
【0021】この場合、請求項6に記載したように、前
記上流側触媒を通過した後の時間毎の空燃比変動量の積
分値を未浄化ガス成分量として求め、その未浄化ガス成
分量が大きいほど、劣化度合が大きい旨を検出するとよ
い。In this case, as described in claim 6, the integral value of the air-fuel ratio fluctuation amount every time after passing through the upstream side catalyst is determined as the unpurified gas component amount, and the unpurified gas component amount is determined. It is preferable to detect that the larger the value, the greater the degree of deterioration.
【0022】[0022]
【発明の実施の形態】(第1の実施の形態)以下、この
発明を具体化した第1の実施の形態を図面に従って説明
する。本実施の形態における空燃比制御システムでは、
内燃機関に供給する混合気の目標空燃比を理論空燃比よ
りもリーン側に設定し、その目標空燃比に基づいてリー
ン燃焼を行わせる、いわゆるリーンバーン制御を実施す
る。同システムの主たる構成として、内燃機関の排気系
通路の途中には、上流側触媒としての三元触媒と下流側
触媒としてのNOx吸蔵還元型触媒(以下、NOx触媒
という)とが設けられ、三元触媒の上流側には限界電流
式の空燃比センサ(A/Fセンサ)が、NOx触媒の下
流側には酸素センサ(O2 センサ)がそれぞれ配設され
る。そして、マイクロコンピュータを主体とする電子制
御装置(以下、ECUという)は、A/Fセンサ並びに
O2 センサによる検出結果を取り込み、その検出結果に
基づいて空燃比をフィードバック制御する。以下、図面
を用いてその詳細な構成を説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) A first embodiment of the present invention will be described below with reference to the drawings. In the air-fuel ratio control system according to the present embodiment,
The target air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine is set to be leaner than the stoichiometric air-fuel ratio, and so-called lean burn control for performing lean combustion based on the target air-fuel ratio is performed. As a main configuration of the system, a three-way catalyst serving as an upstream catalyst and a NOx storage reduction catalyst (hereinafter referred to as a NOx catalyst) serving as a downstream catalyst are provided in the middle of the exhaust system passage of the internal combustion engine. A limiting current type air-fuel ratio sensor (A / F sensor) is provided upstream of the source catalyst, and an oxygen sensor (O2 sensor) is provided downstream of the NOx catalyst. An electronic control unit (hereinafter, referred to as an ECU) mainly including a microcomputer takes in the detection results of the A / F sensor and the O2 sensor, and performs feedback control of the air-fuel ratio based on the detection results. Hereinafter, the detailed configuration will be described with reference to the drawings.
【0023】図1は、本実施の形態における空燃比制御
システムの概略構成図である。図1に示されるように、
内燃機関は4気筒4サイクルの火花点火式エンジン(以
下、エンジン1という)として構成されている。その吸
入空気は上流よりエアクリーナ2、吸気管3、スロット
ル弁4、サージタンク5及びインテークマニホールド6
を通過して、インテークマニホールド6内で各気筒毎の
燃料噴射弁7から噴射された燃料と混合される。そし
て、所定空燃比の混合気として各気筒に供給される。FIG. 1 is a schematic configuration diagram of an air-fuel ratio control system according to the present embodiment. As shown in FIG.
The internal combustion engine is configured as a four-cylinder, four-cycle spark ignition engine (hereinafter, referred to as engine 1). The intake air is supplied from upstream to an air cleaner 2, an intake pipe 3, a throttle valve 4, a surge tank 5, and an intake manifold 6.
And is mixed with fuel injected from the fuel injection valve 7 for each cylinder in the intake manifold 6. Then, the mixture is supplied to each cylinder as a mixture having a predetermined air-fuel ratio.
【0024】エンジン1の各気筒に設けられた点火プラ
グ8には、点火回路9から供給される高電圧がディスト
リビュータ10を介して分配供給され、点火プラグ8は
前記各気筒の混合気を所定タイミングで点火する。燃焼
後に各気筒から排出される排ガスは、エキゾーストマニ
ホールド11及び排気管12を経て、排ガス中のHC,
CO,NOxの三成分を浄化するための三元触媒13
と、排ガス中のNOxを浄化するためのNOx触媒14
とを通過した後、大気に排出される。A high voltage supplied from an ignition circuit 9 is distributed and supplied to a spark plug 8 provided in each cylinder of the engine 1 through a distributor 10, and the ignition plug 8 controls the mixture of each cylinder at a predetermined timing. To ignite. Exhaust gas discharged from each cylinder after the combustion passes through an exhaust manifold 11 and an exhaust pipe 12 to reach HC,
Three-way catalyst 13 for purifying three components of CO and NOx
And a NOx catalyst 14 for purifying NOx in exhaust gas
After passing through, it is discharged to the atmosphere.
【0025】ここで、NOx触媒14は、リーン空燃比
での燃焼時においてNOxを吸蔵し、リッチ空燃比での
燃焼時において前記吸蔵したNOxをリッチ成分(C
O,HCなど)で還元し放出する。また、三元触媒13
は、NOx触媒14に比べてその容量が小さく、エンジ
ン1の低温始動後において早期に活性化されて有害ガス
を浄化する、いわゆるスタートキャタリストとしての役
割を持つ。Here, the NOx catalyst 14 stores NOx during combustion at a lean air-fuel ratio, and converts the stored NOx into a rich component (C) during combustion at a rich air-fuel ratio.
O, HC, etc.) and release. The three-way catalyst 13
The NOx catalyst has a smaller capacity than the NOx catalyst 14, and is activated early after the low-temperature start of the engine 1 to purify harmful gases.
【0026】前記吸気管3には吸気温センサ21及び吸
気圧センサ22が設けられ、吸気温センサ21は吸入空
気の温度(吸気温Tam)を、吸気圧センサ22はスロ
ットル弁4の下流側の吸気管内負圧(吸気圧PM)をそ
れぞれ検出する。前記スロットル弁4には同弁4の開度
(スロットル開度TH)を検出するためのスロットルセ
ンサ23が設けられ、このスロットルセンサ23はスロ
ットル開度THに応じたアナログ信号を出力する。スロ
ットルセンサ23はアイドルスイッチをも内蔵してお
り、スロットル弁4が略全閉である旨の検出信号を出力
する。The intake pipe 3 is provided with an intake air temperature sensor 21 and an intake air pressure sensor 22. The intake air temperature sensor 21 detects the temperature of the intake air (intake air temperature Tam), and the intake air pressure sensor 22 is located downstream of the throttle valve 4. Each of the intake pipe negative pressures (intake pressure PM) is detected. The throttle valve 4 is provided with a throttle sensor 23 for detecting the opening of the valve 4 (throttle opening TH). The throttle sensor 23 outputs an analog signal corresponding to the throttle opening TH. The throttle sensor 23 also has a built-in idle switch, and outputs a detection signal indicating that the throttle valve 4 is substantially fully closed.
【0027】エンジン1のシリンダブロックには水温セ
ンサ24が設けられ、この水温センサ24はエンジン1
内を循環する冷却水の温度(冷却水温Thw)を検出す
る。前記ディストリビュータ10にはエンジン1の回転
数(エンジン回転数Ne)を検出するための回転数セン
サ25が設けられ、この回転数センサ25はエンジン1
の2回転、すなわち720°CA毎に等間隔で24個の
パルス信号を出力する。A water temperature sensor 24 is provided on a cylinder block of the engine 1.
The temperature of the cooling water circulating in the inside (cooling water temperature Thw) is detected. The distributor 10 is provided with a rotation speed sensor 25 for detecting the rotation speed of the engine 1 (engine rotation speed Ne).
, Ie, 24 pulse signals are output at equal intervals every 720 ° CA.
【0028】さらに、前記排気管12において三元触媒
13の上流側には、限界電流式のA/Fセンサ26が配
設されており、同センサ26はエンジン1から排出され
る排ガスの酸素濃度(或いは、未燃ガス中のCO濃度)
に比例して広域で且つリニアな空燃比信号(AFm)を
出力する。また、NOx触媒14の下流側にはO2 セン
サ27が配設されており、同センサ27は排ガスが空燃
比がリッチかリーンかに応じて異なる起電力信号(V
s)を出力する。Further, an A / F sensor 26 of a limiting current type is disposed upstream of the three-way catalyst 13 in the exhaust pipe 12, and the A / F sensor 26 detects the oxygen concentration of the exhaust gas discharged from the engine 1. (Or CO concentration in unburned gas)
, A wide-area and linear air-fuel ratio signal (AFm) is output. Further, an O2 sensor 27 is disposed downstream of the NOx catalyst 14, and the O2 sensor 27 outputs an electromotive force signal (V) depending on whether the exhaust gas has a rich or lean air-fuel ratio.
s) is output.
【0029】ECU30は、CPU31、ROM32、
RAM33、バックアップRAM34等を中心に論理演
算回路として構成され、前記各センサの検出信号を入力
する入力ポート35及び各アクチュエータ等に制御信号
を出力する出力ポート36に対しバス37を介して接続
されている。ECU30は、前記した各種センサの検出
信号(吸気温Tam、吸気圧PM、スロットル開度T
H、冷却水温Thw、エンジン回転数Ne、空燃比信号
等)を入力ポート35を介して入力する。そして、それ
らの各値に基づいて燃料噴射量TAU、点火時期Ig等
の制御信号を算出し、さらにそれら制御信号を出力ポー
ト36を介して燃料噴射弁7及び点火回路9等にそれぞ
れ出力する。The ECU 30 includes a CPU 31, a ROM 32,
The RAM 33, the backup RAM 34, and the like are configured as a logical operation circuit, and are connected via a bus 37 to an input port 35 for inputting a detection signal of each sensor and an output port 36 for outputting a control signal to each actuator and the like. I have. The ECU 30 detects the detection signals (intake temperature Tam, intake pressure PM, throttle opening T
H, cooling water temperature Thw, engine speed Ne, air-fuel ratio signal, etc.) are input through the input port 35. Then, control signals such as the fuel injection amount TAU and the ignition timing Ig are calculated based on these values, and the control signals are output to the fuel injection valve 7 and the ignition circuit 9 via the output port 36, respectively.
【0030】次に、上記の如く構成される空燃比制御シ
ステムの作用を説明する。本制御システムではその基本
構成として、理論空燃比よりもリーン側の空燃比域で空
燃比のF/B制御を実施し、その空燃比リーン制御の途
中に一時的に空燃比リッチ制御を実施する。特に本実施
の形態では、三元触媒13上流側のA/Fセンサ26の
検出結果に基づく、いわゆる「メインF/B制御」に加
え、NOx触媒14下流側のO2 センサ27の出力電圧
に基づく、いわゆる「サブF/B制御」を実施する。Next, the operation of the air-fuel ratio control system configured as described above will be described. As a basic configuration of the present control system, F / B control of the air-fuel ratio is performed in the air-fuel ratio region leaner than the stoichiometric air-fuel ratio, and the air-fuel ratio rich control is temporarily performed during the air-fuel ratio lean control. . Particularly, in the present embodiment, in addition to the so-called "main F / B control" based on the detection result of the A / F sensor 26 on the upstream side of the three-way catalyst 13, the output voltage of the O2 sensor 27 on the downstream side of the NOx catalyst 14 is used. That is, so-called “sub F / B control” is performed.
【0031】つまり、メインF/B制御では、A/Fセ
ンサ26のセンサ出力(実空燃比)AFmと目標空燃比
MAFとの偏差に応じてPI制御手順に従いフィードバ
ック処理を実施する。また、サブF/B制御では、O2
センサ27の出力電圧(実電圧)Vsを所定の目標電圧
MVs(例えば、理論空燃比に相当する値)にフィード
バックすべく、実電圧Vsと目標電圧MVsとの偏差の
積分値に基づいてメインF/B制御の目標空燃比MAF
を補正する。以下に、空燃比制御の詳細を図2を用いて
説明する。That is, in the main F / B control, a feedback process is performed in accordance with the PI control procedure according to the deviation between the sensor output (actual air-fuel ratio) AFm of the A / F sensor 26 and the target air-fuel ratio MAF. In the sub F / B control, O2
In order to feed back the output voltage (actual voltage) Vs of the sensor 27 to a predetermined target voltage MVs (for example, a value corresponding to the stoichiometric air-fuel ratio), the main F is determined based on the integral value of the deviation between the actual voltage Vs and the target voltage MVs. / B control target air-fuel ratio MAF
Is corrected. Hereinafter, details of the air-fuel ratio control will be described with reference to FIG.
【0032】図2は、CPU31により実行される空燃
比制御ルーチンを示すフローチャートであり、同ルーチ
ンは各気筒の燃料噴射毎(本実施の形態では180°C
A毎)に実行される。FIG. 2 is a flowchart showing an air-fuel ratio control routine executed by the CPU 31. The routine is executed every time fuel is injected into each cylinder (in this embodiment, 180 ° C.).
A).
【0033】図2において、CPU31は、先ずステッ
プ101で空燃比F/B実行条件が成立しているか否か
を判別し、不成立であればステップ102で空燃比をオ
ープン制御した後、本ルーチンを一旦終了する。ここ
で、空燃比F/B実行条件としては、 ・エンジン冷却水温Thwが所定温度以上であること、 ・A/Fセンサ26及びO2 センサ27が十分に活性化
されていること、 ・高回転高負荷状態でないこと、 などを含み、これらの条件が全て満たされたときに空燃
比F/B実行条件が成立する。F/B実行条件が成立す
ると、CPU31はステップ103以降の処理に進む。In FIG. 2, the CPU 31 first determines whether or not the air-fuel ratio F / B execution condition is satisfied in step 101. If not, the CPU 31 opens the air-fuel ratio in step 102, and then executes this routine. Stop once. Here, the air-fuel ratio F / B execution conditions include: that the engine cooling water temperature Thw is equal to or higher than a predetermined temperature; that the A / F sensor 26 and the O2 sensor 27 are sufficiently activated; When all of these conditions are satisfied, the air-fuel ratio F / B execution condition is satisfied. When the F / B execution condition is satisfied, the CPU 31 proceeds to the processing after step 103.
【0034】CPU31は、ステップ103でサブF/
B制御のための目標電圧MVsを設定する。目標電圧M
Vsは、NOx触媒14下流側のO2 センサ27の出力
の目標値であり、エンジン回転数Neと吸気圧PMとに
応じて予め設定された二次元マップ(図示略)により算
出される。この場合、例えば回転数Neが高いほど、目
標電圧MVsが大きな値となる。The CPU 31 determines in step 103 that the sub F /
The target voltage MVs for the B control is set. Target voltage M
Vs is a target value of the output of the O2 sensor 27 on the downstream side of the NOx catalyst 14, and is calculated by a two-dimensional map (not shown) preset according to the engine speed Ne and the intake pressure PM. In this case, for example, the higher the rotation speed Ne, the larger the target voltage MVs.
【0035】また、CPU31は、続くステップ104
でO2 センサ27の出力電圧(実電圧Vs)と目標電圧
MVsとの電圧偏差ΔVsを求め(ΔVs=Vs−MV
s)、続くステップ105でこの電圧偏差ΔVsの積分
値VsSUM(i)を次式により算出する。The CPU 31 proceeds to step 104
To determine the voltage deviation ΔVs between the output voltage (actual voltage Vs) of the O2 sensor 27 and the target voltage MVs (ΔVs = Vs−MV)
s) In the subsequent step 105, the integral value VsSUM (i) of the voltage deviation ΔVs is calculated by the following equation.
【0036】 VsSUM(i)=VsSUM(i−1)+ΔVs ここで、添字の「i」は今回値を示し、「i−1」は前
回値を示す(以下、同様の表記を用いる)。VsSUM (i) = VsSUM (i−1) + ΔVs Here, the suffix “i” indicates the current value, and “i−1” indicates the previous value (the same notation is used below).
【0037】その後、CPU31は、ステップ106で
前記算出した電圧偏差ΔVsとその積分値VsSUM
(i)とを用いて次式によりサブF/B補正量ΔFsを
算出する。Thereafter, the CPU 31 determines in step 106 the voltage deviation ΔVs calculated in step 106 and its integral value VsSUM
Using (i), the sub F / B correction amount ΔFs is calculated by the following equation.
【0038】 ΔFs=KPs・ΔVs+KIs・VsSUM(i) ここで、KPsは比例係数、KIsは積分係数である。
さらに、CPU31は、ステップ107で前記算出した
サブF/B補正量ΔFsを、メインF/B制御の目標空
燃比MAFを補正するための補正量ΔMAFに変換す
る。例えばサブF/B補正量ΔFsがリッチの場合(Δ
Fs<0の場合)、メインF/B制御の目標空燃比MA
Fをリーン側に補正する量として補正量ΔMAFを算出
する(ΔMAF>0)。逆に、サブF/B補正量ΔFs
がリーンの場合(ΔFs≧0の場合)、メインF/B制
御の目標空燃比MAFをリッチ側に補正する量として補
正量ΔMAFを算出する(ΔMAF≦0)。ΔFs = KPs · ΔVs + KIs · VsSUM (i) where KPs is a proportional coefficient and KIs is an integral coefficient.
Further, the CPU 31 converts the sub F / B correction amount ΔFs calculated in step 107 into a correction amount ΔMAF for correcting the target air-fuel ratio MAF of the main F / B control. For example, when the sub F / B correction amount ΔFs is rich (Δ
Fs <0), the target air-fuel ratio MA of the main F / B control
A correction amount ΔMAF is calculated as an amount for correcting F to the lean side (ΔMAF> 0). Conversely, the sub F / B correction amount ΔFs
Is lean (if ΔFs ≧ 0), a correction amount ΔMAF is calculated as an amount for correcting the target air-fuel ratio MAF of the main F / B control to the rich side (ΔMAF ≦ 0).
【0039】また、CPU31は、ステップ200でメ
インF/B制御の目標空燃比MAFを設定する。このと
き、後述する図3のルーチンに従い、空燃比リーン制御
の途中に一時的に空燃比リッチ制御が行われるよう、目
標空燃比MAFが設定される。In step 200, the CPU 31 sets a target air-fuel ratio MAF for main F / B control. At this time, the target air-fuel ratio MAF is set such that the air-fuel ratio rich control is temporarily performed during the air-fuel ratio lean control according to a routine of FIG. 3 described later.
【0040】その後、CPU31は、ステップ108で
前記算出した目標空燃比補正量ΔMAFを用いてメイン
F/B制御の目標空燃比MAFを補正し、新たな目標空
燃比MAFmを算出する(MAFm=MAF+ΔMA
F)。さらに、CPU31は、ステップ109で三元触
媒13上流側のA/Fセンサ26の出力AFmと目標空
燃比MAFmとの偏差ΔAFmを算出し(ΔAFm=M
AFm−AFm)、続くステップ110でこの偏差ΔA
Fmの積分値AFmSUMを次式により算出する。Thereafter, the CPU 31 corrects the target air-fuel ratio MAF of the main F / B control using the target air-fuel ratio correction amount ΔMAF calculated in step 108, and calculates a new target air-fuel ratio MAFm (MAFm = MAF + ΔMA).
F). Further, in step 109, the CPU 31 calculates a deviation ΔAFm between the output AFm of the A / F sensor 26 on the upstream side of the three-way catalyst 13 and the target air-fuel ratio MAFm (ΔAFm = M
AFm-AFm), and in the following step 110, this deviation ΔA
The integral value AFmSUM of Fm is calculated by the following equation.
【0041】AFmSUM(i)=AFmSUM(i−
1)+ΔAFm さらにその後、CPU31は、ステップ111で前記算
出した目標空燃比MAFmの偏差ΔAFmとその積分値
AFmSUMとを用い、メインF/B制御の補正量ΔF
mを次式により算出する。AFmSUM (i) = AFmSUM (i-
1) + ΔAFm Subsequently, the CPU 31 uses the deviation ΔAFm of the target air-fuel ratio MAFm calculated in step 111 and the integral value AFmSUM thereof to calculate the correction amount ΔF of the main F / B control.
m is calculated by the following equation.
【0042】ΔFm=KPm・ΔAFm+KIm・AF
mSUM(i) ここで、KPmは比例係数、KImは積分係数である。
最後に、CPU31は、ステップ112でエンジン回転
数Neや吸気圧PMから算出される基本噴射量Tp、吸
気温度等による補正係数FALL、前記算出したメイン
F/B制御の補正量ΔFmから燃料噴射量TAUを次式
により算出し、本ルーチンを終了する。ΔFm = KPm · ΔAFm + KIm · AF
mSUM (i) Here, KPm is a proportional coefficient, and KIm is an integral coefficient.
Finally, the CPU 31 calculates the fuel injection amount from the basic injection amount Tp calculated from the engine speed Ne and the intake pressure PM in step 112, a correction coefficient FALL based on the intake air temperature and the like, and the calculated correction amount ΔFm for the main F / B control. TAU is calculated by the following equation, and this routine ends.
【0043】TAU=Tp・FALL・ΔFm 補正係数FALLには、冷却水温ThwやEGR等の補
正係数も含まれる。また、TAU値の算出に際しては、
過渡時の補正量としてマニホールドウエット量も加算さ
れるとよい。TAU = Tp · FALL · ΔFm The correction coefficient FALL includes correction coefficients such as the cooling water temperature Thw and EGR. When calculating the TAU value,
It is preferable that a manifold wet amount is also added as a correction amount at the time of transition.
【0044】次に、上記ステップ200で実施される目
標空燃比MAFの設定手順について図3を用いて説明す
る。図3において、CPU31は、先ずステップ201
で空燃比リッチ制御が実施されているか否かを表すリッ
チ制御フラグXREXが「0」であるか否かを判別す
る。ここで、XREX=0はリッチ制御が実施されてい
ない、すなわちリーン制御が実施されていることを表
し、XREX=1はリッチ制御が実施されていることを
表す。なお、IGキーのON操作時(電源投入時)に
は、初期化処理により同フラグXREXが「0」にクリ
アされるようになっている。Next, the procedure for setting the target air-fuel ratio MAF performed in step 200 will be described with reference to FIG. In FIG. 3, the CPU 31 firstly executes step 201
It is determined whether or not the rich control flag XREX indicating whether or not the air-fuel ratio rich control is being performed is “0”. Here, XREX = 0 indicates that rich control is not being performed, that is, lean control is being performed, and XREX = 1 indicates that rich control is being performed. When the IG key is turned on (when the power is turned on), the flag XREX is cleared to "0" by the initialization processing.
【0045】XREX=0の場合、CPU31はステッ
プ202に進み、空燃比リーンでの燃焼回数を表すリー
ンカウンタの値が所定値α未満であるか否かを判別す
る。所定値αは、例えば「100」程度の値でよい。リ
ーンカウンタ<αの場合(ステップ202がYES)、
CPU31は、ステップ203で目標空燃比MAFを
「1.5」とすると共に、続くステップ204でリッチ
カウンタを「1」インクリメントし、その後元の図2の
ルーチンに戻る。かかる場合、上述のステップ203で
設定したMAF値が前記図2のステップ108以降の演
算に用いられ、これにより空燃比がリーン制御される。
つまり、ステップ202がYESの場合にはそれまでの
空燃比リーン制御が継続して実施される。If XREX = 0, the CPU 31 proceeds to step 202 and determines whether or not the value of a lean counter representing the number of combustions at the lean air-fuel ratio is less than a predetermined value α. The predetermined value α may be, for example, a value of about “100”. If lean counter <α (YES in step 202),
In step 203, the CPU 31 sets the target air-fuel ratio MAF to "1.5", and in step 204, increments the rich counter by "1", and thereafter returns to the original routine of FIG. In such a case, the MAF value set in the above-mentioned step 203 is used for the calculation after step 108 in FIG. 2 described above, whereby the air-fuel ratio is controlled lean.
That is, if step 202 is YES, the air-fuel ratio lean control up to that point is continuously performed.
【0046】リーンカウンタが次第に大きくなり、リー
ンカウンタ≧αとなると(ステップ202がNO)、C
PU31はステップ205でリッチ制御フラグXREX
に「1」をセットする。また、CPU31は、続くステ
ップ206でバックアップRAM34に記憶されている
三元触媒13の劣化度合を読み出し、その劣化度合に応
じた基準リッチ面積RAFADSDを設定する。ここ
で、三元触媒13の劣化度合は、後述する図6のルーチ
ンに従い検出されるようになっている。When the lean counter gradually increases and the lean counter ≧ α (NO in step 202), C
The PU 31 determines in step 205 that the rich control flag XREX
Is set to "1". Further, in the subsequent step 206, the CPU 31 reads the degree of deterioration of the three-way catalyst 13 stored in the backup RAM 34, and sets a reference rich area RAFASDS according to the degree of deterioration. Here, the degree of deterioration of the three-way catalyst 13 is detected according to a routine of FIG. 6 described later.
【0047】基準リッチ面積RAFADSDは、NOx
触媒14に吸蔵されたNOxを還元・放出するのに必要
な基準リッチ量に相当し、この基準リッチ量を三元触媒
13上流側での空燃比リッチの時間積分値として面積換
算したものである。具体的には、基準リッチ面積RAF
ADSDは、その時々の三元触媒13の劣化度合に応じ
て求められ、同三元触媒13に貯蔵される酸素量に対応
する値として例えば図4の関係を用いて設定される。図
4によれば、三元触媒13の劣化度合が大きいほど、基
準リッチ面積RAFADSDが小さい値に設定される。
要するに、三元触媒13の劣化が進行すると、同触媒1
3の酸素貯蔵能力が低下する。そのため、触媒劣化度合
が大きいほど、空燃比リッチ制御時において三元触媒1
3の貯蔵酸素と反応するリッチ成分が減少し、その減少
分だけリッチ面積(リッチ時間)が短縮されるようにな
っている。The reference rich area RAFADSD is NOx
This corresponds to a reference rich amount necessary for reducing and releasing NOx stored in the catalyst 14, and this reference rich amount is converted into an area as a time integral value of the air-fuel ratio rich on the upstream side of the three-way catalyst 13. . Specifically, the reference rich area RAF
The ADSD is obtained in accordance with the degree of deterioration of the three-way catalyst 13 at that time, and is set as a value corresponding to the amount of oxygen stored in the three-way catalyst 13 using, for example, the relationship shown in FIG. According to FIG. 4, as the degree of deterioration of the three-way catalyst 13 increases, the reference rich area RAFADSD is set to a smaller value.
In short, when the deterioration of the three-way catalyst 13 progresses, the catalyst 1
3 has a reduced oxygen storage capacity. Therefore, the larger the degree of catalyst deterioration, the more the three-way catalyst 1 during the air-fuel ratio rich control.
The rich component reacting with the stored oxygen of No. 3 is reduced, and the rich area (rich time) is shortened by the reduced amount.
【0048】次いで、CPU31は、ステップ207で
目標空燃比MAFを「0.75」とした後、元の図2の
ルーチンに戻る。かかる場合、上述のステップ207で
設定したMAF値が前記図2のステップ108以降の演
算に用いられ、これにより空燃比がリッチ制御される。
つまり、ステップ202がNOの場合にはそれまでの空
燃比リーン制御が空燃比リッチ制御に切り換えられる。Next, the CPU 31 sets the target air-fuel ratio MAF to "0.75" in step 207, and then returns to the original routine of FIG. In such a case, the MAF value set in step 207 described above is used for the calculation in step 108 and subsequent steps in FIG. 2 described above, whereby the air-fuel ratio is richly controlled.
That is, when the answer to step 202 is NO, the air-fuel ratio lean control up to that point is switched to the air-fuel ratio rich control.
【0049】空燃比制御がリーン制御からリッチ制御に
切り換わると、CPU31は、ステップ201を否定判
別してステップ208に進み、リッチ偏差積算値RAF
ADを算出する。リッチ偏差積算値RAFADは例えば
次式により算出される。When the air-fuel ratio control is switched from the lean control to the rich control, the CPU 31 makes a negative decision in step 201 and proceeds to step 208, where the rich deviation integrated value RAF
Calculate AD. The rich deviation integrated value RAFAD is calculated by, for example, the following equation.
【0050】RAFAD(i)=RAFAD(i−1)
+|AFSD−AFm|・排ガス流量補正係数 つまり、リッチ偏差積算値の前回値RAFAD(i−
1)に対し、空燃比基準値AFSD(例えば、理論空燃
比)と実空燃比AFmとの偏差の絶対値に排ガス流量補
正係数を乗算したものを加算し、その和をリッチ偏差積
算値の今回値RAFAD(i)とする。但し「|AFS
D−AFm|・排ガス流量補正係数」は、同値が正の場
合のみ、すなわち実空燃比AFmが空燃比基準値AFS
Dよりもリッチ側にある場合のみ、リッチ偏差積算値の
前回値RAFAD(i−1)に加算される。ここで、実
空燃比AFmは、三元触媒13上流側に位置するA/F
センサ26の出力である。RAFAD (i) = RAFAD (i-1)
+ | AFSD−AFm | · Exhaust gas flow rate correction coefficient That is, the previous value RAFAD (i−
1) is added to the absolute value of the difference between the air-fuel ratio reference value AFSD (for example, the stoichiometric air-fuel ratio) and the actual air-fuel ratio AFm multiplied by the exhaust gas flow rate correction coefficient. The value is RAFAD (i). However, "| AFS
D-AFm | · exhaust gas flow rate correction coefficient ”is only when the value is positive, that is, when the actual air-fuel ratio AFm
Only when it is on the rich side of D, it is added to the previous value RAFAD (i-1) of the rich deviation integrated value. Here, the actual air-fuel ratio AFm is determined by the A / F located on the upstream side of the three-way catalyst 13.
This is the output of the sensor 26.
【0051】排ガス流量補正係数は、図5の関係に従い
求められる。図5によれば、排ガス流量が多いほど、大
きな排ガス流量補正係数が与えられる。なお、排ガス流
量はその時のエンジン回転数Neと吸気圧PMとから求
まる吸入空気量に比例するものであって、排ガス流量補
正係数の算出に際し、吸入空気量に基づき排ガス流量が
算出されるようになっている。但し排ガス流量は、上述
の算出手法に限らず、排気管12に設けた排ガス流量計
にて直接的に検出することも可能である。The exhaust gas flow rate correction coefficient is obtained according to the relationship shown in FIG. According to FIG. 5, a larger exhaust gas flow rate correction coefficient is given as the exhaust gas flow rate increases. Note that the exhaust gas flow rate is proportional to the intake air amount obtained from the engine speed Ne and the intake pressure PM at that time. In calculating the exhaust gas flow rate correction coefficient, the exhaust gas flow rate is calculated based on the intake air amount. Has become. However, the exhaust gas flow rate is not limited to the calculation method described above, and can be directly detected by an exhaust gas flow meter provided in the exhaust pipe 12.
【0052】その後、CPU31は、ステップ209で
前記算出したリッチ偏差積算値RAFADが基準リッチ
面積RAFADSD未満であるか否かを判別する。RA
FAD<RAFADSDの場合(ステップ209がYE
S)、CPU31はステップ207に進み、それまでの
空燃比リッチ制御を継続する。Thereafter, the CPU 31 determines in step 209 whether or not the calculated rich deviation integrated value RAFAD is smaller than the reference rich area RAFADSD. RA
If FAD <RAFADSD (Step 209 is YE
S), the CPU 31 proceeds to step 207 and continues the air-fuel ratio rich control up to that point.
【0053】また、RAFAD≧RAFADSDの場合
(ステップ209がNO)、CPU31はステップ21
0に進む。そして、CPU31は、ステップ210でリ
ッチ制御フラグXREXを「0」にクリアすると共に、
続くステップ211でリッチ偏差積算値RAFADを
「0」にクリアし、その後ステップ203に進む。これ
により、空燃比リッチ制御が終了され、空燃比リーン制
御に戻る。If RAFAD ≧ RAFADSD (NO in step 209), the CPU 31 proceeds to step 21
Go to 0. Then, the CPU 31 clears the rich control flag XREX to “0” in step 210,
In the following step 211, the rich deviation integrated value RAFAD is cleared to “0”, and thereafter, the process proceeds to step 203. Thereby, the air-fuel ratio rich control is terminated, and the process returns to the air-fuel ratio lean control.
【0054】ところで既述した通り、経時変化に伴い三
元触媒13が劣化すると、同触媒13の酸素貯蔵能力が
低下する。すなわち、酸素飽和吸着量が減少する。これ
により、NOx触媒14下流側のO2 センサ27の出力
が影響を受け、同O2 センサ27の出力電圧Vsと目標
電圧MVsとの偏差ΔVs(=Vs−MVs)が小さく
なってその積分値が小さくなる。これは、三元触媒13
の劣化前では酸素貯蔵能力が高いために、同触媒下流側
の空燃比変化が遅れ、電圧偏差ΔVsが比較的大きな値
となるためである。そこで本実施の形態では、電圧偏差
ΔVsの積分値に応じて三元触媒13の劣化度合を検出
することとしている。As described above, when the three-way catalyst 13 deteriorates with time, the oxygen storage capacity of the catalyst 13 decreases. That is, the oxygen saturation adsorption amount decreases. As a result, the output of the O2 sensor 27 downstream of the NOx catalyst 14 is affected, and the deviation ΔVs (= Vs−MVs) between the output voltage Vs of the O2 sensor 27 and the target voltage MVs decreases, and the integral value decreases. Become. This is a three-way catalyst 13
Before the deterioration of the catalyst, the oxygen storage capacity is high, so that the change in the air-fuel ratio downstream of the catalyst is delayed, and the voltage deviation ΔVs becomes a relatively large value. Therefore, in the present embodiment, the degree of deterioration of the three-way catalyst 13 is detected according to the integral value of the voltage deviation ΔVs.
【0055】図6は、三元触媒13の劣化検出ルーチン
を示すフローチャートであり、同ルーチンも各気筒の燃
料噴射毎(本実施の形態では180°CA毎)にCPU
31により実行される。FIG. 6 is a flowchart showing a routine for detecting deterioration of the three-way catalyst 13. The routine is also executed by the CPU for each fuel injection of each cylinder (in this embodiment, every 180 ° CA).
31 is executed.
【0056】さて、図6がスタートすると、CPU31
は、先ずステップ301で電圧偏差ΔVsの積分値DV
sSUM(i)を、次式を用い1/8なまし演算にて算
出する。Now, when FIG. 6 starts, the CPU 31
Is the integral value DV of the voltage deviation ΔVs in step 301.
sSUM (i) is calculated by a 1/8 smoothing operation using the following equation.
【0057】DVsSUM(i)=DVsSUM(i−
1)+|ΔVs/8| 上式において、なまし演算はノイズ等の外乱を除去する
ための処理であり、なまし定数は上記1/8以外に、1
/16,1/4,1/2等でもよい。DVsSUM (i) = DVsSUM (i-
1) + | ΔVs / 8 | In the above equation, the smoothing operation is a process for removing disturbance such as noise, and the smoothing constant is 1/8 in addition to the above 1/8.
/ 16, 1/4, 1/2, etc.
【0058】その後、CPU31は、ステップ302で
電圧偏差ΔVsを積分し始めてから所定時間(例えば1
分程度)が経過したか否かを判別する。そして、所定時
間が経過したことを条件に、CPU31はステップ30
3に進み、その時のDVsSUM値に応じて三元触媒1
3の劣化度合を検出する。このとき、例えば図7の関係
に従い、DVsSUM値が小さいほど、劣化度合が大き
い旨を検出する。劣化度合の検出結果はその都度、バッ
クアップRAM34内に記憶される。Thereafter, the CPU 31 starts to integrate the voltage deviation ΔVs in step 302, and then, for a predetermined time (for example, 1
Minutes) has elapsed. Then, on condition that a predetermined time has elapsed, the CPU 31 proceeds to step 30.
3 and the three-way catalyst 1 according to the DVsSUM value at that time.
3 is detected. At this time, for example, according to the relationship in FIG. 7, it is detected that the smaller the DVsSUM value, the greater the degree of deterioration. The detection result of the degree of deterioration is stored in the backup RAM 34 each time.
【0059】さらに、CPU31は、ステップ304で
電圧偏差の積分値DVsSUM(i)を「0」にクリア
し、その後本ルーチンを終了する。上記ステップ303
で求めた三元触媒13の劣化検出結果は、前記図3のス
テップ206において基準リッチ面積RAFADSDの
設定に用いられる。Further, the CPU 31 clears the integral value DVsSUM (i) of the voltage deviation to "0" in step 304, and thereafter ends this routine. Step 303 above
The detection result of the deterioration of the three-way catalyst 13 obtained in the above is used for setting the reference rich area RAFADSD in step 206 of FIG.
【0060】なお上述した三元触媒13の劣化検出手法
については、本願出願人による特開平8−338286
号公報の「内燃機関の排気系故障診断装置」に詳細に開
示されている。The above-described technique for detecting the deterioration of the three-way catalyst 13 is disclosed in Japanese Patent Application Laid-Open No. 8-338286 by the present applicant.
This is disclosed in detail in "Exhaust System Failure Diagnosis Apparatus for Internal Combustion Engine" in Japanese Patent Publication No.
【0061】次に、上記制御動作を図8のタイムチャー
トを用いてより具体的に説明する。ここで、図8(a)
は、三元触媒13の新品時における空燃比や排ガス成分
の挙動を示し、図8(b)は、三元触媒13の劣化時に
おける空燃比や排ガス成分の挙動を示す。なお、図8
(a),(b)では、空燃比リーン制御の途中に空燃比
リッチ制御が一時的に実施され、制御空燃比がリッチ側
に制御されることで三元触媒13前後の空燃比が何れも
リッチ側に推移している。但し実際には、三元触媒後方
の空燃比は前方の空燃比に対して、排ガス輸送遅れ分だ
け遅れて推移するものであるが、図8中では便宜上、両
空燃比が同期して推移するものとして記載している。Next, the control operation will be described more specifically with reference to the time chart of FIG. Here, FIG.
8 shows the behavior of the air-fuel ratio and the exhaust gas component when the three-way catalyst 13 is new, and FIG. 8B shows the behavior of the air-fuel ratio and the exhaust gas component when the three-way catalyst 13 deteriorates. FIG.
In (a) and (b), the air-fuel ratio rich control is temporarily performed during the air-fuel ratio lean control, and the air-fuel ratio before and after the three-way catalyst 13 is controlled by controlling the control air-fuel ratio to the rich side. It has shifted to the rich side. However, in actuality, the air-fuel ratio behind the three-way catalyst changes with a delay of the exhaust gas transport from the front air-fuel ratio, but in FIG. 8, for convenience, both air-fuel ratios change in synchronization. It is described as one.
【0062】図8(a)に示されるように、時刻t11
以前では、空燃比リーン制御が実施されており、このと
き、図示しないリーンカウンタが各気筒での燃焼毎にカ
ウントアップされる(前記図3のステップ204)。そ
して、リーンカウンタの値が所定値αに達する時刻t1
1では、制御空燃比がリーンからリッチに切り換えられ
る(図3のステップ202がNOとなる)。また、この
時刻t11では、三元触媒13の劣化度合に基づいて基
準リッチ面積RAFADSDが算出される(図3のステ
ップ206)。As shown in FIG. 8A, at time t11
Previously, the air-fuel ratio lean control has been performed, and at this time, a lean counter (not shown) is counted up for each combustion in each cylinder (step 204 in FIG. 3). Then, the time t1 when the value of the lean counter reaches the predetermined value α
At 1, the control air-fuel ratio is switched from lean to rich (NO at step 202 in FIG. 3). At time t11, the reference rich area RAFADSD is calculated based on the degree of deterioration of the three-way catalyst 13 (step 206 in FIG. 3).
【0063】時刻t12では、三元触媒13前方及び後
方の空燃比が理論空燃比(λ=1)に達する。このと
き、三元触媒13前方の空燃比は理論空燃比よりもリッ
チ側に直ちに推移するものの、三元触媒13には酸素が
貯蔵されているためにその貯蔵酸素と排ガス中のリッチ
成分(HC,CO等)とが反応し、三元触媒13後方の
空燃比は理論空燃比で一旦保持される。そして、貯蔵酸
素とリッチ成分との反応が終了すると、三元触媒13後
方の空燃比がリッチ側に移行する(時刻t13)。時刻
t13以降、リッチ成分がNOx触媒14側に供給され
るため、同触媒14に吸蔵されていたNOxが還元・放
出される。At time t12, the air-fuel ratio in front of and behind the three-way catalyst 13 reaches the stoichiometric air-fuel ratio (λ = 1). At this time, although the air-fuel ratio in front of the three-way catalyst 13 immediately changes to the rich side from the stoichiometric air-fuel ratio, since the three-way catalyst 13 stores oxygen, the stored oxygen and the rich component (HC , CO, etc.), and the air-fuel ratio behind the three-way catalyst 13 is temporarily maintained at the stoichiometric air-fuel ratio. Then, when the reaction between the stored oxygen and the rich component ends, the air-fuel ratio behind the three-way catalyst 13 shifts to the rich side (time t13). After time t13, since the rich component is supplied to the NOx catalyst 14, the NOx stored in the catalyst 14 is reduced and released.
【0064】空燃比リッチ制御への切り換え後(時刻t
11以降)、三元触媒13前方の空燃比、すなわちA/
Fセンサ26の検出値が理論空燃比よりもリッチになる
状態で、リッチ偏差積算値RAFADが算出される(図
3のステップ208)。そして、リッチ偏差積算値RA
FADが基準リッチ面積RAFADSDに達する時刻t
14では、制御空燃比がリーン値に戻される(図3のス
テップ209がNOとなる)。After switching to the air-fuel ratio rich control (at time t
11), the air-fuel ratio in front of the three-way catalyst 13, that is, A /
With the detection value of the F sensor 26 being richer than the stoichiometric air-fuel ratio, the rich deviation integrated value RAFAD is calculated (step 208 in FIG. 3). Then, the rich deviation integrated value RA
Time t when FAD reaches reference rich area RAFADSD
At 14, the control air-fuel ratio is returned to the lean value (NO at step 209 in FIG. 3).
【0065】その後、三元触媒13後方の空燃比は、上
流側から給送される排ガス中のリーン成分と同触媒13
に貯蔵されるリッチ成分とが反応する所定期間(時刻t
15〜t16)だけ理論空燃比で保持された後、リーン
制御値に戻る。図8(a)によれば、空燃比リッチ制御
時における排ガス中のHC,CO成分も微量に抑えられ
る。Thereafter, the air-fuel ratio behind the three-way catalyst 13 is determined by the lean component in the exhaust gas fed from the upstream side and the same
For a predetermined period (time t
After the stoichiometric air-fuel ratio is maintained for 15 to t16), the control returns to the lean control value. According to FIG. 8A, HC and CO components in the exhaust gas during the air-fuel ratio rich control are also suppressed to a very small amount.
【0066】一方、三元触媒13の劣化時には、図8
(b)に示されるように、時刻t21で制御空燃比がリ
ーンからリッチに切り換えられると共に、三元触媒13
の劣化度合に基づいて基準リッチ面積RAFADSDが
算出される(図3のステップ206)。この場合、触媒
劣化が進行していることから、比較的小さな基準リッチ
面積RAFADSDが与えられる(図4参照)。On the other hand, when the three-way catalyst 13 is deteriorated, FIG.
As shown in (b), at time t21, the control air-fuel ratio is switched from lean to rich, and the three-way catalyst 13
The reference rich area RAFADSD is calculated based on the degree of deterioration (step 206 in FIG. 3). In this case, since the catalyst is deteriorating, a relatively small reference rich area RAFADSD is given (see FIG. 4).
【0067】その後、時刻t22では、三元触媒13前
方及び後方の空燃比が理論空燃比(λ=1)に達する。
このとき、三元触媒13後方の空燃比は理論空燃比で一
旦保持されるが、三元触媒13が劣化しているために触
媒貯蔵の酸素量は少なく、前記図8(a)の場合に比べ
て短時間で、同空燃比がリッチ側に移行する(時刻t2
3)。すなわち、三元触媒13の貯蔵酸素と排ガス中の
リッチ成分とが反応する時間、図8(b)の時刻t22
〜t23は、図8(a)の時刻t12〜t13に比べて
短くなる。時刻t23以降、リッチ成分がNOx触媒1
4側に供給されるため、同触媒14に吸蔵されていたN
Oxが還元・放出される。Thereafter, at time t22, the air-fuel ratio in front of and behind the three-way catalyst 13 reaches the stoichiometric air-fuel ratio (λ = 1).
At this time, the air-fuel ratio behind the three-way catalyst 13 is once held at the stoichiometric air-fuel ratio. However, since the three-way catalyst 13 has deteriorated, the amount of oxygen stored in the catalyst is small, and in the case of FIG. The air-fuel ratio shifts to the rich side in a shorter time (time t2).
3). That is, the time during which the stored oxygen of the three-way catalyst 13 reacts with the rich component in the exhaust gas, that is, the time t22 in FIG.
-T23 is shorter than the times t12-t13 in FIG. After time t23, the rich component is NOx catalyst 1
4 side, so that the N stored in the catalyst 14
Ox is reduced and released.
【0068】そして、リッチ偏差積算値RAFADが基
準リッチ面積RAFADSDに達する時刻t24では、
制御空燃比がリーン値に戻される(図3のステップ20
9がNOとなる)。図8(b)によれば、前記図8
(a)と同様に、空燃比リッチ制御時における排ガス中
のHC,CO成分も微量に抑えられる。At time t24 when the rich deviation integrated value RAFAD reaches the reference rich area RAFADSD,
The control air-fuel ratio is returned to the lean value (step 20 in FIG. 3).
9 is NO). According to FIG. 8B, FIG.
As in (a), the HC and CO components in the exhaust gas during the air-fuel ratio rich control are also suppressed to a very small amount.
【0069】なお本実施の形態では、前記図6のルーチ
ンが請求項記載の劣化検出手段に相当し、前記図3のル
ーチンがリッチ制御手段に相当する。また、図2のステ
ップ103〜108が空燃比補正手段に相当する。In this embodiment, the routine of FIG. 6 corresponds to the deterioration detecting means described in the claims, and the routine of FIG. 3 corresponds to the rich control means. Steps 103 to 108 in FIG. 2 correspond to an air-fuel ratio correction unit.
【0070】以上詳述した本実施の形態によれば、以下
に示す効果が得られる。本実施の形態では、NOx触媒
14よりも上流側に位置する三元触媒13の劣化度合を
検出し、同三元触媒13の劣化度合に基づいて空燃比の
リッチ制御を実施するようにした。その結果、三元触媒
13の劣化状態に拘わらず、常に良好な排ガス浄化を行
うことができるようになる。つまり、従来装置のように
三元触媒の劣化時に過剰なリッチ成分(HC,CO,H
2 等)が供給され、結果としてHC,COが多量に排出
されるといった不具合が解消される。また本実施の形態
は、三元触媒13の個体差や使用温度により個々の酸素
貯蔵能力が相違する場合にも有効であって、かかる場合
にも良好なる排ガス浄化を実施することが可能となる。According to the present embodiment described in detail above, the following effects can be obtained. In the present embodiment, the degree of deterioration of the three-way catalyst 13 located on the upstream side of the NOx catalyst 14 is detected, and rich control of the air-fuel ratio is performed based on the degree of deterioration of the three-way catalyst 13. As a result, regardless of the state of deterioration of the three-way catalyst 13, good exhaust gas purification can always be performed. That is, excessive rich components (HC, CO, H
2) is supplied, and as a result, a problem that HC and CO are discharged in large amounts is eliminated. The present embodiment is also effective when individual oxygen storage capacities are different due to individual differences of the three-way catalyst 13 and use temperature, and in such a case, it becomes possible to implement good exhaust gas purification. .
【0071】実際には、三元触媒13の劣化度合に基づ
き基準リッチ量(三元触媒前の基準リッチ面積RAFA
DSD)を設定し、空燃比リッチ制御時のリッチ量積分
値(三元触媒前のリッチ偏差積算値RAFAD)が基準
リッチ面積RAFADSDに達した際に空燃比リッチ制
御を終了するようにした。これにより、三元触媒13の
劣化時にも過不足のないリッチ制御を実施することがで
きる。In practice, the reference rich amount (reference rich area RAFA before the three-way catalyst) is determined based on the degree of deterioration of the three-way catalyst 13.
DSD) is set, and the air-fuel ratio rich control is terminated when the rich amount integration value (rich deviation integrated value RAFAD before the three-way catalyst) during the air-fuel ratio rich control reaches the reference rich area RAFADSD. Thereby, even when the three-way catalyst 13 is deteriorated, rich control without excess or deficiency can be performed.
【0072】また、NOx触媒14下流側のO2 センサ
27の出力電圧Vsとその目標電圧MVsとの偏差の積
分値DVsSUMを求め、その積分値DVsSUMに基
づいて三元触媒13の劣化度合を検出するようにした。
この場合、三元触媒13の劣化検出が精度良く実施で
き、ひいては信頼性の高い空燃比制御が実現できる。Further, an integral value DVsSUM of a deviation between the output voltage Vs of the O2 sensor 27 downstream of the NOx catalyst 14 and its target voltage MVs is obtained, and the degree of deterioration of the three-way catalyst 13 is detected based on the integral value DVsSUM. I did it.
In this case, the deterioration of the three-way catalyst 13 can be detected with high accuracy, and a highly reliable air-fuel ratio control can be realized.
【0073】(第2の実施の形態)次に、本発明におけ
る第2の実施の形態を図9〜図13を用いて説明する。
但し、第2の実施の形態の構成において、上述した第1
の実施の形態と同等であるものについては図面に同一の
記号を付すと共にその説明を簡略化する。そして、以下
には第1の実施の形態との相違点を中心に説明する。(Second Embodiment) Next, a second embodiment of the present invention will be described with reference to FIGS.
However, in the configuration of the second embodiment, the first
The same reference numerals are given to the same components in the drawings and the description is simplified. The following description focuses on differences from the first embodiment.
【0074】第2の実施の形態では構成上の相違点とし
て、図9に示されるように、三元触媒13とNOx触媒
14との間にO2 センサ27が配設され、同O2 センサ
27は空燃比がリッチかリーンかに応じた起電力信号V
OX2を出力する。また、吸気管3には吸気流量Qを計
測するためのエアフローメータ29が配設されている。The second embodiment is different from the third embodiment in that an O2 sensor 27 is provided between the three-way catalyst 13 and the NOx catalyst 14, as shown in FIG. Electromotive force signal V depending on whether the air-fuel ratio is rich or lean
OX2 is output. The intake pipe 3 is provided with an air flow meter 29 for measuring the intake flow rate Q.
【0075】そして、ECU30(CPU31)はA/
Fセンサ26及びO2 センサ27による検出結果に基づ
いて三元触媒13の劣化度合を検出する。特に本実施の
形態では、エンジン始動当初の三元触媒13が活性温度
に到達するまでの期間において、同触媒13内で浄化さ
れるガス成分量に応じて三元触媒13の劣化度合を検出
することとしている。なお、CPU31による空燃比制
御に際しては、第1の実施の形態のようサブF/B制御
は行わず、A/Fセンサ26による空燃比信号AFによ
るF/B制御を実施する。Then, the ECU 30 (CPU 31)
The degree of deterioration of the three-way catalyst 13 is detected based on the detection results of the F sensor 26 and the O2 sensor 27. In particular, in the present embodiment, the degree of deterioration of the three-way catalyst 13 is detected according to the amount of the gas component purified in the three-way catalyst 13 during the period from the start of the engine until the three-way catalyst 13 reaches the activation temperature. I have to do that. In the air-fuel ratio control by the CPU 31, the sub-F / B control is not performed as in the first embodiment, but the F / B control by the air-fuel ratio signal AF by the A / F sensor 26 is performed.
【0076】図10は本実施の形態における劣化検出処
理を示すフローチャートであり、この処理は前記図6の
処理に置き換えて実行される。本処理は所定の時間周期
(例えば64msec周期)でCPU31により実行さ
れる。FIG. 10 is a flowchart showing the deterioration detection processing in the present embodiment. This processing is executed in place of the processing in FIG. This processing is executed by the CPU 31 at a predetermined time cycle (for example, a 64 msec cycle).
【0077】さて、図10がスタートすると、CPU3
1は、先ずステップ401で三元触媒13の劣化検出が
実施済みであることを表す劣化検出フラグXCATが
「0」であるか否かを判別する。ここで、XCAT=0
は劣化検出が未実施であることを表し、XCAT=1は
劣化検出済みであることを表す。Now, when FIG. 10 starts, the CPU 3
First, at step 401, it is determined whether or not a deterioration detection flag XCAT indicating that the deterioration detection of the three-way catalyst 13 has been performed is "0". Here, XCAT = 0
Indicates that the deterioration has not been detected, and XCAT = 1 indicates that the deterioration has been detected.
【0078】XCAT=0であることを条件に、CPU
31はステップ500に進み、図11の処理に従い触媒
温度TCATを推定する。但し、XCAT=1であれ
ば、CPU31は直ちに本ルーチンを終了する。すなわ
ち、三元触媒13の劣化検出が実施済みであれば、ステ
ップ500以降の処理を実施しない。On the condition that XCAT = 0, the CPU
31 proceeds to step 500 to estimate the catalyst temperature TCAT according to the processing of FIG. However, if XCAT = 1, the CPU 31 immediately ends this routine. That is, if the deterioration detection of the three-way catalyst 13 has been performed, the processing after step 500 is not performed.
【0079】ここで、図11を用いて触媒温度TCAT
の推定手順を説明する。図11において、CPU31
は、先ずステップ501でエンジン始動が完了している
か否かを判別する。例えばIGオン後、エンジン回転数
Neが所定の始動回転数に達していなければステップ5
01が否定判別される。つまり、始動完了前であれば、
CPU31はステップ502に進み、触媒温度TCAT
を吸気温Tam(=外気温度)として設定し、その後元
の図10のルーチンに戻る。Here, the catalyst temperature TCAT will be described with reference to FIG.
Will be described. In FIG. 11, the CPU 31
First, at step 501, it is determined whether or not the engine has been started. For example, after the IG is turned on, if the engine speed Ne has not reached the predetermined starting speed, step 5
01 is determined negatively. In other words, before the start is completed,
The CPU 31 proceeds to step 502, where the catalyst temperature TCAT
Is set as the intake air temperature Tam (= outside air temperature), and then the process returns to the original routine of FIG.
【0080】エンジン始動が完了していれば、CPU3
1はステップ503に進み、排ガス温度TEXを推定す
る。この場合、燃料カット中であるか否かに応じて、R
OM32内に予め記憶されている2種類のマップを使い
分け、排ガス温度TEXを推定する。すなわち、・燃料
カット中でない場合、その時々のエンジン回転数Neと
吸気流量Qとに応じて排ガス温度TEXを推定する。こ
の推定法は、エンジン負荷(Ne,Q)が増加するほ
ど、排ガス温度TEXが高くなるという特性を利用した
ものである。・燃料カット中の場合、燃料の燃焼熱が無
くなり、排ガス温度TEXが急激に低下する。そのた
め、エンジン回転数Neと吸気流量Qとから排ガス温度
TEXを推定する代わりに、燃料カット開始時の触媒温
度TCAT(推定値)から排ガス温度TEXを推定す
る。この推定法は、触媒温度TCATが高くなるほど、
三元触媒13の放熱で排ガス温度TEXが高くなるとい
う特性を利用したものである。If the engine has been started, the CPU 3
1 proceeds to step 503 to estimate the exhaust gas temperature TEX. In this case, depending on whether the fuel is being cut or not, R
The exhaust gas temperature TEX is estimated by properly using two types of maps stored in the OM 32 in advance. When the fuel cut is not being performed, the exhaust gas temperature TEX is estimated according to the engine speed Ne and the intake air flow rate Q at that time. This estimation method utilizes the characteristic that the exhaust gas temperature TEX increases as the engine load (Ne, Q) increases. -During the fuel cut, the combustion heat of the fuel is lost, and the exhaust gas temperature TEX drops sharply. Therefore, instead of estimating the exhaust gas temperature TEX from the engine speed Ne and the intake air flow rate Q, the exhaust gas temperature TEX is estimated from the catalyst temperature TCAT (estimated value) at the start of the fuel cut. This estimation method is based on the assumption that as the catalyst temperature TCAT increases,
This utilizes the characteristic that the exhaust gas temperature TEX is increased by the heat radiation of the three-way catalyst 13.
【0081】その後、CPU31は、ステップ504で
触媒温度の前回推定値TCAT(i−1)と排ガス温度
TEXとを比較し、その比較結果に応じて触媒温度TC
ATが下降傾向にあるか、若しくは上昇傾向にあるかを
判別する。TCAT(i−1)>TEXの場合、CPU
31は触媒温度TCATが下降傾向にあるとみなし、ス
テップ505で次式により触媒温度の今回値TCAT
(i)を算出する。Thereafter, the CPU 31 compares the previous estimated value TCAT (i-1) of the catalyst temperature with the exhaust gas temperature TEX in step 504, and according to the comparison result, determines the catalyst temperature TC
It is determined whether the AT is in a downward trend or an upward trend. If TCAT (i-1)> TEX, CPU
31 is assumed that the catalyst temperature TCAT is in a downward trend, and in step 505, the present value TCAT of the catalyst temperature is calculated by the following equation.
(I) is calculated.
【0082】TCAT(i)=TCAT(i−1)−K
1・|TCAT(i−1)−TEX| ここで、K1はROM32内に予め記憶される係数であ
り、例えば吸気流量Qやエンジン回転数Neの変動値に
応じて設定されている。TCAT (i) = TCAT (i-1) -K
1 · | TCAT (i−1) −TEX | Here, K1 is a coefficient stored in the ROM 32 in advance, and is set according to, for example, a variation value of the intake air flow rate Q or the engine speed Ne.
【0083】一方、TCAT(i−1)≦TEXの場
合、CPU31は触媒温度TCATが上昇傾向にあると
みなし、ステップ506で次式により触媒温度の今回値
TCAT(i)を算出する。On the other hand, if TCAT (i−1) ≦ TEX, the CPU 31 determines that the catalyst temperature TCAT is on the rise, and calculates the current value TCAT (i) of the catalyst temperature in step 506 by the following equation.
【0084】TCAT(i)=TCAT(i−1)+K
2・|TCAT(i−1)−TEX| ここで、K2はROM32内に予め記憶される係数であ
り、例えば吸気流量Qに応じて設定されている。なお、
燃料カット時には、係数K1,K2を一定値に固定する
ようにしてもよい。TCAT (i) = TCAT (i-1) + K
2 · | TCAT (i−1) −TEX | Here, K2 is a coefficient stored in the ROM 32 in advance, and is set according to, for example, the intake air flow rate Q. In addition,
At the time of fuel cut, the coefficients K1 and K2 may be fixed to constant values.
【0085】上記の如く触媒温度TCATを推定した
後、CPU31は元の図10のルーチンに戻り、ステッ
プ402で触媒温度TCATが劣化検出の開始温度(例
えば150℃)を越えたか否かを判別し、TCAT≦1
50℃であれば、以降の劣化検出処理を行うことなく、
本ルーチンを直ちに終了する。これは、触媒温度TCA
Tが劣化検出の開始温度に達しない状態ではO2 センサ
27の温度が低く、そのセンサ出力VOX2が安定しな
いので、かかる場合には劣化検出処理を禁止して触媒劣
化の検出精度低下を防ぐものである。After estimating the catalyst temperature TCAT as described above, the CPU 31 returns to the original routine of FIG. 10, and determines in step 402 whether or not the catalyst temperature TCAT has exceeded the temperature at which deterioration is detected (for example, 150 ° C.). , TCAT ≦ 1
If it is 50 ° C., without performing the subsequent deterioration detection processing,
This routine ends immediately. This is the catalyst temperature TCA
If T does not reach the temperature at which deterioration is detected, the temperature of the O2 sensor 27 is low, and the sensor output VOX2 is not stable. In such a case, the deterioration detection process is prohibited to prevent deterioration in the detection accuracy of catalyst deterioration. is there.
【0086】そして、TCAT>150℃となると、C
PU31はステップ403に進み、タイムカウンタ1を
インクリメントする。また、CPU31は、次のステッ
プ404で未浄化ガス成分量を反映するデータ「ΣV
1」(O2 センサ27の出力電圧変動の軌跡)を次式に
より算出する。When TCAT> 150 ° C., C
The PU 31 proceeds to step 403, and increments the time counter 1. In the next step 404, the CPU 31 sets the data “ΔV” reflecting the unpurified gas component amount.
1 "(the locus of the output voltage fluctuation of the O2 sensor 27) is calculated by the following equation.
【0087】ΣV1=ΣV1+|VOX2(i)−VO
X2(i−1)| ここで、「ΣV」の添字「1」は今回値であることを表
す。つまり、上式は、所定のサンプリング周期(例えば
64msec)でO2 センサ27の出力電圧VOX2の
変化幅を積算することにより、同センサ27の出力電圧
変動の軌跡を求め、三元触媒13内での未浄化ガス成分
量を評価するものである。ΣV1 = ΣV1 + | VOX2 (i) -VO
X2 (i-1) | Here, the subscript "1" of "@V" represents the current value. That is, in the above equation, the trajectory of the output voltage fluctuation of the O2 sensor 27 is obtained by integrating the variation width of the output voltage VOX2 of the O2 sensor 27 at a predetermined sampling cycle (for example, 64 msec), The purpose is to evaluate the amount of unpurified gas components.
【0088】さらに、CPU31は、同ステップ404
で触媒流入ガス成分変動を数値化したデータ「ΣΔAF
・Q1」を次式により算出する。 ΣΔAF・Q1=ΣΔAF・Q1+Q・|目標AF−A
F| ここで、吸気流量Qは排ガス流量を代用するデータとし
て用いるが、排ガス流量は吸気流量Qで代用する他、実
際に測定してもよいし、他のデータから推定するように
してもよい。勿論、吸気流量Qから推定するようにして
もよい。なお、「ΣΔAF・Q」の添字「1」は今回値
であることを表す。|目標AF−AF|は、実空燃比
(A/Fセンサ26の出力電圧)と目標空燃比(例えば
理論空燃比)との偏差の絶対値である。上式は、所定の
サンプリング周期(例えば64msec)で空燃比の偏
差|目標AF−AF|と排ガス流量(=吸気流量Q)と
を乗算してその乗算値を積算することにより、触媒流入
ガス成分変動のデータΣΔAF・Q1を求めるものであ
る。Further, the CPU 31 determines in step 404
"ΣΔAF
* Q1 "is calculated by the following equation. ΣΔAF · Q1 = ΣΔAF · Q1 + Q · | Target AF-A
F | Here, the intake air flow rate Q is used as data to substitute the exhaust gas flow rate, but the exhaust gas flow rate may be actually measured or may be estimated from other data, instead of using the intake air flow rate Q. . Of course, it may be estimated from the intake air flow rate Q. Note that the subscript “1” of “ΣΔAF · Q” represents the current value. | Target AF-AF | is the absolute value of the deviation between the actual air-fuel ratio (the output voltage of the A / F sensor 26) and the target air-fuel ratio (for example, the stoichiometric air-fuel ratio). The above equation is obtained by multiplying the deviation | target AF−AF | of the air-fuel ratio by the exhaust gas flow rate (= intake flow rate Q) at a predetermined sampling cycle (for example, 64 msec) and integrating the multiplied value to obtain the catalyst inflow gas component. The variation data ΣΔAF · Q1 is obtained.
【0089】その後、CPU31は、ステップ405で
タイムカウンタ1のカウント値が所定値(本実施の形態
では、10sec)を越えたか否かを判別し、10se
cを越えていなければ、上記ステップ401〜404の
処理を繰り返す。これにより、10sec間のΣV1値
とΣΔAF・Q1値とが算出される。Thereafter, the CPU 31 determines in step 405 whether or not the count value of the time counter 1 has exceeded a predetermined value (10 seconds in the present embodiment).
If c does not exceed c, the processing of steps 401 to 404 is repeated. Thereby, the ΣV1 value and ΣΔAF · Q1 value for 10 seconds are calculated.
【0090】タイムカウンタ1のカウント値が10se
cを越えた時点で、CPU31はステップ406に進
み、10sec間の触媒流入ガス成分変動のデータ「Σ
ΔAF・Q1」が所定範囲内にあるか否かを判別する。
そして、所定範囲内であれば、CPU31はステップ4
07に進み、ΣV1値の前回の積算値ΣVに今回のΣV
1値を積算してΣV値を更新すると共に、ΣΔAF・Q
1値の前回の積算値ΣΔAF・Qに今回のΣΔAF・Q
1値を積算してΣΔAF・Q値を更新する。その後、C
PU31はステップ408に進み、タイムカウンタ1、
ΣV1値及びΣΔAF・Q1値を共に「0」にクリアす
る。When the count value of the time counter 1 is 10 seconds
c, the CPU 31 proceeds to step 406, and the data of the catalyst inflow gas component fluctuation “Σ” for 10 seconds.
It is determined whether “ΔAF · Q1” is within a predetermined range.
If it is within the predetermined range, the CPU 31 proceeds to step 4
07, the previous integrated value of the ΣV1 value ΣV is added to the current ΣV1 value.
In addition to updating the を V value by integrating one value, ΣΔAF · Q
One value of the previous integrated value ΣΔAF · Q is replaced by the current value of ΣΔAF · Q
The ΣΔAF · Q value is updated by integrating one value. Then, C
The PU 31 proceeds to step 408, where the time counter 1,
ΣV1 value and ΣΔAF · Q1 value are both cleared to “0”.
【0091】一方、上記ステップ406で触媒流入ガス
成分変動のデータ「ΣΔAF・Q1」が所定範囲内でな
いと判別されると、CPU31は、ステップ407の積
算処理を行うことなくステップ408に進み、タイムカ
ウンタ1、ΣV1値及びΣΔAF・Q1値を共にクリア
する(無効にする)。これは、触媒流入ガス成分変動が
過大又は過小の場合には、未浄化ガス成分量の演算精度
が低下するため、触媒流入ガス成分変動のデータ「ΣΔ
AF・Q1」が所定範囲内でない場合には、ΣV1値及
びΣΔAF・Q1値を共にクリアして積算処理を行わ
ず、触媒流入ガス成分変動による劣化検出の精度低下を
防止するものである。On the other hand, if it is determined in step 406 that the data “変 動 ΔAF · Q1” of the catalyst inflow gas component fluctuation is not within the predetermined range, the CPU 31 proceeds to step 408 without performing the integration processing in step 407, and proceeds to step 408. Counter 1 clears (invalidates) both the ΣV1 value and the ΣΔAF · Q1 value. This is because, when the catalyst inflow gas component fluctuation is too large or too small, the calculation accuracy of the unpurified gas component amount is reduced.
If “AF · Q1” is not within the predetermined range, the ΣV1 value and the ΣΔAF · Q1 value are both cleared and the integration process is not performed, thereby preventing the deterioration in the accuracy of the deterioration detection due to the change in the gas component flowing into the catalyst.
【0092】その後、CPU31は、ステップ409で
前記推定した触媒温度TCATが三元触媒13の活性温
度(例えば、550℃)を越えたか否かを判別し、越え
ていなければ、三元触媒13の劣化を検出することな
く、本ルーチンを一旦終了する。また、CPU31は、
触媒温度TCATが550℃を越えた時点でステップ4
10に進み、それまでに積算した未浄化ガス成分量を反
映するデータΣV(O2センサ27の出力電圧変動の軌
跡)に基づき、三元触媒13の劣化度合を検出する。Thereafter, the CPU 31 determines whether or not the estimated catalyst temperature TCAT has exceeded the activation temperature (for example, 550 ° C.) of the three-way catalyst 13 in step 409. This routine is temporarily terminated without detecting deterioration. Further, the CPU 31
Step 4 when the catalyst temperature TCAT exceeds 550 ° C.
Proceeding to 10, the degree of deterioration of the three-way catalyst 13 is detected based on the data ΔV (trajectory of the output voltage fluctuation of the O2 sensor 27) reflecting the unpurified gas component amount integrated up to that time.
【0093】ここで、触媒劣化検出方法を図12に基づ
いて説明する。図12は、未浄化ガス成分量を反映する
データΣVと触媒流入ガス成分変動のデータΣΔAF・
Qとの関係を実測したものである。図12において、○
印は新品触媒、□印は劣化触媒、△印はダミー触媒(表
面に触媒層が生成されていないセラミック担体のみのも
の)についての測定値である。新品触媒(○印)では、
ΣΔAF・Q値の大小に拘らずΣV値が小さいが、劣化
触媒(□印)では、ΣΔAF・Q値が増加するに従いΣ
V値が増加する傾向がある。触媒劣化が極端に進み、触
媒作用が無くなると、ダミー触媒(△印)と同じ状態に
なる。従って、ΣΔAF・Q値が同じであれば、ΣVが
大きいほど、触媒劣化が進んでいることを意味する。Here, a method for detecting catalyst deterioration will be described with reference to FIG. FIG. 12 shows data ΔV reflecting the unpurified gas component amount and data ΔΔAF ·
It is a measurement of the relationship with Q. In FIG.
The mark indicates a measured value for a new catalyst, the mark indicates a measured value for a deteriorated catalyst, and the mark indicates a measured value for a dummy catalyst (only a ceramic carrier having no catalyst layer formed on its surface). With a new catalyst (marked with ○),
ΣV value is small irrespective of the magnitude of ΔAF · Q value, but with a deteriorated catalyst (marked with □), as ΣΔAF · Q value increases,
V value tends to increase. When the catalyst deteriorates extremely and the catalytic action is lost, the state becomes the same as that of the dummy catalyst (marked with a triangle). Therefore, if the ΣΔAF · Q value is the same, it means that the larger the ΣV, the more the catalyst deteriorates.
【0094】この関係を利用し、ROM32に記憶され
ている図13の関係から劣化度合を検出する。図13に
よれば、その時々のΣV値及びΣΔAF・Q値に応じて
三元触媒13の劣化度合が検出され、その検出された劣
化度合が随時バックアップRAM34に記憶される。Using this relationship, the degree of deterioration is detected from the relationship shown in FIG. According to FIG. 13, the degree of deterioration of the three-way catalyst 13 is detected according to the ΣV value and ΣΔAF · Q value at that time, and the detected degree of deterioration is stored in the backup RAM 34 as needed.
【0095】ステップ410の劣化検出後、CPU31
は、ステップ411で劣化検出フラグXCATに「1」
をセットして本ルーチンを終了する。このフラグ操作に
より次回からは劣化検出の処理が実施されることはな
い。上記ステップ410で求めた三元触媒13の劣化検
出結果は、前記図3のステップ206において基準リッ
チ面積RAFADSDの設定に用いられる。After detecting the deterioration in step 410, the CPU 31
Is "1" in the deterioration detection flag XCAT in step 411.
Is set and the routine ends. By this flag operation, the deterioration detection process is not performed from the next time. The deterioration detection result of the three-way catalyst 13 obtained in step 410 is used for setting the reference rich area RAFADSD in step 206 of FIG.
【0096】なお上述した図10の三元触媒13の劣化
検出手法については、本願出願人による特開平9−31
612号公報の「排出ガス浄化用触媒劣化検出装置」に
詳細に開示されている。The above-described technique for detecting the deterioration of the three-way catalyst 13 shown in FIG. 10 is disclosed in Japanese Patent Application Laid-Open No. 9-31 by the present applicant.
No. 612 discloses an exhaust gas purifying catalyst deterioration detecting device in detail.
【0097】以上第2の実施の形態によれば、上記第1
の実施の形態と同様に、三元触媒13の劣化状態に拘わ
らず、常に良好な排ガス浄化を行うことができる。ま
た、本実施の形態では、エンジン1が始動してから三元
触媒13が暖機されるまでに該触媒13内で浄化される
ガス成分量(未浄化ガス成分量を反映するデータΣV)
を算出し、その未浄化ガス成分量に基づいて三元触媒1
3の劣化度合を検出するようにした。それにより、触媒
活性前のエミッション増加を考慮した触媒劣化検出を精
度良く実施することができる。なお、三元触媒13の暖
機前には、触媒劣化度合の違いによる浄化率の差が大き
く、触媒劣化を容易且つ正確に検出することが可能とな
る。As described above, according to the second embodiment, the first
As in the embodiment, regardless of the state of deterioration of the three-way catalyst 13, good exhaust gas purification can always be performed. Further, in the present embodiment, the amount of the gas component purified in the three-way catalyst 13 from the start of the engine 1 until the three-way catalyst 13 is warmed up (data ΔV reflecting the unpurified gas component amount).
And the three-way catalyst 1 is calculated based on the unpurified gas component amount.
The deterioration degree of No. 3 is detected. As a result, it is possible to accurately detect catalyst deterioration in consideration of an increase in emissions before the catalyst is activated. Before the warm-up of the three-way catalyst 13, the difference in purification rate due to the difference in the degree of catalyst deterioration is large, and it is possible to easily and accurately detect catalyst deterioration.
【0098】三元触媒13の劣化検出に際して、未浄化
ガス成分量を反映するデータΣVに加え、三元触媒13
が所定温度(550℃)に達するまでの触媒流入ガス成
分変動のデータΣΔAF・Qをも考慮するようにした。
そのため、触媒流入ガス成分変動の影響を排除した高精
度な触媒劣化検出を行うことができる。In detecting the deterioration of the three-way catalyst 13, the three-way catalyst 13 is added to the data ΔV reflecting the unpurified gas component amount.
The data 変 動 ΔAF · Q of the catalyst inflow gas component fluctuation until the temperature reaches a predetermined temperature (550 ° C.) is also taken into consideration.
For this reason, it is possible to perform highly accurate catalyst deterioration detection excluding the influence of the fluctuation of the gas component flowing into the catalyst.
【0099】なお、本発明の実施の形態は、上記以外に
次の形態にて具体化できる。三元触媒13の劣化度合検
出に際し、劣化度合を段階的に検出する。具体的には、
新品時の状態から故障判定されるまでの劣化状態までを
複数(例えば、4〜6段階程度)のレベルで判定し、そ
の劣化レベルに応じて空燃比リッチ制御時の基準リッチ
量(基準リッチ面積RAFADSD)を設定する。The embodiment of the present invention can be embodied in the following forms other than the above. When detecting the degree of deterioration of the three-way catalyst 13, the degree of deterioration is detected stepwise. In particular,
A plurality of levels (for example, about 4 to 6 levels) are determined from a state of a new article to a deteriorated state until a failure is determined, and a reference rich amount (reference rich area) at the time of air-fuel ratio rich control is determined according to the deterioration level. RAFADSD).
【0100】上記各実施の形態では、基準リッチ量とし
て「基準リッチ面積RAFADSD」を設定し、空燃比
リッチ制御時のリッチ偏差積算値RAFADが基準リッ
チ面積RAFADSDに達した際に空燃比リッチ制御を
終了するようにしたが、この構成を変更する。例えば基
準リッチ量として「基準リッチ時間」を設定し、空燃比
リッチ制御時の実リッチ時間が「基準リッチ時間」に達
した際に空燃比リッチ制御を終了するようにしてもよ
い。In each of the above embodiments, “reference rich area RAFADSD” is set as the reference rich amount, and the air-fuel ratio rich control is performed when the rich deviation integrated value RAFAD during the air-fuel ratio rich control reaches the reference rich area RAFADSD. Finished, but change this configuration. For example, a “reference rich time” may be set as the reference rich amount, and the air-fuel ratio rich control may be ended when the actual rich time during the air-fuel ratio rich control reaches the “reference rich time”.
【0101】上記第2の実施の形態では、図11の処理
において排ガス温度TEXに応じて触媒温度TCATを
推定したが、温度推定法はこの限りでなく他の方法を用
いて推定してもよい。例えば排ガス温度又は触媒温度を
検出するための温度センサをエンジン排気系に設置する
構成としてもよく、この場合でも、本発明の目的は十分
に達成できる。In the second embodiment, the catalyst temperature TCAT is estimated in accordance with the exhaust gas temperature TEX in the process of FIG. 11, but the temperature estimation method is not limited to this, and may be estimated using other methods. . For example, a temperature sensor for detecting the exhaust gas temperature or the catalyst temperature may be provided in the engine exhaust system. Even in this case, the object of the present invention can be sufficiently achieved.
【0102】また、図12に示すΣV値とΣΔAF・Q
値との関係から明らかなように、触媒劣化が進むほど、
ΣV値の傾き「ΣV/(ΣΔAF・Q)」が大きくなる
傾向がある。そのため、ΣV値の傾き「ΣV/(ΣΔA
F・Q)」の大小で三元触媒13の劣化度合を検出する
ようにしてもよい。The ΣV value and ΣΔAF · Q shown in FIG.
As is clear from the relationship with the value, as the catalyst deterioration progresses,
The gradient of the ΣV value “ΣV / (ΣΔAF · Q)” tends to increase. Therefore, the slope of the ΣV value “ΣV / (ΣΔA
F · Q) ”, the degree of deterioration of the three-way catalyst 13 may be detected.
【0103】また、第2の実施の形態では、触媒温度T
CATが150℃〜550℃にある場合に未浄化ガス成
分量を演算し、その演算結果に基づいて三元触媒13の
劣化度合を検出したが、未浄化ガス成分量の演算期間は
これに限られない。要は、三元触媒13の新品時と劣化
時との浄化率の差が大きい期間において、未浄化ガス成
分量が演算される構成であればよい。In the second embodiment, the catalyst temperature T
When the CAT is in the range of 150 ° C. to 550 ° C., the amount of the unpurified gas component is calculated, and the degree of deterioration of the three-way catalyst 13 is detected based on the calculation result. I can't. In short, any configuration may be used as long as the unpurified gas component amount is calculated during a period in which the difference between the purification rates of the three-way catalyst 13 when it is new and when it is deteriorated is large.
【0104】三元触媒13(上流側触媒)及びNOx触
媒14(下流側触媒)の前後に設けられるガス濃度セン
サとして、既述のA/FセンサやO2 センサ以外に他の
センサを用いてもよい。例えばNOx濃度を計測するN
Oxセンサ、HC濃度を計測するHCセンサ、O2 ,N
Ox,HC等の濃度を複合的に計測する複合型センサな
どが適宜採用できる。要は、三元触媒13の劣化検出が
可能な構成であればよい。その一例としては、三元触媒
を通過する排ガス中のNOx量をNOxセンサにて計測
し、リッチ燃焼からリーン燃焼への切り換え時におい
て、前記計測されるNOx量の応答性に基づき三元触媒
の劣化度合を検出する。As a gas concentration sensor provided before and after the three-way catalyst 13 (upstream catalyst) and the NOx catalyst 14 (downstream catalyst), other sensors besides the above-mentioned A / F sensor and O2 sensor may be used. Good. For example, N for measuring NOx concentration
Ox sensor, HC sensor for measuring HC concentration, O2, N
A composite sensor or the like that compositely measures the concentration of Ox, HC, or the like can be appropriately used. In short, any configuration is possible as long as deterioration of the three-way catalyst 13 can be detected. As an example, the NOx amount in the exhaust gas passing through the three-way catalyst is measured by a NOx sensor, and when switching from rich combustion to lean combustion, the three-way catalyst is measured based on the response of the measured NOx amount. The degree of deterioration is detected.
【0105】三元触媒13(上流側触媒)の劣化検出法
として、第1,第2の実施の形態以外の方法を適用す
る。三元触媒13の劣化度合は熱的影響により経時的に
進行する。そのため、例えば車両の総走行距離や総使用
時間などを加味して触媒劣化を検出したり、三元触媒1
3が所定の高温域に達する回数や時間を計測し、その計
測結果に従い触媒劣化を検出したりしてもよい。As a method for detecting deterioration of the three-way catalyst 13 (upstream side catalyst), a method other than the first and second embodiments is applied. The degree of deterioration of the three-way catalyst 13 progresses with time due to thermal effects. Therefore, for example, the deterioration of the catalyst is detected in consideration of the total mileage of the vehicle, the total use time, or the like, or the three-way catalyst 1
Alternatively, the number of times and time at which 3 reaches a predetermined high temperature range may be measured, and catalyst deterioration may be detected according to the measurement result.
【図1】発明の実施の形態におけるエンジンの空燃比制
御システムの概要を示す全体構成図。FIG. 1 is an overall configuration diagram showing an outline of an air-fuel ratio control system for an engine according to an embodiment of the invention.
【図2】空燃比制御ルーチンを示すフローチャート。FIG. 2 is a flowchart showing an air-fuel ratio control routine.
【図3】目標空燃比の設定ルーチンを示すフローチャー
ト。FIG. 3 is a flowchart showing a routine for setting a target air-fuel ratio.
【図4】三元触媒の劣化度合と基準リッチ面積RAFA
DSDとの関係を示す図。FIG. 4 Deterioration degree of three-way catalyst and reference rich area RAFA
The figure which shows the relationship with DSD.
【図5】排ガス流量と排ガス流量補正係数との関係を示
す図。FIG. 5 is a diagram showing a relationship between an exhaust gas flow rate and an exhaust gas flow rate correction coefficient.
【図6】三元触媒の劣化検出ルーチンを示すフローチャ
ート。FIG. 6 is a flowchart showing a routine for detecting deterioration of the three-way catalyst.
【図7】電圧偏差の積分値DVsSUMに基づいて三元
触媒の劣化度合を求めるための図。FIG. 7 is a diagram for obtaining a degree of deterioration of a three-way catalyst based on an integral value DVsSUM of a voltage deviation.
【図8】実施の形態における作用を説明するためのタイ
ムチャート。FIG. 8 is a time chart for explaining an operation in the embodiment.
【図9】第2の実施の形態において、制御システムの概
要を示す構成図。FIG. 9 is a configuration diagram showing an outline of a control system in a second embodiment.
【図10】第2の実施の形態において、三元触媒の劣化
検出ルーチンを示すフローチャート。FIG. 10 is a flowchart showing a routine for detecting deterioration of a three-way catalyst in the second embodiment.
【図11】触媒温度の推定ルーチンを示すフローチャー
ト。FIG. 11 is a flowchart showing a routine for estimating a catalyst temperature.
【図12】未浄化ガス成分量を反映するデータΣVと触
媒流入ガス成分変動のデータΣΔAF・Qとの関係を実
測した結果を示す図。FIG. 12 is a diagram showing a result of actually measuring a relationship between data ΔV reflecting an unpurified gas component amount and data ΔΔAF · Q of a catalyst inflow gas component variation.
【図13】ΣV値とΣΔAF・Q値とに基づいて三元触
媒の劣化度合を求めるための図。FIG. 13 is a diagram for obtaining the degree of deterioration of the three-way catalyst based on the ΣV value and the ΣΔAF · Q value.
【図14】従来装置において、空燃比や排ガス成分の推
移を示すタイムチャート。FIG. 14 is a time chart showing changes in an air-fuel ratio and an exhaust gas component in a conventional device.
1…エンジン(内燃機関)、12…排気管、13…上流
側触媒としての三元触媒、14…下流側触媒としてのN
Ox触媒(NOx吸蔵還元型触媒)、26…上流センサ
としてのA/Fセンサ、27…下流センサとしてのO2
センサ、30…ECU(電子制御装置)、31…劣化検
出手段,リッチ制御手段,空燃比補正手段としてのCP
U。DESCRIPTION OF SYMBOLS 1 ... Engine (internal combustion engine), 12 ... Exhaust pipe, 13 ... Three-way catalyst as upstream catalyst, 14 ... N as downstream catalyst
Ox catalyst (NOx storage reduction catalyst), 26: A / F sensor as upstream sensor, 27: O2 as downstream sensor
Sensor, 30: ECU (Electronic Control Unit), 31: CP as deterioration detection means, rich control means, air-fuel ratio correction means
U.
フロントページの続き (51)Int.Cl.6 識別記号 FI F01N 3/24 F01N 3/24 R C 3/28 301 3/28 301E F02D 41/04 ZAB F02D 41/04 ZAB 305 305Z 45/00 ZAB 45/00 ZAB 301 301K 314 314Z Continued on the front page (51) Int.Cl. 6 Identification symbol FI F01N 3/24 F01N 3/24 RC 3/28 301 3/28 301E F02D 41/04 ZAB F02D 41/04 ZAB 305 305Z 45/00 ZAB 45 / 00 ZAB 301 301K 314 314Z
Claims (6)
蔵作用を有する上流側触媒と、機関排気通路の下流側に
設けられ、NOx吸蔵還元作用を有する下流側触媒とを
備える内燃機関に適用され、空燃比リーン領域でのリー
ン燃焼を行わせると共に、リーン燃焼時に排出される排
ガス中のNOxを前記下流側触媒で吸蔵し、さらに空燃
比を一時的にリッチに制御して吸蔵NOxを下流側触媒
から放出するようにした空燃比制御装置において、 前記上流側触媒の劣化度合を検出する劣化検出手段と、 前記検出した上流側触媒の劣化度合に基づいて、空燃比
のリッチ制御を実施するリッチ制御手段とを備えること
を特徴とする内燃機関の空燃比制御装置。An internal combustion engine includes an upstream catalyst provided upstream of an engine exhaust passage and having an oxygen storage function, and a downstream catalyst provided downstream of the engine exhaust passage and having an NOx storage reduction action. It is applied to perform lean combustion in the air-fuel ratio lean region, store NOx in exhaust gas discharged at the time of lean combustion by the downstream side catalyst, and further temporarily control the air-fuel ratio to rich to reduce the stored NOx. In the air-fuel ratio control device configured to release from the downstream catalyst, a deterioration detecting unit that detects the degree of deterioration of the upstream catalyst, and rich control of the air-fuel ratio is performed based on the detected degree of deterioration of the upstream catalyst. An air-fuel ratio control device for an internal combustion engine, comprising:
度合に基づき空燃比リッチ制御時の基準リッチ量を求
め、該求めた基準リッチ量に応じてリッチ制御を実施す
る請求項1に記載の内燃機関の空燃比制御装置。2. The method according to claim 1, wherein the rich control means obtains a reference rich amount at the time of air-fuel ratio rich control based on the degree of deterioration of the upstream catalyst, and performs rich control in accordance with the obtained reference rich amount. Air-fuel ratio control device for an internal combustion engine.
て、 前記リッチ制御手段は、空燃比リッチ制御時におけるリ
ッチ量積分値を算出する手段と、該算出したリッチ量積
分値と前記基準リッチ量とを比較し、前者の値が後者の
値に達した際に空燃比リッチ制御を終了する手段とを備
える内燃機関の空燃比制御装置。3. The air-fuel ratio control device according to claim 2, wherein the rich control means calculates a rich integrated value during the air-fuel ratio rich control, and calculates the rich integrated value and the reference rich value. Means for comparing the amount of the air-fuel ratio and terminating the air-fuel ratio rich control when the former value reaches the latter value.
度合が大きいほど、基準リッチ量を小さい値に設定する
請求項1〜請求項3のいずれかに記載の内燃機関の空燃
比制御装置。4. The air-fuel ratio control device for an internal combustion engine according to claim 1, wherein said rich control means sets the reference rich amount to a smaller value as the degree of deterioration of the upstream catalyst increases. .
するまでに該触媒内で浄化されないガス成分量を算出す
る手段と、 該算出した未浄化のガス成分量に基づいて上流側触媒の
劣化度合を検出する手段とからなる請求項1〜請求項4
のいずれかに記載の内燃機関の空燃比制御装置。5. The deterioration detecting means includes: means for calculating an amount of a gas component which is not purified within the catalyst after the internal combustion engine is started until the temperature of the upstream catalyst reaches a predetermined temperature; 5. A means for detecting the degree of deterioration of the upstream catalyst based on the gas component amount.
An air-fuel ratio control device for an internal combustion engine according to any one of the above.
て、 前記劣化検出手段は、前記上流側触媒を通過した後の時
間毎の空燃比変動量の積分値を未浄化ガス成分量として
求め、その未浄化ガス成分量が大きいほど、劣化度合が
大きい旨を検出する内燃機関の空燃比制御装置。6. The air-fuel ratio control device according to claim 5, wherein the deterioration detecting means obtains, as an unpurified gas component amount, an integral value of an air-fuel ratio fluctuation amount every time after passing through the upstream catalyst. An air-fuel ratio control device for an internal combustion engine which detects that the degree of deterioration increases as the amount of unpurified gas components increases.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11712398A JP3997599B2 (en) | 1998-04-27 | 1998-04-27 | Air-fuel ratio control device for internal combustion engine |
DE1999118875 DE19918875B4 (en) | 1998-04-27 | 1999-04-26 | Air-fuel ratio control system for an internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11712398A JP3997599B2 (en) | 1998-04-27 | 1998-04-27 | Air-fuel ratio control device for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11311142A true JPH11311142A (en) | 1999-11-09 |
JP3997599B2 JP3997599B2 (en) | 2007-10-24 |
Family
ID=14704011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11712398A Expired - Fee Related JP3997599B2 (en) | 1998-04-27 | 1998-04-27 | Air-fuel ratio control device for internal combustion engine |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3997599B2 (en) |
DE (1) | DE19918875B4 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002285832A (en) * | 2001-03-28 | 2002-10-03 | Honda Motor Co Ltd | Catalyst deterioration detecting device for internal combustion engine |
JP2004124939A (en) * | 2002-10-05 | 2004-04-22 | Robert Bosch Gmbh | Operating method and operation control device for internal combustion engine |
JP2008038890A (en) * | 2006-07-14 | 2008-02-21 | Honda Motor Co Ltd | Controller for internal combustion engine |
JP2008128216A (en) * | 2006-11-24 | 2008-06-05 | Honda Motor Co Ltd | Exhaust emission control device of internal combustion engine |
JP2008128217A (en) * | 2006-11-24 | 2008-06-05 | Honda Motor Co Ltd | Exhaust emission control device of internal combustion engine |
JP2008128196A (en) * | 2006-11-24 | 2008-06-05 | Honda Motor Co Ltd | Exhaust emission control device of internal combustion engine |
JP2009156201A (en) * | 2007-12-27 | 2009-07-16 | Toyota Motor Corp | Exhaust system abnormality detection device of internal combustion engine |
JP2009299575A (en) * | 2008-06-12 | 2009-12-24 | Honda Motor Co Ltd | Catalyst deterioration-determination device |
WO2014045880A1 (en) * | 2012-09-21 | 2014-03-27 | ヤンマー株式会社 | Internal combustion engine |
JP2016113910A (en) * | 2014-12-11 | 2016-06-23 | マツダ株式会社 | Control device for engine |
CN110886638A (en) * | 2018-09-07 | 2020-03-17 | 日本碍子株式会社 | Catalyst deterioration diagnosis method and catalyst deterioration diagnosis system |
CN114922737A (en) * | 2021-02-12 | 2022-08-19 | 丰田自动车株式会社 | Control device for internal combustion engine |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19961165A1 (en) | 1999-12-17 | 2001-08-02 | Volkswagen Ag | Process for the desulfurization of a NO¶x¶ storage catalytic converter arranged in an exhaust gas duct of an internal combustion engine |
DE19963901A1 (en) | 1999-12-31 | 2001-07-12 | Bosch Gmbh Robert | Method for operating a catalyst of an internal combustion engine |
DE10039708A1 (en) | 2000-08-14 | 2002-03-07 | Bosch Gmbh Robert | Method and model for modeling a withdrawal phase of a nitrogen oxide storage catalyst |
DE10045610A1 (en) * | 2000-09-15 | 2002-04-18 | Volkswagen Ag | Method for controlling a NOx regeneration of a NOx storage catalytic converter |
DE10053629A1 (en) * | 2000-10-28 | 2002-05-02 | Bayerische Motoren Werke Ag | Control method for an internal combustion engine with an exhaust gas catalytic converter |
DE10059791B4 (en) * | 2000-12-01 | 2010-06-10 | Volkswagen Ag | Method and device for desulfurization of a precatalyst |
JP2002195071A (en) * | 2000-12-25 | 2002-07-10 | Mitsubishi Electric Corp | Internal combustion engine control device |
US8091348B2 (en) | 2008-11-06 | 2012-01-10 | GM Global Technology Operations LLC | Method and apparatus for exhaust aftertreatment in an internal combustion engine |
JP5867357B2 (en) * | 2012-02-03 | 2016-02-24 | 株式会社デンソー | Exhaust gas purification device for internal combustion engine |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2836523B2 (en) * | 1995-03-24 | 1998-12-14 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
JP3446582B2 (en) * | 1998-01-14 | 2003-09-16 | 日産自動車株式会社 | Engine exhaust purification device |
-
1998
- 1998-04-27 JP JP11712398A patent/JP3997599B2/en not_active Expired - Fee Related
-
1999
- 1999-04-26 DE DE1999118875 patent/DE19918875B4/en not_active Expired - Fee Related
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002285832A (en) * | 2001-03-28 | 2002-10-03 | Honda Motor Co Ltd | Catalyst deterioration detecting device for internal combustion engine |
JP2004124939A (en) * | 2002-10-05 | 2004-04-22 | Robert Bosch Gmbh | Operating method and operation control device for internal combustion engine |
JP2008038890A (en) * | 2006-07-14 | 2008-02-21 | Honda Motor Co Ltd | Controller for internal combustion engine |
JP4733003B2 (en) * | 2006-11-24 | 2011-07-27 | 本田技研工業株式会社 | Exhaust gas purification device for internal combustion engine |
US8117829B2 (en) | 2006-11-24 | 2012-02-21 | Honda Motor Co., Ltd. | Exhaust emission control device and method for internal combustion engine, and engine control unit |
JP2008128196A (en) * | 2006-11-24 | 2008-06-05 | Honda Motor Co Ltd | Exhaust emission control device of internal combustion engine |
JP2008128217A (en) * | 2006-11-24 | 2008-06-05 | Honda Motor Co Ltd | Exhaust emission control device of internal combustion engine |
JP2008128216A (en) * | 2006-11-24 | 2008-06-05 | Honda Motor Co Ltd | Exhaust emission control device of internal combustion engine |
US7992378B2 (en) | 2006-11-24 | 2011-08-09 | Honda Motor Co., Ltd. | Exhaust gas purifying device for an internal combustion engine |
JP2009156201A (en) * | 2007-12-27 | 2009-07-16 | Toyota Motor Corp | Exhaust system abnormality detection device of internal combustion engine |
JP2009299575A (en) * | 2008-06-12 | 2009-12-24 | Honda Motor Co Ltd | Catalyst deterioration-determination device |
WO2014045880A1 (en) * | 2012-09-21 | 2014-03-27 | ヤンマー株式会社 | Internal combustion engine |
JP2016113910A (en) * | 2014-12-11 | 2016-06-23 | マツダ株式会社 | Control device for engine |
CN110886638A (en) * | 2018-09-07 | 2020-03-17 | 日本碍子株式会社 | Catalyst deterioration diagnosis method and catalyst deterioration diagnosis system |
CN110886638B (en) * | 2018-09-07 | 2023-02-28 | 日本碍子株式会社 | Catalyst deterioration diagnosis method and catalyst deterioration diagnosis system |
CN114922737A (en) * | 2021-02-12 | 2022-08-19 | 丰田自动车株式会社 | Control device for internal combustion engine |
CN114922737B (en) * | 2021-02-12 | 2024-03-29 | 丰田自动车株式会社 | Control device for internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
DE19918875B4 (en) | 2011-02-24 |
JP3997599B2 (en) | 2007-10-24 |
DE19918875A1 (en) | 1999-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11311142A (en) | Air-fuel ratio controller for internal combustion engine | |
JP3674017B2 (en) | Catalyst degradation detection device for exhaust gas purification | |
JP4308396B2 (en) | Fuel supply control device for internal combustion engine | |
US20020194840A1 (en) | Air-fuel ratio control apparatus of internal combustion engine | |
JP5338974B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP3887903B2 (en) | Air-fuel ratio control device for internal combustion engine | |
WO2017168580A1 (en) | Catalyst diagnosis device | |
JP2004069457A (en) | Apparatus for detecting degradation of air/fuel ratio detecting device | |
JP3988518B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP4561656B2 (en) | Catalyst temperature estimation device for internal combustion engine | |
JP4186259B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP4737482B2 (en) | Catalyst deterioration detection device for internal combustion engine | |
US7992378B2 (en) | Exhaust gas purifying device for an internal combustion engine | |
JP3972726B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP4055256B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP4069924B2 (en) | Catalyst deterioration detection device for exhaust gas purification | |
JP4608758B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP4158475B2 (en) | Apparatus and method for exhaust gas purification of internal combustion engine | |
CN110945218B (en) | Exhaust gas purification system | |
JP4729405B2 (en) | Catalyst deterioration judgment device | |
JP7204426B2 (en) | Fuel injection control device for internal combustion engine | |
JP2004232576A (en) | Exhaust emission control device for internal combustion engine | |
JP4072412B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP2002130019A (en) | ELECTRONIC CONTROLLER FOR CONTROLLING AIR-FUEL RATIO TO REDUCE NOx CAPTURED IN LEAN NOx CATALYST | |
JP2018035771A (en) | Exhaust purification system of internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040615 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070109 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070312 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070717 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070730 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100817 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100817 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110817 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120817 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130817 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |