JP5867357B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP5867357B2
JP5867357B2 JP2012221944A JP2012221944A JP5867357B2 JP 5867357 B2 JP5867357 B2 JP 5867357B2 JP 2012221944 A JP2012221944 A JP 2012221944A JP 2012221944 A JP2012221944 A JP 2012221944A JP 5867357 B2 JP5867357 B2 JP 5867357B2
Authority
JP
Japan
Prior art keywords
exhaust gas
sensor
constant current
rich
lean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012221944A
Other languages
Japanese (ja)
Other versions
JP2013177884A (en
Inventor
幹泰 松岡
幹泰 松岡
真吾 中田
真吾 中田
真浩 横井
真浩 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012221944A priority Critical patent/JP5867357B2/en
Priority to US14/376,179 priority patent/US20140373512A1/en
Priority to DE112013000824.6T priority patent/DE112013000824T5/en
Priority to PCT/JP2013/000284 priority patent/WO2013114814A1/en
Publication of JP2013177884A publication Critical patent/JP2013177884A/en
Application granted granted Critical
Publication of JP5867357B2 publication Critical patent/JP5867357B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4065Circuit arrangements specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/30Controlling by gas-analysis apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • F02D41/1476Biasing of the sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/409Oxygen concentration cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9422Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、内燃機関の排出ガス浄化用の触媒と、この触媒の下流側又は触媒の途中に設置された排出ガスセンサとを備えた内燃機関の排出ガス浄化装置に関する発明である。   The present invention relates to an exhaust gas purification device for an internal combustion engine, which includes an exhaust gas purification catalyst for an internal combustion engine and an exhaust gas sensor installed downstream of the catalyst or in the middle of the catalyst.

内燃機関の排出ガス浄化システムでは、例えば、特許文献1(特許第3997599号公報)に記載されているように、排気管に排出ガス浄化用の触媒(例えば三元触媒やNOX 吸蔵還元型触媒)を設置すると共に、触媒の上流側や下流側に排出ガスの空燃比又はリッチ/リーンを検出する排出ガスセンサ(空燃比センサ又は酸素センサ)を設置し、排出ガスセンサの出力に基づいて空燃比をフィードバック制御して触媒の排出ガス浄化率を高めるようにしたものがある。 In an exhaust gas purification system for an internal combustion engine, for example, as described in Patent Document 1 (Japanese Patent No. 3997599), an exhaust gas purification catalyst (for example, a three-way catalyst or a NO x storage reduction catalyst) is provided in an exhaust pipe. ) And an exhaust gas sensor (air-fuel ratio sensor or oxygen sensor) for detecting the air-fuel ratio or rich / lean of the exhaust gas is installed upstream and downstream of the catalyst, and the air-fuel ratio is adjusted based on the output of the exhaust gas sensor. There is a type that improves the exhaust gas purification rate of the catalyst by feedback control.

ところで、酸素センサ等の排出ガスセンサは、排出ガスの空燃比がリッチ/リーンで変化する際に、実際の空燃比の変化に対してセンサ出力の変化に遅れが生じるのが実状であり、検出応答性の点で改善の余地が残されている。   By the way, in exhaust gas sensors such as oxygen sensors, when the air-fuel ratio of exhaust gas changes between rich and lean, the actual situation is that the change in sensor output is delayed with respect to the actual change in air-fuel ratio, and the detection response There remains room for improvement in terms of sex.

そこで、例えば、特許文献2(特公平8−20414号公報)に記載されているように、酸素センサ等のガスセンサの内部に、少なくとも1つの補助電気化学電池を組み込み、この補助電気化学電池をガスセンサの一方の電極に接続して、補助電気化学電池に印加電流を与えてイオンポンピングを行うことで、印加電流に応じてガスセンサの出力特性を変化させて検出応答性を高めることができるようにしたものがある。   Therefore, for example, as described in Patent Document 2 (Japanese Patent Publication No. 8-20414), at least one auxiliary electrochemical cell is incorporated in a gas sensor such as an oxygen sensor, and the auxiliary electrochemical cell is incorporated into the gas sensor. By connecting to one of the electrodes and applying an applied current to the auxiliary electrochemical cell to perform ion pumping, the output characteristics of the gas sensor can be changed according to the applied current to improve detection response. There is something.

また、特許文献3(特開昭56−89051号公報)に記載されているように、隔膜層、基準極電子伝導層、固体電解質層、測定極電子伝導層を積層してセンサ素子を構成した酸素センサにおいて、直流電源により供給される電流によって測定極側から基準極側に向けて酸素イオンの移動を生じさせることで、測定極側の酸素分圧を排出ガス(被検出ガス)中の酸素分圧よりも低下させて、理論空燃比よりもリーンな空燃比を検出できるようにしたものもある[図11(a)参照]。   Further, as described in Patent Document 3 (Japanese Patent Laid-Open No. 56-89051), a sensor element is configured by laminating a diaphragm layer, a reference electrode electron conduction layer, a solid electrolyte layer, and a measurement electrode electron conduction layer. In the oxygen sensor, oxygen ions are moved from the measurement electrode side to the reference electrode side by the current supplied from the DC power source, so that the oxygen partial pressure on the measurement electrode side is reduced to the oxygen in the exhaust gas (detected gas). There is also a system in which an air-fuel ratio that is leaner than the stoichiometric air-fuel ratio can be detected by lowering the partial pressure [see FIG. 11 (a)].

特許第3997599号公報Japanese Patent No. 3997599 特公平8−20414号公報Japanese Patent Publication No. 8-20414 特開昭56−89051号公報JP 56-89051 A

内燃機関の運転状態等によって触媒に流入する排出ガスの空燃比が変化し、それに伴って触媒の下流側や触媒内の排出ガスの空燃比も変化する。しかし、上記特許文献1の排出ガス浄化システムでは、排出ガスセンサの出力特性を変化させる機能を備えていないため、触媒の下流側や触媒内の空燃比の変化に対するセンサ出力変化の遅れの影響を受けて、触媒を有効に活用できないことがあり、排気エミッションを効果的に低減することができないという問題がある。   The air-fuel ratio of the exhaust gas flowing into the catalyst changes depending on the operating state of the internal combustion engine, and the air-fuel ratio of the exhaust gas downstream of the catalyst and in the catalyst also changes accordingly. However, since the exhaust gas purification system of Patent Document 1 does not have a function of changing the output characteristics of the exhaust gas sensor, the exhaust gas purification system is affected by a delay in sensor output change with respect to changes in the air-fuel ratio downstream of the catalyst or in the catalyst. As a result, the catalyst may not be used effectively, and exhaust emissions cannot be effectively reduced.

また、上記特許文献2では、ガスセンサの出力特性を変化させる技術が開示されているが、この技術では、ガスセンサの内部に補助電気化学電池を組み込む必要があるため、補助電気化学電池を備えていない一般的なガスセンサに対してセンサ構造を大きく変更する必要があり、実用化にあたっては、ガスセンサの設計変更が強いられたり、ガスセンサの製造コストが高くなる等の不都合が生じる。   Moreover, in the said patent document 2, although the technique which changes the output characteristic of a gas sensor is disclosed, in this technique, since it is necessary to incorporate an auxiliary electrochemical cell in the inside of a gas sensor, the auxiliary electrochemical cell is not provided. It is necessary to greatly change the sensor structure with respect to a general gas sensor, and in practical use, there are inconveniences such as a forced change in the design of the gas sensor and an increase in the manufacturing cost of the gas sensor.

また、上記特許文献3の技術では、次のような問題がある。
酸素センサの出力Eは、下記の基本式(ネルンストの式)で表すことができる。
E=(R×T)/(4×F)×ln(P1 /P2 )
ここで、Rは気体定数、Tは絶対温度、Fはファラデー定数、P1 は大気側(基準極側)の酸素分圧、P2 は排気側(測定極側)の酸素分圧である。
Further, the technique of Patent Document 3 has the following problems.
The output E of the oxygen sensor can be expressed by the following basic equation (Nernst equation).
E = (R * T) / (4 * F) * ln (P1 / P2)
Here, R is a gas constant, T is an absolute temperature, F is a Faraday constant, P1 is an oxygen partial pressure on the atmosphere side (reference electrode side), and P2 is an oxygen partial pressure on the exhaust side (measurement electrode side).

従って、酸素センサの出力Eを安定化させる(出力Eのばらつきを小さくする)には、基準極側の酸素濃度を安定化させて基準極側の酸素分圧P1 を安定化させることが重要である。   Therefore, in order to stabilize the output E of the oxygen sensor (to reduce variation in the output E), it is important to stabilize the oxygen partial pressure P1 on the reference electrode side by stabilizing the oxygen concentration on the reference electrode side. is there.

しかし、上記特許文献3の酸素センサは、基準極側が大気に晒されておらず、測定極側から基準極側に酸素を供給する構成となっているため、測定極側の酸素濃度の影響を受けて基準極側の酸素濃度を一定に保つことができなくなる可能性がある。例えば、触媒の下流側に酸素センサを設置した場合には、酸素センサで検出する排出ガスの酸素濃度が著しく低下することがあり、このような場合、測定極側の酸素濃度が著しく低下して、測定極側から基準極側に酸素をほとんど供給できなくなって、基準極側の酸素濃度を一定に保つことができなくなる可能性がある[図11(b)参照]。これにより、酸素センサのリッチ側の出力が不安定になって、酸素センサの検出精度が低下するという問題がある。   However, the oxygen sensor of Patent Document 3 is configured so that the reference electrode side is not exposed to the atmosphere and oxygen is supplied from the measurement electrode side to the reference electrode side. As a result, the oxygen concentration on the reference electrode side may not be kept constant. For example, when an oxygen sensor is installed on the downstream side of the catalyst, the oxygen concentration of the exhaust gas detected by the oxygen sensor may be significantly reduced. In such a case, the oxygen concentration on the measurement electrode side is significantly reduced. There is a possibility that almost no oxygen can be supplied from the measurement electrode side to the reference electrode side, and the oxygen concentration on the reference electrode side cannot be kept constant [see FIG. 11B]. As a result, the output on the rich side of the oxygen sensor becomes unstable, and there is a problem that the detection accuracy of the oxygen sensor decreases.

また、上記特許文献3の酸素センサは、測定極側から基準極側に酸素を供給するように電流を流すことで、酸素センサの出力特性線をリーン側にシフトさせることができるが、基準極側が大気に晒されておらず、基準極側から測定極側には酸素をほとんど供給できないため、酸素センサの出力特性線をほとんどリッチ側にシフトさせることができないという欠点もある[図11(c)参照]。   Further, the oxygen sensor of Patent Document 3 can shift the output characteristic line of the oxygen sensor to the lean side by flowing current so that oxygen is supplied from the measurement electrode side to the reference electrode side. Since the side is not exposed to the atmosphere and oxygen can hardly be supplied from the reference electrode side to the measurement electrode side, the output characteristic line of the oxygen sensor can hardly be shifted to the rich side [FIG. 11 (c). )reference].

そこで、本発明は、上記課題を解決することを目的とする。   Therefore, an object of the present invention is to solve the above problems.

上記課題を解決するために、請求項1に係る発明は、内燃機関(11)の排出ガス浄化用の触媒であって、該触媒に流入する排出ガスの空燃比がリーンのときに該排出ガス中のNO X を吸蔵し、該触媒に流入する排出ガスの空燃比がリッチになったときに該触媒に吸蔵されているNO X を還元浄化して放出するNO X 吸蔵還元型触媒(19)と、このNO X 吸蔵還元型触媒(19)の下流側又は該NO X 吸蔵還元型触媒(19)に設置され、一対のセンサ電極(33,34)間に固体電解質体(32)が設けられると共に該一対のセンサ電極(33,34)のうちの一方のセンサ電極(34)が大気に晒されたセンサ素子(31)により排出ガス中の所定成分の濃度を検出する排出ガスセンサ(28)とを備えた内燃機関の排出ガス浄化装置において、センサ電極(33,34)間に定電流を流して排出ガスセンサ(28)の出力特性を変更する定電流供給手段(27)と、排出ガスセンサ(28)の出力特性を変更する変更要求又は内燃機関(11)の運転状態に応じてセンサ電極(33,34)間に流す定電流の向きを決定し、該決定した向きで定電流が流れるように定電流供給手段(27)を制御する電流制御手段(25)とを備え、電流制御手段(25)は、内燃機関(11)に供給する混合気の空燃比をリーンに制御するリーン燃焼制御中には排出ガスセンサ(28)のリーン成分に対する検出応答性を高める方向に定電流が流れるように定電流供給手段(27)を制御し、内燃機関(11)に供給する混合気の空燃比をリッチに制御するリッチ燃焼制御中には排出ガスセンサ(28)のリッチ成分に対する検出応答性を高める方向に定電流が流れるように定電流供給手段(27)を制御する構成としたものである。 In order to solve the above problem, the invention according to claim 1 is a catalyst for purifying exhaust gas of an internal combustion engine (11) , wherein the exhaust gas when the air-fuel ratio of the exhaust gas flowing into the catalyst is lean occluding NO X in, NO X occluding and reducing catalyst when the air-fuel ratio of the exhaust gas flowing into the catalyst a NO X which is stored in the catalyst is reduced and purified to release when they become rich (19) If this the NO X storage reduction catalyst (19) disposed downstream or the the NO X storage reduction catalyst (19), the solid electrolyte body (32) is provided between the pair of sensor electrodes (33, 34) And an exhaust gas sensor (28) for detecting the concentration of a predetermined component in the exhaust gas by a sensor element (31) in which one of the pair of sensor electrodes (33, 34) is exposed to the atmosphere. In an internal combustion engine exhaust gas purification device equipped with A constant current supply means (27) for changing the output characteristics of the exhaust gas sensor (28) by passing a constant current between the sensor electrodes (33, 34) and a change request for changing the output characteristics of the exhaust gas sensor (28) or The direction of the constant current flowing between the sensor electrodes (33, 34) is determined according to the operating state of the internal combustion engine (11), and the constant current supply means (27) is controlled so that the constant current flows in the determined direction. Current control means (25), and the current control means (25) is a lean component of the exhaust gas sensor (28) during lean combustion control for controlling the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine (11) lean. The constant current supply means (27) is controlled so that the constant current flows in a direction to improve the detection response to the exhaust gas, and the exhaust gas is discharged during the rich combustion control in which the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine (11) is controlled to be rich. Gassen (28) is obtained by the configuration of controlling the constant current supplying means (27) so that a constant current flows in a direction to increase the detection responsiveness to rich components.

この構成では、定電流供給手段によりセンサ電極間に定電流を流すことで排出ガスセンサの出力特性を変更することができる。この場合、排出ガスセンサの内部に補助電気化学電池等を組み込む必要がないため、排出ガスセンサの大幅な設計変更やコストアップを招くことなく排出ガスセンサの出力特性を変化させることができる。   In this configuration, the output characteristics of the exhaust gas sensor can be changed by causing a constant current to flow between the sensor electrodes by the constant current supply means. In this case, since it is not necessary to incorporate an auxiliary electrochemical cell or the like inside the exhaust gas sensor, the output characteristics of the exhaust gas sensor can be changed without causing a significant design change or cost increase of the exhaust gas sensor.

更に、排出ガスセンサの出力特性を変更する変更要求又は内燃機関の運転状態に応じてセンサ電極間に流す定電流の向きを決定し、該決定した向きで定電流が流れるように定電流供給手段を制御することで、内燃機関の運転状態等によってNO X 吸蔵還元型触媒に流入する排出ガスの状態が変化してNO X 吸蔵還元型触媒の下流側やNO X 吸蔵還元型触媒内の排出ガスの状態が変化しても、それに応じて排出ガスセンサの出力特性を変化させて検出応答性を高めることができる。これにより、NO X 吸蔵還元型触媒の下流側やNO X 吸蔵還元型触媒内の排出ガスの状態の変化に対するセンサ出力変化の遅れの影響をあまり受けずにNO X 吸蔵還元型触媒を有効に活用することが可能となり、排気エミッションを効果的に低減することができる。 Further, the direction of the constant current flowing between the sensor electrodes is determined according to a change request for changing the output characteristics of the exhaust gas sensor or the operating state of the internal combustion engine, and a constant current supply means is provided so that the constant current flows in the determined direction. by controlling, by the operating state of the internal combustion engine NO X storage reduction catalyst exhaust gas flowing into the state changes in the NO X occluding and reducing catalyst downstream and NO of X storage reduction catalyst the exhaust gas Even if the state changes, it is possible to improve the detection response by changing the output characteristics of the exhaust gas sensor accordingly. Utilization Thus, the the NO X storage reduction catalyst effectively without being much the delay effect of the sensor output change with respect to changes in the state of the exhaust gas on the downstream side and the NO X storage reduction type in the catalyst of the NO X occluding and reducing catalyst Thus, exhaust emission can be effectively reduced.

また、一方のセンサ電極(大気側センサ電極)が大気に晒されているため、他方のセンサ電極(排気側センサ電極)側の酸素濃度に左右されずに大気側センサ電極側の酸素濃度を常に一定(大気相当)に維持することができ、NO X 吸蔵還元型触媒の下流側に排出ガスセンサを設置した場合(つまり排出ガスセンサで検出する排出ガスの酸素濃度が著しく低下することがある場合)でも、排出ガスセンサの出力を安定化させる(出力のばらつきを小さくする)ことができる。 In addition, since one sensor electrode (atmosphere side sensor electrode) is exposed to the atmosphere, the oxygen concentration on the atmosphere side sensor electrode side is always controlled regardless of the oxygen concentration on the other sensor electrode (exhaust side sensor electrode) side. constant even (if sometimes i.e. oxygen concentration of the exhaust gas detected by the exhaust gas sensor is significantly decreased) can be maintained (atmospheric equivalent), when installed the exhaust gas sensor downstream of the NO X occluding and reducing catalyst The output of the exhaust gas sensor can be stabilized (variation in output can be reduced).

更に、排気側センサ電極側から大気側センサ電極側に酸素を供給するように電流を流すことで、排出ガスセンサの出力特性線をリーン側にシフトさせることができると共に、大気側センサ電極側から排気側センサ電極側に酸素を供給するように電流を流すことで、排出ガスセンサの出力特性線をリッチ側にシフトさせることができ、排出ガスセンサの出力特性線をリーン側とリッチ側のいずれの方向にもシフトさせることができるという利点もある。   Furthermore, by supplying an electric current so that oxygen is supplied from the exhaust side sensor electrode side to the atmosphere side sensor electrode side, the output characteristic line of the exhaust gas sensor can be shifted to the lean side, and the exhaust gas is discharged from the atmosphere side sensor electrode side. By flowing current so that oxygen is supplied to the side sensor electrode side, the output characteristic line of the exhaust gas sensor can be shifted to the rich side, and the output characteristic line of the exhaust gas sensor can be shifted to either the lean side or the rich side. There is also an advantage that can be shifted.

本発明は、NOX 吸蔵還元型触媒の下流側又はNOX 吸蔵還元型触媒に排出ガスセンサを設置したシステムにおいて、内燃機関(11)に供給する混合気の空燃比をリーンに制御するリーン燃焼制御中には排出ガスセンサ(28)のリーン成分に対する検出応答性を高める方向に定電流が流れるように定電流供給手段(27)を制御し、内燃機関(11)に供給する混合気の空燃比をリッチに制御するリッチ燃焼制御中には排出ガスセンサ(28)のリッチ成分に対する検出応答性を高める方向に定電流が流れるように定電流供給手段(27)を制御するようにしている The present invention provides a system installed exhaust gas sensor on the downstream side or the NO X storage reduction catalyst of the NO X occluding and reducing catalyst, the lean combustion control for controlling the air-fuel ratio of a mixture supplied to the internal combustion engine (11) to lean The constant current supply means (27) is controlled so that the constant current flows in a direction to increase the detection response to the lean component of the exhaust gas sensor (28), and the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine (11) is controlled. during the rich combustion control to control the rich so as to control the constant current supply means so constant current flows in a direction to increase the detection responsiveness to the rich component of the exhaust gas sensor (28) (27).

リーン燃焼制御中は、NOX 吸蔵還元型触媒に流入する排出ガスの空燃比がリーンになって、排出ガス中のNOX (リーン成分)がNOX 吸蔵還元型触媒に吸蔵されるが、NOX 吸蔵還元型触媒のNOX 吸蔵量が多くなると、排出ガス中のNOX がNOX 吸蔵還元型触媒を通過してNOX 吸蔵還元型触媒の下流側に排出されるようになる。このため、リーン燃焼制御中に排出ガスセンサのリーン応答性(リーン成分に対する検出応答性)を高めるようにすれば、リーン燃焼制御中にNOX 吸蔵還元型触媒のNOX 吸蔵量が多くなって、NOX 吸蔵還元型触媒の下流側にNOX (リーン成分)が排出される状態になったときに、その状態を排出ガスセンサで早期に検出することができる。これにより、リーン燃焼制御の開始後にNOX 吸蔵還元型触媒の下流側にNOX が排出される状態になったときに、リーン燃焼制御を早期に停止することができ、NOX の排出量を低減することができる。 During lean combustion control, the air-fuel ratio of the exhaust gas flowing into the NO X storage reduction catalyst becomes lean, and NO X (lean component) in the exhaust gas is stored in the NO X storage reduction catalyst. When the NO X storage amount of X storage reduction catalyst increases, so NO X in the exhaust gas is discharged to the downstream side of the NO X storage reduction catalyst through the the NO X storage reduction catalyst. Thus, if to increase the lean responsiveness of the exhaust gas sensor during the lean combustion control (detection responsiveness to a lean component), an increasing number of the NO X storage amount of the NO X occluding and reducing catalyst during the lean combustion control, when NO X (the lean component) is ready to be discharged to the downstream side of the NO X occluding and reducing catalyst, it is possible to detect at an early stage that state in the exhaust gas sensor. As a result, the lean combustion control can be stopped early when NO X is discharged downstream of the NO X storage reduction catalyst after the start of the lean combustion control, and the NO X emission amount is reduced. Can be reduced.

リッチ燃焼制御中は、NOX 吸蔵還元型触媒に流入する排出ガスの空燃比がリッチになって、NOX 吸蔵還元型触媒に吸蔵されているNOX が排出ガス中のHCやCO(リッチ成分)によって還元浄化されて放出されるが、NOX 吸蔵還元型触媒のNOX 吸蔵量が少なくなると、排出ガス中のHCやCOがNOX 吸蔵還元型触媒を通過してNOX 吸蔵還元型触媒の下流側に排出されるようになる。このため、リッチ燃焼制御中に排出ガスセンサのリッチ応答性(リッチ成分に対する検出応答性)を高めるようにすれば、リッチ燃焼制御中にNOX 吸蔵還元型触媒のNOX 吸蔵量が少なくなって、NOX 吸蔵還元型触媒の下流側にHCやCO(リッチ成分)が排出される状態になったときに、その状態を排出ガスセンサで早期に検出することができる。これにより、リッチ燃焼制御の開始後にNOX 吸蔵還元型触媒の下流側にHCやCOが排出される状態になったときに、リッチ燃焼制御を早期に停止することができ、HCやCOの排出量を低減することができる。 During the rich combustion control is, NO X occluding air-fuel ratio of the exhaust gas flowing into the catalytic reduction catalyst becomes rich, NO X HC and CO (rich components of storage reduction catalyst NO X which is stored in the in the exhaust gas ) by it is released is reduced and purified, the NO X storage reduction type when the NO X storage amount of the catalyst is reduced, the NO X storage reduction catalyst HC and CO in the exhaust gas passes through the the NO X storage reduction catalyst It is discharged to the downstream side. Thus, if to increase the rich responsiveness of the exhaust gas sensor during the rich combustion control (detection responsiveness to rich components), is less the NO X storage amount of the NO X occluding and reducing catalyst during the rich combustion control, When HC and CO (rich components) are exhausted downstream of the NO x storage reduction catalyst, the state can be detected early by the exhaust gas sensor. Thus, when the state in which HC and CO is discharged to the downstream side of the NO X occluding and reducing catalyst after the start of the rich combustion control, it is possible to stop the rich combustion control early discharge of HC and CO The amount can be reduced.

図1は本発明の実施例1におけるエンジン制御システムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of an engine control system in Embodiment 1 of the present invention. 図2はセンサ素子の断面構成を示す断面図である。FIG. 2 is a cross-sectional view showing a cross-sectional configuration of the sensor element. 図3は排出ガスの空燃比(空気過剰率λ)とセンサ素子の起電力との関係を示す起電力特性図である。FIG. 3 is an electromotive force characteristic diagram showing the relationship between the air-fuel ratio (excess air ratio λ) of exhaust gas and the electromotive force of the sensor element. 図4はセンサ素子周辺のガス成分の状態を示す概略図である。FIG. 4 is a schematic view showing the state of gas components around the sensor element. 図5はセンサ出力の挙動を説明するタイムチャートである。FIG. 5 is a time chart for explaining the behavior of the sensor output. 図6はセンサ素子周辺のガス成分の状態を示す概略図である。FIG. 6 is a schematic view showing the state of gas components around the sensor element. 図7はリーン応答性/リッチ応答性を高める場合における酸素センサの出力特性図である。FIG. 7 is an output characteristic diagram of the oxygen sensor when the lean response / rich response is enhanced. 図8は触媒活用制御の実行例を説明するタイムチャートである。FIG. 8 is a time chart for explaining an execution example of catalyst utilization control. 図9は触媒活用制御ルーチンの処理の流れを示すフローチャートである。FIG. 9 is a flowchart showing the flow of processing of the catalyst utilization control routine. 図10は実施例1の効果を説明する図である。FIG. 10 is a diagram for explaining the effect of the first embodiment. 図11は従来技術の問題を説明する図である。FIG. 11 is a diagram for explaining a problem of the prior art. 図12は本発明に関連する参考例としての実施例2のエンジン制御システムの概略構成を示す図である。FIG. 12 is a diagram showing a schematic configuration of an engine control system according to a second embodiment as a reference example related to the present invention . 図13はセンサ応答性制御ルーチンの処理の流れを示すフローチャートである。FIG. 13 is a flowchart showing the flow of processing of the sensor responsiveness control routine.

以下、本発明を実施するための形態を具体化した実施例1と本発明に関連する参考例としての実施例2を説明する。 Hereinafter, an embodiment 2 of a reference example relating to the actual Example 1 and the present invention embodying the embodiments of the present invention.

本発明の実施例1を図1乃至図10に基づいて説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。
A first embodiment of the present invention will be described with reference to FIGS.
First, a schematic configuration of the entire engine control system will be described with reference to FIG.

内燃機関であるエンジン11の吸気管12には、モータ等によって開度調節されるスロットルバルブ13と、このスロットルバルブ13の開度(スロットル開度)を検出するスロットル開度センサ14とが設けられている。また、エンジン11の各気筒毎に、それぞれ筒内噴射又は吸気ポート噴射を行う燃料噴射弁15が取り付けられ、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ16が取り付けられている。各点火プラグ16の火花放電によって筒内の混合気に着火される。   An intake pipe 12 of an engine 11 that is an internal combustion engine is provided with a throttle valve 13 whose opening is adjusted by a motor or the like, and a throttle opening sensor 14 that detects the opening (throttle opening) of the throttle valve 13. ing. Further, a fuel injection valve 15 that performs in-cylinder injection or intake port injection is attached to each cylinder of the engine 11, and a spark plug 16 is attached to the cylinder head of the engine 11 for each cylinder. The air-fuel mixture in the cylinder is ignited by the spark discharge of each spark plug 16.

一方、エンジン11の排気管17には、排出ガス中のCO,HC,NOX 等を浄化する三元触媒18が設けられ、この三元触媒18の下流側に、NOX 吸蔵還元型触媒19が設けられている。このNOX 吸蔵還元型触媒19は、触媒19に流入する排出ガスの空燃比がリーンのときに排出ガス中のNOX を吸蔵し、触媒19に流入する排出ガスの空燃比がリッチになったときに触媒19に吸蔵されているNOX を還元浄化して放出する特性を持っている。 On the other hand, the exhaust pipe 17 of the engine 11 is provided with a three-way catalyst 18 for purifying CO, HC, NO x and the like in the exhaust gas, and the NO x storage reduction catalyst 19 is provided downstream of the three-way catalyst 18. Is provided. This the NO X storage reduction catalyst 19, the air-fuel ratio of the exhaust gas flowing into the catalyst 19 occludes NO X in the exhaust gas when the lean air-fuel ratio of the exhaust gas flowing into the catalyst 19 becomes rich Sometimes NO x stored in the catalyst 19 is reduced and purified and released.

また、三元触媒18の上流側と下流側には、それぞれ排出ガスの空燃比又はリッチ/リーンを検出する排出ガスセンサ20,21が設置されている。これらの排出ガスセンサ20,21としては、排出ガスの空燃比に応じたリニアな空燃比信号を出力する空燃比センサ(リニアA/Fセンサ)又は排出ガスの空燃比が理論空燃比に対してリッチかリーンかによって出力電圧が反転する酸素センサ(O2 センサ)が用いられる。更に、NOX 吸蔵還元型触媒19の下流側には、排出ガスの空燃比が理論空燃比に対してリッチかリーンかによって出力電圧が反転する酸素センサ28(O2 センサ)が排出ガスセンサとして設置されている。 Further, exhaust gas sensors 20 and 21 for detecting the air-fuel ratio or rich / lean of the exhaust gas are installed on the upstream side and the downstream side of the three-way catalyst 18, respectively. As these exhaust gas sensors 20, 21, an air-fuel ratio sensor (linear A / F sensor) that outputs a linear air-fuel ratio signal corresponding to the air-fuel ratio of the exhaust gas, or the air-fuel ratio of the exhaust gas is richer than the stoichiometric air-fuel ratio. An oxygen sensor (O 2 sensor) whose output voltage is inverted depending on whether it is lean or not is used. Further, an oxygen sensor 28 (O 2 sensor) whose output voltage is inverted depending on whether the air-fuel ratio of the exhaust gas is rich or lean with respect to the stoichiometric air-fuel ratio is installed as an exhaust gas sensor on the downstream side of the NO x storage reduction catalyst 19. Has been.

また、本システムには、エンジン11のクランク軸(図示せず)が所定クランク角回転する毎にパルス信号を出力するクランク角センサ22や、エンジン11の吸入空気量を検出する空気量センサ23や、エンジン11の冷却水温を検出する冷却水温センサ24等の各種のセンサが設けられている。クランク角センサ22の出力信号に基づいてクランク角やエンジン回転速度が検出される。   In addition, this system includes a crank angle sensor 22 that outputs a pulse signal every time a crankshaft (not shown) of the engine 11 rotates by a predetermined crank angle, an air amount sensor 23 that detects an intake air amount of the engine 11, Various sensors such as a cooling water temperature sensor 24 for detecting the cooling water temperature of the engine 11 are provided. Based on the output signal of the crank angle sensor 22, the crank angle and the engine speed are detected.

これら各種センサの出力は、電子制御ユニット(以下「ECU」と表記する)25に入力される。このECU25は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御用のプログラムを実行することで、エンジン運転状態に応じて、燃料噴射量、点火時期、スロットル開度(吸入空気量)等を制御する。   Outputs of these various sensors are input to an electronic control unit (hereinafter referred to as “ECU”) 25. The ECU 25 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), so that the fuel injection amount and the ignition timing are determined according to the engine operating state. The throttle opening (intake air amount) and the like are controlled.

次に、図2に基づいて酸素センサ28の構成を説明する。
酸素センサ28は、コップ型構造のセンサ素子31を有しており、実際には当該センサ素子31は素子全体が図示しないハウジングや素子カバー内に収容される構成となっており、エンジン11の排気管17内に配設されている。
Next, the configuration of the oxygen sensor 28 will be described with reference to FIG.
The oxygen sensor 28 includes a sensor element 31 having a cup-shaped structure. In actuality, the sensor element 31 is configured so that the entire element is accommodated in a housing or an element cover (not shown). Arranged in the tube 17.

センサ素子31において、固体電解質層32(固体電解質体)は、断面コップ状に形成されており、その外表面には排気側電極層33が設けられ、内表面には大気側電極層34が設けられている。固体電解質層32は、ZrO2 、HfO2 、ThO2 、Bi2 3 等にCaO、MgO、Y2 3 、Yb2 3 等を安定剤として固溶させた酸素イオン伝導性酸化物焼結体からなる。また、各電極層33,34は共に白金等の触媒活性の高い貴金属からなり、その表面には多孔質の化学メッキ等が施されている。これらの電極層33,34が一対の対向電極(センサ電極)となっている。固体電解質層32にて囲まれる内部空間は大気室35となっており、その大気室35内にはヒータ36が収容されている。このヒータ36は、センサ素子31を活性化するのに十分な発熱容量を有しており、その発熱エネルギによりセンサ素子31全体が加熱される。酸素センサ28の活性温度は、例えば350〜400℃程度である。尚、大気室35は、大気が導入されることでその内部が所定酸素濃度に保持され、大気側電極層34が大気室35内の大気に晒されている。 In the sensor element 31, the solid electrolyte layer 32 (solid electrolyte body) is formed in a cup shape in cross section, an exhaust side electrode layer 33 is provided on the outer surface, and an air side electrode layer 34 is provided on the inner surface. It has been. The solid electrolyte layer 32 is made of an oxygen ion conductive oxide that is formed by dissolving CaO, MgO, Y 2 O 3 , Yb 2 O 3 or the like as a stabilizer in ZrO 2 , HfO 2 , ThO 2 , Bi 2 O 3 or the like. Consists of union. Each of the electrode layers 33 and 34 is made of a noble metal having high catalytic activity such as platinum, and the surface thereof is subjected to porous chemical plating or the like. These electrode layers 33 and 34 form a pair of counter electrodes (sensor electrodes). An internal space surrounded by the solid electrolyte layer 32 is an atmospheric chamber 35, and a heater 36 is accommodated in the atmospheric chamber 35. The heater 36 has a heat generation capacity sufficient to activate the sensor element 31, and the entire sensor element 31 is heated by the heat generation energy. The activation temperature of the oxygen sensor 28 is, for example, about 350 to 400 ° C. The atmosphere chamber 35 is maintained at a predetermined oxygen concentration by introducing the atmosphere, and the atmosphere-side electrode layer 34 is exposed to the atmosphere in the atmosphere chamber 35.

センサ素子31では、固体電解質層32の外側(電極層33側)が排気雰囲気、固体電解質層32の内側(電極層34側)が大気雰囲気となっており、これら双方の酸素濃度の差(酸素分圧の差)に応じて電極層33,34間で起電力が発生する。つまり、センサ素子31では、空燃比がリッチかリーンかで異なる起電力が発生する。これにより、酸素センサ28は、排出ガスの酸素濃度(すなわち空燃比)に応じた起電力信号を出力する。   In the sensor element 31, the outside of the solid electrolyte layer 32 (electrode layer 33 side) is an exhaust atmosphere, and the inside of the solid electrolyte layer 32 (electrode layer 34 side) is an air atmosphere. An electromotive force is generated between the electrode layers 33 and 34 in accordance with the difference in partial pressure. That is, the sensor element 31 generates different electromotive force depending on whether the air-fuel ratio is rich or lean. Thereby, the oxygen sensor 28 outputs an electromotive force signal corresponding to the oxygen concentration (that is, the air-fuel ratio) of the exhaust gas.

図3に示すように、センサ素子31は、空燃比が理論空燃比(空気過剰率λ=1)に対してリッチかリーンかで異なる起電力を発生し、理論空燃比(空気過剰率λ=1)付近で起電力が急変する特性を有する。具体的には、燃料リッチ時のセンサ起電力は約0.9Vであり、燃料リーン時のセンサ起電力は約0Vである。   As shown in FIG. 3, the sensor element 31 generates an electromotive force that varies depending on whether the air-fuel ratio is rich or lean with respect to the stoichiometric air-fuel ratio (excess air ratio λ = 1). 1) It has a characteristic that the electromotive force changes suddenly in the vicinity. Specifically, the sensor electromotive force when the fuel is rich is about 0.9V, and the sensor electromotive force when the fuel is lean is about 0V.

図2に示すように、センサ素子31の排気側電極層33は接地され、大気側電極層34にはマイコン26が接続されている。排出ガスの空燃比(酸素濃度)に応じてセンサ素子31にて起電力が発生すると、その起電力に相当するセンサ検出信号がマイコン26に対して出力される。マイコン26は、例えばECU25内に設けられており、センサ検出信号に基づいて空燃比を算出する。尚、マイコン26は、上述した各種センサの検出結果に基づいてエンジン回転速度や吸入空気量を算出するようにしても良い。   As shown in FIG. 2, the exhaust-side electrode layer 33 of the sensor element 31 is grounded, and the microcomputer 26 is connected to the atmosphere-side electrode layer 34. When an electromotive force is generated in the sensor element 31 according to the air-fuel ratio (oxygen concentration) of the exhaust gas, a sensor detection signal corresponding to the electromotive force is output to the microcomputer 26. The microcomputer 26 is provided in the ECU 25, for example, and calculates the air-fuel ratio based on the sensor detection signal. The microcomputer 26 may calculate the engine rotation speed and the intake air amount based on the detection results of the various sensors described above.

ところで、エンジン11の運転時には、排出ガスの実空燃比が逐次変化し、例えばリッチとリーンとで繰り返し変化することがある。こうした実空燃比の変化に際し、酸素センサ28の検出応答性が低いと、それに起因してエンジン性能に影響が及ぶことが懸念される。例えば、エンジン11の高負荷運転時において排出ガス中のNOX 量が意図よりも増えてしまう等が生じる。 By the way, when the engine 11 is operated, the actual air-fuel ratio of the exhaust gas changes sequentially, and may change repeatedly, for example, between rich and lean. When the actual air-fuel ratio changes, if the detection response of the oxygen sensor 28 is low, there is a concern that the engine performance may be affected. For example, when the engine 11 is operating at a high load, the amount of NO x in the exhaust gas increases more than intended.

実空燃比がリッチとリーンとで変化する際の酸素センサ28の検出応答性について説明する。エンジン11から排出される排出ガスにおいて実空燃比(NOX 吸蔵還元型触媒19の下流側の実空燃比)がリッチ/リーンで変化する際には排出ガスの成分組成が変わる。このとき、その変化の直前における排出ガス成分の残留により、変化後の空燃比に対する酸素センサ28の出力変化(すなわちセンサ出力の応答性)が遅くなる。具体的には、リッチからリーンへの変化時には、図4(a)に示すように、リーン変化直後にリッチ成分であるHC等が排気側電極層33付近に残留し、このリッチ成分により、センサ電極でのリーン成分(NOX 等)の反応が妨げられる。その結果、酸素センサ28としてリーン出力の応答性が低下する。また、リーンからリッチへの変化時には、図4(b)に示すように、リッチ変化直後にリーン成分であるNOX 等が排気側電極層33付近に残留し、このリーン成分により、センサ電極でのリッチ成分(HC等)の反応が妨げられる。その結果、酸素センサ28としてリッチ出力の応答性が低下する。 The detection response of the oxygen sensor 28 when the actual air-fuel ratio changes between rich and lean will be described. When the actual air-fuel ratio (the actual air-fuel ratio downstream of the NO x storage reduction catalyst 19) changes in rich / lean in the exhaust gas discharged from the engine 11, the component composition of the exhaust gas changes. At this time, due to the residual exhaust gas component immediately before the change, the change in the output of the oxygen sensor 28 relative to the air-fuel ratio after the change (that is, the response of the sensor output) is delayed. Specifically, at the time of the change from rich to lean, as shown in FIG. 4 (a), immediately after the lean change, HC or the like, which is a rich component, remains in the vicinity of the exhaust-side electrode layer 33. the reaction of the lean component of the electrode (NO X, etc.) is prevented. As a result, the responsiveness of the lean output as the oxygen sensor 28 decreases. Further, at the time of the change from lean to rich, as shown in FIG. 4B, immediately after the rich change, NO x or the like that is a lean component remains in the vicinity of the exhaust-side electrode layer 33, and this lean component causes the sensor electrode to Reaction of the rich component (HC, etc.) As a result, the responsiveness of rich output as the oxygen sensor 28 decreases.

酸素センサ28の出力変化を図5のタイムチャートで説明する。図5において、実空燃比がリッチ及びリーンで変化すると、その実空燃比の変化に応じてセンサ出力(酸素センサ28の出力)がリッチガス検出値(0.9V)とリーンガス検出値(0V)とで変化する。但し、この場合、実空燃比の変化に対してセンサ出力は遅れを伴い変化する。図5では、リッチ→リーンの変化時には、実空燃比の変化に対してセンサ出力がTD1の遅れで変化し、リーン→リッチの変化時には、実空燃比の変化に対してセンサ出力がTD2の遅れで変化するようになっている。   The output change of the oxygen sensor 28 will be described with reference to the time chart of FIG. In FIG. 5, when the actual air-fuel ratio changes between rich and lean, the sensor output (the output of the oxygen sensor 28) changes between the rich gas detection value (0.9 V) and the lean gas detection value (0 V) according to the change in the actual air-fuel ratio. Change. However, in this case, the sensor output changes with a delay with respect to the change in the actual air-fuel ratio. In FIG. 5, the sensor output changes with a delay of TD1 with respect to the change of the actual air-fuel ratio when changing from rich to lean, and the sensor output is delayed with respect to the change of the actual air-fuel ratio when changing from lean to rich. It has come to change.

そこで、本実施例1では、図2に示すように、大気側電極層34に定電流供給手段としての定電流回路27を接続し、その定電流回路27による定電流Icsの供給をマイコン26により制御して、一対のセンサ電極間(排気側電極層33と大気側電極層34との間)に所定方向で電流を流すことで、酸素センサ28の出力特性を変更して検出応答性を変化させるようにしている。この場合、マイコン26は、一対のセンサ電極間に流れる定電流Icsの向きと量とを設定し、その設定した定電流Icsが流れるように定電流回路27を制御する。   Therefore, in the first embodiment, as shown in FIG. 2, a constant current circuit 27 as a constant current supply means is connected to the atmosphere side electrode layer 34, and the constant current Ics supplied by the constant current circuit 27 is supplied by the microcomputer 26. By controlling the current to flow between the pair of sensor electrodes (between the exhaust-side electrode layer 33 and the atmosphere-side electrode layer 34) in a predetermined direction, the output characteristics of the oxygen sensor 28 are changed to change the detection response. I try to let them. In this case, the microcomputer 26 sets the direction and amount of the constant current Ics flowing between the pair of sensor electrodes, and controls the constant current circuit 27 so that the set constant current Ics flows.

詳しくは、定電流回路27は、大気側電極層34に対して、正逆両方向いずれかの向きで定電流Icsを供給するものであり、更にその定電流量を可変に調整できるものである。つまり、マイコン26は、PWM制御により定電流Icsを可変に制御する。この場合、定電流回路27では、マイコン26から出力されるデューティ信号に応じて定電流Icsが調整され、その電流量調整された定電流Icsがセンサ電極間(排気側電極層33と大気側電極層34との間)に流れることとなる。   Specifically, the constant current circuit 27 supplies the constant current Ics to the atmosphere-side electrode layer 34 in either the forward or reverse direction, and the constant current amount can be variably adjusted. That is, the microcomputer 26 variably controls the constant current Ics by PWM control. In this case, in the constant current circuit 27, the constant current Ics is adjusted in accordance with the duty signal output from the microcomputer 26, and the constant current Ics whose current amount is adjusted is provided between the sensor electrodes (the exhaust side electrode layer 33 and the atmosphere side electrode). (Between the layers 34).

尚、本実施例では、排気側電極層33→大気側電極層34の向きに流れる定電流Icsを負の定電流(−Ics)、大気側電極層34→排気側電極層33の向きに流れる定電流Icsを正の定電流(+Ics)としている。   In this embodiment, the constant current Ics that flows in the direction from the exhaust side electrode layer 33 to the atmosphere side electrode layer 34 is a negative constant current (−Ics), and the constant current Ics flows in the direction from the atmosphere side electrode layer 34 to the exhaust side electrode layer 33. The constant current Ics is a positive constant current (+ Ics).

例えば、リッチからリーンへの変化時の検出応答性(リーン感度)を高める場合には、図6(a)に示すように、固体電解質層32内を通じて大気側電極層34から排気側電極層33に酸素が供給されるように定電流Ics(負の定電流Ics)が流される。この場合、大気側から排気側に酸素が供給されることにより、排気側電極層33の周囲に存在(残留)しているリッチ成分(HC)について酸化反応が促進され、それに伴いリッチ成分をいち早く除去できる。これにより、排気側電極層33においてリーン成分(NOX )が反応しやすくなり、結果として酸素センサ28のリーン出力の応答性が向上する。 For example, in order to increase the detection response (lean sensitivity) at the time of change from rich to lean, as shown in FIG. 6A, the atmosphere side electrode layer 34 through the exhaust side electrode layer 33 through the solid electrolyte layer 32. A constant current Ics (negative constant current Ics) is supplied so that oxygen is supplied to. In this case, by supplying oxygen from the atmosphere side to the exhaust side, the oxidation reaction is promoted with respect to the rich component (HC) existing (residual) around the exhaust side electrode layer 33, and accordingly, the rich component is promptly removed. Can be removed. As a result, the lean component (NO x ) easily reacts in the exhaust-side electrode layer 33, and as a result, the response of the lean output of the oxygen sensor 28 is improved.

また、リーンからリッチへの変化時の検出応答性(リッチ感度)を高める場合には、図6(b)に示すように、固体電解質層32内を通じて排気側電極層33から大気側電極層34に酸素が供給されるように定電流Ics(正の定電流Ics)が流される。この場合、排気側から大気側に酸素が供給されることにより、排気側電極層33の周囲に存在(残留)しているリーン成分(NOX )について還元反応が促進され、それに伴いリーン成分をいち早く除去できる。これにより、排気側電極層33においてリッチ成分(HC)が反応しやすくなり、結果として酸素センサ28のリッチ出力の応答性が向上する。 Further, in the case where the detection responsiveness (rich sensitivity) at the time of change from lean to rich is increased, as shown in FIG. 6B, the exhaust-side electrode layer 33 through the atmosphere-side electrode layer 34 through the solid electrolyte layer 32. Is supplied with a constant current Ics (positive constant current Ics). In this case, by supplying oxygen from the exhaust side to the atmosphere side, the reduction reaction is promoted with respect to the lean component (NO x ) existing (residual) around the exhaust side electrode layer 33, and accordingly, the lean component is reduced. It can be removed quickly. As a result, the rich component (HC) easily reacts in the exhaust-side electrode layer 33, and as a result, the responsiveness of the rich output of the oxygen sensor 28 is improved.

図7は、リーン変化時の検出応答性(リーン感度)を高める場合、及びリッチ変化時の検出応答性(リッチ感度)を高める場合における酸素センサ28の出力特性(起電力特性)を示す図である。   FIG. 7 is a diagram showing output characteristics (electromotive force characteristics) of the oxygen sensor 28 when increasing the detection responsiveness (lean sensitivity) at the time of lean change and when increasing the detection responsiveness (rich sensitivity) at the time of rich change. is there.

リーン変化時の検出応答性(リーン感度)を高める場合において、上記のとおり固体電解質層32内を通じて大気側電極層34から排気側電極層33に酸素が供給されるように負の定電流Icsが流されると(図6(a)参照)、図7の(a)に示すように、出力特性線がリッチ側にシフトする(より詳細には、リッチ側かつ起電力減少側にシフトする)。この場合、実際の空燃比がストイキ近傍のリッチ域にあってもセンサ出力がリーン出力となる。これは、酸素センサ28の出力特性として、リーン変化時の検出応答性(リーン感度)が高められていることを意味する。   In the case of increasing the detection responsiveness (lean sensitivity) at the time of lean change, the negative constant current Ics is set so that oxygen is supplied from the atmosphere-side electrode layer 34 to the exhaust-side electrode layer 33 through the solid electrolyte layer 32 as described above. When the current flows (see FIG. 6A), as shown in FIG. 7A, the output characteristic line shifts to the rich side (more specifically, shifts to the rich side and the electromotive force decreasing side). In this case, the sensor output becomes a lean output even if the actual air-fuel ratio is in the rich region near the stoichiometric range. This means that the detection response (lean sensitivity) at the time of a lean change is enhanced as the output characteristic of the oxygen sensor 28.

また、リッチ変化時の検出応答性(リッチ感度)を高める場合において、上記のとおり固体電解質層32内を通じて排気側電極層33から大気側電極層34に酸素が供給されるように正の定電流Icsが流されると(図6(b)参照)、図7の(b)に示すように、出力特性線がリーン側にシフトする(より詳細には、リーン側かつ起電力増加側にシフトする)。この場合、実際の空燃比がストイキ近傍のリーン域にあってもセンサ出力がリッチ出力となる。これは、酸素センサ28の出力特性として、リッチ変化時の検出応答性(リッチ感度)が高められていることを意味する。   Further, in the case where the detection responsiveness (rich sensitivity) at the time of rich change is enhanced, a positive constant current is supplied so that oxygen is supplied from the exhaust-side electrode layer 33 to the atmosphere-side electrode layer 34 through the solid electrolyte layer 32 as described above. When Ics flows (see FIG. 6B), the output characteristic line shifts to the lean side (more specifically, to the lean side and the electromotive force increasing side, as shown in FIG. 7B). ). In this case, the sensor output becomes a rich output even if the actual air-fuel ratio is in the lean region near the stoichiometric range. This means that the detection response at the time of rich change (rich sensitivity) is enhanced as the output characteristic of the oxygen sensor 28.

本実施例1では、ECU25(又はマイコン26)により後述する図9の触媒活用制御ルーチンを実行することで、エンジン11の運転状態に応じてセンサ電極間(排気側電極層33と大気側電極層34との間)に流す定電流Icsの向きを決定し、該決定した向きで定電流Icsが流れるように定電流回路27を制御する。これにより、エンジン11の運転状態によってNOX 吸蔵還元型触媒19に流入する排出ガスの状態が変化してNOX 吸蔵還元型触媒19の下流側の排出ガスの状態が変化しても、それに応じて酸素センサ28の出力特性を変化させて検出応答性を高めることができる。 In the first embodiment, the ECU 25 (or the microcomputer 26) executes a catalyst utilization control routine of FIG. 9 to be described later, so that the sensor electrodes (exhaust-side electrode layer 33 and atmosphere-side electrode layer) are arranged according to the operating state of the engine 11. The constant current circuit 27 is controlled so that the constant current Ics flows in the determined direction. Accordingly, even after changing the state of the exhaust gas downstream of the NO X storage reduction state of the exhaust gas flowing into the catalyst 19 changes the NO X storage reduction catalyst 19 by operating conditions of the engine 11, accordingly Thus, the output response of the oxygen sensor 28 can be changed to improve the detection response.

具体的には、図8のタイムチャートに示すように、エンジン運転中に所定のリーン運転実行条件が成立しているときには、エンジン11に供給する混合気の空燃比を理論空燃比(λ=1)よりもリーンに制御してリーン燃焼させるリーン燃焼制御を実行する。このリーン燃焼制御中に酸素センサ28の出力が所定のリーン判定閾値(例えば0.45V)以下になった時点t1 で、NOX 吸蔵還元型触媒28の下流側にNOX (リーン成分)が排出され始めたと判断して、リーン燃焼制御を停止して、エンジン11に供給する混合気の空燃比を理論空燃比(λ=1)よりもリッチに制御してリッチ燃焼させるリッチ燃焼制御を実行する。このリッチ燃焼制御中に酸素センサ28の出力が所定のリッチ判定閾値(例えば0.45V)以上になった時点t2 で、NOX 吸蔵還元型触媒28の下流側にHCやCO(リッチ成分)が排出され始めたと判断して、リッチ燃焼制御を停止して、リーン燃焼制御を実行する。このようにして、リーン燃焼制御とリッチ燃焼制御とを交互に実行する。 Specifically, as shown in the time chart of FIG. 8, when a predetermined lean operation execution condition is satisfied during engine operation, the air-fuel ratio of the air-fuel mixture supplied to the engine 11 is set to the stoichiometric air-fuel ratio (λ = 1). ) To perform lean combustion control for lean combustion by controlling leaner than. During the lean combustion control, NO x (lean component) is discharged downstream of the NO x storage reduction catalyst 28 at time t1 when the output of the oxygen sensor 28 becomes a predetermined lean determination threshold value (eg, 0.45 V) or less. When it is determined that the combustion has started, the lean combustion control is stopped, and the rich combustion control for rich combustion is performed by controlling the air-fuel ratio of the air-fuel mixture supplied to the engine 11 to be richer than the theoretical air-fuel ratio (λ = 1). . During the rich combustion control, at the time t2 when the output of the oxygen sensor 28 becomes equal to or higher than a predetermined rich determination threshold value (for example, 0.45 V), HC and CO (rich components) are present downstream of the NO x storage reduction catalyst 28. It is determined that the exhaust has started, rich combustion control is stopped, and lean combustion control is executed. In this way, lean combustion control and rich combustion control are executed alternately.

その際、リーン燃焼制御中には、酸素センサ28のリーン感度を高めてリーン応答性(リーン成分に対する検出応答性)を高める方向に定電流Icsが流れるように定電流回路27を制御する。この場合、大気側電極層34から排気側電極層33に酸素が供給される向きで定電流Ics(負の定電流Ics)が流れるように定電流回路27を制御する。一方、リッチ燃焼制御中には、酸素センサ28のリッチ感度を高めてリッチ応答性(リッチ成分に対する検出応答性)を高める方向に定電流Icsが流れるように定電流回路27を制御する。この場合、排気側電極層33から大気側電極層34に酸素が供給される向きで定電流Ics(正の定電流Ics)が流れるように定電流回路27を制御する。   At that time, during the lean combustion control, the constant current circuit 27 is controlled so that the constant current Ics flows in a direction in which the lean sensitivity of the oxygen sensor 28 is increased to increase the lean response (detection response to the lean component). In this case, the constant current circuit 27 is controlled so that the constant current Ics (negative constant current Ics) flows in a direction in which oxygen is supplied from the atmosphere-side electrode layer 34 to the exhaust-side electrode layer 33. On the other hand, during the rich combustion control, the constant current circuit 27 is controlled so that the constant current Ics flows in a direction in which the rich sensitivity of the oxygen sensor 28 is increased to increase the rich response (detection response to the rich component). In this case, the constant current circuit 27 is controlled so that the constant current Ics (positive constant current Ics) flows in the direction in which oxygen is supplied from the exhaust side electrode layer 33 to the atmosphere side electrode layer 34.

リーン燃焼制御中は、NOX 吸蔵還元型触媒19に流入する排出ガスの空燃比がリーンになって、排出ガス中のNOX (リーン成分)がNOX 吸蔵還元型触媒19に吸蔵されるが、NOX 吸蔵還元型触媒19のNOX 吸蔵量が多くなると、排出ガス中のNOX がNOX 吸蔵還元型触媒19を通過してNOX 吸蔵還元型触媒19の下流側に排出されるようになる。このため、リーン燃焼制御中に酸素センサ28のリーン応答性(リーン成分に対する検出応答性)を高めるようにすれば、リーン燃焼制御中にNOX 吸蔵還元型触媒19のNOX 吸蔵量が多くなって、NOX 吸蔵還元型触媒19の下流側にNOX (リーン成分)が排出される状態になったときに、その状態を酸素センサ28で早期に検出することができる。これにより、リーン燃焼制御の開始後にNOX 吸蔵還元型触媒19の下流側にNOX が排出される状態になったときに、リーン燃焼制御を早期に停止することができ、従来のセンサ出力特性を変化させる機能を備えていないシステム(図8の破線参照)に比べて、NOX の排出量を低減することができる。 During lean combustion control, the air-fuel ratio of the exhaust gas flowing into the NO X storage reduction catalyst 19 becomes lean, and NO X (lean component) in the exhaust gas is stored in the NO X storage reduction catalyst 19. When the NO X storage amount of the NO X occluding and reducing catalyst 19 is increased, so that NO X in the exhaust gas is discharged to the downstream side of the NO X occluding and reducing catalyst 19 through the the NO X storage reduction catalyst 19 become. Therefore, if the lean response of the oxygen sensor 28 (detection response to the lean component) is increased during the lean combustion control, the NO X storage amount of the NO X storage reduction catalyst 19 increases during the lean combustion control. Thus, when the NO X (lean component) is discharged downstream of the NO X storage reduction catalyst 19, the state can be detected early by the oxygen sensor 28. As a result, the lean combustion control can be stopped at an early stage when NO X is exhausted downstream of the NO X storage reduction catalyst 19 after the start of the lean combustion control. compared to a system that does not have a function of changing the (see a broken line in FIG. 8), it is possible to reduce the emissions of nO X.

一方、リッチ燃焼制御中は、NOX 吸蔵還元型触媒19に流入する排出ガスの空燃比がリッチになって、NOX 吸蔵還元型触媒19に吸蔵されているNOX が排出ガス中のHCやCO(リッチ成分)によって還元浄化されて放出されるが、NOX 吸蔵還元型触媒19のNOX 吸蔵量が少なくなると、排出ガス中のHCやCOがNOX 吸蔵還元型触媒19を通過してNOX 吸蔵還元型触媒19の下流側に排出されるようになる。このため、リッチ燃焼制御中に酸素センサ28のリッチ応答性(リッチ成分に対する検出応答性)を高めるようにすれば、リッチ燃焼制御中にNOX 吸蔵還元型触媒19のNOX 吸蔵量が少なくなって、NOX 吸蔵還元型触媒19の下流側にHCやCO(リッチ成分)が排出される状態になったときに、その状態を酸素センサ28で早期に検出することができる。これにより、リッチ燃焼制御の開始後にNOX 吸蔵還元型触媒19の下流側にHCやCOが排出される状態になったときに、リッチ燃焼制御を早期に停止することができ、従来のセンサ出力特性を変化させる機能を備えていないシステム(図8の破線参照)に比べて、HCやCOの排出量を低減することができる。 On the other hand, during the rich combustion control is, NO X air-fuel ratio of the exhaust gas flowing into the occlusion-reduction catalyst 19 becomes rich, Ya the NO X storage reduction type HC of the NO X which the catalyst 19 has been occluded in the exhaust gas Although it is reduced and purified by CO (rich component) and released, when the NO X storage amount of the NO X storage reduction catalyst 19 decreases, HC and CO in the exhaust gas pass through the NO X storage reduction catalyst 19. The NO x storage reduction catalyst 19 is discharged downstream. Thus, if to increase the rich responsiveness of the oxygen sensor 28 during the rich combustion control (detection responsiveness to rich components), the NO X storage amount of the NO X storage reduction catalyst 19 during the rich combustion control is getting low Thus, when HC and CO (rich components) are exhausted downstream of the NO x storage reduction catalyst 19, the state can be detected early by the oxygen sensor 28. As a result, the rich combustion control can be stopped at an early stage when HC and CO are discharged downstream of the NO x storage reduction catalyst 19 after the rich combustion control is started. Compared with a system that does not have a function of changing characteristics (see the broken line in FIG. 8), the amount of HC and CO emissions can be reduced.

以下、本実施例1でECU25(又はマイコン26)が実行する図9の触媒活用制御ルーチンの処理内容を説明する。   Hereinafter, the processing content of the catalyst utilization control routine of FIG. 9 executed by the ECU 25 (or the microcomputer 26) in the first embodiment will be described.

図9に示す触媒活用制御ルーチンは、ECU25の電源オン期間中に所定周期で繰り返し実行され、特許請求の範囲でいう電流制御手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ101で、リーン運転実行条件が成立しているか否かを判定する。ここで、リーン運転実行条件は、例えば、次の(1) 〜(3) の条件を全て満たすことである。   The catalyst utilization control routine shown in FIG. 9 is repeatedly executed at a predetermined cycle during the power-on period of the ECU 25, and serves as current control means in the claims. When this routine is started, first, at step 101, it is determined whether a lean operation execution condition is satisfied. Here, the lean operation execution condition is to satisfy all of the following conditions (1) to (3), for example.

(1) エンジン11の冷却水温が所定温度以上であること
(2) NOX 吸蔵還元型触媒19が活性状態であること(例えば、触媒19の推定温度又は検出温度が活性温度以上であること、或は、エンジン始動後の経過時間が所定時間以上であること)
(3) システムの各部(例えば燃料系や排気系等)に異常がないこと
(1) The cooling water temperature of the engine 11 is equal to or higher than a predetermined temperature.
(2) The NO X storage reduction catalyst 19 is in an active state (for example, the estimated temperature or the detected temperature of the catalyst 19 is equal to or higher than the active temperature, or the elapsed time after engine start is equal to or longer than a predetermined time. about)
(3) There is no abnormality in each part of the system (for example, fuel system and exhaust system)

これら(1) 〜(3) の条件を全て満たせば、リーン運転実行条件が成立するが、上記(1) 〜(3) の条件のうちのいずれか1つでも満たさない条件があれば、リーン運転実行条件が不成立となる。   If all the conditions (1) to (3) are satisfied, the lean operation execution condition is satisfied. If any one of the conditions (1) to (3) is not satisfied, the lean operation execution condition is satisfied. The operation execution condition is not satisfied.

このステップ101で、リーン運転実行条件が成立していると判定された場合には、ステップ102〜108の処理を繰り返し実行する。まず、ステップ102に進み、エンジン11に供給する混合気の空燃比を理論空燃比(λ=1)よりもリーンに制御してリーン燃焼させるリーン燃焼制御を実行する。   If it is determined in step 101 that the lean operation execution condition is satisfied, the processes of steps 102 to 108 are repeatedly executed. First, the routine proceeds to step 102, where lean combustion control is performed in which lean combustion is performed by controlling the air-fuel ratio of the air-fuel mixture supplied to the engine 11 to be leaner than the stoichiometric air-fuel ratio (λ = 1).

この後、ステップ103に進み、リーン燃焼制御中は、酸素センサ28のリーン応答性を高める方向に定電流Icsが流れるように定電流回路27を制御する。つまり、大気側電極層34から排気側電極層33に酸素が供給される向きで定電流Ics(負の定電流Ics)が流れるように定電流回路27を制御する。これにより、酸素センサ28のリーン応答性が高められる。   Thereafter, the routine proceeds to step 103, and during the lean combustion control, the constant current circuit 27 is controlled so that the constant current Ics flows in a direction to improve the lean responsiveness of the oxygen sensor 28. That is, the constant current circuit 27 is controlled so that the constant current Ics (negative constant current Ics) flows in a direction in which oxygen is supplied from the atmosphere-side electrode layer 34 to the exhaust-side electrode layer 33. Thereby, the lean responsiveness of the oxygen sensor 28 is enhanced.

この後、ステップ104に進み、酸素センサ28の出力がリーン判定閾値(例えば0.45V)以下であるか否かを判定し、酸素センサ28の出力がリーン判定閾値よりも高いと判定された場合には、上記ステップ102に戻り、リーン燃焼制御を継続すると共に、酸素センサ28のリーン応答性を高める制御を継続する(ステップ102,103)。   Thereafter, the process proceeds to step 104, where it is determined whether or not the output of the oxygen sensor 28 is equal to or lower than the lean determination threshold (for example, 0.45V), and it is determined that the output of the oxygen sensor 28 is higher than the lean determination threshold. Therefore, the process returns to step 102, and the lean combustion control is continued and the control for increasing the lean responsiveness of the oxygen sensor 28 is continued (steps 102 and 103).

その後、上記ステップ104で、酸素センサ28の出力がリーン判定閾値以下であると判定された時点で、NOX 吸蔵還元型触媒19の下流側にNOX (リーン成分)が排出され始めたと判断して、ステップ105に進み、リーン燃焼制御を停止して、エンジン11に供給する混合気の空燃比を理論空燃比(λ=1)よりもリッチに制御してリッチ燃焼させるリッチ燃焼制御を実行する。 Thereafter, when it is determined in step 104 that the output of the oxygen sensor 28 is equal to or less than the lean determination threshold value, it is determined that NO X (lean component) has started to be discharged to the downstream side of the NO X storage reduction catalyst 19. Then, the routine proceeds to step 105, where the lean combustion control is stopped, and the rich combustion control for performing rich combustion by controlling the air-fuel ratio of the air-fuel mixture supplied to the engine 11 to be richer than the theoretical air-fuel ratio (λ = 1) is executed. .

この後、ステップ106に進み、リッチ燃焼制御中は、酸素センサ28のリッチ応答性を高める方向に定電流Icsが流れるように定電流回路27を制御する。つまり、排気側電極層33から大気側電極層34に酸素が供給される向きで定電流Ics(正の定電流Ics)が流れるように定電流回路27を制御する。これにより、酸素センサ28のリッチ応答性が高められる。   Thereafter, the routine proceeds to step 106, and during the rich combustion control, the constant current circuit 27 is controlled so that the constant current Ics flows in a direction to improve the rich response of the oxygen sensor 28. That is, the constant current circuit 27 is controlled so that the constant current Ics (positive constant current Ics) flows in the direction in which oxygen is supplied from the exhaust side electrode layer 33 to the atmosphere side electrode layer 34. Thereby, the rich responsiveness of the oxygen sensor 28 is improved.

この後、ステップ107に進み、酸素センサ28の出力がリッチ判定閾値(例えば0.45V)以上であるか否かによって、酸素センサ28の出力がリッチ判定閾値よりも低いと判定された場合には、上記ステップ105に戻り、リッチ燃焼制御を継続すると共に、酸素センサ28のリッチ応答性を高める制御を継続する(ステップ105,106)。   Thereafter, the process proceeds to step 107, and when it is determined that the output of the oxygen sensor 28 is lower than the rich determination threshold depending on whether the output of the oxygen sensor 28 is equal to or higher than the rich determination threshold (eg, 0.45V). Returning to step 105, the rich combustion control is continued, and the control for increasing the rich response of the oxygen sensor 28 is continued (steps 105, 106).

その後、上記ステップ107で、酸素センサ28の出力がリッチ判定閾値以上であると判定された時点で、NOX 吸蔵還元型触媒19の下流側にHCやCO(リッチ成分)が排出され始めたと判断して、ステップ108に進み、リッチ燃焼制御を停止する。 Thereafter, when it is determined in step 107 that the output of the oxygen sensor 28 is greater than or equal to the rich determination threshold value, it is determined that HC and CO (rich components) have started to be discharged downstream of the NO x storage reduction catalyst 19. Then, the process proceeds to step 108 and the rich combustion control is stopped.

一方、上記ステップ101で、リーン運転実行条件が不成立であると判定された場合には、ステップ109に進み、エンジン11に供給する混合気の空燃比を理論空燃比(ストイキ)に制御してストイキ燃焼させるストイキ燃焼制御を実行する。この後、ステップ110に進み、酸素センサ28の検出応答性を基準応答性に対して変更しない制御、すなわち定電流Ics=0とする制御を実施する。   On the other hand, if it is determined in step 101 that the lean operation execution condition is not satisfied, the routine proceeds to step 109 where the air-fuel ratio of the air-fuel mixture supplied to the engine 11 is controlled to the stoichiometric air-fuel ratio (stoichiometric). Execute stoichiometric combustion control for burning. Thereafter, the process proceeds to step 110, and a control that does not change the detection response of the oxygen sensor 28 with respect to the reference response, that is, a control for setting the constant current Ics = 0 is performed.

以上説明した本実施例1では、NOX 吸蔵還元型触媒19の下流側に酸素センサ28を設置したシステムにおいて、酸素センサ28の外部に設けた定電流回路27によりセンサ電極間に定電流を流すことで、オンボードで酸素センサ28の出力特性を変更してリーン応答性やリッチ応答性を高めることができる。しかも、酸素センサ28の内部に補助電気化学電池等を組み込む必要がないため、酸素センサ28の大幅な設計変更やコストアップを招くことなく酸素センサ28の出力特性を変化させることができる。 In the first embodiment described above, in the system in which the oxygen sensor 28 is installed on the downstream side of the NO x storage reduction catalyst 19, a constant current is caused to flow between the sensor electrodes by the constant current circuit 27 provided outside the oxygen sensor 28. As a result, the output characteristics of the oxygen sensor 28 can be changed on-board to improve lean responsiveness and rich responsiveness. In addition, since it is not necessary to incorporate an auxiliary electrochemical cell or the like in the oxygen sensor 28, the output characteristics of the oxygen sensor 28 can be changed without causing a significant design change or cost increase.

更に、リーン燃焼制御中には、酸素センサ28のリーン応答性を高める方向に定電流Icsが流れるように定電流回路27を制御するようにしたので、NOX 吸蔵還元型触媒19の下流側にNOX (リーン成分)が排出される状態になったときに、その状態を酸素センサ28で早期に検出して、リーン燃焼制御を早期に停止することができ、NOX の排出量を低減することができる。一方、リッチ燃焼制御中には、酸素センサ28のリッチ応答性を高める方向に定電流Icsが流れるように定電流回路27を制御するようにしたので、NOX 吸蔵還元型触媒19の下流側にHCやCO(リッチ成分)が排出される状態になったときに、その状態を酸素センサ28で早期に検出して、リッチ燃焼制御を早期に停止することができ、HCやCOの排出量を低減することができる。これにより、NOX 吸蔵還元型触媒19の下流側の排出ガスの状態の変化に対するセンサ出力変化の遅れの影響をあまり受けずにNOX 吸蔵還元型触媒19を有効に活用することが可能となり、排気エミッションを効果的に低減することができる。 Further, during the lean combustion control, the constant current circuit 27 is controlled so that the constant current Ics flows in the direction of increasing the lean responsiveness of the oxygen sensor 28, so that the downstream side of the NO X storage reduction catalyst 19 is provided. When the NO x (lean component) is discharged, the state is detected early by the oxygen sensor 28, and the lean combustion control can be stopped early, thereby reducing the amount of NO x discharged. be able to. On the other hand, during the rich combustion control, the constant current circuit 27 is controlled so that the constant current Ics flows in a direction in which the rich response of the oxygen sensor 28 is increased, so that the downstream side of the NO X storage reduction catalyst 19 is controlled. When HC and CO (rich components) are exhausted, the state can be detected early by the oxygen sensor 28, and rich combustion control can be stopped early, and the HC and CO emissions can be reduced. Can be reduced. As a result, the NO X storage reduction catalyst 19 can be effectively used without being affected by the delay of the sensor output change with respect to the change in the exhaust gas state downstream of the NO X storage reduction catalyst 19. Exhaust emissions can be effectively reduced.

ところで、酸素センサ28の出力Eは、下記の基本式(ネルンストの式)で表すことができる。
E=(R×T)/(4×F)×ln(P1 /P2 )
ここで、Rは気体定数、Tは絶対温度、Fはファラデー定数、P1 は大気側電極層34側の酸素分圧、P2 は排気側電極層33側の酸素分圧である。
Incidentally, the output E of the oxygen sensor 28 can be expressed by the following basic equation (Nernst equation).
E = (R * T) / (4 * F) * ln (P1 / P2)
Here, R is a gas constant, T is an absolute temperature, F is a Faraday constant, P1 is an oxygen partial pressure on the atmosphere side electrode layer 34 side, and P2 is an oxygen partial pressure on the exhaust side electrode layer 33 side.

従って、酸素センサ28の出力Eを安定化させる(出力Eのばらつきを小さくする)には、大気側電極層34側の酸素濃度を安定化させて大気側電極層34側の酸素分圧P1 を安定化させることが重要である。   Therefore, in order to stabilize the output E of the oxygen sensor 28 (to reduce the variation in the output E), the oxygen concentration on the atmosphere side electrode layer 34 side is stabilized and the oxygen partial pressure P1 on the atmosphere side electrode layer 34 side is set. It is important to stabilize.

その点、本実施例1の酸素センサ28は、図10に示すように、大気側電極層34が大気に晒されているため、排気側電極層33側の酸素濃度に左右されずに大気側電極層34側の酸素濃度を常に一定(大気相当)に維持することができ、触媒19の下流側に酸素センサ28を設置した場合(つまり酸素センサ28で検出する排出ガスの酸素濃度が著しく低下することがある場合)でも、酸素センサ28の出力を安定化させる(出力のばらつきを小さくする)ことができる。   In that respect, as shown in FIG. 10, the oxygen sensor 28 of the first embodiment has the atmosphere side electrode layer 34 exposed to the atmosphere, so that the oxygen side is not affected by the oxygen concentration on the exhaust side electrode layer 33 side. The oxygen concentration on the electrode layer 34 side can always be kept constant (equivalent to the atmosphere), and when the oxygen sensor 28 is installed on the downstream side of the catalyst 19 (that is, the oxygen concentration of the exhaust gas detected by the oxygen sensor 28 is significantly reduced). Even in such a case, the output of the oxygen sensor 28 can be stabilized (variation in output can be reduced).

更に、排気側電極層33側から大気側電極層34側に酸素を供給するように電流を流すことで、酸素センサ28の出力特性線をリーン側にシフトさせることができると共に、大気側電極層34側から排気側電極層33側に酸素を供給するように電流を流すことで、酸素センサ28の出力特性線をリッチ側にシフトさせることができ、酸素センサ28の出力特性線をリーン側とリッチ側のいずれの方向にもシフトさせることができるという利点もある。   Furthermore, by supplying a current so as to supply oxygen from the exhaust side electrode layer 33 side to the atmosphere side electrode layer 34 side, the output characteristic line of the oxygen sensor 28 can be shifted to the lean side, and the atmosphere side electrode layer By flowing current so as to supply oxygen from the 34 side to the exhaust side electrode layer 33 side, the output characteristic line of the oxygen sensor 28 can be shifted to the rich side, and the output characteristic line of the oxygen sensor 28 is set to the lean side. There is also an advantage that it can be shifted in any direction on the rich side.

尚、上記実施例1では、NOX 吸蔵還元型触媒19の下流側に酸素センサ28を設置した構成としたが、NOX 吸蔵還元型触媒19の中の位置(例えば触媒19の入口と出口の中間位置)に酸素センサ28を設置した構成としても良い。 In the first embodiment, a configuration was installed oxygen sensor 28 on the downstream side of the NO X occluding and reducing catalyst 19, the position in of the NO X occluding and reducing catalyst 19 (for example, the catalyst 19 inlet and outlet A configuration may be adopted in which the oxygen sensor 28 is installed at an intermediate position.

次に、図12及び図13を用いて本発明に関連する参考例としての実施例2を説明する。但し、前記実施例1と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。 Next, a second embodiment as a reference example related to the present invention will be described with reference to FIGS. However, description of substantially the same parts as those in the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.

本実施例2では、図12に示すように、三元触媒18の下流側にも、排出ガス中のCO,HC,NOX 等を浄化する三元触媒37が設けられている。また、三元触媒18の上流側に、排出ガスの空燃比又はリッチ/リーンを検出する排出ガスセンサ20(空燃比センサ又は酸素センサ)が設置され、三元触媒18の下流側(三元触媒18と三元触媒37との間)には、排出ガスの空燃比が理論空燃比に対してリッチかリーンかによって出力電圧が反転する酸素センサ28が設置されている。 In the second embodiment, as shown in FIG. 12, a three-way catalyst 37 for purifying CO, HC, NO x and the like in the exhaust gas is also provided on the downstream side of the three-way catalyst 18. Further, an exhaust gas sensor 20 (air-fuel ratio sensor or oxygen sensor) for detecting the air-fuel ratio or rich / lean of the exhaust gas is installed on the upstream side of the three-way catalyst 18, and downstream of the three-way catalyst 18 (the three-way catalyst 18). And the three-way catalyst 37) is provided with an oxygen sensor 28 whose output voltage is inverted depending on whether the air-fuel ratio of the exhaust gas is rich or lean with respect to the stoichiometric air-fuel ratio.

更に、本実施例2では、ECU25(又はマイコン26)により後述する図13のセンサ応答性制御ルーチンを実行する。   Furthermore, in the second embodiment, a sensor responsiveness control routine of FIG. 13 described later is executed by the ECU 25 (or the microcomputer 26).

図13に示すセンサ応答性制御ルーチンは、ECU25の電源オン期間中に所定周期で繰り返し実行される。本ルーチンでは、ステップ201〜203で、酸素センサ28の検出応答性を変更するための変更要求の有無を判定し、ステップ204〜207で、変更要求の判定結果に基づいて定電流制御を実施して、酸素センサ28の検出応答性を変更する。   The sensor responsiveness control routine shown in FIG. 13 is repeatedly executed at a predetermined cycle during the power-on period of the ECU 25. In this routine, in steps 201 to 203, it is determined whether or not there is a change request for changing the detection responsiveness of the oxygen sensor 28. In steps 204 to 207, constant current control is performed based on the determination result of the change request. Thus, the detection responsiveness of the oxygen sensor 28 is changed.

本ルーチンが起動されると、まず、ステップ201で、エンジン11が始動時等の冷間状態にあるか否かを、例えば、次の(1) 〜(3) の条件のうちのいずれか1つを満たすか否かによって判定する。   When this routine is started, first, at step 201, it is determined whether or not the engine 11 is in a cold state at the time of starting, for example, one of the following conditions (1) to (3): Judgment is made according to whether or not one is satisfied.

(1) エンジン11の冷却水温が所定温度以下であること
(2) エンジン11の油温(潤滑油の温度)が所定温度以下であること
(3) 燃料経路内の燃料温度が所定温度以下であること
(1) The coolant temperature of the engine 11 is below a predetermined temperature.
(2) The oil temperature (lubricating oil temperature) of the engine 11 is below a predetermined temperature.
(3) The fuel temperature in the fuel path is below the specified temperature.

このステップ201で、エンジン11が冷間状態にあると判定された場合には、リッチ応答性(リッチ変化時の検出応答性)を高める変更要求が有ると判定する。この場合、ステップ204に進み、リッチ応答性を高める変更要求に基づいて定電流Icsの供給を制御する。具体的には、定電流回路27の定電流として「正の定電流Ics」を設定する。このとき、マイコン26により定電流回路27が制御され、排気側電極層33から大気側電極層34に酸素が供給される向きで定電流Ics(正の定電流Ics)が流れることとなる。これにより、エンジン11が冷間状態にある場合において酸素センサ28のリッチ応答性が高められる。尚、定電流量は予め定められた所定値であると良い。   If it is determined in step 201 that the engine 11 is in the cold state, it is determined that there is a change request for increasing the rich responsiveness (detection responsiveness at the time of rich change). In this case, the process proceeds to step 204, and the supply of the constant current Ics is controlled based on the change request for increasing the rich responsiveness. Specifically, “positive constant current Ics” is set as the constant current of the constant current circuit 27. At this time, the constant current circuit 27 is controlled by the microcomputer 26, and the constant current Ics (positive constant current Ics) flows in the direction in which oxygen is supplied from the exhaust side electrode layer 33 to the atmosphere side electrode layer 34. Thereby, when the engine 11 is in a cold state, the rich responsiveness of the oxygen sensor 28 is enhanced. Note that the constant current amount is preferably a predetermined value.

一方、上記ステップ201で、エンジン11が冷間状態にないと判定された場合には、ステップ202に進み、エンジン11が高負荷運転状態になっているか否かを、例えば、次の(4) 〜(6) の条件のうちのいずれか1つを満たすか否かによって判定する。   On the other hand, when it is determined in step 201 that the engine 11 is not in the cold state, the process proceeds to step 202 to determine whether or not the engine 11 is in the high load operation state, for example, the following (4) Judgment is made based on whether any one of the conditions (6) to (6) is satisfied.

(4) 気筒内への充填空気量が所定量以上であること
(5) 気筒内での燃焼圧が所定値以上であること
(6) アクセル開度が所定値以上であること
(4) The amount of air charged into the cylinder is greater than or equal to the specified amount
(5) Combustion pressure in the cylinder is above a specified value
(6) The accelerator opening must be greater than or equal to the specified value.

このステップ202で、エンジン11が高負荷運転状態になっていると判定された場合には、リーン応答性(リーン変化時の検出応答性)を高める変更要求が有ると判定する。この場合、ステップ205に進み、リーン応答性を高める変更要求に基づいて定電流Icsの供給を制御する。具体的には、定電流回路27の定電流として「負の定電流Ics」を設定する。このとき、マイコン26により定電流回路27が制御され、大気側電極層34から排気側電極層33に酸素が供給される向きで定電流Ics(負の定電流Ics)が流れることとなる。これにより、エンジン11が高負荷運転状態になっている場合において酸素センサ28のリーン応答性が高められる。尚、定電流量は予め定められた所定値であると良い。   If it is determined in step 202 that the engine 11 is in a high-load operation state, it is determined that there is a change request for improving lean responsiveness (detection responsiveness at the time of lean change). In this case, the process proceeds to step 205, and the supply of the constant current Ics is controlled based on the change request for improving the lean responsiveness. Specifically, “negative constant current Ics” is set as the constant current of the constant current circuit 27. At this time, the constant current circuit 27 is controlled by the microcomputer 26, and the constant current Ics (negative constant current Ics) flows in the direction in which oxygen is supplied from the atmosphere side electrode layer 34 to the exhaust side electrode layer 33. Thereby, when the engine 11 is in a high load operation state, the lean responsiveness of the oxygen sensor 28 is enhanced. Note that the constant current amount is preferably a predetermined value.

ここで、上記の高負荷運転時を想定すると、その高負荷運転期間には、エンジン負荷が増加側に変化する過渡時と、その負荷増加により高負荷となっている高負荷定常時とが含まれる。この場合、過渡時及び高負荷定常時には、いずれもリーン応答性が高められるが、その検出応答性を高めるにあたって、過渡時と高負荷定常時とで、検出応答性として要求される応答性レベルを相違させるようにすると良い。   Here, assuming the above-described high load operation, the high load operation period includes a transient time when the engine load changes to an increasing side and a high load steady time when the load increases due to the load increase. It is. In this case, both the transient response and the high load steady state can improve the lean response, but in order to increase the detection response, the response level required as the detection response is required for the transient and high load steady state. It is better to make them different.

具体的には、過渡時の応答性レベルを高負荷定常時の応答性レベルよりも高応答とする。つまり、エンジン11が高負荷運転状態になっていると判定された場合には、更に、過渡時か又は高負荷定常時かを判定する。過渡時であると判定されることは、リーン応答性を高めつつも、その応答性レベルを比較的大きくする(高負荷定常時よりも大きくする)との変更要求が有ると判定されることに相当し、高負荷定常時であると判定されることは、リーン応答性を高めつつ、その応答性レベルを比較的小さくする(過渡時よりも小さくする)との変更要求が有ると判定されることに相当する。そして、過渡時である場合と、高負荷定常時である場合のそれぞれにおいて、その変更要求に基づいて定電流Icsの供給を制御する。 Specifically, the response level at the time of transition is set to be higher than the response level at the time of steady high load. That is, when it is determined that the engine 11 is in a high load operation state, it is further determined whether the engine 11 is in a transient state or a high load steady state. It is determined to be the transient, even while increasing lean responsiveness, it is determined that the response level relatively large Kusuru change request (high load constant magnitude than during Kusuru) there in particular equivalent, it is determined that the high load steady state, while increasing lean responsiveness, there is a change request of the relatively small Kusuru the response level (Kusuru smaller than the transient) Is equivalent to being determined. Then, the supply of the constant current Ics is controlled based on the change request in each of the transition time and the high load steady time.

一方、上記ステップ202で、エンジン11が高負荷運転状態ではないと判定された場合には、ステップ203に進み、現時点が燃料カットから燃料噴射への復帰直後であって、両触媒18,37の中立化のためのリッチ噴射制御が実施されているか否かを判定する。このリッチ噴射制御は、エンジン11の燃料カットからの復帰時において、酸素センサ28の検出結果に基づいて、両触媒18,37の酸素過多の状態(極リーンの雰囲気)を解消すべく空燃比を一時的にリッチ化する空燃比制御である。このリッチ噴射制御では、燃料噴射量のリッチ化により両触媒18,37の雰囲気が中立化される(ストイキ付近で保持される状態とされる)。そして、燃料カットからの復帰後において酸素センサ28の出力がリーン値からリッチ値に移行したタイミングで、そのリッチ噴射制御が終了される。本実施例では、このリッチ噴射制御を実施する場合に、リッチ変化時の検出応答性を低めることとしている。
On the other hand, at step 202, if the engine 11 is determined not to be high-load operation state, the process proceeds to a step 203, the present time is a just return to the fuel injected from the fuel cut, the both catalysts 18, 37 It is determined whether or not rich injection control for neutralization is being performed. In this rich injection control, when the engine 11 returns from the fuel cut, based on the detection result of the oxygen sensor 28, the air-fuel ratio is adjusted so as to eliminate the excessive oxygen state (extremely lean atmosphere) of the two catalysts 18, 37. This is air-fuel ratio control that is temporarily enriched. In this rich injection control, the atmosphere of both the catalysts 18 and 37 is neutralized (the state is maintained near the stoichiometric state) by enriching the fuel injection amount. Then, at the timing when the output of the oxygen sensor 28 shifts from the lean value to the rich value after returning from the fuel cut, the rich injection control is terminated. In this embodiment, when this rich injection control is performed, the detection responsiveness at the time of rich change is lowered.

このステップ203で、リッチ噴射制御が実施されていると判定された場合には、リッチ応答性(リッチ変化時の検出応答性)を低める変更要求が有ると判定する。この場合、ステップ206に進み、リッチ応答性を低める変更要求に基づいて定電流Icsの供給を制御する。具体的には、定電流回路27の定電流として「負の定電流Ics」を設定する(リーン応答性を高める場合と同じ)。このとき、マイコン26により定電流回路27が制御され、大気側電極層34から排気側電極層33に酸素が供給される向きで定電流Ics(負の定電流Ics)が流れることとなる。これにより、リッチ噴射制御を実施する場合においてリッチ応答性が低められる。尚、定電流量は予め定められた所定値であると良い。   If it is determined in step 203 that the rich injection control is being performed, it is determined that there is a change request for reducing the rich responsiveness (detection responsiveness at the time of rich change). In this case, the process proceeds to step 206, and the supply of the constant current Ics is controlled based on the change request for reducing the rich responsiveness. Specifically, “negative constant current Ics” is set as the constant current of the constant current circuit 27 (the same as the case where the lean responsiveness is enhanced). At this time, the constant current circuit 27 is controlled by the microcomputer 26, and the constant current Ics (negative constant current Ics) flows in the direction in which oxygen is supplied from the atmosphere side electrode layer 34 to the exhaust side electrode layer 33. Thereby, the rich responsiveness is lowered when the rich injection control is performed. Note that the constant current amount is preferably a predetermined value.

また、上記ステップ201〜203で全て「No」と判定された場合には、ステップ207に進み、酸素センサ28の検出応答性を基準応答性に対して変更しない制御、すなわち定電流Ics=0とする制御を実施する。   If all the determinations in steps 201 to 203 are “No”, the process proceeds to step 207, in which the detection responsiveness of the oxygen sensor 28 is not changed with respect to the reference responsiveness, that is, the constant current Ics = 0. Implement control.

尚、図13のルーチンでは、エンジン11が冷間状態の場合に酸素センサ28のリッチ応答性を高める処理(ステップ201,204)と、エンジン11が高負荷運転状態の場合に酸素センサ28のリーン応答性を高める処理(ステップ202,205)と、リッチ噴射制御が実施さている場合に酸素センサ28のリッチ応答性を低める処理(ステップ203,206)とを全て実施するようにしたが、これに限定されず、いずれか1つ又は2つを実施するようにしても良い。   In the routine of FIG. 13, processing for increasing the rich response of the oxygen sensor 28 when the engine 11 is cold (steps 201 and 204), and lean of the oxygen sensor 28 when the engine 11 is in a high load operation state. The process of increasing the responsiveness (steps 202 and 205) and the process of reducing the rich responsiveness of the oxygen sensor 28 when the rich injection control is performed (steps 203 and 206) are all performed. It is not limited and you may make it implement any one or two.

以上説明した本実施例2では、三元触媒18の下流側に酸素センサ28を設置したシステムにおいて、酸素センサ28の検出応答性を変更するための変更要求の有無を判定し、変更要求の判定結果に基づいて定電流制御を実施して、酸素センサ28の検出応答性を変更するようにしたので、三元触媒18を有効に活用して排気エミッションを低減することができる。   In the second embodiment described above, in the system in which the oxygen sensor 28 is installed on the downstream side of the three-way catalyst 18, it is determined whether there is a change request for changing the detection responsiveness of the oxygen sensor 28, and the change request is determined. Since the constant current control is performed based on the result and the detection responsiveness of the oxygen sensor 28 is changed, the three-way catalyst 18 can be effectively used to reduce the exhaust emission.

尚、上記実施例2では、三元触媒18の下流側に酸素センサ28を設置した構成としたが、三元触媒18の中の位置(例えば触媒18の入口と出口の中間位置)に酸素センサ28を設置した構成としても良い。   In the second embodiment, the oxygen sensor 28 is installed on the downstream side of the three-way catalyst 18, but the oxygen sensor is located at a position in the three-way catalyst 18 (for example, an intermediate position between the inlet and the outlet of the catalyst 18). It is good also as a structure which installed 28.

また、上記各実施例1,2では、酸素センサ28(センサ素子31)の大気側電極層34に定電流回路27を接続する構成としたが、これに限定されず、例えば、酸素センサ28(センサ素子31)の排気側電極層33に定電流回路27を接続する構成としたり、或は、排気側電極層33と大気側電極層34の両方に定電流回路27を接続する構成としても良い。   In the first and second embodiments, the constant current circuit 27 is connected to the atmosphere-side electrode layer 34 of the oxygen sensor 28 (sensor element 31). However, the present invention is not limited to this. For example, the oxygen sensor 28 ( The constant current circuit 27 may be connected to the exhaust side electrode layer 33 of the sensor element 31), or the constant current circuit 27 may be connected to both the exhaust side electrode layer 33 and the atmosphere side electrode layer 34. .

また、上記各実施例1,2では、コップ型構造のセンサ素子31を有する酸素センサ28を用いたシステムに本発明を適用したが、これに限定されず、例えば、積層構造型のセンサ素子を有する酸素センサを用いたシステムに本発明を適用しても良い。   In each of the first and second embodiments, the present invention is applied to a system using the oxygen sensor 28 having the sensor element 31 having a cup-type structure. However, the present invention is not limited to this. You may apply this invention to the system using the oxygen sensor which has.

更に、酸素センサに限定されず、例えば、空燃比に応じたリニアな空燃比信号を出力する空燃比センサ、HC濃度を検出するHCセンサ、NOX 濃度を検出するNOX センサ等の酸素センサ以外のガスセンサに本発明を適用しても良い。 Further, the present invention is not limited to an oxygen sensor. For example, other than an oxygen sensor such as an air-fuel ratio sensor that outputs a linear air-fuel ratio signal corresponding to an air-fuel ratio, an HC sensor that detects HC concentration, or an NO X sensor that detects NO X concentration. The present invention may be applied to this gas sensor.

11…エンジン(内燃機関)、17…排気管、18…三元触媒、19…NOX 吸蔵還元型触媒、25…ECU(電流制御手段)、26…マイコン、27…定電流回路(定電流供給手段)、28…酸素センサ(排出ガスセンサ)、31…センサ素子、32…固体電解質層(固体電解質体)、33…排気側電極層(センサ電極)、34…大気側電極層(センサ電極)、37…三元触媒 11 ... engine (internal combustion engine), 17 ... exhaust pipe, 18 ... three-way catalyst, 19 ... NO X storage reduction catalyst, 25 ... ECU (current control means), 26 ... microcomputer, 27 ... constant current circuit (constant current supply Means), 28 ... oxygen sensor (exhaust gas sensor), 31 ... sensor element, 32 ... solid electrolyte layer (solid electrolyte body), 33 ... exhaust side electrode layer (sensor electrode), 34 ... atmosphere side electrode layer (sensor electrode), 37. Three-way catalyst

Claims (1)

内燃機関(11)の排出ガス浄化用の触媒であって、該触媒に流入する排出ガスの空燃比がリーンのときに該排出ガス中のNO X を吸蔵し、該触媒に流入する排出ガスの空燃比がリッチになったときに該触媒に吸蔵されているNO X を還元浄化して放出するNO X 吸蔵還元型触媒(19)と、前記NO X 吸蔵還元型触媒(19)の下流側又は該NO X 吸蔵還元型触媒(19)に設置され、一対のセンサ電極(33,34)間に固体電解質体(32)が設けられると共に該一対のセンサ電極(33,34)のうちの一方のセンサ電極(34)が大気に晒されたセンサ素子(31)により排出ガス中の所定成分の濃度を検出する排出ガスセンサ(28)とを備えた内燃機関の排出ガス浄化装置において、
前記センサ電極(33,34)間に定電流を流して前記排出ガスセンサ(28)の出力特性を変更する定電流供給手段(27)と、
前記排出ガスセンサ(28)の出力特性を変更する変更要求又は前記内燃機関(11)の運転状態に応じて前記センサ電極(33,34)間に流す定電流の向きを決定し、該決定した向きで前記定電流が流れるように前記定電流供給手段(27)を制御する電流制御手段(25)とを備え
前記電流制御手段(25)は、前記内燃機関(11)に供給する混合気の空燃比をリーンに制御するリーン燃焼制御中には前記排出ガスセンサ(28)のリーン成分に対する検出応答性を高める方向に前記定電流が流れるように前記定電流供給手段(27)を制御し、前記内燃機関(11)に供給する混合気の空燃比をリッチに制御するリッチ燃焼制御中には前記排出ガスセンサ(28)のリッチ成分に対する検出応答性を高める方向に前記定電流が流れるように前記定電流供給手段(27)を制御することを特徴とする内燃機関の排出ガス浄化装置。
A catalyst for purifying exhaust gas of an internal combustion engine (11), which stores NO x in the exhaust gas when the air-fuel ratio of the exhaust gas flowing into the catalyst is lean , and generates exhaust gas flowing into the catalyst and the air-fuel ratio is the NO X which is stored in the catalyst is reduced and purified to release when they become rich the NO X storage reduction catalyst (19), downstream of the the NO X storage reduction catalyst (19) or The NO x storage-reduction catalyst (19 ) is provided, and a solid electrolyte body (32) is provided between the pair of sensor electrodes (33, 34) and one of the pair of sensor electrodes (33, 34). In an exhaust gas purifying apparatus for an internal combustion engine, comprising an exhaust gas sensor (28) for detecting a concentration of a predetermined component in the exhaust gas by a sensor element (31) having a sensor electrode (34) exposed to the atmosphere.
Constant current supply means (27) for changing the output characteristics of the exhaust gas sensor (28) by passing a constant current between the sensor electrodes (33, 34);
The direction of the constant current flowing between the sensor electrodes (33, 34) is determined according to a change request for changing the output characteristics of the exhaust gas sensor (28) or the operating state of the internal combustion engine (11), and the determined direction Current control means (25) for controlling the constant current supply means (27) so that the constant current flows in
The current control means (25) increases the detection responsiveness to the lean component of the exhaust gas sensor (28) during the lean combustion control for leanly controlling the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine (11). The exhaust gas sensor (28) is controlled during the rich combustion control in which the constant current supply means (27) is controlled so that the constant current flows through the exhaust gas and the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine (11) is controlled to be rich. The exhaust gas purifying device for an internal combustion engine , wherein the constant current supply means (27) is controlled so that the constant current flows in a direction to improve the detection responsiveness to the rich component .
JP2012221944A 2012-02-03 2012-10-04 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP5867357B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012221944A JP5867357B2 (en) 2012-02-03 2012-10-04 Exhaust gas purification device for internal combustion engine
US14/376,179 US20140373512A1 (en) 2012-02-03 2013-01-22 Emission gas cleaning device of internal combustion engine
DE112013000824.6T DE112013000824T5 (en) 2012-02-03 2013-01-22 Exhaust gas purification device of an internal combustion engine
PCT/JP2013/000284 WO2013114814A1 (en) 2012-02-03 2013-01-22 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012022261 2012-02-03
JP2012022261 2012-02-03
JP2012221944A JP5867357B2 (en) 2012-02-03 2012-10-04 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2013177884A JP2013177884A (en) 2013-09-09
JP5867357B2 true JP5867357B2 (en) 2016-02-24

Family

ID=48904866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012221944A Expired - Fee Related JP5867357B2 (en) 2012-02-03 2012-10-04 Exhaust gas purification device for internal combustion engine

Country Status (4)

Country Link
US (1) US20140373512A1 (en)
JP (1) JP5867357B2 (en)
DE (1) DE112013000824T5 (en)
WO (1) WO2013114814A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5748180B2 (en) * 2012-02-10 2015-07-15 株式会社デンソー Catalyst deterioration diagnosis device
JP5904171B2 (en) 2013-08-09 2016-04-13 株式会社デンソー Gas sensor control device
JP6155949B2 (en) 2013-08-09 2017-07-05 株式会社デンソー Gas sensor control device
JP5904172B2 (en) 2013-08-09 2016-04-13 株式会社デンソー Gas sensor control device
JP5904173B2 (en) 2013-08-09 2016-04-13 株式会社デンソー Gas sensor control device
JP6241123B2 (en) 2013-08-09 2017-12-06 株式会社デンソー Gas sensor control device and gas sensor control method
JP6237057B2 (en) * 2013-09-27 2017-11-29 株式会社デンソー Gas sensor control device
JP6398866B2 (en) * 2015-05-19 2018-10-03 株式会社デンソー Oxygen sensor control method
WO2017023758A1 (en) * 2015-08-05 2017-02-09 Cummins Emission Solutions Inc. Oxygen correction for engine-out nox estimates using a nox sensor of an aftertreatment system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034065B2 (en) * 1979-12-20 1985-08-06 日産自動車株式会社 Air fuel ratio detection method
FR2494445A1 (en) * 1980-11-17 1982-05-21 Socapex ELECTROCHEMICAL SENSOR OF SPECIES CONCENTRATIONS IN A FLUID MIXTURE AND SYSTEM FOR REGULATING THE WEALTH OF AN AIR-FUEL MIXTURE USING SUCH A SENSOR
JPS57200641A (en) * 1981-06-01 1982-12-08 Nippon Denso Co Ltd Controlling device for air-fuel ratio
JPS61104137A (en) * 1984-10-27 1986-05-22 Mazda Motor Corp Control device for air-fuel ratio of engine
JPS61118653A (en) * 1984-11-14 1986-06-05 Ngk Insulators Ltd Method for controlling current of electrochemical element
JP3997599B2 (en) * 1998-04-27 2007-10-24 株式会社デンソー Air-fuel ratio control device for internal combustion engine
JP4379595B2 (en) * 2004-06-08 2009-12-09 トヨタ自動車株式会社 Air-fuel ratio control device for internal combustion engine
JP5126388B2 (en) * 2010-08-19 2013-01-23 株式会社デンソー Gas sensor control device

Also Published As

Publication number Publication date
JP2013177884A (en) 2013-09-09
DE112013000824T5 (en) 2014-10-16
US20140373512A1 (en) 2014-12-25
WO2013114814A1 (en) 2013-08-08

Similar Documents

Publication Publication Date Title
JP5867357B2 (en) Exhaust gas purification device for internal combustion engine
US9052280B2 (en) Deterioration diagnosis device for catalyst
JP5126388B2 (en) Gas sensor control device
JP5907345B2 (en) Gas sensor control device and control device for internal combustion engine
KR101399192B1 (en) Emission control system for internal combustion engine
US10234418B2 (en) Gas sensor control device
JP5884701B2 (en) Exhaust gas purification device for internal combustion engine
US20110192146A1 (en) Multicylinder internal combustion engine, inter-cylinder air/fuel ratio imbalance determination apparatus, and method therefor
JP5817581B2 (en) Exhaust gas purification device for internal combustion engine
WO2014119026A1 (en) Control device for internal combustion engine
JP6447569B2 (en) Control device for nitrogen oxide sensor
WO2015170449A1 (en) Exhaust gas purification device for internal combustion engine
JP6119434B2 (en) Gas sensor control device
JP6562047B2 (en) Exhaust gas purification device for internal combustion engine
US10247694B2 (en) Gas sensor control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151221

R151 Written notification of patent or utility model registration

Ref document number: 5867357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees