JP4158475B2 - Apparatus and method for exhaust gas purification of internal combustion engine - Google Patents

Apparatus and method for exhaust gas purification of internal combustion engine Download PDF

Info

Publication number
JP4158475B2
JP4158475B2 JP2002300752A JP2002300752A JP4158475B2 JP 4158475 B2 JP4158475 B2 JP 4158475B2 JP 2002300752 A JP2002300752 A JP 2002300752A JP 2002300752 A JP2002300752 A JP 2002300752A JP 4158475 B2 JP4158475 B2 JP 4158475B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
way catalyst
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002300752A
Other languages
Japanese (ja)
Other versions
JP2004137908A (en
Inventor
佳幸 大嶽
恵里 石部
健一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002300752A priority Critical patent/JP4158475B2/en
Publication of JP2004137908A publication Critical patent/JP2004137908A/en
Application granted granted Critical
Publication of JP4158475B2 publication Critical patent/JP4158475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、排気通路に三元触媒を備える内燃機関の排気浄化装置及び方法に関する。
【0002】
【従来の技術】
従来、内燃機関から排出される排気ガスを清浄化するため、空燃比を理論空燃比(ストイキ)となるようにフィードバック制御すると共に、HC,COの酸化と、NOxの還元とを行う三元触媒を排気通路に配置したシステムが広く実用化されている。三元触媒は、空燃比リッチ状態に晒されることで浄化処理能力の低下(一時劣化)が起こり、排気悪化を招くこととなる。そこで特許文献1では、空燃比リーン化運転を所定時間行うことで三元触媒の一時劣化回復処理を行い、その直後に通常運転へ戻す制御を行っていた。
【0003】
【特許文献1】
特許第2996084号公報
【0004】
【発明が解決しようとする課題】
ここで空燃比リーン化運転は、三元触媒に酸素を供給することで、三元触媒の一時劣化を回復させることができる。しかし、空燃比リーン化運転を行っている間、NOxの排出量が増大するため、空燃比リーン化運転は必要最小限で行う必要がある。
【0005】
また、空燃比リーン化運転により、三元触媒がその酸素ストレージ能力の上限に達するまで酸素をストレージしてしまい、空燃比リーン運転から通常運転に戻しても、三元触媒はNOxの還元ができない状態であるため、NOxの排出量の増大を招く。
本発明はこのような問題に鑑み、空燃比リーン化運転を行って三元触媒の一時劣化を回復させると共に、蓄積された酸素を吐出させて、NOxの還元が可能な雰囲気を作り、且つNOxの排出量を最小限にするよう空燃比の切り替えを適切に行うことを目的とする。
【0006】
【課題を解決するための手段】
そのため本発明では、三元触媒の一時劣化を回復させるタイミングで、内燃機関の空燃比リーン化運転を行い、この空燃比リーン化運転にて三元触媒下流での空燃比が所定空燃比よりもリーンになったときに、空燃比リーン化運転から空燃比リッチ化運転へ切り替え、空燃比リッチ化運転にて三元触媒下流での空燃比変化がリーン方向からリッチ方向へ反転したときに、空燃比リッチ化運転から通常運転へ戻す構成とする。
【0007】
【発明の効果】
本発明によれば、空燃比リーン化運転により三元触媒の一時劣化を回復させると共に、空燃比リッチ化運転により三元触媒をNOxの還元可能な状態にし、通常運転によりNOxの排出量を最小限に抑えることができる。
【0008】
【発明の実施の形態】
以下、図面に基づき本発明の実施形態を説明する。
図1は、内燃機関の排気浄化装置の構成図である。
エンジン1の吸気通路2には、吸入空気量を制御する電制スロットル弁3が設けられている。
【0009】
吸気通路2の電制スロットル弁3下流の吸気マニホールド・ブランチ部には、各気筒に燃料噴射弁4が設けられている。これらの燃料噴射弁4は、各気筒の燃焼室内に直接臨ませて配置してもよい。
エンジン1の排気通路5には、排気浄化装置として、排気マニホールド直下に位置させてプリ触媒6を配置し、また、車両床下に位置させてリア触媒7を配置してある。プリ触媒6及びリア触媒7は、いずれも排気空燃比がストイキ近傍のときに、排気中のHC,COを酸化すると同時にNOxを還元可能な三元触媒である。
【0010】
電制スロットル弁3及び燃料噴射弁4の作動は、エンジンコントロールユニット(ECU)10により制御され、かかる制御のため、ECU10には、アクセル開度センサ11、クランク角センサ12、エアフロメータ13、第1〜第3空燃比センサ14〜16、走行距離計17などから信号が入力されている。
アクセル開度センサ11は、アクセルペダルの踏み込み量(アクセル開度)APOに応じた信号を出力する。
【0011】
クランク角センサ12は、エンジン回転に同期してクランク角信号を出力するもので、この信号によりエンジン回転速度Neを検出可能である。
エアフロメータ13は、吸気通路2の電制スロットル弁3上流に設けられ、吸入空気量Qaに応じた信号を出力する。
走行距離計17は、車両の累積走行距離に応じた信号を出力する。
【0012】
第1〜第3空燃比センサ14〜16は、排気通路5のプリ触媒6上流、プリ触媒6下流、リア触媒7下流にそれぞれ設けられ、排気空燃比に応じた信号を出力する。なお、第1〜第3空燃比センサ14〜16は、いわゆる広域型の空燃比センサであってもよいし、リッチ・リーン反転型の酸素センサであってもよい。
ECU10では、アクセル開度APO及びエンジン回転速度Neに基づいて要求エンジントルクに対応する要求燃料量を定め、この要求燃料量と目標空燃比とから要求空気量を定め、この要求空気量を実現するよう電制スロットル弁3の開度TVOを制御する。
【0013】
また、エアフロメータ13により検出される実際の吸入空気量Qaに基づき、ストイキ相当の基本燃料噴射量TP=K×Qa/Ne(Kは定数)を定め、これを次式のように、目標空燃比に対応する目標当量比TFBYAより補正し、または空燃比フィードバック補正係数LAMBDAにより補正して、最終的な燃料噴射量TIを算出する。
【0014】
TI=TP×TFBYA×LAMBDA
ここで目標当量比TFBYAは、ストイキを14.7とすると次式のように表せる。
TFBYA=14.7/目標空燃比
フィードバック補正係数LAMBDAは、目標空燃比がストイキであるときに、第1空燃比センサ14の信号に基づいて増減制御されるが、第2空燃比センサ15の信号に基づいて補正がなされる。ここで三元触媒は、HC,COの酸化と、NOxの還元とを行うが、三元触媒にストレージされる酸素の存在によりNOxの還元に比べHC,COの酸化の方が容易であることから、第2空燃比センサ15の信号に基づく補正は、排気空燃比が多少リッチ気味となるように行う。
【0015】
このため、リア触媒7では、リッチ気味の空燃比に晒されることが多く、これが一時劣化の原因となる。
すなわち、三元触媒がストイキよりリッチな空燃比で高温の排気雰囲気に晒されると、三元触媒中の貴金属成分(例えば、パラジウム)が還元され、酸化パラジウムから金属パラジウムとなり(メタル化)、三元触媒の浄化処理能力の低下、すなわち一時劣化が起こる。三元触媒の一時劣化は、燃料中の硫黄成分が三元触媒基材へ蓄積されることで促進される(硫黄被毒)。
【0016】
一時劣化が進行すると排気悪化が起こるため、一時劣化を回復させる目的で三元触媒に流入する排気空燃比をリーンに制御することが必要である。そして、三元触媒の一時劣化は、通常運転において連続的に進行していくため、定期的な回復処理の必要がある。さらに、三元触媒の一時劣化回復処理の空燃比リーン化運転が適切な空燃比で行われない場合には、NOxが排出されてしまうため、空燃比を検出してリーン化を制御する必要がある。さらに、空燃比リーン化運転している間、三元触媒の酸素ストレージ能力の上限まで達するため、還元性能が低下し、通常運転に戻した直後にNOxを浄化できずに排出してしまうため、リーン化運転後の空燃比を適切な状態とする、すなわち一時的にストレージされた酸素を消費する為のリッチ化運転を行う必要がある。
【0017】
そこで、上述した構成を備える内燃機関の排気浄化装置について、ECU10が行う一時劣化回復制御を図2及び図3を用いて説明する。
図2は、一時劣化回復制御を示すフローチャートである。図3は、一時劣化回復制御のタイミングチャートである。これらの制御はエンジン1の運転中に行われる。
【0018】
ステップ1(図にはS1と示す、以下同様)では、リア触媒7の下流に設置された第3空燃比センサ16の出力に基づき、後述する空燃比が所定空燃比以上リッチ状態である間、すなわち、図3において第3空燃比センサ16の出力に基づいて検出される空燃比RO2SVが第2の所定空燃比VSLL2以上(RO2SV≧VSLL2)である間、次式により燃料噴射量カウンター値TPCNTのカウントアップを行う。
【0019】
TPCNT=TPCNT(−1)+TP
すなわち、前述の基本燃料噴射量TPを燃料噴射量カウンター値の前回値TPCNT(−1)に加えて、燃料噴射量カウンター値(一時劣化推定量)TPCNTを算出する。
リア触媒7の一時劣化の主要因と考えられる前述のメタル化や硫黄被毒は、燃料噴射量の累積値に相関して生じるため、燃料噴射量に基づいて一時劣化の程度が推定できる。このため、一時劣化量を推定するためのカウンター値TPCNTは、燃料噴射量に基づく、燃料噴射量カウンターとしている。あるいは、燃料噴射量の代わりに、吸入空気量や車両走行距離をカウンターのパラメータとして用いることでも一時劣化を推定することが可能である。
【0020】
ステップ2では、燃料噴射量カウンター値TPCNTがカウンター所定値TPSLL以上(TPCNT≧TPSLL)であるか否かを判断する。なお、この所定値TPSLLは、定常走行や燃料カット制御の入らない条件で走行した場合に、エミッションの悪化が起こらない範囲でかつ一時劣化回復制御が頻繁に行われて、かえって排気浄化性能が悪化することのないよう実験などにより求めた値を設定する。これは、後述する一時劣化回復制御中に行われるリーン化運転及びリッチ化運転中は、特にプリ触媒6内の空燃比が浄化可能範囲を外れることとなり、エミッション悪化の可能性があるため、一時劣化回復制御は、できるだけ少ない回数に(かつ短時間に)抑えることが望ましい為である。カウンター値TPCNTが所定値TPSLL未満(TPCNT<TPSLL)である場合には、ステップ3へ進む。一方、所定値TPSLL以上(TPCNT≧TPSLL)の場合である場合には、後述するステップ6へ進む。
【0021】
ステップ3では、第3空燃比センサ16の出力に基づく空燃比RO2SVが第2の所定空燃比VSLL2よりリーン(RO2SV<VSLL2)となったか否かを判断する。空燃比RO2SVが第2の所定空燃比VSLL2よりリーン(RO2SV<VSLL2)の場合には、ステップ4へ進む。一方、第2の所定空燃比VSLL2以上リッチ(RO2SV≧VSLL2)である場合には、ステップ1へ戻る。
【0022】
なお、第2の所定空燃比VSLL2は、所定の空燃比の範囲内において定められている。これは、第2の所定空燃比VSLL2をストイキより大きくリッチ側に設定すると一時劣化の推定精度が低下することになり、一時劣化回復制御の十分な効果が得られなくなる一方、リーン側に設定し過ぎると、一時劣化回復制御が頻繁に行われることになって、かえってエミッションを悪化させる可能性があるのと、リーン化制御の際、リア触媒7が酸素ストレージ能力範囲(浄化可能範囲)の上限に達し易くなり、リーン化制御を止めた直後にNOxを浄化できないまま排出してしまう恐れがあるためである。このため、第2の所定空燃比VSLL2は、NOx排出量の抑制と一時劣化回復との効果が十分に得られることを要し、実験などにより最適値を設定することが望ましい。なお、実験などによって得られるVSLL2の最適値は、少なくともストイキよりもリーンとなることはなく、ストイキ又はそのリッチ側の値となる。
【0023】
ステップ4は、第3空燃比センサ16の検出する空燃比RO2SVが第2の所定空燃比VSLL2よりリーン(RO2SV<VSLL2)となった場合であり、リア触媒7の一時劣化が回復したと判断し、燃料噴射量カウンター値TPCNTをリセットする(図3のA点参照)。このような例は、減速時等の燃料カット条件が満たされて燃料カットが行われた場合等が当てはまる。なお、図3において、燃料カットが開始された時点と、第3空燃比センサ16の出力RO2SVの低下時点との間に時間差があるのは、燃料噴射弁4と第3空燃比センサ16との配設位置による影響を受けるのに加えて、触媒の酸素ストレージ能力によって、触媒下流の空燃比センサにリーン雰囲気が到達するのが遅れるためである。
【0024】
ステップ5では、第3空燃比センサ16の出力に基づく空燃比RO2SVが第2の所定空燃比VSLL2以上リッチ(RO2SV≧VSLL2)であるか否かを判断する。空燃比RO2SVが第2の所定空燃比VSLL2よりリーン(RO2SV<VSLL2)の場合には、ステップ4へ戻り、燃料噴射量カウンター値TPCNTを0にリセットする。一方、第2の所定空燃比VSLL2以上(RO2SV≧VSLL2)の場合には、再度ステップ1で燃料噴射量カウンター値TPCNTをカウントアップする(図3のB点参照)。
【0025】
また、ステップ2において燃料噴射量カウンター値TPCNTがカウンター所定値TPSLL以上(TPCNT≧TPSLL)であり、ステップ6へ進む場合について説明する。
ステップ6では、燃料噴射量カウンター値TPCNTをリセットする(図3のC点参照)。そして、リア触媒7の燃料噴射量カウンター値TPCNTがカウンター所定値TPSLLを超えたタイミングで、リア触媒7の一時劣化を回復させるため、目標当量比TFBYAを低下する運転、すなわち空燃比リーン化運転(第1の制御)を行う。
【0026】
ステップ7では、目標当量比TFBYAをストイキよりもリーン側の所定目標当量比KLに設定し、これに基づいて燃料噴射弁4を制御して、空燃比リーン化運転を開始する(図3のC点参照)。
ここで空燃比リーン化運転は、ストイキより大きくリーン側で行われる場合、リア触媒7の酸素ストレージ能力を超えた後も、リーン空燃比が長引き易くなり、リーン空燃比が解消されるまでの間、NOxを浄化できなくなる。一方で、リーンの程度(シフト量)が少な過ぎると、特にプリ触媒6内の浄化可能範囲を外れる時間が長くなり、エミッション悪化の可能性を生じる。このため、実験などにより最適なリーン側所定目標当量比KLを設定することが望ましい。
【0027】
ステップ8では、第3空燃比センサ16の出力に基づく空燃比RO2SVが第1の所定空燃比VSLLよりリーン(RO2SV<VSLL)であるか否かを判断する。VSLLの値は、高く設定しすぎると、一時劣化回復制御におけるリーン化(後述)時間が短くなり過ぎると共に、リッチ化(後述)時間が長くなり過ぎ、又、低く設定し過ぎれば、逆の結果を生じることになるので、最適な値を実験などによって求めて設定される。なお、第1の所定空燃比VSLLと第2の所定空燃比VSLL2とは、別個に設定してもよいが、同じ値であってもよく、VSLL,VSLL2それぞれに前述の点を考慮した上で、図3では同じ値として制御を簡素化した例を示している。
【0028】
そして、空燃比RO2SVが所定空燃比VSLLよりリーン(RO2SV<VSLL)の場合には、ステップ9へ進む。一方、所定空燃比VSLL以上(RO2SV≧VSLL)の場合には、ステップ6へ戻り、空燃比リーン化運転(目標当量比TFBYA=KL)を継続する(図3のC点〜D点参照)。
ステップ9では、目標当量比TFBYAをリッチ側の所定目標当量比KRにし、燃料噴射弁4の燃料噴射量を増量して、瞬時にリッチ化運転を行う制御(第2の制御)を開始する(図3のD点参照)。
【0029】
ここで、空燃比リッチ化運転は、ストイキより大きくリッチ側で行われる場合、リア触媒7が排気中のHC、COを酸化できなくなり、エミッションが悪化してしまう。一方、リッチの程度(シフト量)が少な過ぎると、プリ触媒6内の浄化可能範囲を外れる時間が長くなり、エミッション悪化の可能性を生じる。このため、実験などにより最適なリッチ側所定目標当量比KRを設定することが望ましい。
【0030】
ステップ10では、第3空燃比センサ16に基づく空燃比RO2SVが前回空燃比RO2SV(−1)よりリッチ(RO2SV>RO2SV(−1))であるか否かを判断する。これは、空燃比RO2SVが前回空燃比RO2SV(−1)より大きくなる時(RO2SV>RO2SV(−1))、すなわち空燃比のリーン方向からリッチ方向へ反転する切り替え時を判断するためである。このステップでは、空燃比反転切り替えの検出を目的とするので、空燃比変化の傾きが(負又は正の)所定値を上回ったことで切り替えを判断しても良い。空燃比RO2SVが前回空燃比RO2SV(−1)よりリッチ(RO2SV>RO2SV(−1))の場合(図3のE点参照)には、ステップ11へ進む。一方、前回空燃比RO2SV(−1)以上(RO2SV≦RO2SV(−1))の場合には、ステップ9へ戻り、空燃比リッチ化運転(TFBYA=KR)を継続する(図3のD点〜E点参照)。
【0031】
ステップ11では、目標当量比TFBYAを通常の目標当量比KSに設定し、これに基づいて燃料噴射弁4を制御して、通常運転を開始する(第3の制御)。これにより、空燃比リッチ運転(TFBYA=KR)から通常運転(TFBYA=KS)へ切り替える(図3のE点参照)。なお、通常運転時の目標当量比TFBYAは、通常運転時にNOx排出量を最小とするため、第3空燃比センサ16に基づく目標当量比がストイキより若干リッチの状態(TFBYA=KS)であるよう空燃比のフィードバック制御を行う。
【0032】
ステップ12では、第3空燃比センサ16の出力に基づく空燃比RO2SVが所定空燃比VSLL以上(RO2SV≧VSLL)であるか否かを判断する。所定空燃比VSLLよりリーン(RO2SV<VSLL)である場合はステップ11へ戻り、通常運転(TFBYA=KS)を継続する。一方、所定空燃比VSLL以上である場合(図3のF点参照)には、再度ステップ1へ戻る。
【0033】
ここで、これまでに述べてきた目標当量比TFBYAのシフト量が小さい場合には、トルク段差など運転性の悪化を最小にできるが、触媒内の空燃比の切り替わりが遅く、リア触媒7通過後の空燃比RO2SVがリーンまたはリッチとなる頃には、プリ触媒6内の空燃比は浄化可能範囲から大きく外れるためエミッションが悪化する恐れがある。一方、目標当量比TFBYAのシフト量が大きい場合には、触媒内空燃比の切り替わりが早く、その制御時間を短くすることができ、エミッションの悪化を抑えることができるが、トルク段差などの運転性の悪化に影響を及ぼしてしまう。従って、これらの点を考慮して、実験などによりエミッション及び運転性が悪化しない最大のシフト量を適切に設定することが望ましい。
【0034】
本実施形態によれば、排気通路5にリア触媒7を備え、その下流に設けられた第3空燃比センサ16と、リア触媒7の一時劣化を回復させるタイミングで、エンジン1の空燃比リーン化運転(TFBYA=KL)を行う第1の制御手段(ステップ7)、第3空燃比センサ16による第1の所定空燃比の検出に基づき(ステップ8)、空燃比リーン化運転(TFBYA=KL)から空燃比リッチ化運転(TFBYA=KR)へ切り替える第2の制御手段(ステップ9)、及び第3空燃比センサ16による空燃比RO2SVのリーン方向からリッチ方向への切り替え検出に基づき(ステップ10)、空燃比リッチ化運転(TFBYA=KR)から通常運転(TFBYA=KS)へ戻す第3の制御手段(ステップ11)を備えるリア触媒一時劣化回復制御手段と、を含んで構成される。このため、空燃比リーン化運転(TFBYA=KL)によりリア触媒7の一時劣化を適切に回復させることができ、空燃比リーン化運転(TFBYA=KR)によりリア触媒7をNOxの還元可能な状態にでき、通常運転(TFBYA=KS)によりエミッション(HC、CO、NOx)の排出量の悪化を低減させることができる。
【0035】
また本実施形態によれば、リア触媒一時劣化回復制御手段は、リア触媒7の一時劣化を推定する一時劣化推定手段(ステップ1)を備え、この推定手段が推定する一時劣化推定量TPCNTが所定量TPSLLを超えたときに、第1の制御手段による空燃比リーン化運転(TFBYA=KL)を開始する(ステップ7)。このため、一時劣化推定量TPCNTに基づいて、適切なタイミングで空燃比リーン化運転(TFBYA=KL)を行うことができ、リア触媒7の一時劣化を適切に回復させることができる。
【0036】
また本実施形態によれば、一時劣化推定手段(ステップ1)は、第3空燃比センサ16による空燃比RO2SVが第2の所定空燃比VSLL2以上リッチである場合(ステップ5,12)に、一時劣化を推定するためのカウント値TPCNTをカウントするものであり、一時劣化の所定量TPSLLは、第2の所定空燃比VSLL2以上リッチである場合の所定カウント値とする。このため、第3空燃比センサ16の出力による空燃比RO2SVの所定範囲内で第2の所定空燃比VSLL2を設定でき、この空燃比VSLL2に基づいて一時劣化量TPCNTの推定を行うことができる。
【0037】
また本実施形態によれば、第2の所定空燃比VSLL2は、第1の所定空燃比VSLLと同じであるので、制御を簡素化できる。
また本実施形態によれば、カウント値TPCNTは、第3空燃比センサ16による空燃比RO2SVが第2の所定空燃比VSLL2(VSLL)よりもリーンである場合(ステップ3)にリセットされる(ステップ4)。このため、第3空燃比センサ16による空燃比RO2SVと第2の所定空燃比VSLL2(VSLL)とから燃料噴射量のカウント値(一時劣化推定量)TPCNTの許容上限への到達を正しく判断することができる。
【0038】
また本実施形態によれば、カウント値TPCNTは、一時劣化を燃料噴射量に基づいて推定する。このため、触媒のメタル化や硫黄被毒を主要因にすると考えられる一時劣化を、これらの主要因に相関する燃料噴射量(あるいは、吸入空気量、走行距離)の累積値を用いて推定することになるから、リア触媒7の一時劣化を精度良く推定できる。
【0039】
また本実施形態によれば、第3の制御手段(ステップ11)による通常運転は、リア触媒7通過後の空燃比RO2SVがストイキより若干リッチの状態(TFBYA=KS)で行う。このため、通常運転時(TFBYA=KS)においてNOx排出量を最小とすることができる。
また本実施形態によれば、エンジン1は、リア触媒7上流にプリ触媒6を備え、第3の制御手段(ステップ11)による通常運転は、リア触媒7通過後の空燃比RO2SVがストイキより若干リッチの状態(TFBYA=KS)で行う。このため、触媒が複数個の場合であっても、一時劣化を適切に回復させることができる。
【0040】
また本実施形態によれば、排気通路5に設けられたリア触媒7下流にて空燃比RO2SVを検出する一方、リア触媒7の一時劣化を回復させるタイミングで、エンジン1の空燃比リーン化運転(TFBYA=KL)を行い(ステップ7)、所定空燃比VSLLの検出に基づき(ステップ8)、空燃比リーン化運転(TFBYA=KL)から空燃比リッチ化運転(TFBYA=KR)へ切り替え(ステップ9)、空燃比RO2SVのリーン方向からリッチ方向への切り替え検出に基づき(ステップ10)、空燃比リッチ化運転(TFBYA=KR)から通常運転(TFBYA=KS)へ戻す(ステップ11)。このため、空燃比リーン化運転(TFBYA=KL)によりリア触媒7の一時劣化を適切に回復させることができ、リッチ化運転(TFBYA=KR)により三元触媒をNOxの還元可能な状態にでき、通常運転(TFBYA=KS)によりエミッション(HC、CO、NOx)の排出量の悪化を低減させることができる。
【0041】
なお、図1においては三元触媒が2つの場合について説明したが、1つの三元触媒を配置する場合にも、その下流側に配設した空燃比センサを利用して本願発明の適用が可能である。このため、システム構成が簡素化する。
また、触媒6,7は、HCトラップ機能を有してもよい。この場合には、HCの排出量を減少させることができる。
【図面の簡単な説明】
【図1】内燃機関の排気浄化装置の構成図
【図2】一時劣化回復制御を示すフローチャート
【図3】一時劣化回復制御のタイミングチャート
【符号の説明】
1 エンジン
2 吸気通路
3 電制スロットル弁
4 燃料噴射弁
5 排気通路
6 プリ触媒
7 リア触媒
10 ECU
11 アクセル開度センサ
12 クランク角センサ
13 エアフロメータ
14 第1空燃比センサ
15 第2空燃比センサ
16 第3空燃比センサ
17 走行距離計
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust purification device and method for an internal combustion engine having a three-way catalyst in an exhaust passage.
[0002]
[Prior art]
Conventionally, in order to purify exhaust gas discharged from an internal combustion engine, a three-way catalyst that performs feedback control so that the air-fuel ratio becomes a stoichiometric air-fuel ratio (stoichiometric), and also performs oxidation of HC and CO and reduction of NOx A system in which is disposed in the exhaust passage has been widely put into practical use. When the three-way catalyst is exposed to the air-fuel ratio rich state, the purification processing capacity is reduced (temporary deterioration), and exhaust deterioration is caused. Therefore, in Patent Document 1, the three-way catalyst is subjected to temporary deterioration recovery processing by performing the air-fuel ratio leaning operation for a predetermined time, and immediately after that, control is performed to return to normal operation.
[0003]
[Patent Document 1]
Japanese Patent No. 2996084 [0004]
[Problems to be solved by the invention]
Here, the air-fuel ratio leaning operation can recover the temporary deterioration of the three-way catalyst by supplying oxygen to the three-way catalyst. However, during the air-fuel ratio leaning operation, the NOx emission amount increases, so the air-fuel ratio leaning operation needs to be performed at the minimum necessary.
[0005]
Further, the air-fuel ratio leaning operation stores oxygen until the three-way catalyst reaches the upper limit of its oxygen storage capacity, and even if the air-fuel ratio lean operation is returned to the normal operation, the three-way catalyst cannot reduce NOx. Since this is a state, the amount of NOx emission increases.
In view of such problems, the present invention performs an air-fuel ratio leaning operation to recover the temporary deterioration of the three-way catalyst, discharge the accumulated oxygen, create an atmosphere in which NOx can be reduced, and NOx The purpose is to switch the air-fuel ratio appropriately so as to minimize the amount of exhaust gas discharged.
[0006]
[Means for Solving the Problems]
Therefore, in the present invention, the air-fuel ratio leaning operation of the internal combustion engine is performed at a timing to recover the temporary deterioration of the three-way catalyst, and the air-fuel ratio downstream of the three-way catalyst in this air-fuel ratio leaning operation is higher than the predetermined air-fuel ratio. When lean , the air-fuel ratio leaning operation is switched to the air-fuel ratio enriching operation, and when the air-fuel ratio change downstream of the three-way catalyst in the air-fuel ratio enrichment operation is reversed from the lean direction to the rich direction, It is configured to return from the fuel ratio enrichment operation to the normal operation.
[0007]
【The invention's effect】
According to the present invention, the temporary deterioration of the three-way catalyst is recovered by the air-fuel ratio leaning operation, the three-way catalyst is made in a state capable of reducing NOx by the air-fuel ratio enrichment operation, and the NOx emission amount is minimized by the normal operation. To the limit.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of an exhaust purification device for an internal combustion engine.
An intake throttle passage 2 of the engine 1 is provided with an electric throttle valve 3 that controls the amount of intake air.
[0009]
A fuel injection valve 4 is provided for each cylinder in the intake manifold / branch portion of the intake passage 2 downstream of the electric throttle valve 3. These fuel injection valves 4 may be arranged directly facing the combustion chamber of each cylinder.
In the exhaust passage 5 of the engine 1, as an exhaust purification device, a pre-catalyst 6 is disposed just below the exhaust manifold, and a rear catalyst 7 is disposed below the vehicle floor. The pre-catalyst 6 and the rear catalyst 7 are both three-way catalysts that can reduce NOx at the same time as oxidizing HC and CO in the exhaust when the exhaust air-fuel ratio is in the vicinity of stoichiometric.
[0010]
The operation of the electric throttle valve 3 and the fuel injection valve 4 is controlled by an engine control unit (ECU) 10. For this control, the ECU 10 includes an accelerator opening sensor 11, a crank angle sensor 12, an air flow meter 13, Signals are input from the first to third air-fuel ratio sensors 14 to 16, the odometer 17, and the like.
The accelerator opening sensor 11 outputs a signal corresponding to an accelerator pedal depression amount (accelerator opening) APO.
[0011]
The crank angle sensor 12 outputs a crank angle signal in synchronization with engine rotation, and can detect the engine rotation speed Ne based on this signal.
The air flow meter 13 is provided upstream of the electric throttle valve 3 in the intake passage 2 and outputs a signal corresponding to the intake air amount Qa.
The odometer 17 outputs a signal corresponding to the cumulative mileage of the vehicle.
[0012]
The first to third air-fuel ratio sensors 14 to 16 are respectively provided upstream of the pre-catalyst 6, downstream of the pre-catalyst 6 and downstream of the rear catalyst 7 in the exhaust passage 5, and output signals corresponding to the exhaust air-fuel ratio. The first to third air-fuel ratio sensors 14 to 16 may be so-called wide-area air-fuel ratio sensors or rich-lean inversion oxygen sensors.
The ECU 10 determines a required fuel amount corresponding to the required engine torque based on the accelerator opening APO and the engine speed Ne, determines a required air amount from the required fuel amount and the target air-fuel ratio, and realizes the required air amount. The opening TVO of the electric throttle valve 3 is controlled.
[0013]
Further, based on the actual intake air amount Qa detected by the air flow meter 13, a basic fuel injection amount TP = K × Qa / Ne (K is a constant) equivalent to stoichiometry is determined, and this is expressed as The final fuel injection amount TI is calculated by correcting from the target equivalent ratio TFBYA corresponding to the fuel ratio or by correcting with the air-fuel ratio feedback correction coefficient LAMBDA.
[0014]
TI = TP × TFBYA × LAMBDA
Here, the target equivalent ratio TFBYA can be expressed by the following equation when the stoichiometric ratio is 14.7.
TFBYA = 14.7 / target air-fuel ratio feedback correction coefficient LAMBDA is controlled to increase or decrease based on the signal from the first air-fuel ratio sensor 14 when the target air-fuel ratio is stoichiometric, but the signal from the second air-fuel ratio sensor 15 Correction is made based on Here, the three-way catalyst performs oxidation of HC and CO and reduction of NOx, but oxidation of HC and CO is easier than reduction of NOx due to the presence of oxygen stored in the three-way catalyst. Therefore, the correction based on the signal of the second air-fuel ratio sensor 15 is performed so that the exhaust air-fuel ratio becomes somewhat rich.
[0015]
For this reason, the rear catalyst 7 is often exposed to a rich air-fuel ratio, which causes temporary deterioration.
That is, when the three-way catalyst is exposed to a high-temperature exhaust atmosphere at an air-fuel ratio richer than stoichiometric, the noble metal component (for example, palladium) in the three-way catalyst is reduced, and palladium oxide is converted to metal palladium (metalation). Reduction of the purification capacity of the original catalyst, that is, temporary deterioration occurs. The temporary deterioration of the three-way catalyst is promoted by accumulation of sulfur components in the fuel on the three-way catalyst base (sulfur poisoning).
[0016]
Since exhaust gas deterioration occurs when temporary deterioration progresses, it is necessary to control the exhaust air-fuel ratio flowing into the three-way catalyst to be lean for the purpose of recovering the temporary deterioration. And since the temporary deterioration of the three-way catalyst proceeds continuously in normal operation, it is necessary to periodically recover. Furthermore, if the air-fuel ratio leaning operation for the temporary deterioration recovery process of the three-way catalyst is not performed at an appropriate air-fuel ratio, NOx is exhausted, so it is necessary to control the leaning by detecting the air-fuel ratio. is there. Furthermore, since the upper limit of the oxygen storage capacity of the three-way catalyst is reached during the air-fuel ratio leaning operation, the reduction performance is reduced, and NOx cannot be purified immediately after returning to normal operation, It is necessary to perform an enrichment operation for setting the air-fuel ratio after the lean operation to an appropriate state, that is, for consuming temporarily stored oxygen.
[0017]
Therefore, temporary deterioration recovery control performed by the ECU 10 will be described with reference to FIG. 2 and FIG.
FIG. 2 is a flowchart showing temporary deterioration recovery control. FIG. 3 is a timing chart of the temporary deterioration recovery control. These controls are performed while the engine 1 is operating.
[0018]
In step 1 (shown as S1 in the figure, the same applies hereinafter), based on the output of the third air-fuel ratio sensor 16 installed downstream of the rear catalyst 7, while the air-fuel ratio described later is in a rich state over a predetermined air-fuel ratio, that is, the third air-fuel ratio RO2SV detected based on the output of the air-fuel ratio sensor 16 is a second predetermined air-fuel ratio VSLL2 least 3 between (RO2SV ≧ VSLL2) is, the fuel injection amount counter value TPCNT the following equation Count up.
[0019]
TPCNT = TPCNT (-1) + TP
That is, the basic fuel injection amount TP is added to the previous value TPCNT (−1) of the fuel injection amount counter value to calculate the fuel injection amount counter value (temporary deterioration estimated amount) TPCNT.
The metallization and sulfur poisoning, which are considered to be the main causes of the temporary deterioration of the rear catalyst 7, occur in correlation with the cumulative value of the fuel injection amount, and therefore the degree of temporary deterioration can be estimated based on the fuel injection amount. For this reason, the counter value TPCNT for estimating the temporary deterioration amount is a fuel injection amount counter based on the fuel injection amount. Alternatively, temporary deterioration can be estimated by using the intake air amount or the vehicle travel distance as a counter parameter instead of the fuel injection amount.
[0020]
In step 2, it is determined whether or not the fuel injection amount counter value TPCNT is equal to or greater than a predetermined counter value TPSLL (TPCNT ≧ TPSLL). Note that this predetermined value TPSLL is a range in which emission deterioration does not occur and frequent deterioration recovery control is frequently performed when traveling under conditions where steady running or fuel cut control is not performed, and exhaust purification performance deteriorates. Set the value obtained by experiment etc. so that it does not occur. This is because the air-fuel ratio in the pre-catalyst 6 is out of the purifiable range, particularly during the leaning operation and the riching operation that are performed during the temporary deterioration recovery control described later. This is because the deterioration recovery control is desirably suppressed to as few times as possible (and in a short time). If the counter value TPCNT is less than the predetermined value TPSLL (TPCNT <TPSLL), the process proceeds to step 3. On the other hand, if the value is equal to or greater than the predetermined value TPSLL (TPCNT ≧ TPSLL), the process proceeds to step 6 described later.
[0021]
In step 3, it is determined whether the air-fuel ratio RO2SV based on the output of the third air-fuel ratio sensor 16 is leaner than the second predetermined air-fuel ratio VSLL2 (RO2SV <VSLL2). When the air-fuel ratio RO2SV is leaner than the second predetermined air-fuel ratio VSLL2 (RO2SV <VSLL2), the routine proceeds to step 4. On the other hand, if it is richer than the second predetermined air-fuel ratio VSLL2 (RO2SV ≧ VSLL2), the process returns to step 1.
[0022]
The second predetermined air-fuel ratio VSLL2 is determined within a predetermined air-fuel ratio range. This is because if the second predetermined air-fuel ratio VSLL2 is set larger than the stoichiometric value to the rich side, the estimation accuracy of the temporary deterioration is lowered, and the sufficient effect of the temporary deterioration recovery control cannot be obtained, while it is set to the lean side. If excessively, the temporary deterioration recovery control is frequently performed, which may worsen the emission, and the lean catalyst has an upper limit of the oxygen storage capacity range (purifying range) during the lean control. This is because NOx may be discharged without being purified immediately after the lean control is stopped. For this reason, the second predetermined air-fuel ratio VSLL2 needs to sufficiently obtain the effects of suppressing the NOx emission amount and recovering from the temporary deterioration, and is desirably set to an optimum value through experiments or the like. Note that the optimum value of VSLL2 obtained through experiments or the like does not become leaner than at least stoichiometric, and is a stoichiometric or rich value.
[0023]
Step 4 is a case where the air-fuel ratio RO2SV detected by the third air-fuel ratio sensor 16 is leaner than the second predetermined air-fuel ratio VSLL2 (RO2SV <VSLL2), and it is determined that the temporary deterioration of the rear catalyst 7 has been recovered. Then, the fuel injection amount counter value TPCNT is reset (see point A in FIG. 3). Such an example is applicable to a case where fuel cut conditions such as deceleration are satisfied and fuel cut is performed. In FIG. 3, there is a time difference between the time when the fuel cut is started and the time when the output RO2SV of the third air-fuel ratio sensor 16 is lowered between the fuel injection valve 4 and the third air-fuel ratio sensor 16. This is because, in addition to being influenced by the arrangement position, the oxygen storage capacity of the catalyst delays the arrival of the lean atmosphere at the air-fuel ratio sensor downstream of the catalyst.
[0024]
In step 5, it is determined whether or not the air-fuel ratio RO2SV based on the output of the third air-fuel ratio sensor 16 is richer than the second predetermined air-fuel ratio VSLL2 (RO2SV ≧ VSLL2). When the air-fuel ratio RO2SV is leaner than the second predetermined air-fuel ratio VSLL2 (RO2SV <VSLL2), the routine returns to step 4 and the fuel injection amount counter value TPCNT is reset to zero. On the other hand, when the second predetermined air-fuel ratio is equal to or higher than VSLL2 (RO2SV ≧ VSLL2), the fuel injection amount counter value TPCNT is counted up again in step 1 (see point B in FIG. 3).
[0025]
Further, the case where the fuel injection amount counter value TPCNT is equal to or greater than the counter predetermined value TPSLL (TPCNT ≧ TPSLL) in step 2 and the process proceeds to step 6 will be described.
In step 6, the fuel injection amount counter value TPCNT is reset (see point C in FIG. 3). Then, at the timing when the fuel injection amount counter value TPCNT of the rear catalyst 7 exceeds the counter predetermined value TPSLL, in order to recover the temporary deterioration of the rear catalyst 7, an operation for decreasing the target equivalent ratio TFBYA, that is, an air-fuel ratio leaning operation ( First control) is performed.
[0026]
In step 7, the target equivalent ratio TFBYA is set to a predetermined target equivalent ratio KL that is leaner than the stoichiometry, and the fuel injection valve 4 is controlled based on this to start the air-fuel ratio leaning operation (C in FIG. 3). Point).
Here, when the air-fuel ratio leaning operation is performed on the lean side larger than the stoichiometry, the lean air-fuel ratio is easily prolonged even after exceeding the oxygen storage capacity of the rear catalyst 7, and until the lean air-fuel ratio is eliminated. NOx cannot be purified. On the other hand, if the degree of lean (shift amount) is too small, the time required to depart from the purifiable range in the pre-catalyst 6 becomes longer, and the possibility of worsening of emissions arises. For this reason, it is desirable to set the optimal lean-side predetermined target equivalent ratio KL by experiments or the like.
[0027]
In step 8, it is determined whether the air-fuel ratio RO2SV based on the output of the third air-fuel ratio sensor 16 is leaner than the first predetermined air-fuel ratio VSLL (RO2SV <VSLL). If the value of VSLL is set too high, the leaning (described later) time in the temporary deterioration recovery control becomes too short, the enriching (described later) time becomes too long, and if set too low, the opposite result Therefore, the optimum value is obtained by experimentation and set. The first predetermined air-fuel ratio VSLL and the second predetermined air-fuel ratio VSLL2 may be set separately, but may be the same value, taking into account the above points for VSLL and VSLL2, respectively. FIG. 3 shows an example in which the control is simplified as the same value.
[0028]
If the air-fuel ratio RO2SV is leaner than the predetermined air-fuel ratio VSLL (RO2SV <VSLL), the process proceeds to step 9. On the other hand, when the air-fuel ratio is equal to or higher than the predetermined air-fuel ratio VSLL (RO2SV ≧ VSLL), the routine returns to step 6 and the air-fuel ratio leaning operation (target equivalent ratio TFBYA = KL) is continued (see points C to D in FIG. 3).
In step 9, the target equivalent ratio TFBYA is set to a predetermined target equivalent ratio KR on the rich side, the fuel injection amount of the fuel injection valve 4 is increased, and the control (second control) for instantly performing the enrichment operation (second control) is started ( (See point D in FIG. 3).
[0029]
Here, when the air-fuel ratio enrichment operation is performed on the rich side larger than the stoichiometry, the rear catalyst 7 cannot oxidize HC and CO in the exhaust, and the emission deteriorates. On the other hand, if the degree of richness (shift amount) is too small, the time that is out of the purifiable range in the pre-catalyst 6 becomes longer, and the possibility of worsening of emission arises. For this reason, it is desirable to set the optimal rich side predetermined target equivalent ratio KR through experiments or the like.
[0030]
In step 10, it is determined whether the air-fuel ratio RO2SV based on the third air-fuel ratio sensor 16 is richer (RO2SV> RO2SV (-1)) than the previous air-fuel ratio RO2SV (-1). This is to determine when the air-fuel ratio RO2SV becomes greater than the previous air-fuel ratio RO2SV (−1) (RO2SV> RO2SV (−1)), that is, when the air-fuel ratio is switched from the lean direction to the rich direction. Since the purpose of this step is to detect air-fuel ratio inversion switching, switching may be determined when the slope of the air-fuel ratio change exceeds a predetermined value (negative or positive). If the air-fuel ratio RO2SV is richer than the previous air-fuel ratio RO2SV (-1) (RO2SV> RO2SV (-1)) (see point E in FIG. 3), the process proceeds to step 11. On the other hand, if the previous air-fuel ratio RO2SV (-1) is greater than or equal to (RO2SV ≦ RO2SV (-1)), the process returns to step 9 to continue the air-fuel ratio enrichment operation (TFBYA = KR) (from point D in FIG. 3). (See point E).
[0031]
In step 11, the target equivalent ratio TFBYA is set to the normal target equivalent ratio KS, and based on this, the fuel injection valve 4 is controlled to start normal operation (third control). Thereby, the air-fuel ratio rich operation (TFBYA = KR) is switched to the normal operation (TFBYA = KS) (see point E in FIG. 3). The target equivalent ratio TFBYA during normal operation is such that the target equivalent ratio based on the third air-fuel ratio sensor 16 is slightly richer than stoichiometric (TFBYA = KS) in order to minimize the NOx emission amount during normal operation. Performs air-fuel ratio feedback control.
[0032]
In step 12, it is determined whether or not the air-fuel ratio RO2SV based on the output of the third air-fuel ratio sensor 16 is equal to or greater than a predetermined air-fuel ratio VSLL (RO2SV ≧ VSLL). When the air-fuel ratio is leaner than the predetermined air-fuel ratio VSLL (RO2SV <VSLL), the process returns to step 11 and the normal operation (TFBYA = KS) is continued. On the other hand, when the air-fuel ratio is equal to or higher than the predetermined air-fuel ratio VSLL (see point F in FIG. 3), the process returns to step 1 again.
[0033]
Here, when the shift amount of the target equivalent ratio TFBYA described so far is small, the deterioration of operability such as a torque step can be minimized, but the switching of the air-fuel ratio in the catalyst is slow, and after passing through the rear catalyst 7 When the air-fuel ratio RO2SV becomes lean or rich, the air-fuel ratio in the pre-catalyst 6 greatly deviates from the purifiable range, and the emission may deteriorate. On the other hand, when the shift amount of the target equivalent ratio TFBYA is large, the switching of the air-fuel ratio in the catalyst is quick, the control time can be shortened, and the deterioration of the emission can be suppressed. It will affect the worsening of. Therefore, in consideration of these points, it is desirable to appropriately set the maximum shift amount that does not deteriorate the emission and drivability by experiments.
[0034]
According to this embodiment, the exhaust passage 5 is provided with the rear catalyst 7, and the air-fuel ratio of the engine 1 is made lean at the timing at which the third air-fuel ratio sensor 16 provided downstream thereof and the temporary deterioration of the rear catalyst 7 are recovered. First control means (step 7) for performing the operation (TFBYA = KL), based on the detection of the first predetermined air-fuel ratio by the third air-fuel ratio sensor 16 (step 8), the air-fuel ratio leaning operation (TFBYA = KL) Based on the second control means (step 9) for switching from the air-fuel ratio enrichment operation (TFBYA = KR) and the third air-fuel ratio sensor 16 to detect the change of the air-fuel ratio RO2SV from the lean direction to the rich direction (step 10). , Rear catalyst temporary deterioration times provided with third control means (step 11) for returning from air-fuel ratio enrichment operation (TFBYA = KR) to normal operation (TFBYA = KS). Configured to include a control means. Therefore, the temporary deterioration of the rear catalyst 7 can be appropriately recovered by the air-fuel ratio leaning operation (TFBYA = KL), and the rear catalyst 7 can be reduced to NOx by the air-fuel ratio leaning operation (TFBYA = KR). It is possible to reduce the emission (HC, CO, NOx) emission amount by normal operation (TFBYA = KS).
[0035]
Further, according to the present embodiment, the rear catalyst temporary deterioration recovery control means includes temporary deterioration estimation means (step 1) for estimating the temporary deterioration of the rear catalyst 7, and the temporary deterioration estimated amount TPCNT estimated by the estimation means is provided. When the fixed amount TPSLL is exceeded, the air-fuel ratio leaning operation (TFBYA = KL) by the first control means is started (step 7). Therefore, the air-fuel ratio leaning operation (TFBYA = KL) can be performed at an appropriate timing based on the temporary deterioration estimated amount TPCNT, and the temporary deterioration of the rear catalyst 7 can be appropriately recovered.
[0036]
Further, according to the present embodiment, the temporary deterioration estimating means (step 1) is temporarily executed when the air-fuel ratio RO2SV by the third air-fuel ratio sensor 16 is richer than the second predetermined air-fuel ratio VSLL2 (steps 5 and 12). The count value TPCNT for estimating the deterioration is counted, and the predetermined amount TPSLL of the temporary deterioration is set to a predetermined count value when the second predetermined air-fuel ratio VSLL2 is rich. Therefore, the second predetermined air-fuel ratio VSLL2 can be set within a predetermined range of the air-fuel ratio RO2SV based on the output of the third air-fuel ratio sensor 16, and the temporary deterioration amount TPCNT can be estimated based on the air-fuel ratio VSLL2.
[0037]
Further, according to the present embodiment, the second predetermined air-fuel ratio VSLL2 is the same as the first predetermined air-fuel ratio VSLL, so that the control can be simplified.
Further, according to the present embodiment, the count value TPCNT is reset when the air-fuel ratio RO2SV by the third air-fuel ratio sensor 16 is leaner than the second predetermined air-fuel ratio VSLL2 (VSLL) (step 3) (step 3). 4). Therefore, it is possible to correctly determine that the fuel injection amount count value (temporal deterioration estimated amount) TPCNT has reached the allowable upper limit from the air-fuel ratio RO2SV and the second predetermined air-fuel ratio VSLL2 (VSLL) by the third air-fuel ratio sensor 16. Can do.
[0038]
Further, according to the present embodiment, the count value TPCNT estimates temporary deterioration based on the fuel injection amount. For this reason, temporary deterioration that is considered to be caused mainly by metallization of the catalyst and sulfur poisoning is estimated by using a cumulative value of the fuel injection amount (or intake air amount, travel distance) correlated with these main factors. Therefore, the temporary deterioration of the rear catalyst 7 can be accurately estimated.
[0039]
According to this embodiment, the normal operation by the third control means (step 11) is performed in a state where the air-fuel ratio RO2SV after passing through the rear catalyst 7 is slightly richer than stoichiometric (TFBYA = KS). For this reason, the NOx emission amount can be minimized during normal operation (TFBYA = KS).
Further, according to the present embodiment, the engine 1 includes the pre-catalyst 6 upstream of the rear catalyst 7, and in the normal operation by the third control means (step 11), the air-fuel ratio RO2SV after passing through the rear catalyst 7 is slightly higher than the stoichiometric ratio. This is performed in a rich state (TFBYA = KS). For this reason, even if there are a plurality of catalysts, the temporary deterioration can be appropriately recovered.
[0040]
Further, according to the present embodiment, the air-fuel ratio RO2SV is detected downstream of the rear catalyst 7 provided in the exhaust passage 5, while the air-fuel ratio leaning operation of the engine 1 is performed at the timing to recover the temporary deterioration of the rear catalyst 7 ( (TFBYA = KL) is performed (step 7), and based on the detection of the predetermined air-fuel ratio VSLL (step 8), the air-fuel ratio leaning operation (TFBYA = KL) is switched to the air-fuel ratio enriching operation (TFBYA = KR) (step 9). ) Based on detection of switching of the air-fuel ratio RO2SV from the lean direction to the rich direction (step 10), the air-fuel ratio enrichment operation (TFBYA = KR) is returned to the normal operation (TFBYA = KS) (step 11). For this reason, the temporary deterioration of the rear catalyst 7 can be appropriately recovered by the air-fuel ratio leaning operation (TFBYA = KL), and the three-way catalyst can be made in a state capable of reducing NOx by the enrichment operation (TFBYA = KR). The deterioration of emission (HC, CO, NOx) emissions can be reduced by normal operation (TFBYA = KS).
[0041]
In FIG. 1, the case where there are two three-way catalysts has been described. However, even when one three-way catalyst is arranged, the present invention can be applied using an air-fuel ratio sensor arranged on the downstream side thereof. It is. For this reason, the system configuration is simplified.
Further, the catalysts 6 and 7 may have an HC trap function. In this case, the amount of HC emission can be reduced.
[Brief description of the drawings]
FIG. 1 is a block diagram of an exhaust purification device for an internal combustion engine. FIG. 2 is a flowchart showing temporary deterioration recovery control. FIG. 3 is a timing chart of temporary deterioration recovery control.
1 Engine 2 Intake passage 3 Electric throttle valve 4 Fuel injection valve 5 Exhaust passage 6 Pre-catalyst 7 Rear catalyst 10 ECU
11 Accelerator opening sensor 12 Crank angle sensor 13 Air flow meter 14 First air-fuel ratio sensor 15 Second air-fuel ratio sensor 16 Third air-fuel ratio sensor 17 Odometer

Claims (10)

排気通路に三元触媒を備える内燃機関の排気浄化装置であって、
前記三元触媒下流に設けられた空燃比検出手段と、
前記三元触媒の一時劣化を回復させるタイミングで、前記内燃機関の空燃比リーン化運転を行う第1の制御手段、前記空燃比リーン化運転にて前記空燃比検出手段により検出される空燃比が第1の所定空燃比よりもリーンになったときに、前記空燃比リーン化運転から空燃比リッチ化運転へ切り替える第2の制御手段、及び前記空燃比リッチ化運転にて前記空燃比検出手段により検出される空燃比変化がリーン方向からリッチ方向へ反転したときに、前記空燃比リッチ化運転から通常運転へ戻す第3の制御手段を備える三元触媒一時劣化回復制御手段と、を含んで構成されることを特徴とする内燃機関の排気浄化装置。
An exhaust purification device for an internal combustion engine comprising a three-way catalyst in an exhaust passage,
An air-fuel ratio detecting means provided downstream of the three-way catalyst;
The first control means for performing the air-fuel ratio leaning operation of the internal combustion engine at the timing for recovering the temporary deterioration of the three-way catalyst, and the air-fuel ratio detected by the air-fuel ratio detecting means in the air-fuel ratio leaning operation is when it is leaner than the first predetermined air-fuel ratio, a second control means for switching from the air-fuel ratio leaner operation to enriching the air-fuel ratio operation, and by the air-fuel ratio detecting means in the air-fuel ratio rich operation Three-way catalyst temporary deterioration recovery control means comprising third control means for returning from the air-fuel ratio enrichment operation to the normal operation when the detected air-fuel ratio change is reversed from the lean direction to the rich direction. An exhaust emission control device for an internal combustion engine.
前記三元触媒一時劣化回復制御手段は、
前記三元触媒の一時劣化を推定する一時劣化推定手段を備え、
この推定手段が推定する一時劣化が所定量を超えたときに、前記第1の制御手段による空燃比リーン化運転を開始することを特徴とする請求項1記載の内燃機関の排気浄化装置。
The three-way catalyst temporary deterioration recovery control means,
Comprising temporary deterioration estimating means for estimating temporary deterioration of the three-way catalyst;
2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein when the temporary deterioration estimated by the estimating means exceeds a predetermined amount, the air-fuel ratio leaning operation by the first control means is started.
前記一時劣化推定手段は、前記空燃比検出手段による空燃比が第2の所定空燃比以上リッチである場合に、前記一時劣化のカウント値をカウントするものであり、
前記一時劣化の所定量は、前記第2の所定空燃比以上リッチである場合の所定カウント値とすることを特徴とする請求項2記載の内燃機関の排気浄化装置。
The temporary deterioration estimation means counts the temporary deterioration count value when the air-fuel ratio by the air-fuel ratio detection means is rich beyond a second predetermined air-fuel ratio,
3. The exhaust gas purification apparatus for an internal combustion engine according to claim 2, wherein the predetermined amount of temporary deterioration is a predetermined count value when the engine is richer than the second predetermined air-fuel ratio.
前記第2の所定空燃比は、前記第1の所定空燃比と同じであることを特徴とする請求項3記載の内燃機関の排気浄化装置。The exhaust gas purification apparatus for an internal combustion engine according to claim 3, wherein the second predetermined air-fuel ratio is the same as the first predetermined air-fuel ratio. 前記カウント値は、前記空燃比検出手段による空燃比が前記第2の所定空燃比よりもリーンである場合にリセットされることを特徴とする請求項3または請求項4記載の内燃機関の排気浄化装置。The exhaust gas purification of an internal combustion engine according to claim 3 or 4, wherein the count value is reset when the air-fuel ratio by the air-fuel ratio detection means is leaner than the second predetermined air-fuel ratio. apparatus. 前記カウント値は、少なくとも燃料噴射量、吸入空気量、走行距離のいずれかに基づいて算出される値とし、一時劣化を推定することを特徴とする請求項3〜請求項5のいずれか1つに記載の内燃機関の排気浄化装置。The count value is a value calculated based on at least one of a fuel injection amount, an intake air amount, and a travel distance, and temporary deterioration is estimated. 2. An exhaust gas purification apparatus for an internal combustion engine according to 1. 前記第3の制御手段による通常運転は、前記三元触媒通過後の空燃比がストイキより若干リッチの状態で行うことを特徴とする請求項1〜請求項6のいずれか1つに記載の内燃機関の排気浄化装置。7. The internal combustion engine according to claim 1, wherein the normal operation by the third control unit is performed in a state where the air-fuel ratio after passing through the three-way catalyst is slightly richer than stoichiometric. Engine exhaust purification system. 前記内燃機関は、前記三元触媒上流に別の三元触媒を備え、
前記第3の制御手段による通常運転は、前記上流側の三元触媒通過後の空燃比がストイキより若干リッチの状態で行うことを特徴とする請求項1〜請求項7のいずれか1つに記載の内燃機関の排気浄化装置。
The internal combustion engine includes another three-way catalyst upstream of the three-way catalyst,
The normal operation by the third control means is performed in a state where the air-fuel ratio after passing through the upstream three-way catalyst is slightly richer than the stoichiometric state. An exhaust gas purification apparatus for an internal combustion engine as described.
前記三元触媒は、HCトラップ機能を有することを特徴とする請求項1〜請求項8のいずれか1つに記載の内燃機関の排気浄化装置。The exhaust purification apparatus for an internal combustion engine according to any one of claims 1 to 8, wherein the three-way catalyst has an HC trap function. 排気通路に三元触媒を備える内燃機関の排気浄化方法であって、
前記三元触媒下流にて空燃比を検出する一方、
前記三元触媒の一時劣化を回復させるタイミングで、前記内燃機関の空燃比リーン化運転を行い、
前記空燃比リーン化運転にて前記三元触媒下流での空燃比が所定空燃比よりもリーンになったときに、前記空燃比リーン化運転から空燃比リッチ化運転へ切り替え、
前記空燃比リッチ化運転にて前記三元触媒下流での空燃比変化がリーン方向からリッチ方向へ反転したときに、前記空燃比リッチ化運転から通常運転へ戻すことを特徴とする内燃機関の排気浄化方法。
An exhaust purification method for an internal combustion engine having a three-way catalyst in an exhaust passage,
While detecting the air-fuel ratio downstream of the three-way catalyst,
At the timing of recovering the temporary deterioration of the three-way catalyst, the air-fuel ratio leaning operation of the internal combustion engine is performed,
When the air-fuel ratio downstream of the three-way catalyst in the air-fuel ratio leaning operation becomes leaner than a predetermined air-fuel ratio, the air-fuel ratio leaning operation is switched to the air-fuel ratio enriching operation,
The exhaust of the internal combustion engine, wherein when the air-fuel ratio change downstream of the three-way catalyst is reversed from the lean direction to the rich direction in the air-fuel ratio enrichment operation, the air-fuel ratio enrichment operation is returned to the normal operation. Purification method.
JP2002300752A 2002-10-15 2002-10-15 Apparatus and method for exhaust gas purification of internal combustion engine Expired - Fee Related JP4158475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002300752A JP4158475B2 (en) 2002-10-15 2002-10-15 Apparatus and method for exhaust gas purification of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002300752A JP4158475B2 (en) 2002-10-15 2002-10-15 Apparatus and method for exhaust gas purification of internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004137908A JP2004137908A (en) 2004-05-13
JP4158475B2 true JP4158475B2 (en) 2008-10-01

Family

ID=32449356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002300752A Expired - Fee Related JP4158475B2 (en) 2002-10-15 2002-10-15 Apparatus and method for exhaust gas purification of internal combustion engine

Country Status (1)

Country Link
JP (1) JP4158475B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103270282A (en) * 2011-01-18 2013-08-28 丰田自动车株式会社 Air-fuel ratio control device for internal combustion engine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4924646B2 (en) 2009-03-31 2012-04-25 株式会社デンソー Exhaust gas purification device for internal combustion engine
JP5767024B2 (en) * 2011-06-01 2015-08-19 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP6107586B2 (en) 2013-10-02 2017-04-05 トヨタ自動車株式会社 Control device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103270282A (en) * 2011-01-18 2013-08-28 丰田自动车株式会社 Air-fuel ratio control device for internal combustion engine
CN103270282B (en) * 2011-01-18 2016-01-06 丰田自动车株式会社 The air-fuel ratio control device of internal-combustion engine

Also Published As

Publication number Publication date
JP2004137908A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
JP3966014B2 (en) Exhaust gas purification device for internal combustion engine
EP0950804A2 (en) Exhaust gas purification system for internal combustion engine
JP3868693B2 (en) Air-fuel ratio control device for internal combustion engine
JP3997599B2 (en) Air-fuel ratio control device for internal combustion engine
US7168240B2 (en) Control apparatus for an internal combustion engine
JP3618598B2 (en) Exhaust gas purification device for internal combustion engine
JPH07305644A (en) Air-fuel ratio controller of internal combustion engine
JP4561656B2 (en) Catalyst temperature estimation device for internal combustion engine
JP2005344598A (en) Air fuel ratio control device for internal combustion engine
JP3988518B2 (en) Exhaust gas purification device for internal combustion engine
JP4186259B2 (en) Exhaust gas purification device for internal combustion engine
EP1365130B1 (en) Exhaust gas purifying apparatus and method for internal combustion engine
JP5229400B2 (en) Control device for internal combustion engine
JP4158475B2 (en) Apparatus and method for exhaust gas purification of internal combustion engine
JP4628539B2 (en) Engine control device
US10392986B2 (en) Exhaust purification system, and control method for exhaust purification system
JP4019745B2 (en) Air-fuel ratio control device for internal combustion engine
JP4055256B2 (en) Exhaust gas purification device for internal combustion engine
US6484494B2 (en) Electronic control unit for controlling air fuel ratio to reduce NOx occluded in NOx catalyst
CN110945218A (en) Exhaust gas purification system
JP4161720B2 (en) Exhaust gas purification device for internal combustion engine
JP3890775B2 (en) Air-fuel ratio control device for internal combustion engine
JP2010242688A (en) Exhaust emission control system for internal combustion engine
JP3531183B2 (en) Air-fuel ratio control device for internal combustion engine
JP3864455B2 (en) Air-fuel ratio control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080214

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080319

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees