JP2008200619A - Exhaust gas desulfurizer - Google Patents

Exhaust gas desulfurizer Download PDF

Info

Publication number
JP2008200619A
JP2008200619A JP2007040457A JP2007040457A JP2008200619A JP 2008200619 A JP2008200619 A JP 2008200619A JP 2007040457 A JP2007040457 A JP 2007040457A JP 2007040457 A JP2007040457 A JP 2007040457A JP 2008200619 A JP2008200619 A JP 2008200619A
Authority
JP
Japan
Prior art keywords
seawater
exhaust gas
desulfurization
boiler exhaust
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007040457A
Other languages
Japanese (ja)
Other versions
JP5721303B2 (en
Inventor
Keisuke Sonoda
圭介 園田
Shozo Nagao
章造 永尾
Masatoshi Michioka
正寿 道岡
Kota Ogiwara
浩太 荻原
Itsuo Takahara
五男 高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2007040457A priority Critical patent/JP5721303B2/en
Priority to MYPI20091256A priority patent/MY186545A/en
Priority to SG2012007829A priority patent/SG178748A1/en
Priority to TW097105920A priority patent/TWI389735B/en
Priority to PCT/JP2008/052897 priority patent/WO2008102823A1/en
Publication of JP2008200619A publication Critical patent/JP2008200619A/en
Priority to EG2009030422A priority patent/EG25138A/en
Application granted granted Critical
Publication of JP5721303B2 publication Critical patent/JP5721303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/504Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific device

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas desulfurizer which employs a seawater method capable of obtaining a good desulfurization capacity by certainly preventing an uneven flow and the blow-through phenomenon of a boiler exhaust gas by an easy and simple structure. <P>SOLUTION: In the exhaust gas desulfurizer 1A of the seawater method for desulfurizing the boiler exhaust gas by bringing the seawater flowing down from the upper part of a desulfurization column 2 and the boiler exhaust gas rising from the lower part of the desulfurization column 2 to a gas-liquid contact state, a partition plate 10 in a vertical direction partitioning is arranged so as to set the horizontal cross-sectional area in the desulfurization column 2 to a predetermined value or below. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、石炭焚き、原油焚き及び重油焚き等の発電プラントに適用される排煙脱硫装置に係り、特に、海水法を用いて脱硫する排煙脱硫装置に関する。   The present invention relates to a flue gas desulfurization apparatus applied to power plants such as coal burning, crude oil burning, and heavy oil burning, and more particularly to a flue gas desulfurization apparatus that performs desulfurization using a seawater method.

従来、石炭や原油等を燃料とする発電プラントにおいて、ボイラから排出される燃焼排気ガス(以下、「ボイラ排ガス」と呼ぶ)は、ボイラ排ガス中に含まれている二酸化硫黄(SO
)等の硫黄酸化物(SOx)を除去してから大気に放出される。このような脱硫処理を施す排煙脱硫装置の脱硫方式としては、石灰石石膏法、スプレードライヤー法及び海水法が知られている。
Conventionally, in a power plant using coal or crude oil as fuel, combustion exhaust gas (hereinafter referred to as “boiler exhaust gas”) discharged from a boiler is sulfur dioxide (SO 2 ) contained in the boiler exhaust gas.
) And other sulfur oxides (SOx) are removed and then released into the atmosphere. As a desulfurization method of the flue gas desulfurization apparatus that performs such a desulfurization treatment, a limestone gypsum method, a spray dryer method, and a seawater method are known.

このうち、海水法を採用した排煙脱硫装置(以下、「海水脱硫装置」と呼ぶ)は、吸収剤として海水を使用する脱硫方式である。この方式では、たとえば略円筒のような筒形状を縦置きにした脱硫塔(吸収塔)の内部に海水及びボイラ排ガスを供給することにより、海水を吸収液として湿式ベースの気液接触を生じさせて硫黄酸化物を除去している。
海水脱硫装置1は、たとえば図6に示すように、一方の海水が脱硫塔2の上部から供給されて自然落下し、脱硫塔2の下部から供給されて上昇するボイラ排ガスとの間で気液接触を生じさせている。海水とボイラ排ガスとの気液接触は、脱硫塔2内の上下方向に所定の間隔で複数段配置された多孔板棚3を湿式ベースとし、多孔板棚3に穿設されている多数の孔4を海水及びボイラ排ガスが通過することで達成される。なお、図中の符号5は海水供給管、6は脱硫後の海水を流出させる海水排出管、7はボイラ排ガス供給口、8は脱硫後のボイラ排ガスを流出させるボイラ排ガス排気口である。(たとえば、特許文献1、2参照)
特開平11−290643号公報 特開2001−129352号公報
Among these, the flue gas desulfurization apparatus (hereinafter referred to as “seawater desulfurization apparatus”) employing the seawater method is a desulfurization system that uses seawater as an absorbent. In this system, for example, by supplying seawater and boiler exhaust gas into a desulfurization tower (absorption tower) having a cylindrical shape such as a substantially cylindrical shape, a wet-based gas-liquid contact is generated using seawater as an absorption liquid. To remove sulfur oxides.
For example, as shown in FIG. 6, the seawater desulfurization apparatus 1 is supplied with gas from the upper part of the desulfurization tower 2 and naturally falls, and is supplied from the lower part of the desulfurization tower 2 to the boiler exhaust gas that rises. Causing contact. The gas-liquid contact between the seawater and the boiler exhaust gas is based on the perforated plate shelf 3 arranged in a plurality of stages at predetermined intervals in the vertical direction in the desulfurization tower 2, and a large number of holes formed in the perforated plate shelf 3. 4 is achieved by passing seawater and boiler exhaust gas. In the figure, reference numeral 5 denotes a seawater supply pipe, 6 denotes a seawater discharge pipe through which the desulfurized seawater flows out, 7 denotes a boiler exhaust gas supply port, and 8 denotes a boiler exhaust gas exhaust port through which the boiler exhaust gas after desulfurization flows out. (For example, see Patent Documents 1 and 2)
Japanese Patent Laid-Open No. 11-290643 JP 2001-129352 A

ところで、上述した海水脱硫装置1の脱硫塔2内においては、下方より上昇するボイラ排ガスと上方より流下する海水とが気液接触して脱硫するように構成されているので、ボイラ排ガス及び海水の流れの分布が脱硫塔2の水平断面内で不均一になると、脱硫性能の確保に支承をきたすこととなる。
具体的に説明すると、脱硫塔2の水平断面内でボイラ排ガスの流れ及び海水の流れが不均一に分布する偏流を生じると、たとえば図6に示すように、上昇する流れのボイラ排ガス(破線矢印で表示)と下方へ自然落下する流れの海水(図中に実線矢印で表示)とが分離してしまい、互いに異なる領域の孔4を通って流れるというボイラ排ガスの吹き抜け現象が発生する。このため、ボイラ排ガスと海水との接触は不十分になり、ボイラ排ガスと海水とが互いに接触して脱硫に寄与する流量割合が低下する。
By the way, in the desulfurization tower 2 of the seawater desulfurization apparatus 1 described above, the boiler exhaust gas rising from below and the sea water flowing down from above are configured to be desulfurized by gas-liquid contact. If the flow distribution becomes non-uniform in the horizontal section of the desulfurization tower 2, the desulfurization performance will be secured.
More specifically, when a drift occurs in which the flow of boiler exhaust gas and the flow of seawater are unevenly distributed in the horizontal section of the desulfurization tower 2, as shown in FIG. 6, for example, ascending boiler exhaust gas (broken arrows) And the seawater (indicated by a solid line arrow in the figure) that naturally falls downward are separated from each other, and the boiler exhaust gas blow-through phenomenon that flows through the holes 4 in different regions occurs. For this reason, the contact between the boiler exhaust gas and the seawater becomes insufficient, and the flow rate of the boiler exhaust gas and the seawater that contact each other and contribute to desulfurization decreases.

上述した偏流及び吹き抜け現象は、ボイラ排ガス中の硫黄酸化物が十分に脱硫されないまま排気されるという脱硫性能低下の原因になる。このような偏流及び吹き抜け現象は、取り扱うボイラ排ガスの量が増大したり、あるいは、ボイラ排ガスの上昇速度を比較的低速な所望の範囲に設定するなどして、脱硫塔2の断面積が大きい場合ほど顕著になる。
上述した偏流を発生する原因は、主にボイラ排ガスの流入速度(ボイラ排ガス供給口7の入口ノズルサイズ)、ボイラ排ガスの流入角度、脱硫塔2の寸法(幅・奥行き・高さ、あるいは塔径・高さ)、多孔棚板3の設置位置及び枚数等のように種々考えられる。しかし、偏流の発生を防止できる最適な寸法形状等を見いだすためには、上記原因をモデル試験またはシミュレーション試験によって解析する必要があり、多くの時間やコストを要するなど極めて困難な作業となる。
The above-mentioned drift and blow-through phenomenon cause a reduction in desulfurization performance in which the sulfur oxide in the boiler exhaust gas is exhausted without being sufficiently desulfurized. Such a drift and blow-through phenomenon is caused when the amount of boiler exhaust gas to be handled increases or the rising speed of the boiler exhaust gas is set to a relatively low desired range, for example, so that the desulfurization tower 2 has a large cross-sectional area. It becomes more noticeable.
The causes of the above-mentioned drift are mainly boiler exhaust gas inflow speed (inlet nozzle size of the boiler exhaust gas supply port 7), boiler exhaust gas inflow angle, dimensions of the desulfurization tower 2 (width, depth, height, or tower diameter). Various heights are considered, such as the installation position and the number of the perforated shelves 3. However, in order to find the optimum size and shape that can prevent the occurrence of drift, it is necessary to analyze the cause by a model test or a simulation test, which is extremely difficult because it requires a lot of time and cost.

このように、海水法を採用した排煙脱硫装置(海水脱硫装置)においては、脱硫塔の大型化等により生じやすい偏流及びボイラ排ガスの吹き抜け現象が脱硫性能を低下させるので、これを容易かつ簡単な構造で確実に防止して良好な脱硫性能を得ることができる排煙脱硫装置の開発が望まれる。
本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、偏流及びボイラ排ガスの吹き抜け現象を容易かつ簡単な構造で確実に防止して良好な脱硫性能を得ることができる、海水法を採用した排煙脱硫装置を提供することにある。
In this way, in the flue gas desulfurization apparatus (seawater desulfurization apparatus) adopting the seawater method, the drift and boiler exhaust phenomenon that are likely to occur due to an increase in the size of the desulfurization tower, etc., reduce the desulfurization performance. It is desired to develop a flue gas desulfurization apparatus that can reliably prevent it with a simple structure and obtain good desulfurization performance.
The present invention has been made in view of the above circumstances, and an object of the present invention is to reliably prevent the drift and the blow-off phenomenon of the boiler exhaust gas with an easy and simple structure and obtain a good desulfurization performance. An object of the present invention is to provide a flue gas desulfurization apparatus that employs the seawater method.

本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明に係る排煙脱硫装置は、脱硫塔の上部から流下する海水と脱硫塔の下方より上昇する燃焼排気ガスとが気液接触して脱硫される海水法の排煙脱硫装置において、
前記脱硫塔内の水平断面積を所定値以下となるように仕切る鉛直方向の仕切板を配設したことを特徴とするものである。
In order to solve the above problems, the present invention employs the following means.
The flue gas desulfurization apparatus according to the present invention is a seawater method flue gas desulfurization apparatus in which the seawater flowing down from the upper part of the desulfurization tower and the combustion exhaust gas rising from below the desulfurization tower are desulfurized by gas-liquid contact.
A vertical partition plate for partitioning the horizontal cross-sectional area in the desulfurization tower so as to be a predetermined value or less is provided.

このような排煙脱硫装置によれば、脱硫塔内の水平断面積を所定値以下となるように仕切る鉛直方向の仕切板を配設したので、海水の横方向流れが仕切板により規制されて偏流を生じにくくなる。   According to such a flue gas desulfurization apparatus, since the vertical partition plate that partitions the horizontal cross-sectional area in the desulfurization tower so as to be a predetermined value or less is disposed, the lateral flow of seawater is regulated by the partition plate. It becomes difficult to produce a drift.

上記の発明において、前記気液接触が多孔棚板よりなる湿式ベースで行われ、前記仕切板は、前記湿式ベースから上方へ向けて、少なくとも前記湿式ベース上の海水滞留高さより高い位置まで設けられていることが好ましく、これにより、圧力損失を最小限に抑えて偏流を防止することができる。
また、上記の発明において、前記気液接触は、スプレー式あるいは充填方式のいずれであってもよい。
In the above invention, the gas-liquid contact is performed on a wet base made of a porous shelf, and the partition plate is provided upward from the wet base to a position higher than at least a seawater retention height on the wet base. It is preferable that the pressure loss is minimized and the drift is prevented.
In the above invention, the gas-liquid contact may be either a spray method or a filling method.

上述した本発明によれば、脱硫塔内の水平断面積を所定値以下となるように仕切る鉛直方向の仕切板を配設して海水の横方向流れを規制したので、上向きに上昇する燃焼排気ガスの流れ及び下向きに流下する海水の流れの分布が水平断面内で不均一になる偏流を生じにくくなる。従って、海水法を採用した排煙脱硫装置においては、脱硫塔の大型化等により生じやすい偏流及びボイラ排ガスの吹き抜け現象を容易かつ簡単な構造で確実に抑制または防止できるので、良好な脱硫性能を得ることができる。   According to the present invention described above, the vertical partition plate that partitions the horizontal cross-sectional area in the desulfurization tower so as to be a predetermined value or less is provided to restrict the lateral flow of the seawater, so that the combustion exhaust rising upward The distribution of the flow of the gas and the flow of the seawater flowing downward is less likely to cause uneven flow in the horizontal section. Therefore, in flue gas desulfurization equipment that employs the seawater method, it is possible to reliably suppress or prevent the drift and boiler exhaust gas blow-out phenomenon that are likely to occur due to an increase in the size of the desulfurization tower, etc. Obtainable.

以下、本発明に係る排煙脱硫装置の一実施形態を図面に基づいて説明する。
図1に示す海水脱硫装置1Aの脱硫塔2は、たとえば石炭や原油等を燃料とする発電プラントのボイラから排出される燃焼排気ガス(以下、「ボイラ排ガス」と呼ぶ)に含まれている二酸化硫黄(SO
)等の硫黄酸化物(SOx)を、大気へ放出する前に海水法により除去する装置である。この海水法と呼ばれる脱硫方式を用いた海水脱硫装置1Aは、吸収剤として海水を使用している。
Hereinafter, an embodiment of a flue gas desulfurization apparatus according to the present invention will be described with reference to the drawings.
The desulfurization tower 2 of the seawater desulfurization apparatus 1A shown in FIG. 1 includes, for example, carbon dioxide contained in combustion exhaust gas (hereinafter referred to as “boiler exhaust gas”) discharged from a boiler of a power plant that uses coal, crude oil, or the like as fuel. Sulfur (SO 2
) And other sulfur oxides (SOx) are removed by the seawater method before being released to the atmosphere. Seawater desulfurization apparatus 1A using a desulfurization method called the seawater method uses seawater as an absorbent.

図示の海水脱硫装置1Aは、略円筒形状を縦置きにした脱硫塔2の内部に海水及びボイラ排ガスを供給することにより、海水を吸収液として湿式ベースの気液接触を生じさせて硫黄酸化物を除去する。脱硫塔2に供給した海水は、脱硫塔内の上部から噴出させることにより内部で自然落下する。これに対し、脱硫塔2に供給したボイラ排ガスは、脱硫塔2の下部から脱硫塔内に導入されて上昇する。
脱硫塔2の内部には、所定の間隔を設けて上下方向に複数段の多孔棚板3が配置されている。この多孔棚板3は、堰及び溢流部のない多孔板のことであり、落下する海水と上昇するボイラ排ガスとが多数の孔4を通過することにより、互いが接触する気液接触を生じさせるものである。
The seawater desulfurization apparatus 1A shown in the figure is a sulfur oxide by supplying seawater and boiler exhaust gas into a desulfurization tower 2 having a substantially cylindrical shape placed vertically, thereby generating seawater-based gas-liquid contact using seawater as an absorbent. Remove. The seawater supplied to the desulfurization tower 2 naturally falls by being ejected from the upper part of the desulfurization tower. On the other hand, the boiler exhaust gas supplied to the desulfurization tower 2 is introduced into the desulfurization tower from the lower part of the desulfurization tower 2 and rises.
Inside the desulfurization tower 2, a plurality of perforated shelves 3 are arranged in the vertical direction with a predetermined interval. This perforated shelf 3 is a perforated plate without a weir and an overflow part, and when the falling seawater and the rising boiler exhaust gas pass through a large number of holes 4, gas-liquid contact with each other occurs. It is something to be made.

すなわち、多孔棚板3は、海水供給管5で導入した海水と、ボイラ排ガス供給口7から導入したボイラ排ガスとの気液接触を生じさせる湿式ベースとして機能し、この気液接触が生じることで、吸収液の海水がボイラ排ガス中の硫黄酸化物を吸収して除去する。多孔棚板3を通過して気液接触した後には、換言すれば、ボイラ排ガス中の硫黄酸化物を吸収して除去した脱硫後においては、海水が脱硫塔2の底部に流下して海水排出管6から流出し、ボイラ排ガスが上部に開口するボイラ排ガス排気口8から流出する。   That is, the perforated shelf 3 functions as a wet base that causes gas-liquid contact between the seawater introduced through the seawater supply pipe 5 and the boiler exhaust gas introduced from the boiler exhaust gas supply port 7. The absorbing seawater absorbs and removes sulfur oxides in the boiler exhaust gas. After passing through the porous shelf 3 and contacting the gas and liquid, in other words, after desulfurization by absorbing and removing sulfur oxides in the boiler exhaust gas, seawater flows down to the bottom of the desulfurization tower 2 and discharges the seawater. It flows out from the pipe 6 and the boiler exhaust gas flows out from the boiler exhaust gas outlet 8 that opens upward.

上述した構成の海水脱硫装置1Aには、脱硫塔2内の水平断面積を所定値以下と小さくなるように仕切る鉛直方向の仕切板10が配設されている。この仕切板10は、多孔棚板3の各段毎に独立して設けられている。すなわち、仕切板10は、各段の多孔棚板3から上方へ略垂直に立ち上がる壁面を形成することにより、多孔棚板3の各段毎に水平断面積を分割している。
図2は、仕切板10による水平断面積の分割例を示す図である。この分割例では、半径方向を二分割する円形仕切板11と、円周方向を45度ピッチに8分割する放射仕切板12と、円形仕切板12の外周部をさらに円周方向に二分割する放射補助仕切板13とにより、脱硫塔2の水平断面積が24分割されている。
The seawater desulfurization apparatus 1A having the above-described configuration is provided with a vertical partition plate 10 that partitions the horizontal cross-sectional area in the desulfurization tower 2 to be smaller than a predetermined value. The partition plate 10 is provided independently for each stage of the porous shelf 3. That is, the partition plate 10 divides the horizontal cross-sectional area for each stage of the porous shelf 3 by forming a wall surface that rises substantially vertically from the porous shelf 3 of each stage.
FIG. 2 is a diagram illustrating an example of dividing the horizontal cross-sectional area by the partition plate 10. In this division example, the circular partition plate 11 that divides the radial direction into two, the radial partition plate 12 that divides the circumferential direction into eight at 45 degree pitch, and the outer peripheral portion of the circular partition plate 12 are further divided into two in the circumferential direction. The horizontal sectional area of the desulfurization tower 2 is divided into 24 by the radiation auxiliary partition plate 13.

上述した仕切板10の高さHは、少なくとも湿式ベース3上の海水滞留高さhより高い位置(H>h)まで設けられている。すなわち、湿式ベースとなる多孔棚板3から上方へ向けて立ち上がる壁面の高さHは、湿式ベース3上に滞留する海水が仕切板10を超えて隣接する区画へ流出しないように設定されている。多孔棚板3に滞留する海水滞留高さhは、多孔棚板3に設けた孔4の開口面積合計値と海水の供給量との関係により推測できるので、この推測値より高い仕切壁10を設置すればよい。   The height H of the partition plate 10 described above is provided at least up to a position (H> h) higher than the seawater retention height h on the wet base 3. That is, the height H of the wall surface that rises upward from the porous shelf 3 serving as the wet base is set so that the seawater staying on the wet base 3 does not flow out to the adjacent compartment beyond the partition plate 10. . The seawater retention height h staying in the porous shelf 3 can be estimated from the relationship between the total opening area of the holes 4 provided in the porous shelf 3 and the supply amount of seawater. Install it.

上述した構成の海水脱硫装置1Aによれば、脱硫塔2の上方から流下させた海水は、仕切板10により所定の水平断面積以下に分割された多孔棚板3を通って落下する。このとき、多孔棚板3に滞留する海水面Wは、仕切壁10の高さHより低くなるので、仕切板10により海水の流れ方向が規制され、滞留した海水が仕切壁10を超えて横流れすることはない。このような横流れの防止は、下方から上昇してくるボイラ排ガスが多孔棚板3を通過しても略同様に機能するので、ボイラ排ガス及び海水の偏流が生じなくなる。
なお、横流れの防止をより確実にするためには、仕切板10の高さHを設定する際に、下方から上昇して流れるボイラ排ガスとの影響で波打つ海水面Wの最大高さを基準にすればよい。
According to the seawater desulfurization apparatus 1 </ b> A having the above-described configuration, the seawater that has flowed down from above the desulfurization tower 2 falls through the perforated shelves 3 that are divided by the partition plate 10 into a predetermined horizontal sectional area or less. At this time, since the seawater surface W staying in the porous shelf 3 is lower than the height H of the partition wall 10, the flow direction of seawater is regulated by the partition plate 10, and the staying seawater crosses the partition wall 10 and flows laterally. Never do. Such prevention of the lateral flow functions substantially in the same way even when the boiler exhaust gas rising from below passes through the perforated shelf 3, so that the boiler exhaust gas and seawater do not drift.
In order to more reliably prevent the lateral flow, when the height H of the partition plate 10 is set, the maximum height of the seawater surface W that undulates due to the influence of the boiler exhaust gas that flows upward from below is used as a reference. do it.

この結果、多孔棚板3の各分割区画内に滞留する海水面Wは、区画毎の差が小さくなって略一定になるため、換言すれば、多孔棚板3の各分割区画に滞留する海水の分布が略均一に維持されるため、下方から上昇するボイラ排ガスと海水とが分離して互いに接触することなく多孔棚板3を通り抜けるという吹き抜け現象を防止することができる。
こうして海水及びボイラ排ガスの偏流や吹き抜け現象が防止されると、多孔棚板3を通過する海水とボイラ排ガスとの十分な接触が可能になるので、脱硫塔2に供給した海水を有効に利用して効率よく脱硫することができる。
As a result, the seawater surface W staying in each divided section of the porous shelf 3 becomes substantially constant with the difference between the sections being reduced, in other words, the seawater staying in each divided section of the porous shelf 3. Since the boiler exhaust gas and seawater rising from below are separated and pass through the porous shelf 3 without contacting each other, it is possible to prevent the blow-through phenomenon that the boiler exhaust gas and the seawater rising from below are separated.
If the drift and blow-through phenomenon of seawater and boiler exhaust gas is prevented in this way, sufficient contact between the seawater passing through the perforated shelf 3 and the boiler exhaust gas becomes possible, so that the seawater supplied to the desulfurization tower 2 can be used effectively. And efficient desulfurization.

ところで、上述した実施形態では、脱硫塔2内に多孔棚板3を配設した海水脱硫装置1Aについて説明したが、以下に説明するように、多孔棚板3による気液接触に代えて、スプレー方式や充填方式を採用してもよい。なお、以下の説明で使用する図において、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
図4に示す第1変形例は、スプレー方式による気液接触を採用した海水脱硫装置1Bである。この装置では、脱硫塔2の内部に海水を噴射するスプレーノズル20を多数配置してあり、スプレーノズル20から噴射された海水とボイラ排ガスとの気液接触により脱硫する。この場合の仕切板10は、たとえばスプレー配管21等を利用して所定位置に支持される。
By the way, in embodiment mentioned above, although 1 A of seawater desulfurization apparatuses which arrange | positioned the porous shelf board 3 in the desulfurization tower 2 were demonstrated, it replaced with the gas-liquid contact by the porous shelf board 3 and sprayed so that it may demonstrate below. You may employ | adopt a system and a filling system. In the drawings used in the following description, the same reference numerals are given to the same parts as those in the above-described embodiment, and the detailed description thereof will be omitted.
The 1st modification shown in FIG. 4 is the seawater desulfurization apparatus 1B which employ | adopted the gas-liquid contact by a spray system. In this apparatus, a large number of spray nozzles 20 that inject seawater into the desulfurization tower 2 are arranged, and desulfurization is performed by gas-liquid contact between seawater injected from the spray nozzle 20 and boiler exhaust gas. In this case, the partition plate 10 is supported at a predetermined position by using, for example, a spray pipe 21 or the like.

このように構成された海水脱硫装置1Bにおいても、脱硫塔2の内部空間を水平断面積が所定値以下となるように仕切板10で分割することにより、ボイラ排ガスの偏流や吹き抜け現象を防止することができる。なお、このスプレー方式は、スプレーノズル20の配置を適切に行うことで海水を略均一に分散させて噴射することができる。   Also in the seawater desulfurization apparatus 1B configured as described above, the internal space of the desulfurization tower 2 is divided by the partition plate 10 so that the horizontal cross-sectional area becomes a predetermined value or less, thereby preventing the drift and blow-through phenomenon of the boiler exhaust gas. be able to. In addition, this spray system can disperse and spray seawater substantially uniformly by appropriately arranging the spray nozzles 20.

図5(a)に示す第2変形例の海水脱硫装置1Cは、充填方式による気液接触を採用したものである。この方式では、脱硫塔2の内部に海水とボイラ排ガスとの気液接触を促進する充填ユニット30が設置されている。そこで、充填ユニット30の水平断面を仕切板10で複数に分割するが、分割後の各水平断面は所定値以下に小さくしてある。
なお、図5(b)には、充填方式による従来の海水脱硫装置1C′が示されており、この場合の充填ユニット30′は、水平断面が分割されることなく脱硫塔2の断面と略一致している。
A seawater desulfurization apparatus 1C according to a second modification shown in FIG. 5A employs gas-liquid contact by a filling method. In this system, a filling unit 30 that promotes gas-liquid contact between seawater and boiler exhaust gas is installed inside the desulfurization tower 2. Therefore, the horizontal cross section of the filling unit 30 is divided into a plurality of parts by the partition plate 10, and each horizontal cross section after the division is made smaller than a predetermined value.
FIG. 5 (b) shows a conventional seawater desulfurization apparatus 1C ′ using a filling method, and the filling unit 30 ′ in this case is substantially the same as the cross section of the desulfurization tower 2 without dividing the horizontal cross section. Match.

このように構成された海水脱硫装置1Cにおいても、脱硫塔2の内部に設置された充填ユニット30の水平断面積が所定値以下となるように仕切板10で分割されているので、ボイラ排ガスの偏流や吹き抜け現象を防止することができる。   Also in the seawater desulfurization apparatus 1C configured in this way, since the horizontal cross-sectional area of the filling unit 30 installed in the desulfurization tower 2 is divided by the partition plate 10 so as to be a predetermined value or less, the boiler exhaust gas It is possible to prevent drift and blow-through phenomenon.

上述したように、脱硫塔2内の水平断面積を所定値以下となるように仕切る鉛直方向の仕切板10を配設して海水の横方向流れを規制したので、上向きに上昇するボイラ排ガスの流れ及び下向きに流下する海水の流れの分布が水平断面内で不均一になる偏流を生じにくくなる。従って、海水法を採用した排煙脱硫装置1A,1B,1Cにおいては、脱硫塔2の大型化等により生じやすい偏流及びボイラ排ガスの吹き抜け現象を容易かつ簡単な構造で確実に抑制または防止して良好な脱硫性能を得ることができる
なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更することができる。
As described above, the vertical partition plate 10 that partitions the horizontal cross-sectional area in the desulfurization tower 2 to a predetermined value or less is provided to restrict the lateral flow of the seawater. The distribution of the flow and the flow of the seawater that flows downward is less likely to cause uneven drift in the horizontal section. Therefore, in the flue gas desulfurization apparatuses 1A, 1B, and 1C adopting the seawater method, the drift and the blow-off phenomenon of the boiler exhaust gas, which are likely to occur due to the enlargement of the desulfurization tower 2 or the like, are reliably suppressed or prevented with an easy and simple structure. Good desulfurization performance can be obtained. Note that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention.

本発明に係る海水脱硫装置の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the seawater desulfurization apparatus which concerns on this invention. 図1のA−A断面図である。It is AA sectional drawing of FIG. 仕切板の高さHを示す説明図である。It is explanatory drawing which shows the height H of a partition plate. 本発明に係る海水脱硫装置の第1変形例を示す断面図である。It is sectional drawing which shows the 1st modification of the seawater desulfurization apparatus which concerns on this invention. 本発明に係る海水脱硫装置の第2変形例を示す断面図である。It is sectional drawing which shows the 2nd modification of the seawater desulfurization apparatus which concerns on this invention. 海水脱硫装置の従来構造を示す断面図である。It is sectional drawing which shows the conventional structure of a seawater desulfurization apparatus.

符号の説明Explanation of symbols

1A,1B,1C 海水脱硫装置
2 脱硫塔
3 多孔棚板
4 孔
10 仕切板
20 スプレーノズル
30 充填ユニット
1A, 1B, 1C Seawater desulfurization equipment 2 Desulfurization tower 3 Porous shelf 4 Hole 10 Partition plate 20 Spray nozzle 30 Filling unit

Claims (4)

脱硫塔の上部から流下する海水と脱硫塔の下方より上昇する燃焼排気ガスとが気液接触して脱硫される海水法の排煙脱硫装置において、
前記脱硫塔内の水平断面積を所定値以下となるように仕切る鉛直方向の仕切板を配設したことを特徴とする排煙脱硫装置。
In the seawater flue gas desulfurization apparatus in which seawater flowing down from the upper part of the desulfurization tower and combustion exhaust gas rising from below the desulfurization tower are desulfurized by gas-liquid contact,
A flue gas desulfurization apparatus comprising a vertical partition plate for partitioning a horizontal cross-sectional area in the desulfurization tower to be a predetermined value or less.
前記気液接触が多孔棚板よりなる湿式ベースで行われ、前記仕切板は、前記湿式ベースから上方へ向けて、少なくとも前記湿式ベース上の海水滞留高さより高い位置まで設けられていることを特徴とする請求項1に記載の排煙脱硫装置。   The gas-liquid contact is performed on a wet base made of a porous shelf, and the partition plate is provided upward from the wet base to a position higher than at least a seawater retention height on the wet base. The flue gas desulfurization apparatus according to claim 1. 前記気液接触がスプレー式であることを特徴とする請求項1に記載の排煙脱硫装置。   The flue gas desulfurization apparatus according to claim 1, wherein the gas-liquid contact is a spray type. 前記気液接触が充填方式であることを特徴とする請求項1に記載の排煙脱硫装置。   The flue gas desulfurization apparatus according to claim 1, wherein the gas-liquid contact is a filling method.
JP2007040457A 2007-02-21 2007-02-21 Flue gas desulfurization equipment Active JP5721303B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007040457A JP5721303B2 (en) 2007-02-21 2007-02-21 Flue gas desulfurization equipment
MYPI20091256A MY186545A (en) 2007-02-21 2008-02-20 Flue gas desulfurization equipment
SG2012007829A SG178748A1 (en) 2007-02-21 2008-02-20 Exhaust gas desulfurizer
TW097105920A TWI389735B (en) 2007-02-21 2008-02-20 Flue gas desulfurization device
PCT/JP2008/052897 WO2008102823A1 (en) 2007-02-21 2008-02-20 Flue gas desulfurization equipment
EG2009030422A EG25138A (en) 2007-02-21 2009-03-30 Flue gas desulfurization equipment.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007040457A JP5721303B2 (en) 2007-02-21 2007-02-21 Flue gas desulfurization equipment

Publications (2)

Publication Number Publication Date
JP2008200619A true JP2008200619A (en) 2008-09-04
JP5721303B2 JP5721303B2 (en) 2015-05-20

Family

ID=39710097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007040457A Active JP5721303B2 (en) 2007-02-21 2007-02-21 Flue gas desulfurization equipment

Country Status (6)

Country Link
JP (1) JP5721303B2 (en)
EG (1) EG25138A (en)
MY (1) MY186545A (en)
SG (1) SG178748A1 (en)
TW (1) TWI389735B (en)
WO (1) WO2008102823A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102166430A (en) * 2011-03-08 2011-08-31 江苏科圣化工机械有限公司 Method and device for flue gas desulfurization and desorption
WO2014021380A1 (en) * 2012-07-31 2014-02-06 月島機械株式会社 Exhaust gas desulfurization device and exhaust gas desulfurization method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103058351B (en) * 2013-01-21 2014-03-05 青岛双瑞海洋环境工程股份有限公司 Oxygen supply method and device suitable for ship emission seawater desulfurization
CN107596870B (en) * 2017-10-30 2023-07-07 东方电气集团东方锅炉股份有限公司 Seawater flue gas desulfurization absorption tower
JP7193261B2 (en) * 2018-07-13 2022-12-20 三菱重工業株式会社 Wet type flue gas desulfurization equipment control method, wet type flue gas desulfurization equipment control device, and remote monitoring system provided with this wet type flue gas desulfurization equipment control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06328A (en) * 1992-06-23 1994-01-11 Babcock Hitachi Kk Wet flue gas desulfurizer
JPH11290643A (en) * 1998-04-13 1999-10-26 Fuji Kasui Eng Co Ltd Removal of acidic component of combustion gas by sea water
JP2001129352A (en) * 1999-11-02 2001-05-15 Fujikasui Engineering Co Ltd Exhaust gas desulfurization advanced treatment process using sea water
JP2003190738A (en) * 2001-12-27 2003-07-08 Asahi Kasei Corp Method for desulfurizing combustion exhaust gas
JP2004033982A (en) * 2002-07-05 2004-02-05 Mitsubishi Heavy Ind Ltd Flow straightening apparatus and flue gas desulfurization apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06328A (en) * 1992-06-23 1994-01-11 Babcock Hitachi Kk Wet flue gas desulfurizer
JPH11290643A (en) * 1998-04-13 1999-10-26 Fuji Kasui Eng Co Ltd Removal of acidic component of combustion gas by sea water
JP2001129352A (en) * 1999-11-02 2001-05-15 Fujikasui Engineering Co Ltd Exhaust gas desulfurization advanced treatment process using sea water
JP2003190738A (en) * 2001-12-27 2003-07-08 Asahi Kasei Corp Method for desulfurizing combustion exhaust gas
JP2004033982A (en) * 2002-07-05 2004-02-05 Mitsubishi Heavy Ind Ltd Flow straightening apparatus and flue gas desulfurization apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102166430A (en) * 2011-03-08 2011-08-31 江苏科圣化工机械有限公司 Method and device for flue gas desulfurization and desorption
WO2014021380A1 (en) * 2012-07-31 2014-02-06 月島機械株式会社 Exhaust gas desulfurization device and exhaust gas desulfurization method
JP2014042909A (en) * 2012-07-31 2014-03-13 Tsukishima Kikai Co Ltd Flue gas desulfurization apparatus and flue gas desulfurization method

Also Published As

Publication number Publication date
EG25138A (en) 2011-09-25
TW200902139A (en) 2009-01-16
JP5721303B2 (en) 2015-05-20
MY186545A (en) 2021-07-26
SG178748A1 (en) 2012-03-29
WO2008102823A1 (en) 2008-08-28
TWI389735B (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP4785006B2 (en) Wet flue gas desulfurization equipment
TWI389734B (en) Flue gas desulfurization device
JP2009028572A (en) Aeration apparatus
JP5721303B2 (en) Flue gas desulfurization equipment
JP5166791B2 (en) Flue gas desulfurization equipment
WO2007116714A1 (en) Wet-type exhaust gas desulfurizer
KR101473285B1 (en) Wet flue gas desulfurization device
JP2015174025A (en) Seawater flue gas desulfurization apparatus and application method of the same
JP5330658B2 (en) Aeration equipment
JP2012115764A (en) Wastewater channel of seawater desulfurization apparatus and seawater flue gas desulfurization system
KR20150070110A (en) A flue gas purification device
EA027737B1 (en) Contact and separation column and tray
JP5590370B2 (en) Wet flue gas desulfurization equipment
WO2014196458A1 (en) Device for desulfurization with seawater and system for desulfurization with seawater
KR200490847Y1 (en) Rectangular-pillar-type scrubber for purifying exhaust gas of a vessel
WO2019163950A1 (en) Water treatment tank and desulfurization device
KR101448459B1 (en) Wet scrubber
US20210146273A1 (en) Distributor tray for a fractionating column, comprising a compartment for distributing gas
JP2006122862A (en) Apparatus for treating exhaust gas
WO2012127689A1 (en) Flue gas desulfurization apparatus
JP5535823B2 (en) Aeration apparatus, seawater flue gas desulfurization apparatus equipped with the aeration apparatus, and operation method of aeration apparatus
JP6142432B2 (en) Flue gas desulfurization method and flue gas desulfurization apparatus
JPH119956A (en) Absorption tower of wet flue gas desulfurizer
RU2356843C1 (en) Desorption plant
JP2005046830A (en) Exhaust gas treating column

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140820

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150324

R150 Certificate of patent or registration of utility model

Ref document number: 5721303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350