WO2012127689A1 - Flue gas desulfurization apparatus - Google Patents

Flue gas desulfurization apparatus Download PDF

Info

Publication number
WO2012127689A1
WO2012127689A1 PCT/JP2011/057227 JP2011057227W WO2012127689A1 WO 2012127689 A1 WO2012127689 A1 WO 2012127689A1 JP 2011057227 W JP2011057227 W JP 2011057227W WO 2012127689 A1 WO2012127689 A1 WO 2012127689A1
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
absorption tower
absorption
channel
absorption liquid
Prior art date
Application number
PCT/JP2011/057227
Other languages
French (fr)
Japanese (ja)
Inventor
昭雄 吉越
昭浩 本間
Original Assignee
月島機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 月島機械株式会社 filed Critical 月島機械株式会社
Priority to PCT/JP2011/057227 priority Critical patent/WO2012127689A1/en
Publication of WO2012127689A1 publication Critical patent/WO2012127689A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/507Sulfur oxides by treating the gases with other liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • B01D2252/1035Sea water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases

Definitions

  • the present invention relates to flue gas desulfurization equipment, and more specifically, for example, exhaust gas discharged from combustion exhaust gas of power generation equipment and seawater are contacted in an absorption tower, and sulfur oxides in the exhaust gas are absorbed into seawater and removed.
  • the present invention relates to a flue gas desulfurization apparatus.
  • the combustion exhaust gas discharged from the power generation facility contains sulfur oxide, it is necessary to remove the exhaust gas before discharging it into the atmosphere.
  • spray-type absorption towers, Moretana-type absorption towers, packed tower-type absorption towers and the like are generally known.
  • the Moretana type absorption tower is a device that uses a perforated plate (moretana) to remove the sulfur oxide in the exhaust gas by bringing the exhaust gas into contact with the absorbing solution on the perforated plate. Moretana type absorption towers have the advantage of higher sulfur oxide removal performance than other absorption towers.
  • the absorption liquid used in the above-mentioned Moretana type absorption tower those using magnesium hydroxide, seawater, sodium hydroxide, etc. are generally known.
  • the method of using seawater in these absorbing liquids has the advantage that there are no by-products compared to other methods and can be discharged to the sea after aeration.
  • Moretana type absorption tower examples include the following Patent Document 1. That is, for example, the combustion exhaust gas discharged from the power generation facility comes into contact with seawater as an absorption liquid on a perforated plate provided in the absorption tower, and sulfur oxides in the exhaust gas are removed. The exhaust gas from which the sulfur oxide is removed passes through the exhaust port of the absorption tower and is exhausted into the atmosphere. On the other hand, the absorbing solution that has absorbed the sulfur oxide descends downward in the absorption tower, and is mixed with fresh seawater in the seawater channel and aerated, and then discharged to the sea.
  • Patent Document 1 That is, for example, the combustion exhaust gas discharged from the power generation facility comes into contact with seawater as an absorption liquid on a perforated plate provided in the absorption tower, and sulfur oxides in the exhaust gas are removed. The exhaust gas from which the sulfur oxide is removed passes through the exhaust port of the absorption tower and is exhausted into the atmosphere. On the other hand, the absorbing solution that has absorbed the sulfur oxide descends downward in the absorption
  • the packed tower type absorption tower has a structure in which a packing material is packed in the absorption tower.
  • the combustion exhaust gas discharged from the power generation facility comes into contact with seawater as an absorption liquid while passing through the packing provided in the absorption tower, and sulfur oxides in the exhaust gas are removed.
  • the absorption liquid that has absorbed sulfur oxides descends downward in the absorption tower, and is mixed with fresh seawater in the seawater channel and aerated, and then discharged to the sea.
  • the seawater descending from the upper side and the exhaust gas rising from the lower side make countercurrent contact on the Moretana.
  • sulfur oxides in the exhaust gas are removed.
  • seawater descending from above and exhaust gas rising from below are in countercurrent contact on the surface of the packing.
  • the inside of the absorption tower is generally airtight with respect to the seawater channel. The present inventors have found that it is necessary to keep the pressure in the absorption tower substantially constant at a predetermined pressure in order to efficiently contact seawater on the Moretana or on the surface of the packing.
  • the main problem of the present invention is to suppress fluctuations in pressure in the absorption tower due to fluctuations in the water level of seawater channels, etc., and to prevent fluctuations and declines in desulfurization efficiency.
  • an absorption liquid reservoir provided in the lower part of the absorption tower; A weir that overflows the absorbent provided in the wall of the absorbent reservoir; A seawater channel provided below the absorption tower or near the absorption tower; An absorption liquid guiding section for guiding the seawater that has passed through the weir to flow down in a free space on the surface of the seawater channel, and The absorption liquid guiding portion has a drain port communicating with the seawater in the seawater channel, and the free space is isolated from the outside air, A flue gas desulfurization apparatus is provided.
  • flue gas desulfurization according to claim 1, wherein contact between the exhaust gas and seawater is made on a perforated plate provided in the absorption tower.
  • An apparatus is provided.
  • the absorption tower is provided on a side of the seawater flow direction of the seawater channel in a plan view, and the absorption liquid guiding portion extends from the absorption tower to the seawater channel.
  • the absorption liquid (seawater in contact with the exhaust gas) from the absorption liquid guide part flows into the seawater channel from the absorption tower from the side, the absorption liquid (seawater in contact with the exhaust gas) and seawater ride on the seawater flow. Stirring and mixing with As a result, stirring and mixing are performed efficiently. It can also be considered that the absorbing liquid guiding portion is arranged so as to extend from the upstream to the downstream of the flow of seawater. However, it is necessary to perform piping for the absorption liquid guiding portion in the basement under the sea channel, resulting in a structure in which equipment costs increase and maintenance is difficult.
  • the absorption tower is provided at the side of the seawater flow direction of the seawater channel and the absorption liquid (seawater in contact with the exhaust gas) flows from the side into the seawater channel from the absorption tower, the absorption liquid induction A small installation cost is sufficient. Further, by constructing the absorption tower on the side of the seawater channel, the construction cost is sufficient as compared with the case of constructing the absorption tower on the seawater channel.
  • the absorption tower is substantially provided on the seawater channel in a plan view, and the absorption liquid guiding portion extends in a radial direction from the absorption tower.
  • the flue gas desulfurization apparatus of the present invention it is possible to prevent pressure fluctuations in the absorption tower due to fluctuations in the sea level of the seawater channel, and to suppress fluctuations and declines in desulfurization efficiency.
  • FIG. 1 is an elevation view of a flue gas desulfurization apparatus according to the present invention. It is an elevational view of another example of the flue gas desulfurization device having a different absorbing liquid guiding part. It is an elevational view of another example of the flue gas desulfurization device having a different absorbing liquid guiding part. It is an elevational view of an example of a flue gas desulfurization device in an example in which an absorption tower is provided on a seawater channel. It is an elevational view of the flue gas desulfurization apparatus according to the present invention when the seawater channel and the absorption tower are separated from each other.
  • FIG. 1 is an elevational (sectional) view of a first embodiment of a flue gas desulfurization apparatus according to the present invention.
  • a supply port 2 for supplying exhaust gas (for example, combustion exhaust gas from a waste heat boiler in a power generation facility) FG is provided on the lower side surface of the absorption tower 1. Further, an exhaust port 6 for exhausting the treated exhaust gas TG that has undergone the treatment in the absorption tower 1 is provided on the upper surface of the absorption tower 1. Further, at the upper part of the absorption tower 1, there are a water supply pipe 3 for introducing fresh seawater SW as an absorption liquid into the absorption tower 1, and a nozzle 4 for injecting the water supply pipe 3 downward in the absorption tower 1. Is provided.
  • fresh seawater SW is seawater led from the sea, and the sulfur oxide after the absorption treatment performed on the perforated plate 5 in the absorption tower 1 to be described later is used. Differentiated from seawater containing. In addition to the fresh seawater taken directly from the sea as described above, the fresh seawater used from the condenser (condenser) of the boiler facility or the brine discharged from the seawater desalination facility may be used.
  • a shelf plate group is provided below the water supply pipe 3 and the nozzle 4 of the absorption tower 1, and one or more perforated plates (moretana) 5 having an opening ratio of preferably 25% to 60% are provided. .
  • the exhaust gas FG supplied from the supply port 2 installed on the lower side surface of the absorption tower 1 moves upward in the absorption tower 1.
  • the exhaust gas FG and the fresh seawater SW sprayed downward from the nozzle 4 provided at the upper portion of the absorption tower 1 are in countercurrent contact on the perforated plate 5 provided in the middle portion of the absorption tower 1.
  • the treated exhaust gas TG from which the sulfur oxide has been removed is exhausted from an exhaust port 6 provided in the upper part of the absorption tower 1.
  • the seawater that has absorbed the sulfur oxide falls downward in the absorption tower 1.
  • An absorption liquid storage section 7 is provided in the lower part of the absorption tower 1, and the lowered absorption liquid is temporarily stored in the absorption liquid storage section 7.
  • a dam 8 is provided on the wall portion of the absorbing liquid storage section 7, and the absorbing liquid stored in the absorbing liquid storage section 7 gets over the weir 8 and flows outward.
  • the absorption tower 1 may be a packed tower type absorption tower, and this packed tower type absorption tower will be described.
  • the basic structure is the same as that of the Moretana absorption tower, and is different in that the packing is filled.
  • the packing is supported in the absorption tower by being supported by a perforated plate or a metal net.
  • the filler a metal or resin filler is used. The filling is not limited to one stage, and may be a plurality of stages.
  • the absorption tower 1 either a Moretana type absorption tower or a packed tower type absorption tower can be applied.
  • the absorption tower 1 is provided on the side of the seawater channel 10 in the seawater flow direction, and an absorption liquid guiding section 9 is provided at the lower part of the absorption tower 1.
  • the guiding portion 9 extends from the absorption tower 1 toward the seawater channel 10.
  • the absorption liquid that has overflowed the weir 8 flows into the absorption liquid guiding portion 9 from the overflow port 12 and flows down onto the water surface of the sea channel 10 while being guided to flow down in the free space.
  • the drainage port 13 of the absorbing liquid guiding part 9 communicates with seawater in the seawater channel 10.
  • the absorbing liquid guiding portion 9 is formed of, for example, a metal plate and isolates the free space inside from the outside air (atmosphere).
  • the position of the discharge port 13 of the absorbing liquid guiding unit 9 is at a height below the sea level of the sea channel 10 at any time.
  • exhaust gas containing sulfur oxide in the absorption tower 1 may leak out of the discharge port 13. Further, there is a possibility that outside air may enter the absorption tower 1 through the absorption liquid guiding section 9. In order to prevent these problems, the inside of the absorbing liquid guiding portion 9 is isolated from the outside air (atmosphere).
  • the seawater channel 10 is made to always flow fresh seawater SW from the upstream to the downstream, and the absorption liquid from the absorption liquid guiding part 9 is caused to flow into the flow. And it discharges to the sea as a treated water through the process in the sea channel 10.
  • the treatment in the seawater channel 10 typically, (1) the absorption liquid discharged from the absorption liquid guiding unit 9 and fresh seawater SW are agitated and mixed in the seawater channel 10, and the pH of the absorption liquid is increased.
  • a step of recovering the value and (2) a step of performing an aeration process with the air or oxygen in the seawater channel 10 on the absorption liquid whose PH value has been recovered, and further recovering the PH value.
  • the seawater whose PH value has been recovered after the processes (1) and (2) have been performed is discharged into the sea.
  • the process (2) is performed after the process (1) is performed.
  • the process (1) and the process (2) are performed continuously or simultaneously. You may make it perform.
  • the pipe length of the absorbing liquid guiding section 9 from the absorption tower 1 to the seawater channel 10 can be shortened, so that it is possible to reduce civil engineering costs associated with the piping.
  • FIG. 1 shows a case where a metal duct is used as the absorbing liquid guiding section 9, but a reinforced concrete structure 9A may be used as shown in FIG.
  • the absorption liquid does not flow down into the seawater channel 10 as it is in the absorption liquid guiding section 9, but has a portion that flows in the horizontal direction when the absorption tower 1 and the seawater channel 10 are separated as shown in FIG. It is good also as a shape.
  • the absorption tower 1 can be provided above the sea channel 10.
  • the absorption tower 1 is provided on the seawater channel 10 using the seawater channel 10 as a structure.
  • the absorbing liquid that has dripped over the weir 8 from the absorbing liquid storage section 7 in the absorption tower 1 flows down through the absorbing liquid guide section 9 and the downflow path 9B, and then flows down onto the seawater path 10.
  • the absorption tower 1 cannot be provided in the vicinity of the seawater channel 10 due to facility layout design.
  • the absorption liquid overflowing the weir 8 from the absorption liquid storage section 7 in the absorption tower 1 is supplied to the seawater channel 10 provided at a location a little away through the guide path 9 ⁇ / b> C. You may make it pour.
  • FIG. 5 shows an example in which the guide path 9 ⁇ / b> C is directly connected to the seawater path 10.
  • FIG. 6 has shown the example which connected the downstream channel 9B with the approach pipe line of the fresh seawater (absorption liquid) SW to the seawater channel 10.
  • FIG. 7 and 8 are examples in which the absorption tower 1 is installed on the side of the seawater channel 10.
  • 9 and 10 are examples in which the absorption tower 1 is installed above the seawater channel 10.
  • FIG. 9 and FIG. 10 are different in that the entire absorption tower 1 is installed above or part of the seawater channel 10.
  • the positional relationship between the absorbing liquid guiding unit 9 and the supply port 2 for supplying exhaust gas (for example, combustion exhaust gas from a combustion boiler in a power generation facility) FG is linear as shown in FIG. As shown in FIG. 10, the relationship may be orthogonal.
  • the absorption liquid (seawater in contact with the exhaust gas) from the absorption liquid guiding unit 9 is in the seawater channel from the absorption tower 1. Therefore, the agitation and mixing of the absorption liquid (seawater in contact with the exhaust gas) and the seawater gradually proceed along the seawater flow, so that the agitation and mixing are performed efficiently.
  • the absorbing liquid guiding part 9 is arranged so as to extend from the upstream to the downstream of the flow of the seawater. In that case, the absorbing liquid guiding part 9 is provided below the seawater channel 10. It is necessary to carry out the piping, which increases the construction cost.
  • the absorption tower 1 is provided on the side of the seawater passage 10 in the seawater flow direction, and absorption liquid (seawater in contact with exhaust gas) flows into the seawater passage 10 from the absorption tower 1 from the side.
  • a small installation cost of the liquid guiding portion 9 is sufficient.
  • a construction cost lower than that in the case of constructing the absorption tower on the sea channel 10 is sufficient.
  • the absorption liquid guiding portion 9 is connected to the seawater channel. It is easy as a layout to extend to the upstream side of the seawater flow, and the construction cost is low. Furthermore, it becomes a thing with a high stirring and mixing effect by making the absorption liquid (seawater which contacted exhaust gas) and the fresh seawater SW of the absorption liquid induction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Treating Waste Gases (AREA)

Abstract

[Problem] To prevent pressure fluctuation inside an absorption tower due to fluctuation of the water level in a sea water channel, and to prevent fluctuations in and the reduction of desulfurization efficiency. [Solution] A flue gas desulfurization apparatus in which a gas (FG) and seawater (SW) which serves as an absorption liquid are brought into contact with each other in an absorption tower (1) and sulfur oxidizing matter in the gas is absorbed and removed, wherein the following are provided: an absorption liquid storage unit (7) provided within and at the bottom of the absorption tower (1); a barrier (8) that is provided at the wall part of the absorption liquid storage unit, over which the seawater flows; a seawater channel (10) provided below the absorption tower or below an area adjacent to the absorption tower (1); and an absorption liquid guide part (9) that guides sea water which has flowed over the barrier (8) to flow through a free space down to the surface of the water in the seawater channel (10). A water discharge port (13) of the absorption liquid guide part (9) communicates with the seawater in the seawater channel (10); the free space is separated from outside air.

Description

排煙脱硫装置Flue gas desulfurization equipment
 本発明は、排煙脱硫装置に関し、より詳細には、たとえば発電設備の燃焼排ガスから排出される排ガスと海水を吸収塔内で接触させて、排ガス中の硫黄酸化物を海水に吸収させて除去する排煙脱硫装置に関する。 The present invention relates to flue gas desulfurization equipment, and more specifically, for example, exhaust gas discharged from combustion exhaust gas of power generation equipment and seawater are contacted in an absorption tower, and sulfur oxides in the exhaust gas are absorbed into seawater and removed. The present invention relates to a flue gas desulfurization apparatus.
 たとえば発電設備から排出される燃焼排ガスには硫黄酸化物が含まれているため、排ガスを大気中に排出する前にこれを除去する必要がある。排ガスから硫黄酸化物を除去するための設備としては、スプレー式吸収塔、モレタナ式吸収塔、充填塔式吸収塔などが一般に知られている。これらの設備の中でモレタナ式吸収塔は多孔板(モレタナ)を使用して、当該多孔板上で排ガスと吸収液を接触させることで、排ガス中の硫黄酸化物を除去する装置である。モレタナ式吸収塔は、他の吸収塔と比べて硫黄酸化物の除去性能が高いという長所がある。 For example, since the combustion exhaust gas discharged from the power generation facility contains sulfur oxide, it is necessary to remove the exhaust gas before discharging it into the atmosphere. As equipment for removing sulfur oxides from exhaust gas, spray-type absorption towers, Moretana-type absorption towers, packed tower-type absorption towers and the like are generally known. Among these facilities, the Moretana type absorption tower is a device that uses a perforated plate (moretana) to remove the sulfur oxide in the exhaust gas by bringing the exhaust gas into contact with the absorbing solution on the perforated plate. Moretana type absorption towers have the advantage of higher sulfur oxide removal performance than other absorption towers.
 前記モレタナ式吸収塔に使用される吸収液には、水酸化マグネシウム、海水、水酸化ナトリウムを使用するものなどが一般に知られている。これらの吸収液の中で海水を使用する方法は、他の方法と比べて副生成物がなく、曝気後に海へ放流できるという長所がある。 As the absorption liquid used in the above-mentioned Moretana type absorption tower, those using magnesium hydroxide, seawater, sodium hydroxide, etc. are generally known. The method of using seawater in these absorbing liquids has the advantage that there are no by-products compared to other methods and can be discharged to the sea after aeration.
 前記モレタナ式吸収塔としては、例えば下記特許文献1がある。すなわち、たとえば発電設備から排出された燃焼排ガスは、吸収塔内に設けた多孔板上で吸収液としての海水と接触し、排ガス中の硫黄酸化物が除去される。硫黄酸化物が除去された排ガスは、吸収塔の排気口を通過して大気中に排気される。
 一方、硫黄酸化物を吸収した吸収液は吸収塔内下方へ降下し、海水路で新鮮な海水と混合および、曝気処理が行われた後に海へ排出される。
Examples of the Moretana type absorption tower include the following Patent Document 1. That is, for example, the combustion exhaust gas discharged from the power generation facility comes into contact with seawater as an absorption liquid on a perforated plate provided in the absorption tower, and sulfur oxides in the exhaust gas are removed. The exhaust gas from which the sulfur oxide is removed passes through the exhaust port of the absorption tower and is exhausted into the atmosphere.
On the other hand, the absorbing solution that has absorbed the sulfur oxide descends downward in the absorption tower, and is mixed with fresh seawater in the seawater channel and aerated, and then discharged to the sea.
 また、充填塔式吸収塔を用いることも知られている。充填塔式吸収塔は、吸収塔内に充填物が充填された構造である。たとえば発電設備から排出された燃焼排ガスは、吸収塔内に設けた充填物を通過する間に吸収液としての海水と接触し、排ガス中の硫黄酸化物が除去される。一方、硫黄酸化物を吸収した吸収液は吸収塔内下方へ降下し、海水路で新鮮な海水と混合および曝気処理が行われた後に海へ排出される。 It is also known to use a packed tower type absorption tower. The packed tower type absorption tower has a structure in which a packing material is packed in the absorption tower. For example, the combustion exhaust gas discharged from the power generation facility comes into contact with seawater as an absorption liquid while passing through the packing provided in the absorption tower, and sulfur oxides in the exhaust gas are removed. On the other hand, the absorption liquid that has absorbed sulfur oxides descends downward in the absorption tower, and is mixed with fresh seawater in the seawater channel and aerated, and then discharged to the sea.
特開2008-200621号公報JP 2008-200261 A
 前記モレタナ式吸収塔では、上方から降下した海水と下方から上昇した排ガスがモレタナ上で向流接触する。当該モレタナ上で海水と排ガスが混合することによって、排ガス中の硫黄酸化物が除去される。また、充填塔式吸収塔では、上方から降下した海水と下方から上昇した排ガスが充填物表面で向流接触する。なお、排ガスの外気への拡散を防止するために吸収塔内部は海水路に対し気密にされていることが一般的である。
 本発明者らは、モレタナ上または充填物表面で海水と効率よく接触させるためには、吸収塔内の圧力を所定の圧力にほぼ一定に保持することが必要であることを知見した。また、海水路の水位変動が生じた場合には、吸収塔内の圧力変動が生じ、とりわけ脱硫効率に直接影響するモレタナ上または充填物表面での排ガスと海水との接触状態が変動し、脱硫効率の変動及び低下をきたすことが知見された。
In the Moretana type absorption tower, the seawater descending from the upper side and the exhaust gas rising from the lower side make countercurrent contact on the Moretana. By mixing seawater and exhaust gas on the Moretana, sulfur oxides in the exhaust gas are removed. Further, in the packed tower type absorption tower, seawater descending from above and exhaust gas rising from below are in countercurrent contact on the surface of the packing. In order to prevent the exhaust gas from diffusing to the outside air, the inside of the absorption tower is generally airtight with respect to the seawater channel.
The present inventors have found that it is necessary to keep the pressure in the absorption tower substantially constant at a predetermined pressure in order to efficiently contact seawater on the Moretana or on the surface of the packing. In addition, when the sea level fluctuates, the pressure in the absorption tower will fluctuate, and the contact state between the exhaust gas and seawater on the surface of the Moretana or the packing, which directly affects the desulfurization efficiency, varies. It has been found that the efficiency varies and decreases.
 従って、本発明の主たる課題は、海水路の水位変動などによる吸収塔内の圧力変動を抑制し、脱硫効率の変動及び低下を防止することにある。 Therefore, the main problem of the present invention is to suppress fluctuations in pressure in the absorption tower due to fluctuations in the water level of seawater channels, etc., and to prevent fluctuations and declines in desulfurization efficiency.
 上記課題を解決するための請求項1に係る本発明として、排ガスと吸収液としての海水を吸収塔内において接触させて排ガス中の硫黄酸化物を吸収除去する排煙脱硫装置において、
 前記吸収塔内下部に設けた吸収液貯留部と、
 前記吸収液貯留部の壁部に設けた吸収液を越流させる堰と、
 前記吸収塔の下方または前記吸収塔近傍の下方に設けた海水路と、
 前記堰を越流した海水が前記海水路の水面上への自由空間中を流下するように案内する吸収液誘導部とを備え、
 前記吸収液誘導部は、その排水口が前記海水路内の海水中に連絡しており、前記自由空間は外気と隔離している、
 ことを特徴とする排煙脱硫装置が提供される。
As the present invention according to claim 1 for solving the above-mentioned problem, in the flue gas desulfurization apparatus for contacting the seawater as the exhaust gas and the absorption liquid in the absorption tower to absorb and remove sulfur oxides in the exhaust gas,
An absorption liquid reservoir provided in the lower part of the absorption tower;
A weir that overflows the absorbent provided in the wall of the absorbent reservoir;
A seawater channel provided below the absorption tower or near the absorption tower;
An absorption liquid guiding section for guiding the seawater that has passed through the weir to flow down in a free space on the surface of the seawater channel, and
The absorption liquid guiding portion has a drain port communicating with the seawater in the seawater channel, and the free space is isolated from the outside air,
A flue gas desulfurization apparatus is provided.
 (作用効果)
 吸収液である海水は、吸収液貯留部の壁部に設けた堰から越流する。次にその海水は、海水路の水面上への自由空間中を流下するように吸収液誘導部により案内される。この吸収液誘導部は、その排水口が海水路内の海水中に連絡しており、前記自由空間は外気と隔離している。このように、吸収液貯留部は堰を介して自由空間との間で縁切りしているので、海水路の水位変動などが生じても吸収塔内の圧力変動は抑制される。その結果、吸収塔内での排ガスと海水との接触状態の変動が少なくなり、脱硫効率の変動及び低下を抑制できる。
 他方、吸収液誘導部は、その排水口が海水路内の海水中に連絡しているため、内部の自由空間は外気と隔離される。その結果、処理済み排ガスが所定の位置(塔上部)以外から排気されることはないものとなる。
(Function and effect)
Seawater, which is an absorbent, overflows from a weir provided on the wall of the absorbent reservoir. Next, the seawater is guided by the absorbing liquid guiding section so as to flow down in the free space on the water surface of the seawater channel. As for this absorption-liquid induction | guidance | derivation part, the drain outlet is connected in the seawater in a sea channel, and the said free space is isolated with the external air. As described above, the absorption liquid storage section is cut off from the free space via the weir, so that the pressure fluctuation in the absorption tower is suppressed even if the sea level changes. As a result, fluctuations in the contact state between the exhaust gas and seawater in the absorption tower are reduced, and fluctuations and declines in desulfurization efficiency can be suppressed.
On the other hand, since the drainage port of the absorbing liquid guiding part communicates with the seawater in the seawater channel, the internal free space is isolated from the outside air. As a result, the treated exhaust gas is not exhausted from other than a predetermined position (upper column).
 上記課題を解決するための請求項2に係る本発明として、排ガスと海水との接触が前記吸収塔内に設けた多孔板上においてなされるように構成されている請求項1記載の排煙脱硫装置が提供される。 As the present invention according to claim 2 for solving the above-mentioned problem, flue gas desulfurization according to claim 1, wherein contact between the exhaust gas and seawater is made on a perforated plate provided in the absorption tower. An apparatus is provided.
 (作用効果)
 モレタナ式吸収塔において、脱硫効率に直接影響する多孔板(モレタナ)上での排ガスと海水との接触状態の変動を防止でき、その結果、脱硫効率の変動及び低下を抑制できる。
(Function and effect)
In the Moretana type absorption tower, fluctuations in the contact state between the exhaust gas and seawater on the perforated plate (Moretana) that directly affects the desulfurization efficiency can be prevented, and as a result, fluctuations and declines in the desulfurization efficiency can be suppressed.
 上記課題を解決するための請求項3に係る本発明として、平面視で前記吸収塔は前記海水路の海水流れ方向の側方に設けられ、前記吸収液誘導部が前記吸収塔から前記海水路方向に延在し、前記吸収液誘導部の排水口が前記海水路内の海水中に連絡している請求項1記載の排煙脱硫装置が提供される。 According to a third aspect of the present invention for solving the above-described problem, the absorption tower is provided on a side of the seawater flow direction of the seawater channel in a plan view, and the absorption liquid guiding portion extends from the absorption tower to the seawater channel. The flue gas desulfurization device according to claim 1, which extends in a direction, and a drain outlet of the absorption liquid guiding portion communicates with seawater in the seawater channel.
 (作用効果)
 前記吸収液誘導部からの吸収液(排ガスと接触した海水)が、吸収塔からの海水路内に側方から流れ込むので、海水の流れに乗って、吸収液(排ガスと接触した海水)と海水との撹拌及び混合が徐々に進行する。その結果、撹拌及び混合が効率的に行なわれる。
 また、吸収液誘導部を海水の流れの上流から下流に向けて延在するように配置することを考えることもできる。しかしながら、海水路下の地下に前記吸収液誘導部の配管を行なう必要があり、設備費などが嵩む、またメンテナンスが困難な構造となる。これに対し、前記吸収塔は前記海水路の海水流れ方向の側方に設け、吸収液(排ガスと接触した海水)を吸収塔からの海水路内に側方から流れ込むようにすると、吸収液誘導部の設置コストが小さいもので足りる。
 さらに、吸収塔を海水路の側方に建設することにより、吸収塔を海水路上に建設する場合に比較して、建設コストが小さいもので足りる。
(Function and effect)
Since the absorption liquid (seawater in contact with the exhaust gas) from the absorption liquid guide part flows into the seawater channel from the absorption tower from the side, the absorption liquid (seawater in contact with the exhaust gas) and seawater ride on the seawater flow. Stirring and mixing with As a result, stirring and mixing are performed efficiently.
It can also be considered that the absorbing liquid guiding portion is arranged so as to extend from the upstream to the downstream of the flow of seawater. However, it is necessary to perform piping for the absorption liquid guiding portion in the basement under the sea channel, resulting in a structure in which equipment costs increase and maintenance is difficult. On the other hand, if the absorption tower is provided at the side of the seawater flow direction of the seawater channel and the absorption liquid (seawater in contact with the exhaust gas) flows from the side into the seawater channel from the absorption tower, the absorption liquid induction A small installation cost is sufficient.
Further, by constructing the absorption tower on the side of the seawater channel, the construction cost is sufficient as compared with the case of constructing the absorption tower on the seawater channel.
 上記課題を解決するための請求項4に係る本発明として、平面視で前記吸収塔は実質的に前記海水路上に設けられ、前記吸収液誘導部が、前記吸収塔から放射方向に延在し、かつ、前記海水路の海水流れの上流側に延在し、前記吸収液誘導部の排水口が前記海水路内の海水中に連絡している請求項1記載の排煙脱硫装置が提供される。 According to a fourth aspect of the present invention for solving the above-mentioned problem, the absorption tower is substantially provided on the seawater channel in a plan view, and the absorption liquid guiding portion extends in a radial direction from the absorption tower. The flue gas desulfurization device according to claim 1, wherein the flue gas desulfurization device extends to the upstream side of the seawater flow of the seawater channel, and a drain port of the absorption liquid guiding part communicates with seawater in the seawater channel. The
 (作用効果)
 主にスペース確保の観点から吸収塔を海水路上に設ける場合、建設コストが嵩むものとなるが、その反面として、吸収液誘導部を海水路の海水流れの上流側に延在させることは、レイアウトとして容易であり、建設コストは低いものとなる。さらに、吸収液誘導部の吸収液(排ガスと接触した海水)と新鮮な海水とを向流接触させることにより、撹拌及び混合効果の高いものとなる。
(Function and effect)
If an absorption tower is installed on the sea channel mainly from the viewpoint of securing space, the construction cost will increase, but on the other hand, extending the absorption liquid guiding part to the upstream side of the sea water flow in the sea channel is a layout. It is easy and the construction cost is low. Furthermore, it becomes a thing with a high stirring and mixing effect by making countercurrent contact the absorption liquid (seawater which contacted exhaust gas) and fresh seawater of an absorption liquid induction | guidance | derivation part.
 本発明の排煙脱硫装置によれば、海水路の水位変動などによる吸収塔内の圧力変動を防止し、脱硫効率の変動及び低下を抑制することができる。 According to the flue gas desulfurization apparatus of the present invention, it is possible to prevent pressure fluctuations in the absorption tower due to fluctuations in the sea level of the seawater channel, and to suppress fluctuations and declines in desulfurization efficiency.
本発明にかかる排煙脱硫装置の立面図である。1 is an elevation view of a flue gas desulfurization apparatus according to the present invention. 吸収液誘導部が異なる他の排煙脱硫装置例の立面図である。It is an elevational view of another example of the flue gas desulfurization device having a different absorbing liquid guiding part. 吸収液誘導部が異なる別の排煙脱硫装置例の立面図である。It is an elevational view of another example of the flue gas desulfurization device having a different absorbing liquid guiding part. 海水路上に吸収塔を設けた例に排煙脱硫装置例の立面図である。It is an elevational view of an example of a flue gas desulfurization device in an example in which an absorption tower is provided on a seawater channel. 海水路と吸収塔の位置が離れている場合の本発明にかかる排煙脱硫装置の立面図である。It is an elevational view of the flue gas desulfurization apparatus according to the present invention when the seawater channel and the absorption tower are separated from each other. 海水路と吸収塔の位置が離れている場合の本発明にかかる他の排煙脱硫装置例の立面図である。It is an elevational view of another example of the flue gas desulfurization apparatus according to the present invention when the seawater channel and the absorption tower are separated from each other. 吸収塔を海水路の側方に設けた例の排煙脱硫装置の平面図である。It is a top view of the flue gas desulfurization apparatus of the example which provided the absorption tower in the side of the seawater channel. 吸収塔を海水路の側方に設けた別の例の排煙脱硫装置の平面図である。It is a top view of the flue gas desulfurization apparatus of another example which provided the absorption tower in the side of the seawater channel. 吸収塔を海水路の上方に設けた例の排煙脱硫装置の平面図である。It is a top view of the flue gas desulfurization apparatus of the example which provided the absorption tower above the seawater channel. 吸収塔を海水路の上方に設けた他の例の排煙脱硫装置の平面図である。It is a top view of the flue gas desulfurization apparatus of the other example which provided the absorption tower above the seawater channel.
 以下、本発明の排煙脱硫装置の好ましい実施形態について、図1~図10を参照しながら説明する。なお、以下の好ましい実施形態の説明は、本質的な例示に過ぎず、本発明の適用あるいはその用途を制限することを意図するものではない。 Hereinafter, a preferred embodiment of the flue gas desulfurization apparatus of the present invention will be described with reference to FIGS. Note that the following description of the preferred embodiment is merely an exemplification, and is not intended to limit the application of the present invention or its use.
 図1は、本発明にかかる排煙脱硫装置の第1の実施の形態の立面(断面)図である。 FIG. 1 is an elevational (sectional) view of a first embodiment of a flue gas desulfurization apparatus according to the present invention.
 まず、吸収塔1がモレタナ式吸収塔である場合について説明する。吸収塔1の下部側面には、排ガス(たとえば発電設備における廃熱ボイラーからの燃焼排ガス)FGを供給する供給口2が設けられている。また、吸収塔1の上面には、吸収塔1内での処理を経た処理排ガスTGを排気する排気口6が設けられている。
 また、吸収塔1の上部には、吸収液である新鮮な海水SWを吸収塔1内へ導くための給水管3と、当該給水管3から吸収塔1内下方へ噴射させるためのノズル4が設けられている。なお、本明細書において「新鮮な海水」SWとは、代表例は海から導いた海水のことであり、後述する吸収塔1内の多孔板5上で行われる吸収処理後の硫黄酸化物を含む海水と区別される。新鮮な海水は、前記のように海から直接取水したもの以外にも、ボイラ設備の復水器(コンデンサ)から出る使用済み冷却水や、海水脱塩設備から出るブラインを用いてもよい。
First, the case where the absorption tower 1 is a moretana type absorption tower will be described. A supply port 2 for supplying exhaust gas (for example, combustion exhaust gas from a waste heat boiler in a power generation facility) FG is provided on the lower side surface of the absorption tower 1. Further, an exhaust port 6 for exhausting the treated exhaust gas TG that has undergone the treatment in the absorption tower 1 is provided on the upper surface of the absorption tower 1.
Further, at the upper part of the absorption tower 1, there are a water supply pipe 3 for introducing fresh seawater SW as an absorption liquid into the absorption tower 1, and a nozzle 4 for injecting the water supply pipe 3 downward in the absorption tower 1. Is provided. In this specification, “fresh seawater” SW is seawater led from the sea, and the sulfur oxide after the absorption treatment performed on the perforated plate 5 in the absorption tower 1 to be described later is used. Differentiated from seawater containing. In addition to the fresh seawater taken directly from the sea as described above, the fresh seawater used from the condenser (condenser) of the boiler facility or the brine discharged from the seawater desalination facility may be used.
 さらに、吸収塔1の給水管3及びノズル4の下方には、たとえば棚板群が設けられ、開口率が好適には25%~60%の多孔板(モレタナ)5が一段以上設けられている。 Further, for example, a shelf plate group is provided below the water supply pipe 3 and the nozzle 4 of the absorption tower 1, and one or more perforated plates (moretana) 5 having an opening ratio of preferably 25% to 60% are provided. .
 吸収塔1下部側面に設置された前記供給口2から供給された排ガスFGは、吸収塔1内を上方へ向かって移動する。当該排ガスFGと、吸収塔1上部に設けられたノズル4から下方へ噴射された新鮮な海水SWは、吸収塔1内中部に設けられた多孔板5上で向流接触する。当該向流接触によって、排ガス中に含まれる硫黄酸化物は新鮮な海水SWに吸収され、排ガス中から除去される。
 硫黄酸化物が除去された処理排ガスTGは、吸収塔1上部に設けられた排気口6から排気される。また、硫黄酸化物を吸収した海水は、吸収塔1内下方へ降下する。
The exhaust gas FG supplied from the supply port 2 installed on the lower side surface of the absorption tower 1 moves upward in the absorption tower 1. The exhaust gas FG and the fresh seawater SW sprayed downward from the nozzle 4 provided at the upper portion of the absorption tower 1 are in countercurrent contact on the perforated plate 5 provided in the middle portion of the absorption tower 1. Through the countercurrent contact, the sulfur oxide contained in the exhaust gas is absorbed by the fresh seawater SW and removed from the exhaust gas.
The treated exhaust gas TG from which the sulfur oxide has been removed is exhausted from an exhaust port 6 provided in the upper part of the absorption tower 1. In addition, the seawater that has absorbed the sulfur oxide falls downward in the absorption tower 1.
 吸収塔1内下部には吸収液貯留部7が設けられており、前記降下した吸収液は、当該吸収液貯留部7に一時的に貯められる。
 当該吸収液貯留部7の壁部には堰8が設けられ、吸収液貯留部7に貯められた吸収液は、堰8を乗り越えて外方へ流れ出す。
An absorption liquid storage section 7 is provided in the lower part of the absorption tower 1, and the lowered absorption liquid is temporarily stored in the absorption liquid storage section 7.
A dam 8 is provided on the wall portion of the absorbing liquid storage section 7, and the absorbing liquid stored in the absorbing liquid storage section 7 gets over the weir 8 and flows outward.
 本発明は、モレタナ式吸収塔のほか、吸収塔1としては充填塔式吸収塔でもよく、この充填塔式吸収塔について説明する。モレタナ式吸収塔と基本的構造は同一であり、充填物が充填されている点で異なる。充填物は、多孔板や金属製のネットなどに支持されて吸収塔内に保持される。充填物としては、金属製や樹脂製の充填物が使用される。充填物は、一段に限定されず、複数段としてもよい。 In the present invention, in addition to the Moretana type absorption tower, the absorption tower 1 may be a packed tower type absorption tower, and this packed tower type absorption tower will be described. The basic structure is the same as that of the Moretana absorption tower, and is different in that the packing is filled. The packing is supported in the absorption tower by being supported by a perforated plate or a metal net. As the filler, a metal or resin filler is used. The filling is not limited to one stage, and may be a plurality of stages.
 次に吸収塔1と海水路10との関係について説明する。吸収塔1は、モレタナ式吸収塔、または充填塔式吸収塔のいずれも適用可能である。
 たとえば平面視の図7も参照されるように、吸収塔1は海水路10の海水流れ方向の側方に設けられ、吸収塔1の下部には吸収液誘導部9が設けられ、この吸収液誘導部9は吸収塔1から海水路10方向に延在している。
 堰8を越流した吸収液は越流口12から吸収液誘導部9内に流れ込み、その自由空間中を流下するように案内されながら、海水路10の水面上へ流下する。吸収液誘導部9は、その排水口13が海水路10内の海水中に連絡している。吸収液誘導部9は、たとえば金属板により形成され、その内部の自由空間を外気(大気)と隔離している。
Next, the relationship between the absorption tower 1 and the seawater channel 10 will be described. As the absorption tower 1, either a Moretana type absorption tower or a packed tower type absorption tower can be applied.
For example, as shown in FIG. 7 in plan view, the absorption tower 1 is provided on the side of the seawater channel 10 in the seawater flow direction, and an absorption liquid guiding section 9 is provided at the lower part of the absorption tower 1. The guiding portion 9 extends from the absorption tower 1 toward the seawater channel 10.
The absorption liquid that has overflowed the weir 8 flows into the absorption liquid guiding portion 9 from the overflow port 12 and flows down onto the water surface of the sea channel 10 while being guided to flow down in the free space. The drainage port 13 of the absorbing liquid guiding part 9 communicates with seawater in the seawater channel 10. The absorbing liquid guiding portion 9 is formed of, for example, a metal plate and isolates the free space inside from the outside air (atmosphere).
 吸収液誘導部9の排出口13の位置は、いかなる時も海水路10の海水面下の高さとすることが好ましい。排出口13が外気(大気)開放の場合には、吸収塔1内の硫黄酸化物を含んだ排ガスが排出口13から漏れ出す可能性がある。また、外気が吸収液誘導部9を通って吸収塔1内へ侵入する可能性もある。これらの防止のために、吸収液誘導部9内部を外気(大気)と隔離しているのである。 It is preferable that the position of the discharge port 13 of the absorbing liquid guiding unit 9 is at a height below the sea level of the sea channel 10 at any time. When the discharge port 13 is open to the outside air (atmosphere), exhaust gas containing sulfur oxide in the absorption tower 1 may leak out of the discharge port 13. Further, there is a possibility that outside air may enter the absorption tower 1 through the absorption liquid guiding section 9. In order to prevent these problems, the inside of the absorbing liquid guiding portion 9 is isolated from the outside air (atmosphere).
 そして、海水路10は上流から下流に向かって常時新鮮な海水SWを流すようにしておき、その流れの中に吸収液誘導部9からの吸収液を流入させるようにする。そして、海水路10中での処理を経て処理水として海へ放流する。この海水路10中での処理としては、代表的には、(1)吸収液誘導部9から排出された吸収液と新鮮な海水SWを前記海水路10で撹拌・混合し、吸収液のPH値を回復させる工程、(2)PH値が回復した吸収液に前記海水路10で空気又は酸素による曝気処理を行い、更にPH値を回復させる工程を含む。前記(1)および(2)の処理が行われた後のPH値が回復した海水は、海へと放流される。
 前記の例では、(1)の処理を行った後に(2)の処理を行う例を示したが、海水路10で、(1)の処理と(2)の処理を連続的又は同時的に行うようにしてもよい。
And the seawater channel 10 is made to always flow fresh seawater SW from the upstream to the downstream, and the absorption liquid from the absorption liquid guiding part 9 is caused to flow into the flow. And it discharges to the sea as a treated water through the process in the sea channel 10. As the treatment in the seawater channel 10, typically, (1) the absorption liquid discharged from the absorption liquid guiding unit 9 and fresh seawater SW are agitated and mixed in the seawater channel 10, and the pH of the absorption liquid is increased. A step of recovering the value, and (2) a step of performing an aeration process with the air or oxygen in the seawater channel 10 on the absorption liquid whose PH value has been recovered, and further recovering the PH value. The seawater whose PH value has been recovered after the processes (1) and (2) have been performed is discharged into the sea.
In the above example, the process (2) is performed after the process (1) is performed. However, in the seawater channel 10, the process (1) and the process (2) are performed continuously or simultaneously. You may make it perform.
 このような排煙脱硫装置においては、吸収塔1から海水路10までの吸収液誘導部9の管路長を短くすることができるため、配管に伴う土木工事費用などを抑えることができる。 In such a flue gas desulfurization apparatus, the pipe length of the absorbing liquid guiding section 9 from the absorption tower 1 to the seawater channel 10 can be shortened, so that it is possible to reduce civil engineering costs associated with the piping.
 図1では、吸収液誘導部9として金属製のダクトの場合を示したが、図2のように鉄筋コンクリート製の構造体9Aとしてもよい。吸収液を、吸収液誘導部9中をそのまま海水路10へ流下させるのではなく、図3のように、吸収塔1と海水路10とが離間している場合、水平方向に流す部分を有する形状としてもよい。 1 shows a case where a metal duct is used as the absorbing liquid guiding section 9, but a reinforced concrete structure 9A may be used as shown in FIG. The absorption liquid does not flow down into the seawater channel 10 as it is in the absorption liquid guiding section 9, but has a portion that flows in the horizontal direction when the absorption tower 1 and the seawater channel 10 are separated as shown in FIG. It is good also as a shape.
 図4に示すように、設置スペースが許さない場合、吸収塔1を海水路10の上方に設けることができる。図示の例では、海水路10を構造体として、その海水路10上に吸収塔1を設けている。吸収塔1内の吸収液貯留部7から堰8を乗り越えて毀れた吸収液は、吸収液誘導部9及び流下路9Bを通して流下し、海水路10上へ流下する。 As shown in FIG. 4, when the installation space does not allow, the absorption tower 1 can be provided above the sea channel 10. In the illustrated example, the absorption tower 1 is provided on the seawater channel 10 using the seawater channel 10 as a structure. The absorbing liquid that has dripped over the weir 8 from the absorbing liquid storage section 7 in the absorption tower 1 flows down through the absorbing liquid guide section 9 and the downflow path 9B, and then flows down onto the seawater path 10.
 なお、設備配置設計上の関係で、海水路10の近傍に吸収塔1を設けることができない場合がある。この場合は、図5および図6に示すように、吸収塔1内の吸収液貯留部7から堰8を乗り越えてオーバーフローした吸収液を案内路9Cを通じて少し離れた場所に設けた海水路10へ流し込むようにしてもよい。
 図5は、案内路9Cを、海水路10と直接繋げた例を示している。また、図6は、流下路9Bを海水路10への新鮮な海水(吸収液)SWの進入管路と繋げた例を示している。
In some cases, the absorption tower 1 cannot be provided in the vicinity of the seawater channel 10 due to facility layout design. In this case, as shown in FIG. 5 and FIG. 6, the absorption liquid overflowing the weir 8 from the absorption liquid storage section 7 in the absorption tower 1 is supplied to the seawater channel 10 provided at a location a little away through the guide path 9 </ b> C. You may make it pour.
FIG. 5 shows an example in which the guide path 9 </ b> C is directly connected to the seawater path 10. Moreover, FIG. 6 has shown the example which connected the downstream channel 9B with the approach pipe line of the fresh seawater (absorption liquid) SW to the seawater channel 10. FIG.
 次に、吸収塔1と海水路10の平面的な位置関係について、図7~図10の平面図を参照しながら説明する。 Next, the planar positional relationship between the absorption tower 1 and the seawater channel 10 will be described with reference to the plan views of FIGS.
 図7及び図8は、海水路10の側方に吸収塔1を設置した例である。図9及び図10は、海水路10の上方に吸収塔1を設置した例である。図9と図10は、海水路10の上方に吸収塔1全体が設置されているか、一部が設置されているかという点で相違する。
 吸収液誘導部9と排ガス(たとえば発電設備における燃焼ボイラーからの燃焼排ガス)FGを供給する供給口2との位置関係は、図7のように、直線関係にあるほか、図8、図9及び図10のように、直交する関係にあってもよい。
7 and 8 are examples in which the absorption tower 1 is installed on the side of the seawater channel 10. 9 and 10 are examples in which the absorption tower 1 is installed above the seawater channel 10. FIG. 9 and FIG. 10 are different in that the entire absorption tower 1 is installed above or part of the seawater channel 10.
The positional relationship between the absorbing liquid guiding unit 9 and the supply port 2 for supplying exhaust gas (for example, combustion exhaust gas from a combustion boiler in a power generation facility) FG is linear as shown in FIG. As shown in FIG. 10, the relationship may be orthogonal.
 図7及び図8は、海水路10の側方に吸収塔1を構築した例においては、吸収液誘導部9からの吸収液(排ガスと接触した海水)が、吸収塔1からの海水路内に側方から流れ込むので、海水の流れに乗って、吸収液(排ガスと接触した海水)と海水との撹拌及び混合が徐々に進行するようになるので、撹拌及び混合が効率的に行なわれる。
 また、吸収液誘導部9を海水の流れの上流から下流に向けて延在するように配置することを考えることもできるが、その場合には、海水路10下の地下に吸収液誘導部9の配管を行なう必要があり、工事費などが嵩むものとなる。これに対し、吸収塔1は海水路10の海水流れ方向の側方に設け、吸収液(排ガスと接触した海水)を吸収塔1からの海水路10内に側方から流れ込むようにすると、吸収液誘導部9の設置コストが小さいもので足りる。
 さらに、吸収塔1を海水路10の側方に建設することにより、吸収塔を1海水路10上に建設する場合に比較して、建設コストが小さいもので足りる。
7 and 8, in the example in which the absorption tower 1 is constructed on the side of the seawater channel 10, the absorption liquid (seawater in contact with the exhaust gas) from the absorption liquid guiding unit 9 is in the seawater channel from the absorption tower 1. Therefore, the agitation and mixing of the absorption liquid (seawater in contact with the exhaust gas) and the seawater gradually proceed along the seawater flow, so that the agitation and mixing are performed efficiently.
In addition, it can be considered that the absorbing liquid guiding part 9 is arranged so as to extend from the upstream to the downstream of the flow of the seawater. In that case, the absorbing liquid guiding part 9 is provided below the seawater channel 10. It is necessary to carry out the piping, which increases the construction cost. On the other hand, the absorption tower 1 is provided on the side of the seawater passage 10 in the seawater flow direction, and absorption liquid (seawater in contact with exhaust gas) flows into the seawater passage 10 from the absorption tower 1 from the side. A small installation cost of the liquid guiding portion 9 is sufficient.
Further, by constructing the absorption tower 1 on the side of the sea channel 10, a construction cost lower than that in the case of constructing the absorption tower on the sea channel 10 is sufficient.
 また、図9および図10においては、主にスペース確保の観点から吸収塔1を海水路10上に設ける場合、建設コストが嵩むものとなるが、その反面として、吸収液誘導部9を海水路の海水流れの上流側に延在させることは、レイアウトとして容易であり、建設コストは低いものとなる。さらに、吸収液誘導部9の吸収液(排ガスと接触した海水)と新鮮な海水SWとを向流接触させることにより、撹拌及び混合効果の高いものとなる。 In FIGS. 9 and 10, when the absorption tower 1 is provided on the seawater channel 10 mainly from the viewpoint of securing a space, the construction cost increases. On the other hand, the absorption liquid guiding portion 9 is connected to the seawater channel. It is easy as a layout to extend to the upstream side of the seawater flow, and the construction cost is low. Furthermore, it becomes a thing with a high stirring and mixing effect by making the absorption liquid (seawater which contacted exhaust gas) and the fresh seawater SW of the absorption liquid induction | guidance | derivation part 9 contact countercurrent.
1・・・吸収塔
2・・・供給口
3・・・給水管
4・・・ノズル
5・・・多孔板(モレタナ)
6・・・排気口
7・・・吸収液貯留部
8・・・堰
9、9A・・・吸収液誘導部
9B・・・流下路
9C・・・案内路
10・・・海水路
13・・・排出口

FG・・・排ガス)
TG・・・処理排ガス
SW・・・新鮮な海水(吸収液)
TW・・・放流水
DESCRIPTION OF SYMBOLS 1 ... Absorption tower 2 ... Supply port 3 ... Water supply pipe 4 ... Nozzle 5 ... Perforated plate (Moretana)
6 ... Exhaust port 7 ... Absorbing liquid storage section 8 ... Weir 9, 9A ... Absorbing liquid guiding section 9B ... Downflow path 9C ... Guide path 10 ... Seawater path 13 ... ·Vent

FG ... exhaust gas)
TG ... treated exhaust gas SW ... fresh seawater (absorbing liquid)
TW ... Discharged water

Claims (4)

  1.  排ガスと吸収液としての海水を吸収塔内において接触させて排ガス中の硫黄酸化物を吸収除去する排煙脱硫装置において、
     前記吸収塔内下部に設けた吸収液貯留部と、
     前記吸収液貯留部の壁部に設けた海水を越流させる堰と、
     前記吸収塔の下方または前記吸収塔近傍の下方に設けた海水路と、
     前記堰を越流した海水が前記海水路の水面上への自由空間中を流下するように案内する吸収液誘導部とを備え、
     前記吸収液誘導部は、その排水口が前記海水路内の海水内に連絡しており、前記自由空間は外気と隔離している、
     ことを特徴とする排煙脱硫装置。
    In a flue gas desulfurization apparatus that makes exhaust gas and seawater as an absorption liquid contact in an absorption tower to absorb and remove sulfur oxides in the exhaust gas,
    An absorption liquid reservoir provided in the lower part of the absorption tower;
    A weir that overflows seawater provided on the wall of the absorbing liquid reservoir;
    A seawater channel provided below the absorption tower or near the absorption tower;
    An absorption liquid guiding section for guiding the seawater that has passed through the weir to flow down in a free space on the surface of the seawater channel, and
    The absorption liquid guiding portion has a drain port communicating with the seawater in the seawater channel, and the free space is isolated from the outside air,
    A flue gas desulfurization apparatus characterized by that.
  2.  排ガスと海水との接触が前記吸収塔内に設けた多孔板上においてなされるように構成されている請求項1記載の排煙脱硫装置。 The flue gas desulfurization apparatus according to claim 1, wherein the exhaust gas and seawater are brought into contact with each other on a perforated plate provided in the absorption tower.
  3.  平面視で前記吸収塔は前記海水路の海水流れ方向の側方に設けられ、前記吸収液誘導部が前記吸収塔から前記海水路方向に延在し、前記吸収液誘導部の排水口が前記海水路内の海水内に連絡している請求項1記載の排煙脱硫装置。 In plan view, the absorption tower is provided to the side of the seawater flow direction of the seawater channel, the absorption liquid guiding part extends from the absorption tower in the seawater channel direction, and the drainage port of the absorption liquid guiding part is the The flue gas desulfurization apparatus according to claim 1, wherein the flue gas desulfurization apparatus communicates with the seawater in the seaway.
  4.  平面視で前記吸収塔は実質的に前記海水路上に設けられ、前記吸収液誘導部が、前記吸収塔から放射方向に延在し、かつ、前記海水路の海水流れの上流側に延在し、前記前記吸収液誘導部の排水口が前記海水路内の海水内に連絡している請求項1記載の排煙脱硫装置。 In plan view, the absorption tower is substantially provided on the seawater channel, and the absorption liquid guiding portion extends radially from the absorption tower and extends upstream of the seawater flow in the seawater channel. The flue gas desulfurization apparatus according to claim 1, wherein a drain outlet of the absorption liquid guiding section communicates with seawater in the seawater channel.
PCT/JP2011/057227 2011-03-24 2011-03-24 Flue gas desulfurization apparatus WO2012127689A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/057227 WO2012127689A1 (en) 2011-03-24 2011-03-24 Flue gas desulfurization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/057227 WO2012127689A1 (en) 2011-03-24 2011-03-24 Flue gas desulfurization apparatus

Publications (1)

Publication Number Publication Date
WO2012127689A1 true WO2012127689A1 (en) 2012-09-27

Family

ID=46878881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057227 WO2012127689A1 (en) 2011-03-24 2011-03-24 Flue gas desulfurization apparatus

Country Status (1)

Country Link
WO (1) WO2012127689A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109843714A (en) * 2017-03-24 2019-06-04 三菱造船株式会社 The drainage system of ship desulfurizer
CN112121629A (en) * 2020-08-07 2020-12-25 山东大学 Segmented flow guide plate, flue gas on-line adjusting and flow equalizing device and flow equalizing method
CN117205723A (en) * 2023-10-31 2023-12-12 河南富景达橡塑有限公司 Banburying waste gas treatment device and treatment method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06246128A (en) * 1993-02-24 1994-09-06 Chiyoda Corp Wet type flue gas desulfurization method and wet type flue gas desulurizer
JPH06285326A (en) * 1993-04-05 1994-10-11 Chiyoda Corp Method and device for flue gas desulfurization
JPH08206447A (en) * 1995-02-06 1996-08-13 Ishikawajima Harima Heavy Ind Co Ltd Desulfurization equipment
JP2008200621A (en) * 2007-02-21 2008-09-04 Mitsubishi Heavy Ind Ltd Exhaust gas desulfurizer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06246128A (en) * 1993-02-24 1994-09-06 Chiyoda Corp Wet type flue gas desulfurization method and wet type flue gas desulurizer
JPH06285326A (en) * 1993-04-05 1994-10-11 Chiyoda Corp Method and device for flue gas desulfurization
JPH08206447A (en) * 1995-02-06 1996-08-13 Ishikawajima Harima Heavy Ind Co Ltd Desulfurization equipment
JP2008200621A (en) * 2007-02-21 2008-09-04 Mitsubishi Heavy Ind Ltd Exhaust gas desulfurizer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109843714A (en) * 2017-03-24 2019-06-04 三菱造船株式会社 The drainage system of ship desulfurizer
EP3604116A4 (en) * 2017-03-24 2021-01-20 Mitsubishi Shipbuilding Co., Ltd. Drainage system of marine desulfurization device
CN112121629A (en) * 2020-08-07 2020-12-25 山东大学 Segmented flow guide plate, flue gas on-line adjusting and flow equalizing device and flow equalizing method
CN117205723A (en) * 2023-10-31 2023-12-12 河南富景达橡塑有限公司 Banburying waste gas treatment device and treatment method thereof
CN117205723B (en) * 2023-10-31 2024-01-30 河南富景达橡塑有限公司 Banburying waste gas treatment device and treatment method thereof

Similar Documents

Publication Publication Date Title
CN101992016B (en) System and method for flue gas scrubbing
JP4446309B2 (en) Exhaust gas desulfurization equipment using seawater
CN201380033Y (en) Spraying type tower for flue gas desulfurization and absorption by magnesium
TWI500445B (en) A sulfur-containing gas-containing desulfurization method, and a desulfurization apparatus
JP5166791B2 (en) Flue gas desulfurization equipment
JP2008200621A (en) Exhaust gas desulfurizer
CN105126589A (en) Ammonia desulfurization equipment and process
JP2009028572A (en) Aeration apparatus
JP2012115764A (en) Wastewater channel of seawater desulfurization apparatus and seawater flue gas desulfurization system
JP5330658B2 (en) Aeration equipment
KR20150070110A (en) A flue gas purification device
WO2012127689A1 (en) Flue gas desulfurization apparatus
JP5186396B2 (en) Seawater desulfurization equipment
RU2681911C1 (en) Degasser and method for extracting gas from liquid
JP2007296447A (en) Two-chamber type wet flue gas desulfurization apparatus
WO2014196458A1 (en) Device for desulfurization with seawater and system for desulfurization with seawater
JP5721303B2 (en) Flue gas desulfurization equipment
CN203725014U (en) Hydrogen sulfide gas purification device
AU2014279670B2 (en) Method and installation for removing sulphur from the digestate and the biogas of a digester
JP2008080248A (en) Wet process flue gas desulfurizer
JP3805783B2 (en) Two-chamber wet flue gas desulfurization apparatus and method
JP2009114233A (en) Liquid phase oxidation wet type desulphurization apparatus
CN202136919U (en) Flue gas desulfurizing and oxidizing device
RU2440839C2 (en) Heat exchanger (desorber-absorber)
JP2007216167A (en) Deoxidation apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11861869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP