JP2008199847A - 駆動力制御装置及び車輪の摩擦情報推定装置 - Google Patents

駆動力制御装置及び車輪の摩擦情報推定装置 Download PDF

Info

Publication number
JP2008199847A
JP2008199847A JP2007034932A JP2007034932A JP2008199847A JP 2008199847 A JP2008199847 A JP 2008199847A JP 2007034932 A JP2007034932 A JP 2007034932A JP 2007034932 A JP2007034932 A JP 2007034932A JP 2008199847 A JP2008199847 A JP 2008199847A
Authority
JP
Japan
Prior art keywords
wheel
slip ratio
driving force
ratio
rotating elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007034932A
Other languages
English (en)
Inventor
Naoki Moriguchi
直樹 森口
Yoshinori Maeda
義紀 前田
Kazuya Okumura
和也 奥村
Yoichiro Yu
陽一郎 勇
Akihiro Hosokawa
明洋 細川
Kansuke Yoshisue
監介 吉末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007034932A priority Critical patent/JP2008199847A/ja
Publication of JP2008199847A publication Critical patent/JP2008199847A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】トラクションドライブ方式による動力伝達装置において、車輪と路面との間のスリップ率や摩擦係数の推定精度を向上させること。
【解決手段】駆動装置DTは、回転要素間に介在させた伝達油によって動力を伝達する減速装置RGを介して電動機MGの発生する動力を車輪Wに伝達する。車輪Wと路面GLとの間のスリップ率及び摩擦係数は、次の手順で求められる。まず、減速装置RGが備える回転要素間の滑り率に基づいて減速装置RGの減速比を求める。そして、この減速比を用いて、車輪Wの慣性モーメントを電動機MGの回転軸Zm上の等価慣性モーメントに換算する。そして、この等価慣性モーメントを用いて車輪Wと路面GLとの間のスリップ率及び摩擦係数を求める。
【選択図】 図5

Description

本発明は、回転要素間に介在させたトラクション油(伝達油)によって動力を伝達する動力伝達装置に関する。
車両の走行安定性や走行性能を向上させるため、いわゆるトラクションコントロールに代表される駆動力制御が行われている。特許文献1には、車輪の駆動トルク、車輪の接地荷重、車輪の慣性質量等を用いて、車輪と路面との間のスリップ率や車輪と路面との間の摩擦係数を求め、車輪の目標制駆動トルクを制限する技術が開示されている。
特開2006−34012号公報
ところで、例えばローラのような回転要素を互いに接触させるとともに、回転要素間に介在させた伝達油のせん断力によって、接触させた回転要素間で動力を伝達する動力伝達方式がある。このような動力伝達方式を、トラクションドライブ方式という。トラクションドライブ方式を用いれば、歯車を用いた動力伝達装置と比較して、高い減速比や装置のコンパクト化を達成できる動力伝達装置を実現できる。
しかし、トラクションドライブ方式は、伝達油のせん断力によって動力を伝達するため、動力を伝達する回転要素同士の間に滑りが発生する場合があるため、動力伝達装置の減速比は一意に決定できない。ここで、駆動力制御に用いる車輪と路面との間のスリップ率や車輪と路面との間の摩擦係数は、車輪の慣性モーメントを、減速装置の減速比を用いて動力発生手段の軸上に換算した等価慣性モーメントを用いて決定される。
トラクションドライブ方式は、上述した理由から、動力伝達装置の減速比が一意に決定できないため、等価慣性モーメントも一意に決定できない。その結果、トラクションドライブ方式を用いる動力伝達手段を用いる場合、等価慣性モーメントが一義的に決定できない結果、車輪と路面との間のスリップ率や車輪と路面との間の摩擦係数の推定精度が低下するという問題がある。特許文献1に開示されている技術では、この点について言及されておらず、改善の余地がある。
この発明は、上記に鑑みてなされたものであって、いわゆるトラクションドライブ方式による動力伝達装置において、車輪と路面との間のスリップ率や車輪と路面との間の摩擦係数といった車輪と路面との間における摩擦情報の推定精度を向上させることを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係る駆動力制御装置は、回転要素間に介在させた流体によって動力を伝達する動力伝達装置を介して動力発生手段の発生する動力を車輪に伝達する駆動装置を制御するものであり、前記動力伝達装置が備える回転要素間の滑り率を求める滑り率演算部と、前記滑り率に基づいて前記動力伝達装置の減速比を求める減速比演算部と、前記減速比演算部が求めた減速比に基づいて、前記車輪と前記車輪が接する路面との間の摩擦に関する摩擦情報を演算する摩擦情報演算部と、前記摩擦情報演算部が求めた前記摩擦情報に基づいて、前記車輪の駆動力を求める駆動力演算部と、を含むことを特徴とする。
この駆動力制御装置は、動力伝達装置が備える回転要素間における滑りを考慮して、車輪と路面との間のスリップ率や摩擦係数といった車輪と路面との間における摩擦情報を求めることができる。その結果、いわゆるトラクションドライブ方式による動力伝達装置において、車輪と路面との間における摩擦情報の推定精度を向上させることができ、駆動力制御の精度も向上する。
本発明の好ましい態様としては、前記摩擦情報演算部は、前記動力発生手段の出力が増加する場合にのみ、前記動力伝達装置が備える回転要素間の滑り率に基づいて求められた前記動力伝達装置の減速比に基づいて、前記車輪と前記車輪が接する路面との間の摩擦に関するパラメータを演算することが望ましい。
本発明の好ましい態様としては、前記滑り率演算部は、動力を伝達する前記回転要素同士の接触部における前記回転要素の接線力と前記接触部における垂直力との比に基づいて決定されるトラクション係数と、前記滑り率との関係に基づいて前記滑り率を求めることが望ましい。
本発明の好ましい態様としては、前記滑り率演算部は、前記動力伝達装置が備える回転要素間に介在する流体の温度に応じて、前記滑り率を変更することが望ましい。
本発明の好ましい態様としては、前記滑り率演算部は、前記流体の温度が高くなるにしたがって、同じトラクション係数における前記滑り率の値を大きくすることが望ましい。
上述した課題を解決し、目的を達成するために、本発明に係る車輪の摩擦情報推定装置は、回転要素間に介在させた流体によって動力を伝達する動力伝達装置を介して動力発生手段の発生する動力を車輪に伝達する駆動装置において、前記車輪と路面との間の摩擦情報を求めるものであり、前記動力伝達装置が備える回転要素間の滑り率を求める滑り率演算部と、前記滑り率に基づいて前記動力伝達装置の減速比を求める減速比演算部と、前記減速比演算部が求めた減速比に基づいて、前記車輪と前記車輪が接する路面との間の摩擦に関する摩擦情報を求める摩擦情報演算部と、を含むことを特徴とする。
この車輪の摩擦情報推定装置は、動力伝達装置が備える回転要素間における滑りを考慮して、車輪と路面との間のスリップ率や摩擦係数といった車輪と路面との間における摩擦情報を求めることができる。その結果、いわゆるトラクションドライブ方式による動力伝達装置において、車輪と路面との間における摩擦情報の推定精度を向上させることができる。
本発明の好ましい態様としては、前記摩擦情報演算部は、前記動力発生手段の出力が増加する場合にのみ、前記動力伝達装置が備える回転要素間の滑り率に基づいて求められた前記動力伝達装置の減速比に基づいて、前記車輪と前記車輪が接する路面との間の摩擦に関するパラメータを演算することが望ましい。
本発明の好ましい態様としては、前記滑り率演算部は、動力を伝達する前記回転要素同士の接触部における前記回転要素の接線力と前記接触部における垂直力との比に基づいて決定されるトラクション係数と、前記滑り率との関係に基づいて前記滑り率を求めることが望ましい。
本発明の好ましい態様としては、前記滑り率演算部は、前記動力伝達装置が備える回転要素間に介在する流体の温度に応じて、前記滑り率を変更することが望ましい。
本発明に係る駆動力制御装置及び車輪の摩擦情報推定装置は、いわゆるトラクションドライブ方式による動力伝達装置において、車輪と路面との間のスリップ率や車輪と路面との間の摩擦係数といった車輪と路面との間における摩擦情報の推定精度を向上させることができる。
以下、この発明につき図面を参照しつつ詳細に説明する。なお、この発明を実施するための最良の形態(以下実施形態という)によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のもの、いわゆる均等の範囲のものが含まれる。
以下においては、動力発生手段に電動機を用いる、いわゆる電気自動車に本発明を適用した場合について説明するが、本発明の適用対象はこれに限られるものではない。また、動力発生手段は電動機に限られるものではなく、内燃機関でもよく、内燃機関と電動機とを組み合わせた、いわゆるハイブリッドの動力発生手段を用いてもよい。
ここで、駆動力制御とは、車両が備える車輪の駆動力又は制動力を制御することにより、車両の安定性を向上させたり、車両の走行性能を向上させたりする制御をいう。駆動力制御には、例えば、車輪と路面との間に滑りが生じた場合に車輪の駆動力を抑制する、いわゆるトラクションコントロールや、車両の旋回性能を向上させたり、車両のスピンを抑制したりするため左右の車輪間で駆動力を異ならせる駆動力配分制御等がある。
本実施形態は、回転要素間に介在させた流体(例えばトラクション油)によって動力を伝達する動力伝達装置において、動力伝達装置が備える回転要素間の滑り率に基づいて前記動力伝達装置の減速比を補正し、補正した減速比に基づいて、車輪と路面との間の摩擦情報を求める点に特徴がある。以下の説明においては、動力伝達装置として、入力される動力発生手段の回転数を減速して車輪に出力する減速装置を対象とする。なお、動力伝達装置は、入力回転数を増速して出力するものであってもよい。また、回転数は、単位時間あたりの回転数である(以下の実施形態でも同様)。
図1は、本実施形態に係る走行装置を備える車両の構成を示す概略図である。図1に示す車両1は、電動機のみを動力発生手段とする。車両1は、動力発生手段として、左前電動機3fl、右前電動機3fr、左後電動機3rl、右後電動機3rrを備えている。そして、左前電動機3flは左側前輪2flを、右前電動機3frは右側前輪2frを、左後電動機3rlは左側後輪2rlを、右後電動機3rrは右側後輪2rrを駆動する。このように、この車両1は、すべての車輪が駆動輪となる全輪駆動形式となっている。
本実施形態において、電動機MGと車輪Wとは、減速装置RGを介して接続される。減速装置RGは、各電動機及び各車輪に対して設けられる。すなわち、左前電動機3flと左側前輪2flとの間には左前減速装置10flが設けられ、右前電動機3frと右側前輪2frとの間には右前減速装置10frが設けられ、左後電動機3rlと左側後輪2rlとの間には左後減速装置10rlが設けられ、右後電動機3rrと右側後輪2rrとの間には右後減速装置10rrが設けられる。一般に、電動機は小型化するとトルクが低下するが、減速装置RGを設けることによって電動機MGのトルクを増加させることができる。その結果、車両1が搭載する電動機MGを小型化することができる。
本実施形態において、左前電動機3fl、右前電動機3fr、左後電動機3rl、右後電動機3rr、及び左前減速装置10fl、右前減速装置10fr、左後減速装置10rl、右後減速装置10rrは、左側前輪2fl、右側前輪2fr、左側後輪2rl、右側後輪2rrのホイール内に配置される、いわゆるインホイール形式の構成となっている。以下の説明において、4台の電動機を区別しない場合には、単に電動機MGといい、4輪を区別しない場合には、単に車輪Wといい、4台の減速装置を区別しない場合には、単に減速装置RGという。
左前電動機3flと左前減速装置10flと左側前輪2flとは、左前駆動装置100flを構成し、右前電動機3frと右前減速装置10frと右側前輪2frとは右前駆動装置100frを構成する。また、左後電動機3rlと左後減速装置10rlと左側後輪2rlとは左後駆動装置100rlを構成し、右後電動機3rrと右後減速装置10rrと右側後輪2rrとは右後駆動装置100rrを構成する。4台の駆動装置を区別しない場合には、単に駆動装置DTという。このように、本実施形態に係る車両1は、4台の駆動装置DTによって走行する。
本実施形態において、左前電動機3fl、右前電動機3fr、左後電動機3rl、右後電動機3rrは、ECU(Engine Control Unit)50によってそれぞれ独立に制御される。これによって、左側前輪2fl、右側前輪2fr、左側後輪2rl、右側後輪2rrそれぞれの駆動力が独立して制御される。また、左側前輪2flの駆動力と、右側前輪2frの駆動力と、左側後輪2rlの駆動力と、右側後輪2rrの駆動力との配分比は、必要に応じてECU50によって変更することができる。これによって、旋回時において内外輪や前後輪の回転数差を設けて内外輪や前後輪の回転数差を吸収したり、トラクションコントロール等の駆動力制御を実行したりすることができる。
左前電動機3fl、右前電動機3fr、左後電動機3rl、右後電動機3rrには、それぞれ左前電動機用レゾルバ40fl、右前電動機用レゾルバ40fr、左後電動機用レゾルバ40rl、右後電動機用レゾルバ40rrによって回転角度や回転速度が検出される。左前電動機用レゾルバ40fl、右前電動機用レゾルバ40fr、左後電動機用レゾルバ40rl、右後電動機用レゾルバ40rrの出力は、動力発生手段制御装置である電動機用ECU8に取り込まれて、左前電動機3fl、右前電動機3fr、左後電動機3rl、右後電動機3rrの制御に用いられる。ここで、4輪を区別しない場合には、単にレゾルバQという。
左前電動機3fl、右前電動機3fr、左後電動機3rl、右後電動機3rrは、電動機制御回路6に接続されている。電動機制御回路6には、図1に示す車両1が搭載する、例えばニッケル−水素電池や鉛蓄電池等の車載電源7が接続されており、必要に応じて、車載電源7から左前電動機3fl、右前電動機3fr、左後電動機3rl、右後電動機3rrを駆動するための電力が供給される。電動機制御回路6は、W、V、Uの三相電流を発生させるための3つのインバータ回路より構成されている。インバータ回路は、ECU50からの指令に基づいて電動機用ECU8が制御する。これによって、左前電動機3fl、右前電動機3fr、左後電動機3rl、右後電動機3rrが駆動制御される。
本実施形態においては、アクセル開度センサ42によって検出されるアクセル5の開度によって、左前電動機3fl、右前電動機3fr、左後電動機3rl、右後電動機3rrの出力が制御されて、駆動装置DTの駆動力が制御される。その結果、車両1の総駆動力FD_allが制御される。なお、本実施形態においては、一組のインバータ回路によって1台の電動機が制御される。車両1は4台の電動機、すなわち、左前電動機3fl、右前電動機3fr、左後電動機3rl、右後電動機3rrを備えるため、これらを制御するために、電動機制御回路6には4組のインバータ回路が備えられる。
左前電動機3fl、右前電動機3fr、左後電動機3rl、右後電動機3rrが車両1の動力発生手段として用いられる場合、車載電源7の電力が電動機制御回路6を介して供給される。また、例えば車両1の減速時には、左前電動機3fl、右前電動機3fr、左後電動機3rl、右後電動機3rrが発電機として機能して回生発電を行い、これによって回収したエネルギーを車載電源7に蓄える。これは、ブレーキ信号やアクセルオフ等の信号に基づいて、ECU50が電動機制御回路6を制御することにより実現される。
ECU50は、本実施形態に係る駆動装置DTの駆動力を制御したり、制動時には、電動機MGにより電力を回生したりする。車両1が備える通信回線9には、レゾルバQ、アクセル開度センサ42、ヨーセンサ43、車速センサ44、操舵角センサ45等が接続されている。そして、ECU50は、通信回線9を介して、駆動装置DTの制御に必要な情報をこれらのセンサ類から取得する。また、後述するように、ECU50には駆動力制御装置30及び車輪の摩擦情報推定装置30Cが備えられており、本実施形態に係る駆動制御や車輪の摩擦情報の推定方法を実行する。なお、本実施形態において、駆動力制御装置30は、ECU50の一機能として実現される。
図2は、本実施形態に係る車両の駆動装置支持構造の構成例を示す説明図である。図2に示す駆動系支持構造は、車両1の前輪、すなわち左側前輪2fl及び右側前輪2frの支持構造である。本実施形態に係る車両1を走行させる駆動装置DTは、電動機MGと、減速装置RGと、車輪Wとで構成される。本実施形態に係る車両1では、駆動装置DTに、いわゆるインホイール形式を採用するので、電動機MG、減速装置RG及び車輪Wは、懸架装置1Sのばね下構造物、すなわち、懸架装置1Sのばね20Sよりも鉛直方向下方に存在する構造物となる。
電動機MG、減速装置RGは、懸架装置1Sを構成する取付リンク24に取り付けられる。減速装置RGの回転軸(減速装置回転軸)RGsには車輪Wが取り付けられるので、車輪Wは、減速装置RGを介して取付リンク24に取り付けられる。本実施形態においては、減速装置RGのリングローラ10Rが取付リンク24に固定される。そして、減速装置RGには電動機MGの回転軸(電動機回転軸)MGsが接続され、減速装置RGの回転軸(減速装置回転軸)RGsには車輪Wが取り付けられる。これによって、電動機MGの回転数を減速装置RGで減速して、車輪Wを駆動する。
図2に示すように、本実施形態において、懸架装置1Sには、いわゆるストラット形式が用いられている。減衰力発生手段であるダンパー20の一方の端部にはアッパーマウント20Uが設けられ、これを介してダンパー20が車両本体1Bに取り付けられる。ダンパー20の他方の端部には、ブラケット20Bが設けられている。
ダンパー20のブラケット20Bは、取付リンク24に設けられる取付リンクブラケット24bに取り付けられる。また、取付リンク24のピポット部24pは、トランスバースリンク22のピボット受け28と組み合わされ、ピン結合される。これによって、取付リンク24とトランスバースリンク22とが連結される。なお、取付リンク24のピポット部24pは、取付リンク24に取り付けられる電動機MGの電動機回転軸MGsに対して、取付リンクブラケット24bとほぼ対称となる位置に設けられる。
このような構成により、懸架装置1Sを構成するダンパー20とトランスバースリンク(ロワーアーム)22とは、取付リンク24によって連結される。そして、電動機MG、減速装置RG及び車輪Wは、取付リンク24を介して懸架装置1Sに取り付けられ、車両1の車両本体1Bに支持される。
トランスバースリンク22は、車両取付部27で車両本体1Bに取り付けられている。そして、取付リンク24が上下方向(図2中のY方向、以下同様)に動作することにより、車両取付部27の揺動軸Zsfを中心として揺動運動する。ここで、上下方向とは、重力の作用方向と平行な方向である。
取付リンク24に取り付けられる減速装置RGの減速装置回転軸RGsには、ブレーキローター21及びホイール13が取り付けられる。ホイール13には空気入りタイヤ23が取り付けられて、車輪Wとなる。路面GLから車輪Wへの入力によって、ホイール13は上下方向に動作する。ホイール13は減速装置回転軸RGsに取り付けられており、また、電動機MGと減速装置RGとは取付リンク24に取り付けられているので、ホイール13が上下方向に動作すると、電動機MG及び減速装置RGは、取付リンク24とともに上下方向に動作する。ばね下構造物である車輪W、電動機MG等が上下方向に動作することによる車両本体1Bへの入力は、懸架装置1Sのばね20S及びダンパー20で吸収される。
図3−1は、本実施形態に係る減速装置の構造を示す模式図である。図3−2は、本実施形態に係る減速装置が備える回転要素間の拡大図である。図4−1、図4−2は、本実施形態に係る駆動装置のスケルトン図である。図1に示す、本実施形態に係る車両1が備える駆動装置DTは、電動機MGが発生する動力を、減速装置GRを介して車輪Wへ伝達する。減速装置GRは、回転要素であるローラ同士の間に介在する流体のせん断力によって、ローラ間で動力を伝達する、いわゆるトラクションドライブ方式を採用する。
ローラ同士の間に介在する流体は、いわゆるトラクション油(以下伝達油という)が用いられる。ここで、伝達油のせん断力は、速度勾配に応じて発生する。このように、本実施形態に係る駆動装置DTは、回転要素間に介在させた伝達油によって動力を伝達する動力伝達装置である減速装置RGを介して、動力発生手段である電動機MGの発生する動力(トルク)を車輪Wに伝達する。
図3−1に示すように、減速装置RGは、複数種類の回転要素で構成されるトラクション遊星ローラであり、基本的な構成は、遊星歯車装置と同様である。減速装置RGは、サンローラ10Sと、ピニオンローラ10Pと、キャリア10Cと、リングローラ10Rとを回転要素として備える。すなわち、減速装置RGは4種類の回転要素を備えて構成される。リングローラ10Rの内周部には、キャリア10Cによって回転可能に支持された複数(本実施形態では3個)のピニオンローラ10Pが等間隔に配置される。また、サンローラ10Sの外周部には、複数のピニオンローラ10Pが等間隔で配置される。キャリア10Cは、複数のピニオンローラ10Pの回転軸10PSを支持して、サンローラ10Sに対するピニオンローラ10Pの公転を取り出す部材である。
減速装置RGは、サンローラ10Sとピニオンローラ10Pとの間、ピニオンローラ10Pとリングローラ10Rとの間で動力を伝達する。図3−2に示すように、減速装置RGは、サンローラ10Sとピニオンローラ10Pとの間に伝達油TFを介在させ、伝達油TFの摩擦力によってサンローラ10Sとピニオンローラ10Pとの間で動力を伝達する。ピニオンローラ10Pとリングローラ10Rとの間も同様である。伝達油TFは、回転要素同士の接触部に生じる高い圧力のもとでガラス状に固化する性質を持っており、サンローラ10Sとピニオンローラ10Pとの間や、ピニオンローラ10Pとリングローラ10Rとの間で、動力を伝達する。
このように、トラクション遊星ローラで構成される減速装置RGは、回転要素間で動力を伝達するため、回転要素間の接触部に高い圧力を発生させる。このために、サンローラ10Sとピニオンローラ10Pとは、リングローラ10Rの内周部へ、しまり嵌めのような状態で配置される。また、減速装置RGが備える回転要素間に、サブミクロンオーダーの伝達油TFの油膜を形成して、回転要素間で動力を伝達する。このため、サンローラ10Sの表面、ピニオンローラ10Pの表面、リングローラ10Rの内周部の表面は、極めて高い精度で、かつ極めて滑らかに仕上げてある。
図4−1、図4−2に示すように、本実施形態の駆動装置DTでは、減速装置RGのサンローラ10Sに電動機MGの出力軸3Sを接続する。そして、図4−1に示すように、減速装置RGのリングローラ10Rを静止系Sに固定して、キャリア10Cに接続した車輪Wを駆動するか、図4−2に示すように、減速装置RGのキャリア10Cを静止系Sに固定して、リングローラ10Rに接続した車輪Wを駆動する。いずれの場合でも、サンローラ10Sから入力される電動機MGの回転数が減速されて、キャリア10Cあるいはリングローラ10Rへ出力される。
本実施形態において、図4−1に示す駆動装置DTの構成を実現する場合、上述した図2に示す懸架装置1Sにおいて、減速装置RGのリングローラ10Rを、静止系である取付リンク24に固定する。これによって、電動機回転軸MGsの回転数を減速して車輪Wを駆動する。また、図4−2に示す駆動装置DTの構成を実現する場合には、減速装置RGのキャリア10Cを、静止系である取付リンク24に固定し、減速装置RGのリングローラ10Rに車輪Wを取り付ける。
本実施形態の減速装置RGに用いるトラクション遊星ローラは、歯車式の遊星ギヤと比較して、減速比を大きくとることができる。このため、より高い回転数で電動機を用いることができる。本実施形態においては、トラクション遊星ローラを用いる減速装置RGにより、大きな減速比が確保できるので、小型の電動機を高い回転数で用いることができる。その結果、車両1の駆動装置DTが備える電動機MGを小型化することができる。これによって、本実施形態に係る駆動装置DTのようにインホイール形式を用いる場合には、ばね下質量を軽減して、車両1の走行性能を向上させたり、乗り心地を向上させたりすることができる。
図5は、本実施形態に係る駆動装置をモデル化した模式図である。上述したように、本実施形態に係る駆動装置DTは、電動機MGと、減速装置RGと、車輪Wとで構成される。各車輪の駆動力を制御するトラクションコントロールや左右輪間で駆動力を異ならせる駆動力配分制御等の駆動力制御を実行する際には、車輪Wと、車輪Wが接する路面GLとの間の摩擦情報が必要である。車輪Wと路面GLとの間の摩擦情報は、駆動力制御に用いるものであり、車輪と路面との間のスリップ率(車輪スリップ率)Sw、及び車輪と路面との間の摩擦係数(路面摩擦係数という)μRである。この場合、式(1)によって車輪スリップ率Swを求め、式(2)によって路面摩擦係数μRを求める。
Figure 2008199847
Figure 2008199847
ここで、Rwは車輪Wの動荷重半径、Fwは車輪Wに対する垂直荷重、ωは車輪Wの回転角速度、Twは車輪Wのトルク、Jは等価慣性モーメントである。なお、車輪WのトルクTwは、電動機MGのトルク(電動機トルク)TMの関数である。等価慣性モーメントJは、車輪Wの慣性モーメントJwを、電動機MGの回転軸Zm上に換算した値である。トラクションコントロールや駆動力配分制御等の駆動力制御では、電動機MGのトルクを制御することから、等価慣性モーメントJを用いる。等価慣性モーメントJは、車輪Wの慣性モーメントJw、減速装置RGの減速比ηを用いて、式(3)で求めることができる。
Figure 2008199847
上述したように、本実施形態の減速装置RGに用いるトラクション遊星ローラは、大きい減速比を確保できるという利点があるが、回転要素間に介在する伝達油TFのせん断力によって動力を伝達するため、回転要素間に滑りが発生する。この滑りは、伝達油TFの温度や伝達トルクその他の減速装置RGの動作条件によって変化するため、減速装置RGの減速比ηは不定となる。
したがって、式(3)によって求められる等価慣性モーメントJも不定となり、式(1)によって求められる車輪スリップ率Swや、式(2)によって求められる路面摩擦係数μRの精度が低下するおそれがある。その結果、車輪スリップ率Swや路面摩擦係数μRに基づいたトラクションコントロールや駆動力配分制御等といった駆動制御の精度が低下するおそれがある。そこで、減速装置RGの動作条件に応じて変化する減速比を推定し、等価慣性モーメントJを補正することにより、車輪スリップ率Swや路面摩擦係数μRの推定精度を確保することができる。次に、この手法を説明する。
図6−1は、本実施形態に係る摩擦情報推定方法を説明するための模式図である。図6−2は、本実施形態に係る減速装置が備える回転要素の拡大図である。図7は、回転要素間のトラクション係数と滑り率との関係を記述した滑り率マップの概念図である。図6−1に示す減速装置RGにおいて、減速装置RGを構成するリングローラ10Rの半径をRR、ピニオンローラ10Pの半径をRP、サンローラ10Sの半径をRSとする。また、サンローラ10Sとピニオンローラ10Pとの接触部をPS、ピニオンローラ10Pとリングローラ10Rとの接触部をPRとする。
図4−1に示す構成の場合、すなわち、リングローラ10Rを静止系Sに固定した場合、減速比ηは、サンローラ10Sの回転数(減速装置入力回転数)Ninをキャリア10Cの回転数(減速装置出力回転数)Noutで除することによって求められる。この場合、減速比ηは、式(4)で表すことができる。また、図4−2に示す構成の場合、減速比ηは、式(5)で表すことができる。式(4)、式(5)中のSLPは、動力を伝達する回転要素間の滑り率である。また、減速装置出力回転数Noutは車輪Wの回転数Nwであり、減速装置入力回転数Ninは電動機MGの回転数Nmである。
Figure 2008199847
Figure 2008199847
上述したように、減速装置入力回転数Ninは、電動機MGの回転数であり、レゾルバQによって検出することができる。したがって、式(4)、式(5)において、滑り率SLPが求まれば、減速装置出力回転数Noutを求めることができる。このために、本実施形態に係る摩擦情報推定方法では、図7に示す滑り率マップ60から、滑り率SLPを求める。滑り率マップ60は、減速装置RGの回転要素間のトラクション係数μTと滑り率SLPとの関係が記述してある。なお、滑り率マップ60は、ECU50の記憶部50mに格納される。
ここで、図6−2を用いて、滑り率SLPについて説明する。本実施形態において、滑り率SLPは、回転要素同士の接触部において、入力側の回転要素の接線方向速度をVi、被入力側の回転要素の接線方向速度をVoとすると、SLP=Vo/(Vi−Vo)となる。例えば、入力側がサンローラ10Sであり被入力側がピニオンローラ10Pである場合に、両者の接触部におけるサンローラ10Sの接線方向速度をVs、ピニオンローラ10Pの接線方向速度をVpとすると、SLP=Vp/(Vs−Vp)となる。
減速装置RGの回転要素間は、サンローラ10Sとピニオンローラ10Pとの間、ピニオンローラ10Pとリングローラ10Rとの間があるが、各回転要素間において、接線方向の力は等しいという条件が成立する。このため、いずれの回転要素間においても、滑り率SLPは等しくなり、図7に示す滑り率マップ60の関係が成立する。
滑り率マップ60は、例えば、2円筒試験機等を用いた実験により、トラクション係数μTと滑り率SLPとの関係を予め求めておくことにより作成する。また、トラクション係数μTと滑り率SLPとの理論式を用いて滑り率マップ60を作成してもよい。滑り率マップ60に、現在の運転条件におけるトラクション係数μTを与えれば、そのときの滑り率SLPを求めることができる。トラクション係数μTは、次の手順により求める。
接触部PS、あるいは接触部PRで伝達可能な接線力(一接触部あたりの接線力)Fは、式(6)で求めることができる。式(6)中のFNは、図6−2に示すように、回転要素間における垂直方向の押付力(垂直方向押付力)であり、減速装置RGが備えるサンローラ10S及びリングローラ10Rの回転軸Zrと、ピニオンローラ10Pの回転軸Zpとを通る直線上での押付力である。押付力FNは、減速装置RGの仕様から求めることができる。式(6)から分かるように、トラクション係数μTは、回転要素同士の接触部における接線力Fと垂直方向の垂直方向押付力FNとの比である。
Figure 2008199847
電動機MGの発生するトルク(電動機トルク)をTM、減速装置RGが備えるピニオンローラ10Pの個数をnpとすれば、一接触部あたりの接線力Fは、式(7)で表される。ここで、接線力Fは、接触部PS、あるいは接触部PRにおけるサンローラ10S、ピニオンローラ10P、リングローラ10Rの接線方向の力である。
Figure 2008199847
力の釣り合いから、式(6)の接線力と式(7)の接線力とは等しいため、式(6)の右辺=式(7)の右辺としてトラクション係数μTについて整理すると、式(8)のようになる。式(8)に電動機トルクTMを与えれば、そのときのトラクション係数μTを求めることができる。式(8)に電動機トルクTMを与えることによって得られたトラクション係数μTを、図7に示す滑り率マップ60に与えれば、そのときの滑り率SLPを求めることができる。これによって得られた滑り率SLP及びレゾルバQによって得られる電動機MGの回転数、すなわち、減速装置入力回転数Ninを式(4)あるいは式(5)に与えれば、減速装置RGの減速比ηを求めることができる。
Figure 2008199847
図8は、回転要素間に介在する伝達油の温度を考慮した滑り率マップの概念図である。図3−1に示す減速装置RGが備える回転要素間のトラクション係数μTと滑り率SLPとの関係は、図8に示す滑り率マップ61のように、減速装置RGの回転要素間に介在する伝達油TFの温度(油膜温度)θに応じて変化する。すなわち、油膜温度θが高くなるにしたがって、同じトラクション係数μTであっても、滑り率SLPは大きくなる。このため、油膜温度θを考慮しないと、減速装置RGの減速比ηの推定精度が低下する。
そこで、本実施形態では、異なる油膜温度θに対して、それぞれトラクション係数μTと滑り率SLPとの関係(以下トラクションカーブという)を用意し、油膜温度θに応じて適切なトラクションカーブを用いて滑り率SLPを求める。図8に示す滑り率マップ61において、油膜温度がθaのときのトラクションカーブはa、油膜温度がθbのときのトラクションカーブはb、油膜温度がθcのときのトラクションカーブはcであり、θa<θb<θcである。
図8に示す滑り率マップ61から分かるように、油膜温度θが高くなるにしたがって、同じトラクション係数μTにおける滑り率SLPの値は大きくなる。このように記述した滑り率マップ61を用いて滑り率SLPを求めることにより、滑り率SLPの推定精度の低下を抑制できる。なお、図8に示す滑り率マップ61に記述されているトラクションカーブは離散的なので、油膜温度θがトラクションカーブ間にある場合には、例えば線形補間によって滑り率SLPを求める。本実施形態によれば、運転条件や環境によって油膜温度θが変化した場合でも、滑り率SLPの推定精度の低下を抑制できるので、減速比ηの推定精度の低下を抑制できる。
油膜温度θは、例えば、減速装置RGの回転要素間に介在する伝達油TFの近傍の温度を測定し、この温度を油膜温度θとして用いる。例えば、本実施形態では、図4−1や図4−2に示す構成において、最も発熱量の大きい電動機MGに直結するサンローラ10Sの温度を、例えば熱電対やサーミスタ等で計測する。そして、これによって得られた温度を油膜温度θとして用いる。
また、減速装置RGが備える回転要素同士が接触する接触部の滑り損失に基づいて、油膜温度θそのものを推定してもよい。すなわち、滑り損失が回転要素間に介在する伝達油TFの温度を上昇させるので、滑り損失による温度上昇分を考慮して、油膜温度θを求める。これによって、電動機MGのトルクが急激に増加するような過渡的な運転状態においても、油膜温度θの推定精度の低下を抑制できるので、減速比ηの推定精度の低下を抑制できる。
式(4)〜式(7)、及び滑り率マップ60等を用いて求めた減速比ηによって等価慣性モーメントJを補正することにより、車輪スリップ率Swや路面摩擦係数μRの推定精度を向上させることができる。これによって、駆動力制御の精度も向上する。
図9−1は、駆動力制御の実行中におけるトラクション係数及び滑り率の変化を説明する模式図である。図9−2は、駆動力制御の実行中における車輪の駆動力及び電動機トルクの時間変化を示す概念図である。トラクションコントロールや駆動力配分制御等の駆動力制御においては、車輪Wの駆動力FDを制御するために、電動機トルクTMを制御する。式(8)から分かるように、滑り率SLPを求める際に用いるトラクション係数μTは、電動機トルクTMの関数になる。したがって、駆動力制御を実行するために電動機トルクTMを制御すると、トラクション係数μTは変化する。駆動力制御を実行しているときにおけるトラクション係数μTの変化をΔμTとすると、図9−1に示すように、滑り率SLPはΔSLPの範囲で変化する。
駆動力制御の実行中には、頻繁に電動機トルクTMが変動するため、トラクション係数μTも頻繁に変動する。これにともなって、滑り率SLPも頻繁に変動する。式(4)、式(5)から分かるように、減速比ηは滑り率SLPの関数なので、駆動力制御の実行中においては、減速比ηの関数である等価慣性モーメントJ(式(3)参照)も頻繁に変動することになる。
このように、駆動力制御の実行中には、等価慣性モーメントJが頻繁に変動するため、これに基づいて求められる車輪スリップ率Swや路面摩擦係数μRを求める際に、演算の収束性が悪化する。その結果、車輪スリップ率Swや路面摩擦係数μRに基づいて求められる車輪Wの駆動力の指令値がハンチングして、車両1の駆動力が振動的になって、トラクション性能の低下やドライバビリティの低下を招くおそれがある。
これを回避するため、本実施形態では、駆動力制御において滑り率SLPが増加する場合、すなわち電動機GMの出力、より具体的には電動機トルクTMが増加して車輪Wの駆動力FDが増加する場合にのみ、電動機トルクTMの変化を反映したトラクション係数μTから求められる滑り率SLPを用いて減速比ηを補正する。そして、補正した減速比ηを用いて等価慣性モーメントJを補正して、駆動力制御に用いる車輪スリップ率Swや路面摩擦係数μRを求める。図9−2においては、時刻t=tsでトラクションコントロール等の駆動力制御が開始する。そして、A〜Dで示す部分が、電動機トルクTMが増加して車輪Wの駆動力FDが増加する箇所になる。
本実施形態では、電動機GMの出力、より具体的には電動機トルクTMが増加して車輪Wの駆動力FDが増加する場合にのみ、減速比ηを補正する。電動機トルクTMが増加して車輪Wの駆動力FDが増加すると、式(8)から分かるようにトラクション係数μTが増加するので、滑り率マップ60、61から分かるように、トラクション係数μTから求められる滑り率SLPも増加する。すると、式(4)、式(5)から分かるように、減速比ηは増加する。これによって、式(3)で決定される等価慣性モーメントJは小さくなるので、駆動力制御においては、車輪Wの回転変動を検知する感度が増加する。これによって、車輪Wの駆動力FDの過剰な増加を抑制して、駆動力FDを効果的に制御することができるとともに、ドライバビリティの悪化も抑制できる。
また、電動機GMの出力、より具体的には電動機トルクTMが減少して車輪Wの駆動力FDが減少する場合には、電動機トルクTMが増加して車輪Wの駆動力FDが増加する場合とは反対に、等価慣性モーメントJは大きくなる。その結果、車輪Wの回転変動を検知する感度が減少して、車輪Wの駆動力FDの抑制効果が低減されるおそれがある。しかし、本実施形態では、電動機トルクTMが減少して車輪Wの駆動力FDが減少する場合には、減速比ηを補正しない。その結果、等価慣性モーメントJは増加しないので、車輪Wの回転変動を検知する感度低下を抑制できる。これによって、電動機トルクTMが減少して車輪Wの駆動力FDが減少する場合においても、車輪Wの駆動力FDを効果的に制御することができる。
このように、本実施形態では、電動機GMの出力、より具体的には電動機トルクTMが増加して車輪Wの駆動力FDが増加する場合のみに減速比ηを補正して、等価慣性モーメントJを補正する。なお、等価慣性モーメントJは、上述したように、駆動力制御に用いる車輪スリップ率Swや路面摩擦係数μRを求める際に用いるものである。
これによって、電動機トルクTMが増加して車輪Wの駆動力FDが増加する場合に対応した等価慣性モーメントJの補正のみで、車輪Wの駆動力FDを効果的に制御することができる。その結果、例えば、トラクションコントロールにおいては、車輪Wのスリップを早期に収束させてグリップ状態を回復させることができる。また、駆動力配分制御においては、運転者の操作意思をより迅速に反映させることができるので、ドライバビリティが向上する。次に、本実施形態に係る駆動力制御装置及び車輪の摩擦情報推定装置の構成を説明する。
図10は、本実施形態に係る駆動力制御装置及び車輪の摩擦情報推定装置の構成例を示す説明図である。図10に示すように、駆動力制御装置30は、ECU50に組み込まれて構成されている。また、駆動力制御装置30は、車輪の摩擦情報推定装置30Cを備えて構成される。ECU50は、CPU(Central Processing Unit:中央演算装置)50pと、記憶部50mと、入力及び出力ポート55、56とから構成される。
なお、ECU50とは別個に、本実施形態に係る駆動力制御装置30を用意し、これをECU50に接続してもよい。そして、本実施形態に係る駆動制御を実現するにあたっては、ECU50が備える、駆動装置DT等に対する制御機能を、前記駆動力制御装置30が利用できるように構成してもよい。
駆動力制御装置30は、滑り率演算部31と、減速比演算部32と、摩擦情報演算部33と、駆動力演算部34と、制御条件判定部35とを含んで構成される。このうち、滑り率演算部31と、減速比演算部32と、摩擦情報演算部33とが、車輪の摩擦情報推定装置(以下摩擦情報推定装置という)30Cを構成する。本実施形態において、駆動力制御装置30は、ECU50を構成するCPU50pの一部として構成される。CPU50pには、電動機出力制御部50peが備えられており、車両1の走行時における電動機MGの出力や電力の回生を制御する他、駆動力制御装置30の演算結果に基づいて電動機MGを制御する。また、CPU50pには、総合制御部50pcが備えられており、電動機MGの制御に必要な情報を演算する。
CPU50pと記憶部50mとは、バス541〜543を介して、入力ポート55及び出力ポート56を介して接続される。これにより、駆動力制御装置30を構成する滑り率演算部31と減速比演算部32と摩擦情報演算部33と駆動力演算部34と制御条件判定部35とは、相互に制御データをやり取りしたり、一方に命令を出したりできるように構成される。また、駆動力制御装置30は、ECU50が有する、駆動装置DTの運転制御データを取得し、これを利用することもできる。さらに、駆動力制御装置30は、本実施形態に係る駆動力制御をECU50が予め備えている運転制御ルーチンに割り込ませたりすることができる。
入力ポート55は、通信回線9と接続される。通信回線9には、アクセル開度センサ42、ヨーセンサ43、車速センサ44、操舵角センサ45、電動機駆動電流検出回路46その他の、駆動装置DTの運転制御に必要な情報を取得するセンサ類が接続されている。CPU50pは、通信回線9を介して、これらのセンサ類から出力される信号を取得する。これにより、CPU50pは、駆動装置DTの運転制御や、本実施形態に係る駆動力制御の実行に必要な情報を取得することができる。また、出力ポート56は、通信回線9と接続されている。そして、CPU50pが演算した電動機MG(左前電動機3fl、右前電動機3fr、左後電動機3rl、右後電動機3rr)に対する駆動制御指令は、通信回線9を介して電動機用ECU8に発信される。これによって、電動機用ECU8を介して、電動機MGを制御することができる。
記憶部50mには、本実施形態に係る駆動力制御の処理手順を含むコンピュータプログラムや滑り率マップ60、61、あるいは本実施形態に係る駆動力制御に用いるデータ等が格納されている。ここで、記憶部50mは、RAM(Random Access Memory)のような揮発性のメモリ、フラッシュメモリ等の不揮発性のメモリ、あるいはこれらの組み合わせにより構成することができる。
上記コンピュータプログラムは、CPU50pへ既に記録されているコンピュータプログラムと組み合わせによって、本実施形態に係る駆動力制御の処理手順を実現できるものであってもよい。また、この駆動力制御装置30は、前記コンピュータプログラムの代わりに専用のハードウェアを用いて、滑り率演算部31、減速比演算部32、摩擦情報演算部33、駆動力演算部34及び制御条件判定部35の機能を実現するものであってもよい。
通信回線9に接続される電動機用ECU8は、入力ポート8iと、CPU8pと、プリドライバ8dとを備えている。入力ポート8iは通信回線9に接続されており、CPU8pは、通信回線9及び入力ポート8iを介して、ECU50から発信される電動機MGの駆動制御指令を取得する。CPU8pは、取得した駆動制御指令に基づいて電動機MGに供給する電流の値、すなわち電流指令値を演算する。そして、CPU8pは、演算した電流指令値をプリドライバ8dに出力し、プリドライバ8d及びプリドライバ8dに接続される電動機制御回路6を介して、電動機MGを駆動制御する。
また、CPU8pは、入力ポート8iに接続されるレゾルバQ(左前電動機用レゾルバ40fl、右前電動機用レゾルバ40fr、左後電動機用レゾルバ40rl、右後電動機用レゾルバ40rr)が検出する電動機回転速度や、入力ポート8iに接続される電動機駆動電流検出回路46が検出する電動機MGの駆動電流値を取得する。そして、CPU8pは、取得した電動機回転速度や駆動電流値に基づいて、ECU50から発信される電動機MGの駆動制御指令の通りに電動機MGが駆動されるように、電動機MGをフィードバック制御する。
電動機用ECU8が備えるプリドライバ8dは、CPU8pで演算された電流指令値を、パルス幅変調されたデューティ指令値W、V、U、Wb、Vb、Ubに変換するためのものである。ここで、デューティ指令値W、V、Uは正相の三相信号を表し、デューティ指令値Wb、Vb、Ubは逆相の三相信号を表す。プリドライバ8dから出力されるデューティ指令値W、V、U、Wb、Vb、Ubは電動機制御回路6が備えるインバータ回路に送られて、左前電動機3fl、右前電動機3fr、左後電動機3rl、右後電動機3rrが駆動制御される。次に、本実施形態に係る駆動力制御及び車輪の摩擦情報推定方法を説明する。
図11は、本実施形態に係る駆動力制御及び摩擦情報推定方法の処理手順を示すフローチャートである。本実施形態に係る駆動力制御は、本実施形態に係る摩擦情報推定方法を含んでいる。本実施形態に係る駆動力制御及び摩擦情報推定方法を実行するにあたり、ステップS101において、図10に示す駆動力制御装置30の制御条件判定部35は、トラクションコントロールや駆動力配分制御等の駆動力制御を実行中であるか否かを判定する。
例えば、車輪Wの回転角速度ω'や車輪Wを駆動するための電動機トルクTMの変化率TM'等に基づいて、滑りやすい路面においてトラクションコントロールを実行しているか否かを判定することができる。また、ヨーセンサ43、車速センサ44、操舵角センサ45等の情報から、車両1の旋回に必要なヨーモーメントを発生させるため、車両1の左右の車輪間で駆動力を異ならせる駆動力配分制御を実行中であるか否かを判定できる。
ステップS101でNoと判定された場合、すなわち制御条件判定部35が、トラクションコントロール等の駆動力制御を実行中でないと判定した場合には、減速比ηの補正は実行しない。この場合、ステップS102に進み、制御条件判定部35は、減速比補正実行フラグFLGを0として、ECU50の記憶部50mへ格納する。ここで、減速比補正実行フラグFLGは、減速装置RGの減速比ηの補正を実行中であるか否かを判定するためのフラグであり、FLG=1であれば減速比ηの補正を実行中であり、FLG=0であれば減速比ηの補正を実行していない。
ステップS101でYesと判定された場合、すなわち、制御条件判定部35が、トラクションコントロール等の駆動力制御を実行中であると判定した場合には、ステップS103へ進む。ステップS103において、制御条件判定部35は、減速比補正実行フラグFLGが0であるか否かを判定する。
ステップS103でYesと判定された場合、すなわち、制御条件判定部35がFLG=0であると判定した場合は、減速比ηの補正は実行されていない。この場合、ステップS104へ進む。ステップS104において、制御条件判定部35は、車両1が停止しているか否かを判定する。車両1の発進時と走行中とでは、減速比ηの初期値が異なるからである。車両1の停止は、例えば、車速センサ44からの情報により判定する。
ステップS104でYesと判定された場合、すなわち、制御条件判定部35が、車両1は停止していると判定した場合、ステップS105に進む。ここで、ステップS105以降は、それぞれの車輪Wに対して実行される。車両1が停止している場合、車両1はこれから発進する状態にあると判断できる。この場合、駆動力制御装置30(摩擦情報推定装置30C)の滑り率演算部31は、減速装置RGが備える回転要素の滑り率SLPの判定値(滑り率判定値)SLP_0を0に設定して、ECU50の記憶部50mに格納する。すなわち、車両1が停止しているときには電動機トルクTMが0になるため、トラクション係数μTは0になる。これによって、図7や図8に示す滑り率マップ60、61から分かるように、滑り率も0になるので、滑り率判定値SLP_0=0とする。なお、滑り率判定値SLP_0を設定することにより、減速比ηの補正が開始されるので、制御条件判定部35は、減速比補正実行フラグFLGを1として、ECU50の記憶部50mへ格納する。
ステップS104でNoと判定された場合、すなわち、制御条件判定部35が、車両1は走行中であると判定した場合、ステップS106に進む。車両1が走行中である場合、電動機トルクTMは、減速装置RGへ入力された後、車輪Wへ伝達されて、車輪Wの駆動力FDとなる。滑り率演算部31は、減速装置RGへ入力される電動機トルクTMからトラクション係数μTを求め、このトラクション係数μTを図7や図8に示す滑り率マップ60あるいは61に与え、対応する滑り率SLPを求める。これが、現状の滑り率SLPとなる。滑り率演算部31は、滑り率判定値SLP_0を現状の滑り率SLPに設定するともに、減速比補正実行フラグFLGを1として、ECU50の記憶部50mに格納する。
ステップS105あるいはステップS106で、滑り率判定値SLP_0が設定されたらステップS107へ進む。ステップS107において、滑り率演算部31は、現時点における電動機トルクTMから決定したトラクション係数μTを滑り率マップ60あるいは61に与え、現時点における滑り率SLPを求める。現時点における滑り率SLPを求めたら、ステップS108へ進む。
ステップS108において、制御条件判定部35は、ステップS107で求めた現状における滑り率SLPと、ステップS105又はステップS106で設定した滑り率判定値SLP_0と比較する。ステップS108でYesと判定された場合、すなわち、制御条件判定部35が、SLP>SLP_0であると判定した場合、ステップS109に進む。
SLP>SLP_0である場合、図7や図8に示す滑り率マップ60あるいは61から分かるように、滑り率SLPは増加傾向にあるといえる。すなわち、トラクション係数μTも増加傾向にあるといえる。トラクション係数μTが増加傾向にあるということは、式(8)から分かるように、電動機トルクTM、すなわち電動機MGの出力が増加傾向にあるので、車輪Wの駆動力FDも増加傾向にある。
本実施形態では、電動機MGの出力、より具体的には電動機トルクTMが増加して車輪Wの駆動力FDが増加する場合にのみ、減速比ηを補正するので、SLP>SLP_0である場合、滑り率演算部31は、ステップS109において、ステップS107で求めた滑り率SLPを、滑り率判定値SLP_0として設定する。滑り率判定値SLP_0を設定したら、ステップS110へ進む。
ステップS110において、駆動力制御装置30(摩擦情報推定装置30C)の減速比演算部32は、ステップS109で設定した滑り率判定値SLP_0を用いて、減速装置RGの現時点における減速比ηを求める。これは、式(4)あるいは式(5)に、ステップS109で設定した滑り率判定値SLP_0を与えることにより求めることができる。現時点における減速比ηを求めたら、ステップS111へ進む。
ステップS111において、駆動力制御装置30(摩擦情報推定装置30C)の摩擦情報演算部33は、ステップS110で求めた現時点における減速比ηを式(3)に与えて、等価慣性モーメントJを補正する。そして、摩擦情報演算部33は、補正した等価慣性モーメントJ及び現時点における電動機トルクTMを式(1)に与えて、現時点における車輪スリップ率Swを求める。また、摩擦情報演算部33は、補正した等価慣性モーメントJ及び現時点における電動機トルクTMを式(2)に与えて、現時点における路面摩擦係数μRを求める。車輪スリップ率Sw及び路面摩擦係数μRを求めたら、ステップS112へ進む。
ステップS112において、駆動力制御装置30の駆動力演算部34は、ステップS111で求めた車輪スリップ率Sw及び路面摩擦係数μRを用いて、車輪Wに要求される駆動力FDを求める。そして、ステップS113において、図10に示すECU50が備える電動機出力制御部50peは、ステップS112で求められた駆動力FDを発生させるための電動機MGの出力を求めて、これに基づいて電動機に対する出力指令値を演算する。ステップS114において、図10に示す電動機用ECU8は、ステップS113で演算された出力指令値に基づいてプリドライバ8dを駆動する。これによって、プリドライバ8dは、電動機制御回路6を介して電動機MGを駆動する。
次に、ステップS103に戻って説明する。ステップS103でNoと判定された場合、すなわち、制御条件判定部35がFLG=1であると判定した場合は、既に減速比ηの補正が実行されている。すなわち、滑り率判定値SLP_0は0でない値に設定されている。この場合、滑り率判定値SLP_0の設定は不要なので、駆動力制御装置30(摩擦情報推定装置30C)は、既に設定されてECU50の記憶部50mに格納されている滑り率判定値SLP_0を用いてステップS107以降の手順を実行する。
次に、ステップS108に戻って説明する。ステップS108においてNoと判定された場合、すなわち、制御条件判定部35が、SLP≦SLP_0であると判定した場合、滑り率SLPは増加傾向ではないといえる。すなわち、トラクション係数μTも増加傾向ではないといえる。トラクション係数μTが増加傾向ではないということは、式(8)から分かるように、電動機MGの出力、より具体的には電動機トルクTMも増加傾向ではないので、車輪Wの駆動力FDも増加傾向ではない。
本実施形態では、電動機MGの出力、より具体的には電動機トルクTMが増加して車輪Wの駆動力FDが増加する場合にのみ、減速比ηを補正するので、SLP≦SLP_0である場合には、減速比ηは補正しない。この場合、駆動力制御装置30(摩擦情報推定装置30C)は、減速比ηを補正するためのステップS109、ステップS110を実行せず、ステップS111以降の手順を実行する。
以上、本実施形態では、いわゆるトラクションドライブ方式を用いる減速装置が備える回転要素間の滑り率に基づいて、減速装置の減速比を補正し、補正した減速比に基づいて、車輪と路面との間のスリップ率や摩擦係数を求める。これによって、減速装置が備える回転要素間における滑りを考慮した等価慣性モーメントを用いて、車輪と路面との間のスリップ率や摩擦係数を求めることができる。その結果、動力車輪と路面との間のスリップ率や摩擦係数の推定精度を向上させることができる。
以上のように、本発明に係る駆動力制御装置及び車輪の摩擦情報推定装置は、トラクションドライブ方式による動力伝達装置に有用であり、特に、トラクションコントロール等の駆動力制御を実行する際に用いるパラメータを求めることに適している。
本実施形態に係る走行装置を備える車両の構成を示す概略図である。 本実施形態に係る車両の駆動装置支持構造の構成例を示す説明図である。 本実施形態に係る減速装置の構造を示す模式図である。 本実施形態に係る減速装置が備える回転要素間の拡大図である。 本実施形態に係る駆動装置のスケルトン図である。 本実施形態に係る駆動装置のスケルトン図である。 本実施形態に係る駆動装置をモデル化した模式図である。 本実施形態に係る摩擦情報推定方法を説明するための模式図である。 本実施形態に係る減速装置が備える回転要素の拡大図である。 回転要素間のトラクション係数と滑り率との関係を記述した滑り率マップの概念図である。 回転要素間に介在する伝達油の温度を考慮した滑り率マップの概念図である。 駆動力制御の実行中におけるトラクション係数及び滑り率の変化を説明する模式図である。 駆動力制御の実行中における車輪の駆動力及び電動機トルクの時間変化を示す概念図である。 本実施形態に係る駆動力制御装置及び車輪の摩擦情報推定装置の構成例を示す説明図である。 本実施形態に係る駆動力制御及び摩擦情報推定方法の処理手順を示すフローチャートである。
符号の説明
1 車両
8 電動機用ECU
9 通信回線
10C キャリア
10P ピニオンローラ
10R リングローラ
10S サンローラ
13 ホイール
23 タイヤ
30 駆動力制御装置
30C 車輪の摩擦情報推定装置(摩擦情報推定装置)
31 滑り率演算部
32 減速比演算部
33 摩擦情報演算部
34 駆動力演算部
35 制御条件判定部
42 アクセル開度センサ
43 ヨーセンサ
44 車速センサ
45 操舵角センサ
46 電動機駆動電流検出回路
50 ECU
50m 記憶部
50p CPU
50pc 総合制御部
50pe 電動機出力制御部
60、61 滑り率マップ
DT 駆動装置
MG 電動機
RG 減速装置
Q レゾルバ
W 車輪

Claims (10)

  1. 回転要素間に介在させた流体によって動力を伝達する動力伝達装置を介して動力発生手段の発生する動力を車輪に伝達する駆動装置を制御するものであり、
    前記動力伝達装置が備える回転要素間の滑り率を求める滑り率演算部と、
    前記滑り率に基づいて前記動力伝達装置の減速比を求める減速比演算部と、
    前記減速比演算部が求めた減速比に基づいて、前記車輪と前記車輪が接する路面との間の摩擦に関する摩擦情報を演算する摩擦情報演算部と、
    前記摩擦情報演算部が求めた前記摩擦情報に基づいて、前記車輪の駆動力を求める駆動力演算部と、
    を含むことを特徴とする駆動力制御装置。
  2. 前記摩擦情報演算部は、
    前記動力発生手段の出力が増加する場合にのみ、前記動力伝達装置が備える回転要素間の滑り率に基づいて求められた前記動力伝達装置の減速比に基づいて、前記車輪と前記車輪が接する路面との間の摩擦に関するパラメータを演算することを特徴とする請求項1に記載の駆動力制御装置。
  3. 前記滑り率演算部は、
    動力を伝達する前記回転要素同士の接触部における前記回転要素の接線力と前記接触部における垂直力との比に基づいて決定されるトラクション係数と、前記滑り率との関係に基づいて前記滑り率を求めることを特徴とする請求項1又は2に記載の駆動力制御装置。
  4. 前記滑り率演算部は、
    前記動力伝達装置が備える回転要素間に介在する流体の温度に応じて、前記滑り率を変更することを特徴とする請求項1〜3のいずれか1項に記載の駆動力制御装置。
  5. 前記滑り率演算部は、
    前記流体の温度が高くなるにしたがって、同じトラクション係数における前記滑り率の値を大きくすることを特徴とする請求項4に記載の駆動力制御装置。
  6. 回転要素間に介在させた流体によって動力を伝達する動力伝達装置を介して動力発生手段の発生する動力を車輪に伝達する駆動装置において、前記車輪と路面との間の摩擦情報を求めるものであり、
    前記動力伝達装置が備える回転要素間の滑り率を求める滑り率演算部と、
    前記滑り率に基づいて前記動力伝達装置の減速比を求める減速比演算部と、
    前記減速比演算部が求めた減速比に基づいて、前記車輪と前記車輪が接する路面との間の摩擦に関する摩擦情報を求める摩擦情報演算部と、
    を含むことを特徴とする車輪の摩擦情報推定装置。
  7. 前記摩擦情報演算部は、
    前記動力発生手段の出力が増加する場合にのみ、前記動力伝達装置が備える回転要素間の滑り率に基づいて求められた前記動力伝達装置の減速比に基づいて、前記車輪と前記車輪が接する路面との間の摩擦に関するパラメータを演算することを特徴とする請求項6に記載の車輪の摩擦情報推定装置。
  8. 前記滑り率演算部は、
    動力を伝達する前記回転要素同士の接触部における前記回転要素の接線力と前記接触部における垂直力との比に基づいて決定されるトラクション係数と、前記滑り率との関係に基づいて前記滑り率を求めることを特徴とする請求項6又は7に記載の車輪の摩擦情報推定装置。
  9. 前記滑り率演算部は、
    前記動力伝達装置が備える回転要素間に介在する流体の温度に応じて、前記滑り率を変更することを特徴とする請求項6〜8のいずれか1項に記載の車輪の摩擦情報推定装置。
  10. 前記滑り率演算部は、
    前記流体の温度が高くなるにしたがって、同じトラクション係数における前記滑り率の値を大きくすることを特徴とする請求項9に記載の車輪の摩擦情報推定装置。
JP2007034932A 2007-02-15 2007-02-15 駆動力制御装置及び車輪の摩擦情報推定装置 Pending JP2008199847A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007034932A JP2008199847A (ja) 2007-02-15 2007-02-15 駆動力制御装置及び車輪の摩擦情報推定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007034932A JP2008199847A (ja) 2007-02-15 2007-02-15 駆動力制御装置及び車輪の摩擦情報推定装置

Publications (1)

Publication Number Publication Date
JP2008199847A true JP2008199847A (ja) 2008-08-28

Family

ID=39758283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007034932A Pending JP2008199847A (ja) 2007-02-15 2007-02-15 駆動力制御装置及び車輪の摩擦情報推定装置

Country Status (1)

Country Link
JP (1) JP2008199847A (ja)

Similar Documents

Publication Publication Date Title
JP6506844B2 (ja) 電気車両、電気車両の能動的安全制御システム、及び電気車両の能動的安全制御システムの制御方法、並びにモータコントローラ
US8783390B2 (en) Vehicle drive apparatus
JP6333917B2 (ja) 車両の旋回制御装置
CN102905947B (zh) 车辆的减振控制装置
US20180056811A1 (en) Drive power control device for electric vehicle
US9227637B2 (en) Vehicle braking/driving force control apparatus
JP2009273275A (ja) 車両の制御装置
JP4844407B2 (ja) 走行装置
JP2007124868A (ja) 車両の制御装置
JP4193706B2 (ja) 路面摩擦係数検出装置
JP2006264628A (ja) 車輌の制駆動力制御装置
US11794747B2 (en) Method for controlling an actuator of a vehicle
JP2009298266A (ja) 車両の制御装置
JP2008196657A (ja) 動力伝達装置の回転数推定装置
WO2015002033A1 (ja) 駆動トルク制御装置
JP4967824B2 (ja) 回転速度推定装置及び振動抑制装置
JP2007137107A (ja) 車輌の制駆動力制御装置
WO2021235123A1 (ja) 判定装置
JP2008199847A (ja) 駆動力制御装置及び車輪の摩擦情報推定装置
JP2008154346A (ja) 車両姿勢制御装置及び走行装置
CN114523971A (zh) 用于车辆的车辆运动管理系统和运动支持系统
JP4321285B2 (ja) 車輪の接地荷重推定装置
JP6237385B2 (ja) 車両の制御装置
JP2008221952A (ja) 摩擦係数推定装置及び駆動制御装置
JP2011161957A (ja) 中央制御装置