JP2008199833A - Rotating electrical machine - Google Patents

Rotating electrical machine Download PDF

Info

Publication number
JP2008199833A
JP2008199833A JP2007034372A JP2007034372A JP2008199833A JP 2008199833 A JP2008199833 A JP 2008199833A JP 2007034372 A JP2007034372 A JP 2007034372A JP 2007034372 A JP2007034372 A JP 2007034372A JP 2008199833 A JP2008199833 A JP 2008199833A
Authority
JP
Japan
Prior art keywords
rotor
rotation axis
core
magnetic flux
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007034372A
Other languages
Japanese (ja)
Other versions
JP5096756B2 (en
Inventor
Kosuke Aiki
宏介 相木
Kenji Hiramoto
健二 平本
Hideo Nakai
英雄 中井
Yukio Inaguma
幸雄 稲熊
Eiji Yamada
英治 山田
Kazutaka Tatematsu
和高 立松
Shinya Sano
新也 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2007034372A priority Critical patent/JP5096756B2/en
Publication of JP2008199833A publication Critical patent/JP2008199833A/en
Application granted granted Critical
Publication of JP5096756B2 publication Critical patent/JP5096756B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a high-efficiency rotating electrical machine by suppressing the magnetic flux that flows in the direction of the axis of rotation. <P>SOLUTION: Permanent magnets 18 of a rotor have extended magnet portions 38, which extend outside both end portions of a rotor core 16 with regard to the direction of axis of rotation of the rotor. The magnetic flux 57, generated in the extended magnet portions 38, acts in such a way as to suppress the magnetic flux 56 which tends to enter the rotor core 16 and to leak outside, flowing through proximity portions 16a of the permanent magnets 18. Thus, the magnetic flux which flows through the proximity portions 16a of the permanent magnets 18 in the direction of axis of rotation can be reduced, and effective magnetic flux for the torque of the rotor can be increased. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、固定子鉄心にコイルが配設された固定子と、回転子鉄心に磁石が配設された回転子と、を備え、固定子と回転子とが回転子の回転軸方向と直交する径方向に対向配置された回転電機に関する。   The present invention includes a stator in which a coil is disposed on a stator core, and a rotor in which a magnet is disposed on a rotor core, and the stator and the rotor are orthogonal to the rotation axis direction of the rotor. The present invention relates to a rotating electrical machine that is disposed so as to face in the radial direction.

この種の回転電機の関連技術が下記特許文献1に開示されている。特許文献1においては、コア表面に複数個の永久磁石を固定してなる永久磁石ロータ部が、電機子コイルが巻装されたステータコアの軸方向長さと同じ長さの位置に対向配置されている。さらに、軟磁性体からなり、且つ磁気的突極性を有するリラクタンスロータ部が、電機子コイルのコイル端部と対向する位置に配置されている。電機子コイルに流す電流を増大させていくと、理想的にはトルクが直線的に増大するのに対し、コアの磁気飽和によってトルクが理想直線から落ちてくる。特許文献1においては、コイル電流増加時のトルクの落ち分をリラクタンスロータ部のリラクタンストルクによって補っている。   The related art of this type of rotating electrical machine is disclosed in Patent Document 1 below. In Patent Document 1, a permanent magnet rotor portion formed by fixing a plurality of permanent magnets on a core surface is disposed opposite to a position having the same length as the axial length of a stator core around which an armature coil is wound. . Furthermore, the reluctance rotor part which consists of a soft magnetic body and has magnetic saliency is arrange | positioned in the position facing the coil edge part of an armature coil. As the current flowing through the armature coil is increased, the torque ideally increases linearly, whereas the torque falls from the ideal straight line due to magnetic saturation of the core. In Patent Document 1, the torque drop when the coil current increases is compensated by the reluctance torque of the reluctance rotor portion.

その他にも、下記特許文献2,3による回転電機が開示されている。   In addition, a rotating electrical machine according to Patent Documents 2 and 3 below is disclosed.

特開2003−319583号公報JP 2003-319583 A 特開2002−142422号公報JP 2002-142422 A 特開2004−336831号公報JP 2004-336831 A

鉄心内を回転子の回転軸方向と垂直な面内方向に流れる磁束が飽和してくると、磁束が回転軸方向にも流れ出すようになる。そして、回転軸方向の端部を回転軸方向外側へ流れる磁束は、回転軸方向の端部から外部に漏れ出す。回転軸方向に流れて外部に漏れ出す磁束のほとんどはトルクに寄与しない磁束であるため、この外部に漏れ出した磁束分、回転子に作用するトルクが低下する。さらに、回転軸方向に流れる磁束が変動すると、回転軸方向と垂直な面内方向に渦電流が流れることで、この渦電流による損失(鉄損)が発生する。特許文献1においては、永久磁石ロータ部のコア内を回転軸方向に流れる磁束を抑えるための対策はなされておらず、トルクを効率よく増大させることが困難である。さらに、面内方向に渦電流が流れる場合に生じる損失も増大する。その結果、回転電機の効率が低下する。   When the magnetic flux flowing through the iron core in the in-plane direction perpendicular to the rotation axis direction of the rotor is saturated, the magnetic flux also flows out in the rotation axis direction. And the magnetic flux which flows the edge part of a rotating shaft direction to the outer side of a rotating shaft direction leaks outside from the edge part of a rotating shaft direction. Since most of the magnetic flux that flows in the direction of the rotation axis and leaks to the outside is the magnetic flux that does not contribute to the torque, the torque acting on the rotor is reduced by the amount of the magnetic flux leaking to the outside. Further, when the magnetic flux flowing in the rotation axis direction fluctuates, an eddy current flows in an in-plane direction perpendicular to the rotation axis direction, and loss (iron loss) due to this eddy current occurs. In Patent Document 1, no measures are taken to suppress the magnetic flux flowing in the direction of the rotation axis in the core of the permanent magnet rotor portion, and it is difficult to increase the torque efficiently. Furthermore, the loss that occurs when eddy current flows in the in-plane direction also increases. As a result, the efficiency of the rotating electrical machine decreases.

本発明は、回転軸方向に流れる磁束を抑えることで回転電機の高効率化を実現することを目的とする。   An object of this invention is to implement | achieve the high efficiency of a rotary electric machine by suppressing the magnetic flux which flows into a rotating shaft direction.

本発明に係る回転電機は、上述した目的を達成するために以下の手段を採った。   The rotating electrical machine according to the present invention employs the following means in order to achieve the above-described object.

本発明に係る回転電機は、固定子鉄心にコイルが配設された固定子と、回転子鉄心に磁石が配設された回転子と、を備え、固定子と回転子とが回転子の回転軸方向と直交する径方向に対向配置された回転電機であって、回転子の磁石は、前記回転軸方向に関して回転子鉄心の少なくとも一方の端部よりも外側へ張り出した延長磁石部を有することを要旨とする。   A rotating electrical machine according to the present invention includes a stator in which a coil is disposed on a stator core, and a rotor in which a magnet is disposed on the rotor core, and the stator and the rotor rotate the rotor. The rotating electrical machine is disposed opposite to the radial direction orthogonal to the axial direction, and the rotor magnet has an extended magnet portion that projects outward from at least one end of the rotor core in the rotational axis direction. Is the gist.

本発明によれば、回転子の回転軸方向に関して回転子鉄心の少なくとも一方の端部よりも外側へ張り出した延長磁石部が発生する磁束によって、回転子鉄心内を回転軸方向に流れる磁束を抑えることができる。その結果、回転電機の高効率化を実現することができる。   According to the present invention, the magnetic flux flowing in the direction of the rotation axis in the rotor core is suppressed by the magnetic flux generated by the extended magnet portion that projects outward from at least one end of the rotor core in the direction of the rotation axis of the rotor. be able to. As a result, high efficiency of the rotating electrical machine can be realized.

本発明の一態様では、回転子鉄心は、前記回転軸方向に関して固定子鉄心の少なくとも一方の端部よりも外側へ張り出した延長鉄心部を有することが好適である。この態様によれば、延長鉄心部からの磁束によって、固定子鉄心内を回転軸方向に流れる磁束を抑えることができる。   In one aspect of the present invention, it is preferable that the rotor core has an extended core portion projecting outward from at least one end portion of the stator core in the rotation axis direction. According to this aspect, the magnetic flux flowing in the direction of the rotation axis in the stator core can be suppressed by the magnetic flux from the extended core portion.

本発明の一態様では、固定子鉄心は、前記回転軸方向に関して回転子鉄心の少なくとも一方の端部よりも外側へ張り出した延長鉄心部を有することが好適である。この態様によれば、延長鉄心部からの磁束によって、回転子鉄心内を回転軸方向に流れる磁束を抑えることができる。   In one aspect of the present invention, it is preferable that the stator core has an extended core portion that projects outward from at least one end portion of the rotor core in the rotation axis direction. According to this aspect, the magnetic flux flowing in the direction of the rotation axis in the rotor core can be suppressed by the magnetic flux from the extended core portion.

本発明の一態様では、回転子の磁石における延長磁石部以外の部分が回転子鉄心内に埋設されていることが好適である。   In one aspect of the present invention, it is preferable that a portion of the rotor magnet other than the extended magnet portion is embedded in the rotor core.

また、本発明に係る回転電機は、固定子鉄心にコイルが配設された固定子と、回転子鉄心に磁石が配設された回転子と、を備え、固定子鉄心と回転子の磁石とが回転子の回転軸方向と直交する径方向に対向配置された回転電機であって、回転子の磁石は、前記回転軸方向に関して固定子鉄心の少なくとも一方の端部よりも外側へ張り出した延長磁石部を有することを要旨とする。   The rotating electrical machine according to the present invention includes a stator in which a coil is disposed on a stator core, and a rotor in which a magnet is disposed on the rotor core, and the stator core and the rotor magnet are provided. Is a rotating electrical machine disposed in a radial direction orthogonal to the rotation axis direction of the rotor, and the magnet of the rotor is an extension projecting outward from at least one end of the stator core with respect to the rotation axis direction. The gist is to have a magnet part.

本発明によれば、回転子の回転軸方向に関して固定子鉄心の少なくとも一方の端部よりも外側へ張り出した延長磁石部が発生する磁束によって、固定子鉄心内を回転軸方向に流れる磁束を抑えることができる。その結果、回転電機の高効率化を実現することができる。   According to the present invention, the magnetic flux flowing in the direction of the rotation axis in the stator core is suppressed by the magnetic flux generated by the extended magnet portion that protrudes outward from at least one end of the stator core with respect to the rotation axis direction of the rotor. be able to. As a result, high efficiency of the rotating electrical machine can be realized.

また、本発明に係る回転電機は、固定子鉄心にコイルが配設された固定子と、回転子鉄心に第1の磁石が配設された回転子と、を備え、固定子と回転子とが回転子の回転軸方向と直交する径方向に対向配置された回転電機であって、前記回転軸方向に関する回転子の少なくとも一方の端部よりも外側に、回転子と同じ速度で回転するエンドロータが回転子に近接して配設されており、エンドロータには、回転子鉄心内を前記回転軸方向に流れる磁束に反発する磁束を発生する第2の磁石が配設されていることを要旨とする。   The rotating electrical machine according to the present invention includes a stator in which a coil is disposed in a stator core, and a rotor in which a first magnet is disposed in the rotor core, the stator and the rotor, Is a rotating electrical machine disposed opposite to the rotor in the radial direction orthogonal to the rotation axis direction of the rotor, and is an end that rotates at the same speed as the rotor outside the at least one end of the rotor in the rotation axis direction. The rotor is arranged close to the rotor, and the end rotor is provided with a second magnet that generates a magnetic flux that repels the magnetic flux flowing in the direction of the rotation axis in the rotor core. The gist.

本発明によれば、エンドロータに配設された第2の磁石が、回転子鉄心内を回転子の回転軸方向に流れる磁束に反発する磁束を発生することで、回転子鉄心内を回転軸方向に流れる磁束を抑えることができる。その結果、回転電機の高効率化を実現することができる。   According to the present invention, the second magnet disposed in the end rotor generates a magnetic flux that repels the magnetic flux flowing in the direction of the rotational axis of the rotor in the rotor core, so that the rotational axis in the rotor core. Magnetic flux flowing in the direction can be suppressed. As a result, high efficiency of the rotating electrical machine can be realized.

以下、本発明を実施するための形態(以下実施形態という)を図面に従って説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.

「実施形態1」
図1,2は、本発明の実施形態1に係る回転電機の概略構成を示す図である。図1は、軸心22と直交する方向から見た固定子12及び回転子14の内部構成の概略を示し、図2は、軸心22と平行方向から見た固定子12及び回転子14の内部構成の一部を示す。本実施形態に係る回転電機は、図示しないケーシングに固定された固定子(ステータ)12と、固定子12の径方向内側に配置され固定子12に対し回転可能な回転子(ロータ)14と、を備える。
“Embodiment 1”
1 and 2 are diagrams illustrating a schematic configuration of the rotating electrical machine according to the first embodiment of the present invention. FIG. 1 shows an outline of the internal configuration of the stator 12 and the rotor 14 as seen from a direction orthogonal to the axis 22, and FIG. 2 shows the stator 12 and the rotor 14 as seen from a direction parallel to the axis 22. A part of the internal configuration is shown. The rotating electrical machine according to the present embodiment includes a stator (stator) 12 fixed to a casing (not shown), a rotor (rotor) 14 that is disposed on the radially inner side of the stator 12 and is rotatable with respect to the stator 12, Is provided.

回転子14は、回転子鉄心(ロータコア)16と、回転子鉄心16の外周部に配設された複数の永久磁石18と、を含む。複数の永久磁石18は、回転子14の周方向に沿って間隔をおいて配列されている。回転子14には、その回転中心軸に沿って軸心22が配設されており、軸心22はケーシングに回動可能に支持されている。ここでの回転子鉄心16については、例えば薄い珪素鋼板(電磁鋼板)を回転子14の回転軸方向(軸心22の長手方向、以下単に回転軸方向とする)に積層することで構成することができる。   The rotor 14 includes a rotor core (rotor core) 16 and a plurality of permanent magnets 18 disposed on the outer periphery of the rotor core 16. The plurality of permanent magnets 18 are arranged at intervals along the circumferential direction of the rotor 14. A shaft center 22 is disposed on the rotor 14 along its rotation center axis, and the shaft center 22 is rotatably supported by the casing. The rotor core 16 here is configured, for example, by laminating thin silicon steel plates (electromagnetic steel plates) in the rotation axis direction of the rotor 14 (the longitudinal direction of the axis 22, hereinafter simply referred to as the rotation axis direction). Can do.

固定子12は、固定子鉄心(ステータコア)26と、固定子鉄心26に配設された複数の固定子コイル28と、を含む。固定子鉄心26には、径方向内側(回転子14側)へ突出した複数のティース30が固定子12の周方向に沿って間隔をおいて配列されており、各固定子コイル28は、これらのティース30に配設されている。ここでの固定子鉄心26についても、例えば電磁鋼板を回転軸方向に積層することで構成することができる。   The stator 12 includes a stator core (stator core) 26 and a plurality of stator coils 28 disposed on the stator core 26. A plurality of teeth 30 protruding radially inward (rotor 14 side) are arranged on the stator core 26 at intervals along the circumferential direction of the stator 12. The teeth 30 are disposed. The stator core 26 here can also be configured, for example, by laminating electromagnetic steel sheets in the rotation axis direction.

固定子鉄心26の内周部(ティース先端部30a)と永久磁石18(回転子鉄心16の外周部)とは、回転軸方向と直交する径方向に対向配置されている。各固定子コイル28に順次電流を流すことにより各ティース30が順次磁化され、回転磁界が形成される。そして、回転子14の永久磁石18の界磁束がこの回転磁界と相互作用して、吸引及び反発作用が生じ回転子14が回転し、磁石トルクを得ることができる。なお、図1,2は、回転子鉄心16が永久磁石18の表面上(永久磁石18よりも回転子14の径方向外側)にも配設されており、永久磁石18の大部分が回転子鉄心16の内部に埋設された例を示している。この例では、磁石トルクに加えてリラクタンストルクも得ることができる。また、図2は、永久磁石18をV字状に配置した例を示しているが、永久磁石18の配置はこの例に限定されるものではない。   The inner peripheral portion (tooth tip portion 30a) of the stator core 26 and the permanent magnet 18 (outer peripheral portion of the rotor core 16) are disposed to face each other in the radial direction orthogonal to the rotational axis direction. The teeth 30 are sequentially magnetized by sequentially passing current through the stator coils 28, and a rotating magnetic field is formed. Then, the magnetic field flux of the permanent magnet 18 of the rotor 14 interacts with this rotating magnetic field, so that attraction and repulsion occurs, the rotor 14 rotates, and magnet torque can be obtained. 1 and 2, the rotor core 16 is also disposed on the surface of the permanent magnet 18 (outside of the permanent magnet 18 in the radial direction of the rotor 14), and most of the permanent magnet 18 is the rotor. The example embedded in the iron core 16 is shown. In this example, reluctance torque can be obtained in addition to magnet torque. FIG. 2 shows an example in which the permanent magnets 18 are arranged in a V shape, but the arrangement of the permanent magnets 18 is not limited to this example.

本実施形態では、図1に示すように、各永久磁石18が回転子鉄心16から回転軸方向に伸長されていることで、各永久磁石18は、回転軸方向に関して回転子鉄心16の両端部よりも外側へ張り出した延長磁石部38を有する。ここでの延長磁石部38の磁極面は、鉄心(強磁性体)により覆われることなく、回転子14の外部へ露出している。図1は、各永久磁石18における延長磁石部38以外の部分が回転子鉄心16内に埋設され、回転軸方向に関して延長磁石部38が固定子鉄心26の両端部よりも外側へ張り出した例を示している。   In this embodiment, as shown in FIG. 1, each permanent magnet 18 extends from the rotor core 16 in the direction of the rotation axis, so that each permanent magnet 18 has both end portions of the rotor core 16 in the rotation axis direction. It has the extended magnet part 38 projected outward. Here, the magnetic pole surface of the extended magnet portion 38 is exposed to the outside of the rotor 14 without being covered with an iron core (ferromagnetic material). FIG. 1 shows an example in which portions other than the extension magnet portion 38 in each permanent magnet 18 are embedded in the rotor core 16, and the extension magnet portion 38 projects outward from both ends of the stator core 26 in the rotation axis direction. Show.

前述したように、回転子鉄心16については、例えば電磁鋼板を回転軸方向に積層することで、回転軸方向の磁気抵抗を増大させて、磁束を回転軸方向に流れにくくしている。しかし、回転子鉄心16内を回転軸方向と垂直な平面の面内方向に流れる磁束が飽和してくると、磁束が回転軸方向にも流れ出すようになる。ここで、本願発明者が回転軸方向に流れる磁束が多く発生する部位を解析(数値計算)によって調べた結果を図3に示す。図3の解析結果に示すように、回転子鉄心16における永久磁石18の近接部にて回転軸方向に流れる磁束が多く発生している。さらに、永久磁石18の近接部の中でも特に、回転軸方向に関する回転子鉄心16の端部にて回転軸方向に流れる磁束が多く発生している。図3において、V字状に配置されたN極磁石18nの近接部(V字の谷間部)で且つ回転軸方向の端部である部位52は、回転子鉄心16から外部へ回転軸方向に磁束が多く流出する部位であり、V字状に配置されたS極磁石18sの近接部(V字の谷間部)で且つ回転軸方向の端部である部位54は、外部から回転子鉄心16に回転軸方向に磁束が多く入り込む部位である。   As described above, with respect to the rotor core 16, for example, magnetic steel sheets are laminated in the direction of the rotation axis, thereby increasing the magnetic resistance in the direction of the rotation axis and making it difficult for the magnetic flux to flow in the direction of the rotation axis. However, when the magnetic flux flowing in the rotor core 16 in the in-plane direction of the plane perpendicular to the rotation axis direction is saturated, the magnetic flux flows out also in the rotation axis direction. Here, FIG. 3 shows a result obtained by analyzing (numerical calculation) a part where the inventor of the present application generates a large amount of magnetic flux flowing in the rotation axis direction. As shown in the analysis result of FIG. 3, a large amount of magnetic flux flowing in the direction of the rotation axis is generated in the vicinity of the permanent magnet 18 in the rotor core 16. Further, especially in the vicinity of the permanent magnet 18, a large amount of magnetic flux flowing in the direction of the rotation axis is generated at the end of the rotor core 16 in the direction of the rotation axis. In FIG. 3, a portion 52 that is an adjacent portion (V-shaped valley portion) of the N-pole magnet 18 n arranged in a V shape and is an end portion in the rotation axis direction extends from the rotor core 16 to the outside in the rotation axis direction. A part 54 from which a large amount of magnetic flux flows out, and a part 54 that is an adjacent part (V-shaped valley part) of the S-pole magnet 18s arranged in a V-shape and is an end part in the rotation axis direction, is externally provided to the rotor core 16. This is a portion where a large amount of magnetic flux enters in the direction of the rotation axis.

延長磁石部38を有さない構成では、回転子鉄心16内を流れる磁束が飽和してくると、例えば図4に示すように、永久磁石18の径方向外側の近接部16aにて磁束が回転軸方向に流れ出す。そして、永久磁石18の近接部16aの中でも回転軸方向の端部を回転軸方向外側へ流れる磁束56は、回転軸方向の端部から外部に漏れ出す。回転軸方向に流れて外部に漏れ出す磁束56のほとんどはトルクに寄与しない磁束であるため、この外部に漏れ出した磁束分、回転子14に作用するトルクが低下する。特に、回転子14のトルクが大きい場合には、回転子鉄心16内を流れる磁束が飽和しやすくなり、磁束が回転軸方向に流れやすくなる。さらに、回転子鉄心16(永久磁石18の近接部16a)において、回転軸方向に流れる磁束が変動すると、例えば図5に示すように、回転軸方向と垂直な面内方向に渦電流34が流れることで、この渦電流34による損失(鉄損)が発生する。特に、電磁鋼板を回転軸方向に積層して回転子鉄心16を構成している場合は、回転軸方向と垂直な面内方向の比抵抗(電気抵抗)が低いため、回転軸方向に流れる磁束の変動に伴って発生する面内方向の渦電流34も増大しやすい。   In the configuration without the extension magnet portion 38, when the magnetic flux flowing through the rotor core 16 is saturated, the magnetic flux rotates at the proximity portion 16a on the radially outer side of the permanent magnet 18, for example, as shown in FIG. Flows out in the axial direction. And the magnetic flux 56 which flows the end part of a rotating shaft direction to the outer side of a rotating shaft among the proximity | contact parts 16a of the permanent magnet 18 leaks outside from the end part of a rotating shaft direction. Since most of the magnetic flux 56 that flows in the direction of the rotation axis and leaks to the outside is a magnetic flux that does not contribute to the torque, the torque acting on the rotor 14 is reduced by the amount of the magnetic flux leaking to the outside. In particular, when the torque of the rotor 14 is large, the magnetic flux flowing in the rotor core 16 is easily saturated, and the magnetic flux easily flows in the direction of the rotation axis. Further, when the magnetic flux flowing in the direction of the rotation axis fluctuates in the rotor core 16 (proximity portion 16a of the permanent magnet 18), for example, as shown in FIG. 5, an eddy current 34 flows in the in-plane direction perpendicular to the direction of the rotation axis. As a result, a loss (iron loss) due to the eddy current 34 occurs. In particular, when the rotor core 16 is configured by laminating electromagnetic steel plates in the rotation axis direction, the magnetic flux flowing in the rotation axis direction is low because the specific resistance (electric resistance) in the in-plane direction perpendicular to the rotation axis direction is low. The in-plane eddy current 34 generated with the fluctuations is also likely to increase.

これに対して本実施形態では、回転軸方向に関して延長磁石部38が回転子鉄心16(永久磁石18の近接部16a)の両端部よりも外側へ張り出している。これによって、図6に示すように、延長磁石部38の発生する磁束57が、回転子鉄心16内(永久磁石18の近接部16a)に入り込もうとする。この入り込もうとする延長磁石部38からの磁束57が、永久磁石18の近接部16aを回転軸方向に流れて外部に漏れ出そうとする磁束56を抑え込むように作用する。そのため、永久磁石18の近接部16aを回転軸方向に流れる磁束(トルクに寄与しない磁束)を減少させることができ、回転子14のトルクへの有効磁束を増大させることができる。その結果、回転子14のトルクを効率よく増大させることができる。さらに、本実施形態では、回転子鉄心16内(永久磁石18の近接部16a)を回転軸方向に流れる磁束を減少させることができるので、この磁束の変動に伴って回転子鉄心16内を回転軸方向と垂直な平面の面内方向に流れる渦電流34を低減することができる。その結果、面内方向の渦電流34による損失を低減することができる。したがって、本実施形態によれば、回転電機の小型化及び高効率化を実現することができる。   On the other hand, in this embodiment, the extension magnet part 38 protrudes outside the both ends of the rotor core 16 (proximity part 16a of the permanent magnet 18) in the rotation axis direction. As a result, as shown in FIG. 6, the magnetic flux 57 generated by the extension magnet portion 38 tends to enter the rotor core 16 (proximity portion 16 a of the permanent magnet 18). The magnetic flux 57 from the extended magnet portion 38 that is going to enter acts to suppress the magnetic flux 56 that flows in the direction of the rotation axis in the proximity portion 16a of the permanent magnet 18 and leaks to the outside. Therefore, the magnetic flux (magnetic flux that does not contribute to the torque) flowing in the rotation axis direction through the proximity portion 16a of the permanent magnet 18 can be reduced, and the effective magnetic flux to the torque of the rotor 14 can be increased. As a result, the torque of the rotor 14 can be increased efficiently. Furthermore, in the present embodiment, since the magnetic flux flowing in the direction of the rotation axis in the rotor core 16 (proximity portion 16a of the permanent magnet 18) can be reduced, the rotor core 16 rotates in accordance with the fluctuation of the magnetic flux. The eddy current 34 that flows in the in-plane direction of a plane perpendicular to the axial direction can be reduced. As a result, the loss due to the in-plane eddy current 34 can be reduced. Therefore, according to the present embodiment, the rotating electrical machine can be reduced in size and efficiency.

以上の実施形態1の説明では、回転軸方向に関して延長磁石部38が回転子鉄心16の両端部よりも外側へ張り出しているものとした。ただし、本実施形態では、回転軸方向に関して延長磁石部38が回転子鉄心16の一端部または他端部よりも外側へ張り出すように構成しても、回転子鉄心16内を回転軸方向に流れる磁束を延長磁石部38の発生する磁束によって抑えることができる。   In the above description of the first embodiment, it is assumed that the extended magnet portion 38 projects outward from both end portions of the rotor core 16 in the rotation axis direction. However, in this embodiment, even if the extension magnet portion 38 is configured to protrude outward from one end or the other end of the rotor core 16 with respect to the rotation axis direction, the inside of the rotor core 16 extends in the rotation axis direction. The flowing magnetic flux can be suppressed by the magnetic flux generated by the extension magnet portion 38.

また、以上の実施形態1の説明では、回転子鉄心16が各永久磁石18の表面(磁極面)上にも配設されているものとした。ただし、本実施形態においては、各永久磁石18の表面が回転子14の表面(外周面)に露出していてもよい。この場合は、各永久磁石18は、回転軸方向に関して固定子鉄心26の両端部よりも外側へ張り出した延長磁石部38を有する。   In the above description of the first embodiment, it is assumed that the rotor core 16 is also disposed on the surface (magnetic pole surface) of each permanent magnet 18. However, in the present embodiment, the surface of each permanent magnet 18 may be exposed on the surface (outer peripheral surface) of the rotor 14. In this case, each permanent magnet 18 has an extended magnet portion 38 that projects outward from both ends of the stator core 26 with respect to the rotation axis direction.

固定子鉄心26についても、例えば電磁鋼板を回転軸方向に積層することで、回転軸方向の磁気抵抗を増大させて、磁束を回転軸方向に流れにくくしている。しかし、延長磁石部38を有さない構成では、固定子鉄心26内を回転軸方向と垂直な面内方向に流れる磁束が飽和してくると、例えば図4に示すように、ティース先端部30aにて磁束が回転軸方向に流れ出す。そして、ティース先端部30aの中でも回転軸方向の端部を回転軸方向外側へ流れる磁束58は、回転軸方向の端部から外部に漏れ出す。その結果、この外部に漏れ出した磁束分、回転子14に作用するトルクが低下する。特に、回転子14のトルクが大きい場合には、固定子鉄心26内を流れる磁束が飽和しやすくなる。さらに、固定子鉄心26(ティース先端部30a)において、回転軸方向に流れる磁束が変動すると、回転軸方向と垂直な面内方向に渦電流が流れることで、この渦電流による損失が発生する。特に、電磁鋼板を回転軸方向に積層して固定子鉄心26を構成している場合は、回転軸方向に流れる磁束の変動に伴って発生する面内方向の渦電流も増大しやすい。   Also for the stator core 26, for example, by laminating electromagnetic steel plates in the direction of the rotation axis, the magnetic resistance in the direction of the rotation axis is increased to make it difficult for the magnetic flux to flow in the direction of the rotation axis. However, in the configuration without the extension magnet portion 38, when the magnetic flux flowing in the stator core 26 in the in-plane direction perpendicular to the rotation axis direction is saturated, for example, as shown in FIG. The magnetic flux flows out in the direction of the rotation axis. And the magnetic flux 58 which flows the end part of a rotating shaft direction to the outer side of a rotating shaft direction also in the teeth front-end | tip part 30a leaks outside from the end part of a rotating shaft direction. As a result, the torque acting on the rotor 14 is reduced by the magnetic flux leaking to the outside. In particular, when the torque of the rotor 14 is large, the magnetic flux flowing in the stator core 26 is likely to be saturated. Furthermore, in the stator core 26 (tooth tip portion 30a), when the magnetic flux flowing in the rotation axis direction fluctuates, an eddy current flows in an in-plane direction perpendicular to the rotation axis direction, and loss due to this eddy current occurs. In particular, in the case where the stator core 26 is configured by laminating electromagnetic steel plates in the rotation axis direction, in-plane eddy currents generated with fluctuations in magnetic flux flowing in the rotation axis direction are likely to increase.

これに対して本実施形態では、回転軸方向に関して延長磁石部38が固定子鉄心26(ティース先端部30a)の両端部よりも外側へ張り出している。これによって、図7に示すように、延長磁石部38の発生する磁束57が、固定子鉄心26内(ティース先端部30a)に入り込もうとする。この入り込もうとする延長磁石部38からの磁束57が、ティース先端部30aを回転軸方向に流れて外部に漏れ出そうとする磁束58を抑え込むように作用する。そのため、ティース先端部30aを回転軸方向に流れるトルクに寄与しない磁束を減少させることができ、回転子14のトルクへの有効磁束を増大させることができる。したがって、回転子14のトルクを効率よく増大させることができる。さらに、本実施形態では、固定子鉄心26内(ティース先端部30a)を回転軸方向に流れる磁束を減少させることができるので、この磁束の変動に伴って固定子鉄心26内を回転軸方向と垂直な面内方向に流れる渦電流を低減することができる。したがって、面内方向の渦電流による損失を低減することができる。なお、回転軸方向に関して延長磁石部38が固定子鉄心26の一端部または他端部よりも外側へ張り出すように構成しても、固定子鉄心26内を回転軸方向に流れる磁束を延長磁石部38の発生する磁束によって抑えることができる。また、回転子鉄心16が各永久磁石18の表面上にも配設されている場合でも、永久磁石18(延長磁石部38)と固定子鉄心26(ティース先端部30a)との距離を近づけることで、固定子鉄心26内を回転軸方向に流れる磁束を延長磁石部38の発生する磁束によって抑えることができる。   On the other hand, in the present embodiment, the extension magnet portion 38 projects outward from both end portions of the stator core 26 (tooth tip portion 30a) in the rotation axis direction. As a result, as shown in FIG. 7, the magnetic flux 57 generated by the extension magnet portion 38 tends to enter the stator core 26 (tooth tip portion 30a). The magnetic flux 57 from the extended magnet portion 38 that is going to enter acts to suppress the magnetic flux 58 that flows through the teeth tip portion 30a in the direction of the rotation axis and leaks to the outside. Therefore, the magnetic flux that does not contribute to the torque flowing through the teeth tip 30a in the direction of the rotation axis can be reduced, and the effective magnetic flux to the torque of the rotor 14 can be increased. Therefore, the torque of the rotor 14 can be increased efficiently. Furthermore, in the present embodiment, since the magnetic flux flowing in the direction of the rotation axis in the stator core 26 (tooth tip 30a) can be reduced, the rotation of the stator core 26 in the direction of the rotation axis along with the fluctuation of the magnetic flux. Eddy currents flowing in the vertical in-plane direction can be reduced. Therefore, loss due to in-plane eddy current can be reduced. Even if the extension magnet portion 38 is configured to protrude outward from one end or the other end of the stator core 26 with respect to the rotation axis direction, the magnetic flux flowing in the stator core 26 in the rotation axis direction is used as the extension magnet. It can be suppressed by the magnetic flux generated by the portion 38. Even when the rotor core 16 is also disposed on the surface of each permanent magnet 18, the distance between the permanent magnet 18 (extension magnet portion 38) and the stator core 26 (tooth tip portion 30 a) is reduced. Thus, the magnetic flux flowing in the direction of the rotation axis in the stator core 26 can be suppressed by the magnetic flux generated by the extension magnet portion 38.

「実施形態2」
図8は、本発明の実施形態2に係る回転電機の概略構成を示す図であり、軸心22と直交する方向から見た固定子12及び回転子14の内部構成の概略を示す。以下の実施形態2の説明では、実施形態1と同様の構成または対応する構成には同一の符号を付し、重複する説明を省略する。
“Embodiment 2”
FIG. 8 is a diagram showing a schematic configuration of the rotating electrical machine according to the second embodiment of the present invention, and shows an outline of the internal configuration of the stator 12 and the rotor 14 as viewed from the direction orthogonal to the axis 22. In the following description of the second embodiment, the same or corresponding components as those in the first embodiment are denoted by the same reference numerals, and redundant descriptions are omitted.

本実施形態では、実施形態1と比較して、回転子鉄心16が固定子鉄心26よりも回転軸方向に伸長されていることで、回転子鉄心16は、回転軸方向に関して固定子鉄心26の両端部よりも外側へ張り出した延長鉄心部36を有する。ここでの延長鉄心部36は、少なくとも回転子鉄心16における永久磁石18の近接部16aに配設されている。そして、回転軸方向に関して延長磁石部38が延長鉄心部36よりも外側へ張り出している。   In the present embodiment, compared to the first embodiment, the rotor core 16 is extended more in the direction of the rotation axis than the stator core 26, so that the rotor core 16 has the stator core 26 with respect to the direction of the rotation axis. It has the extended iron core part 36 which protruded outside rather than both ends. The extended iron core portion 36 here is disposed at least in the proximity portion 16 a of the permanent magnet 18 in the rotor core 16. The extended magnet portion 38 projects outward from the extended iron core portion 36 with respect to the rotation axis direction.

本実施形態では、図9に示すように、延長鉄心部36を流れる磁束59が、固定子鉄心26内(ティース先端部30a)に入り込もうとする。この入り込もうとする延長鉄心部36からの磁束59が、ティース先端部30aを回転軸方向に流れて外部に漏れ出そうとする磁束58を抑え込むように作用する。そのため、回転子14のトルクへの有効磁束をさらに増大させることができ、回転子14のトルクをさらに効率よく増大させることができる。そして、固定子鉄心26内(ティース先端部30a)を回転軸方向に流れる磁束をさらに減少させることができるので、この磁束の変動に伴って固定子鉄心26内を回転軸方向と垂直な面内方向に流れる渦電流をさらに低減することができる。したがって、面内方向の渦電流による損失をさらに低減することができる。   In the present embodiment, as shown in FIG. 9, the magnetic flux 59 flowing through the extension iron core portion 36 tends to enter the stator iron core 26 (tooth tip portion 30 a). The magnetic flux 59 from the extended iron core portion 36 that is going to enter acts to suppress the magnetic flux 58 that flows through the teeth tip portion 30a in the direction of the rotation axis and leaks to the outside. Therefore, the effective magnetic flux to the torque of the rotor 14 can be further increased, and the torque of the rotor 14 can be increased more efficiently. Further, the magnetic flux flowing in the direction of the rotation axis in the stator core 26 (tooth tip portion 30a) can be further reduced, so that in the plane perpendicular to the direction of the rotation axis in the stator core 26 due to the fluctuation of the magnetic flux. The eddy current flowing in the direction can be further reduced. Therefore, the loss due to the eddy current in the in-plane direction can be further reduced.

以上の実施形態2の説明では、回転軸方向に関して延長鉄心部36が固定子鉄心26の両端部よりも外側へ張り出しているものとした。ただし、本実施形態では、回転軸方向に関して延長鉄心部36が固定子鉄心26の一端部または他端部よりも外側へ張り出すように構成しても、固定子鉄心26内を回転軸方向に流れる磁束を延長鉄心部36からの磁束によって抑えることができる。   In the above description of the second embodiment, it is assumed that the extended iron core portion 36 projects outward from both end portions of the stator iron core 26 in the rotation axis direction. However, in the present embodiment, even if the extended core portion 36 is configured to protrude outward from one end or the other end of the stator core 26 with respect to the rotation axis direction, the inside of the stator core 26 extends in the rotation axis direction. The flowing magnetic flux can be suppressed by the magnetic flux from the extended iron core portion 36.

「実施形態3」
図10は、本発明の実施形態3に係る回転電機の概略構成を示す図であり、軸心22と直交する方向から見た固定子12及び回転子14の内部構成の概略を示す。以下の実施形態3の説明では、実施形態1,2と同様の構成または対応する構成には同一の符号を付し、重複する説明を省略する。
“Embodiment 3”
FIG. 10 is a diagram showing a schematic configuration of the rotating electrical machine according to the third embodiment of the present invention, and shows an outline of the internal configuration of the stator 12 and the rotor 14 as seen from the direction orthogonal to the axis 22. In the following description of the third embodiment, the same or corresponding components as those of the first and second embodiments are denoted by the same reference numerals, and redundant description is omitted.

本実施形態では、実施形態1と比較して、固定子鉄心26が回転子鉄心16よりも回転軸方向に伸長されていることで、固定子鉄心26は、回転軸方向に関して回転子鉄心16の両端部よりも外側へ張り出した延長鉄心部46を有する。ここでの延長鉄心部46は、少なくとも固定子鉄心26におけるティース先端部30aに配設されている。   In the present embodiment, compared with the first embodiment, the stator core 26 is extended in the direction of the rotation axis more than the rotor core 16, so that the stator core 26 has the rotor core 16 in the rotation axis direction. It has the extended iron core part 46 projected outside from both ends. Here, the extended iron core portion 46 is disposed at least at the tooth tip portion 30 a of the stator core 26.

本実施形態では、図11に示すように、延長鉄心部46を流れる磁束60が、回転子鉄心16内(永久磁石18の近接部16a)に入り込もうとする。この入り込もうとする延長鉄心部46からの磁束60が、永久磁石18の近接部16aを回転軸方向に流れて外部に漏れ出そうとする磁束56を抑え込むように作用する。そのため、回転子14のトルクへの有効磁束をさらに増大させることができ、回転子14のトルクをさらに効率よく増大させることができる。そして、回転子鉄心16内(永久磁石18の近接部16a)を回転軸方向に流れる磁束をさらに減少させることができるので、この磁束の変動に伴って回転子鉄心16内を回転軸方向と垂直な面内方向に流れる渦電流をさらに低減することができる。したがって、面内方向の渦電流による損失をさらに低減することができる。   In the present embodiment, as shown in FIG. 11, the magnetic flux 60 flowing through the extended iron core portion 46 tends to enter the rotor iron core 16 (proximal portion 16 a of the permanent magnet 18). The magnetic flux 60 from the extended core portion 46 about to enter acts to suppress the magnetic flux 56 that flows in the direction of the rotation axis in the proximity portion 16a of the permanent magnet 18 and leaks to the outside. Therefore, the effective magnetic flux to the torque of the rotor 14 can be further increased, and the torque of the rotor 14 can be increased more efficiently. Since the magnetic flux flowing in the direction of the rotation axis in the rotor core 16 (proximity portion 16a of the permanent magnet 18) can be further reduced, the inside of the rotor core 16 is perpendicular to the direction of the rotation axis in accordance with the fluctuation of the magnetic flux. The eddy current flowing in the in-plane direction can be further reduced. Therefore, the loss due to the eddy current in the in-plane direction can be further reduced.

以上の実施形態3の説明では、回転軸方向に関して延長鉄心部46が回転子鉄心16の両端部よりも外側へ張り出しているものとした。ただし、本実施形態では、回転軸方向に関して延長鉄心部46が回転子鉄心16の一端部または他端部よりも外側へ張り出すように構成しても、回転子鉄心16内を回転軸方向に流れる磁束を延長鉄心部46からの磁束によって抑えることができる。また、本実施形態では、回転軸方向に関して延長磁石部38が延長鉄心部46(固定子鉄心26の少なくとも一方の端部)よりも外側へ張り出すように構成することもできる。   In the above description of the third embodiment, it is assumed that the extended iron core portion 46 projects outward from both end portions of the rotor iron core 16 in the rotation axis direction. However, in this embodiment, even if it is configured such that the extended iron core portion 46 projects outward from one end or the other end of the rotor core 16 with respect to the rotation axis direction, the inside of the rotor core 16 extends in the rotation axis direction. The flowing magnetic flux can be suppressed by the magnetic flux from the extended iron core portion 46. Further, in the present embodiment, the extension magnet portion 38 may be configured to project outward from the extension iron core portion 46 (at least one end portion of the stator iron core 26) in the rotation axis direction.

「実施形態4」
図12は、本発明の実施形態4に係る回転電機の概略構成を示す図であり、軸心22と直交する方向から見た固定子12及び回転子14の内部構成の概略を示す。以下の実施形態4の説明では、実施形態1〜3と同様の構成または対応する構成には同一の符号を付し、重複する説明を省略する。
“Embodiment 4”
FIG. 12 is a diagram showing a schematic configuration of the rotating electrical machine according to the fourth embodiment of the present invention, and shows an outline of the internal configuration of the stator 12 and the rotor 14 as seen from the direction orthogonal to the axis 22. In the following description of the fourth embodiment, the same or corresponding components as those in the first to third embodiments are denoted by the same reference numerals, and redundant description is omitted.

本実施形態では、回転軸方向に関する回転子14の両端部よりも外側に、回転子14と同じ速度で回転する略円板形状のエンドロータ64が回転子14に近接して配設されている。エンドロータ64における回転子14との対向面には、複数の永久磁石68がエンドロータ64の周方向に沿って間隔をおいて配列されている。各永久磁石68の表面(磁極面)は、エンドロータ64の表面(回転子14と対向する面)に露出しており、回転軸方向に関する永久磁石18及びその近接部16aの端部と対向配置されている。ここでの永久磁石68については、回転子鉄心16内(永久磁石18の近接部16a)を回転軸方向に流れる磁束に反発する磁束を発生するように、その着磁方向が設定されている。例えば図13に示すように、永久磁石18における近接部16aとの対向面(磁極面)がN極である場合は、この永久磁石18及びその近接部16aの端部と対向する永久磁石68の表面(磁極面)をN極に設定する。これによって、永久磁石68は、永久磁石18から近接部16aを回転軸方向に通ってエンドロータ64側へ漏れ出そうとする磁束56に反発する磁束61を発生する。   In the present embodiment, a substantially disc-shaped end rotor 64 that rotates at the same speed as the rotor 14 is disposed in the vicinity of the rotor 14 outside both ends of the rotor 14 in the rotation axis direction. . A plurality of permanent magnets 68 are arranged at intervals along the circumferential direction of the end rotor 64 on the surface of the end rotor 64 facing the rotor 14. The surface (magnetic pole surface) of each permanent magnet 68 is exposed on the surface of the end rotor 64 (surface facing the rotor 14), and is arranged to face the permanent magnet 18 in the rotation axis direction and the end of the proximity portion 16a. Has been. About the permanent magnet 68 here, the magnetization direction is set so that the magnetic flux which repels the magnetic flux which flows in the inside of the rotor core 16 (adjacent part 16a of the permanent magnet 18) in a rotating shaft direction may be generated. For example, as shown in FIG. 13, when the facing surface (magnetic pole surface) of the permanent magnet 18 to the proximity portion 16a is an N pole, the permanent magnet 68 and the permanent magnet 68 facing the end of the proximity portion 16a. The surface (magnetic pole surface) is set to N pole. As a result, the permanent magnet 68 generates a magnetic flux 61 that repels the magnetic flux 56 that tends to leak from the permanent magnet 18 through the proximity portion 16a in the direction of the rotation axis toward the end rotor 64.

本実施形態では、図13に示すように、エンドロータ64の永久磁石68の発生する磁束61が、回転子鉄心16内(永久磁石18の近接部16a)に入り込もうとする。この入り込もうとする永久磁石68からの磁束61が、永久磁石18の近接部16aを回転軸方向に流れて外部(エンドロータ64側)に漏れ出そうとする磁束56に反発して抑え込むように作用する。そのため、回転子14のトルクへの有効磁束を増大させることができ、回転子14のトルクを効率よく増大させることができる。そして、回転子鉄心16内(永久磁石18の近接部16a)を回転軸方向に流れる磁束を減少させることができるので、この磁束の変動に伴って回転子鉄心16内を回転軸方向と垂直な面内方向に流れる渦電流を低減することができる。その結果、面内方向の渦電流による損失を低減することができる。したがって、本実施形態においても、回転電機の小型化及び高効率化を実現することができる。   In the present embodiment, as shown in FIG. 13, the magnetic flux 61 generated by the permanent magnet 68 of the end rotor 64 tends to enter the rotor core 16 (proximal portion 16 a of the permanent magnet 18). The magnetic flux 61 from the permanent magnet 68 to enter enters the proximity portion 16a of the permanent magnet 18 in the direction of the rotation axis and acts to repel and suppress the magnetic flux 56 that is about to leak to the outside (on the end rotor 64 side). To do. Therefore, the effective magnetic flux to the torque of the rotor 14 can be increased, and the torque of the rotor 14 can be increased efficiently. Since the magnetic flux flowing in the direction of the rotation axis in the rotor core 16 (proximity portion 16a of the permanent magnet 18) can be reduced, the rotor core 16 is perpendicular to the direction of the rotation axis as the magnetic flux fluctuates. Eddy currents flowing in the in-plane direction can be reduced. As a result, loss due to in-plane eddy currents can be reduced. Therefore, also in this embodiment, it is possible to achieve downsizing and high efficiency of the rotating electrical machine.

以上の実施形態4の説明では、エンドロータ64が回転軸方向に関する回転子14の両端部よりも外側に配設されているものとした。ただし、本実施形態では、エンドロータ64を回転軸方向に関する回転子14の一端部または他端部よりも外側に配設しても、回転子鉄心16内を回転軸方向に流れる磁束をエンドロータ64の永久磁石68からの磁束によって抑えることができる。また、本実施形態では、エンドロータ64の永久磁石68を回転子14の径方向外側へさらに延長して、永久磁石68の表面(磁極面)を回転軸方向に関する固定子鉄心26(ティース先端部30a)の端部と対向させることもできる。これによって、固定子鉄心26内(ティース先端部30a)を回転軸方向に流れて外部に漏れ出そうとする磁束を、エンドロータ64の永久磁石68からの磁束によって抑えることができる。   In the above description of the fourth embodiment, it is assumed that the end rotor 64 is disposed outside the both end portions of the rotor 14 in the rotation axis direction. However, in the present embodiment, even if the end rotor 64 is disposed outside one end or the other end of the rotor 14 in the rotation axis direction, the magnetic flux flowing in the rotor core 16 in the rotation axis direction is transferred to the end rotor. It can be suppressed by the magnetic flux from 64 permanent magnets 68. In the present embodiment, the permanent magnet 68 of the end rotor 64 is further extended outward in the radial direction of the rotor 14, and the surface (magnetic pole surface) of the permanent magnet 68 is fixed to the stator core 26 (tooth tip portion) in the rotational axis direction. It can also be opposed to the end of 30a). As a result, the magnetic flux that flows through the stator core 26 (tooth tip 30a) in the direction of the rotation axis and leaks to the outside can be suppressed by the magnetic flux from the permanent magnet 68 of the end rotor 64.

なお、以上の実施形態1〜4において、回転子鉄心16及び固定子鉄心26については、鉄等の強磁性体の微小粒の表面に電気を通さない膜のコーティングを施した粉体を押し固めた圧粉磁心材料により成形することもできる。   In the first to fourth embodiments described above, for the rotor core 16 and the stator core 26, powders that are coated with a film that does not conduct electricity are pressed on the surface of ferromagnetic fine particles such as iron. It can also be formed from a dust core material.

以上、本発明を実施するための形態について説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to such embodiment at all, and it can implement with a various form in the range which does not deviate from the summary of this invention. Of course.

本発明の実施形態1に係る回転電機の概略構成を示す図である。It is a figure which shows schematic structure of the rotary electric machine which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る回転電機の概略構成を示す図である。It is a figure which shows schematic structure of the rotary electric machine which concerns on Embodiment 1 of this invention. 回転子の回転軸方向に流れる磁束が多く発生する部位を説明する図である。It is a figure explaining the site | part where much magnetic flux which flows into the rotating shaft direction of a rotor generate | occur | produces. 回転子の回転軸方向に流れて外部に漏れ出す磁束を説明する図である。It is a figure explaining the magnetic flux which flows in the rotating shaft direction of a rotor, and leaks outside. 回転子の回転軸方向と垂直な面内方向に流れる渦電流を説明する図である。It is a figure explaining the eddy current which flows into the in-plane direction perpendicular | vertical to the rotating shaft direction of a rotor. 本発明の実施形態1に係る回転電機の動作を説明する図である。It is a figure explaining operation | movement of the rotary electric machine which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る回転電機の動作を説明する図である。It is a figure explaining operation | movement of the rotary electric machine which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る回転電機の概略構成を示す図である。It is a figure which shows schematic structure of the rotary electric machine which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係る回転電機の動作を説明する図である。It is a figure explaining operation | movement of the rotary electric machine which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る回転電機の概略構成を示す図である。It is a figure which shows schematic structure of the rotary electric machine which concerns on Embodiment 3 of this invention. 本発明の実施形態3に係る回転電機の動作を説明する図である。It is a figure explaining operation | movement of the rotary electric machine which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る回転電機の概略構成を示す図である。It is a figure which shows schematic structure of the rotary electric machine which concerns on Embodiment 4 of this invention. 本発明の実施形態4に係る回転電機の動作を説明する図である。It is a figure explaining operation | movement of the rotary electric machine which concerns on Embodiment 4 of this invention.

符号の説明Explanation of symbols

12 固定子、14 回転子、16 回転子鉄心、18,68 永久磁石、22 軸心、26 固定子鉄心、28 固定子コイル、30 ティース、30a ティース先端部、36,46 延長鉄心部、38 延長磁石部、64 エンドロータ。   12 Stator, 14 Rotor, 16 Rotor Core, 18, 68 Permanent Magnet, 22 Axis Center, 26 Stator Core, 28 Stator Coil, 30 Teeth, 30a Teeth Tip, 36, 46 Extension Iron Core, 38 Extension Magnet part, 64 end rotor.

Claims (6)

固定子鉄心にコイルが配設された固定子と、回転子鉄心に磁石が配設された回転子と、を備え、固定子と回転子とが回転子の回転軸方向と直交する径方向に対向配置された回転電機であって、
回転子の磁石は、前記回転軸方向に関して回転子鉄心の少なくとも一方の端部よりも外側へ張り出した延長磁石部を有する、回転電機。
A stator having coils disposed on the stator core, and a rotor having magnets disposed on the rotor core, the stator and the rotor being arranged in a radial direction perpendicular to the rotation axis direction of the rotor. A rotating electric machine arranged oppositely,
The rotor magnet includes an extension magnet portion that projects outward from at least one end portion of the rotor core in the rotation axis direction.
請求項1に記載の回転電機であって、
回転子鉄心は、前記回転軸方向に関して固定子鉄心の少なくとも一方の端部よりも外側へ張り出した延長鉄心部を有する、回転電機。
The rotating electrical machine according to claim 1,
The rotor core is a rotating electrical machine having an extended core portion projecting outward from at least one end portion of the stator core in the rotation axis direction.
請求項1に記載の回転電機であって、
固定子鉄心は、前記回転軸方向に関して回転子鉄心の少なくとも一方の端部よりも外側へ張り出した延長鉄心部を有する、回転電機。
The rotating electrical machine according to claim 1,
The stator core has a rotating electrical machine having an extended core portion projecting outward from at least one end portion of the rotor core in the rotation axis direction.
請求項1〜3のいずれか1に記載の回転電機であって、
回転子の磁石における延長磁石部以外の部分が回転子鉄心内に埋設されている、回転電機。
The rotating electrical machine according to any one of claims 1 to 3,
A rotating electrical machine in which a portion of the rotor magnet other than the extended magnet portion is embedded in the rotor core.
固定子鉄心にコイルが配設された固定子と、回転子鉄心に磁石が配設された回転子と、を備え、固定子鉄心と回転子の磁石とが回転子の回転軸方向と直交する径方向に対向配置された回転電機であって、
回転子の磁石は、前記回転軸方向に関して固定子鉄心の少なくとも一方の端部よりも外側へ張り出した延長磁石部を有する、回転電機。
The stator includes a stator having a coil disposed on the stator core and a rotor having a magnet disposed on the rotor core, and the stator core and the magnet of the rotor are orthogonal to the rotation axis direction of the rotor. A rotating electric machine arranged opposite to the radial direction,
The rotor magnet includes an extension magnet portion that projects outward from at least one end portion of the stator core in the rotation axis direction.
固定子鉄心にコイルが配設された固定子と、回転子鉄心に第1の磁石が配設された回転子と、を備え、固定子と回転子とが回転子の回転軸方向と直交する径方向に対向配置された回転電機であって、
前記回転軸方向に関する回転子の少なくとも一方の端部よりも外側に、回転子と同じ速度で回転するエンドロータが回転子に近接して配設されており、
エンドロータには、回転子鉄心内を前記回転軸方向に流れる磁束に反発する磁束を発生する第2の磁石が配設されている、回転電機。
The stator includes a stator having a coil disposed on the stator core, and a rotor having a first magnet disposed on the rotor core, and the stator and the rotor are orthogonal to the rotation axis direction of the rotor. A rotating electric machine arranged opposite to the radial direction,
An end rotor that rotates at the same speed as the rotor is disposed in the vicinity of the rotor outside the at least one end of the rotor with respect to the rotation axis direction,
The rotating electrical machine, wherein the end rotor is provided with a second magnet that generates a magnetic flux that repels the magnetic flux flowing in the direction of the rotation axis in the rotor core.
JP2007034372A 2007-02-15 2007-02-15 Rotating electric machine Expired - Fee Related JP5096756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007034372A JP5096756B2 (en) 2007-02-15 2007-02-15 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007034372A JP5096756B2 (en) 2007-02-15 2007-02-15 Rotating electric machine

Publications (2)

Publication Number Publication Date
JP2008199833A true JP2008199833A (en) 2008-08-28
JP5096756B2 JP5096756B2 (en) 2012-12-12

Family

ID=39758273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007034372A Expired - Fee Related JP5096756B2 (en) 2007-02-15 2007-02-15 Rotating electric machine

Country Status (1)

Country Link
JP (1) JP5096756B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102882296A (en) * 2011-07-13 2013-01-16 株式会社安川电机 Rotating electrical machine
FR2997807A1 (en) * 2012-11-06 2014-05-09 Valeo Equip Electr Moteur SYNCHRONOUS ELECTRIC MOTOR WITH PERMANENT MAGNETS AND ELECTRIC COMPRESSOR COMPRISING SUCH AN ELECTRIC MOTOR
WO2014167807A1 (en) * 2013-04-11 2014-10-16 パナソニック株式会社 Induction synchronous motor
WO2014183843A3 (en) * 2013-05-15 2015-07-02 Diehl Ako Stiftung & Co. Kg Rotor for an electromechanical machine
JP2015146683A (en) * 2014-02-03 2015-08-13 シンフォニアテクノロジー株式会社 Permanent magnet embedded motor
WO2016098517A1 (en) * 2014-12-19 2016-06-23 マブチモーター株式会社 Motor
WO2016152977A1 (en) * 2015-03-24 2016-09-29 日東電工株式会社 Rare-earth permanent magnet-forming sintered compact and rotary electric machine including rare-earth permanent magnet
WO2019198462A1 (en) * 2018-04-12 2019-10-17 株式会社ミツバ Motor and brushless wiper motor
WO2021019673A1 (en) * 2019-07-30 2021-02-04 三菱電機株式会社 Motor, compressor, and air conditioner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09233750A (en) * 1996-02-21 1997-09-05 Daikin Ind Ltd Brushless dc motor and its permanent magnet holding method
JP2001298903A (en) * 2000-04-10 2001-10-26 Moric Co Ltd Brushless dc motor
JP2004254394A (en) * 2003-02-19 2004-09-09 Mitsubishi Electric Corp Rotary electric machine
JP2004336831A (en) * 2003-04-30 2004-11-25 Daikin Ind Ltd Permanent magnet motor and closed type compressor
JP2006223024A (en) * 2005-02-08 2006-08-24 Nsk Ltd Brushless motor
JP2006280199A (en) * 2006-07-18 2006-10-12 Matsushita Electric Ind Co Ltd Permanent magnet embedded motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09233750A (en) * 1996-02-21 1997-09-05 Daikin Ind Ltd Brushless dc motor and its permanent magnet holding method
JP2001298903A (en) * 2000-04-10 2001-10-26 Moric Co Ltd Brushless dc motor
JP2004254394A (en) * 2003-02-19 2004-09-09 Mitsubishi Electric Corp Rotary electric machine
JP2004336831A (en) * 2003-04-30 2004-11-25 Daikin Ind Ltd Permanent magnet motor and closed type compressor
JP2006223024A (en) * 2005-02-08 2006-08-24 Nsk Ltd Brushless motor
JP2006280199A (en) * 2006-07-18 2006-10-12 Matsushita Electric Ind Co Ltd Permanent magnet embedded motor

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102882296A (en) * 2011-07-13 2013-01-16 株式会社安川电机 Rotating electrical machine
JP2013021844A (en) * 2011-07-13 2013-01-31 Yaskawa Electric Corp Rotary electric machine
FR2997807A1 (en) * 2012-11-06 2014-05-09 Valeo Equip Electr Moteur SYNCHRONOUS ELECTRIC MOTOR WITH PERMANENT MAGNETS AND ELECTRIC COMPRESSOR COMPRISING SUCH AN ELECTRIC MOTOR
WO2014072618A1 (en) * 2012-11-06 2014-05-15 Valeo Equipements Electriques Moteur Synchronous electric motor with permanent magnets and electric compressor comprising such an electric motor
WO2014167807A1 (en) * 2013-04-11 2014-10-16 パナソニック株式会社 Induction synchronous motor
WO2014183843A3 (en) * 2013-05-15 2015-07-02 Diehl Ako Stiftung & Co. Kg Rotor for an electromechanical machine
JP2015146683A (en) * 2014-02-03 2015-08-13 シンフォニアテクノロジー株式会社 Permanent magnet embedded motor
CN107112831A (en) * 2014-12-19 2017-08-29 马渊马达株式会社 Motor
JP2016119769A (en) * 2014-12-19 2016-06-30 マブチモーター株式会社 motor
WO2016098517A1 (en) * 2014-12-19 2016-06-23 マブチモーター株式会社 Motor
US20180316234A1 (en) * 2014-12-19 2018-11-01 Mabuchi Motor Co., Ltd. Motor
WO2016152977A1 (en) * 2015-03-24 2016-09-29 日東電工株式会社 Rare-earth permanent magnet-forming sintered compact and rotary electric machine including rare-earth permanent magnet
US10867732B2 (en) 2015-03-24 2020-12-15 Nitto Denko Corporation Sintered body for forming rare-earth permanent magnet and rotary electric machine having rare-earth permanent magnet
CN111869052A (en) * 2018-04-12 2020-10-30 株式会社美姿把 Motor and brushless wiper motor
JP2019187132A (en) * 2018-04-12 2019-10-24 株式会社ミツバ Motor and brushless wiper motor
WO2019198462A1 (en) * 2018-04-12 2019-10-17 株式会社ミツバ Motor and brushless wiper motor
JP7080702B2 (en) 2018-04-12 2022-06-06 株式会社ミツバ Motors and brushless wiper motors
CN111869052B (en) * 2018-04-12 2023-01-24 株式会社美姿把 Motor and brushless wiper motor
US11901779B2 (en) 2018-04-12 2024-02-13 Mitsuba Corporation Motor and brushless wiper motor
WO2021019673A1 (en) * 2019-07-30 2021-02-04 三菱電機株式会社 Motor, compressor, and air conditioner
CN114144961A (en) * 2019-07-30 2022-03-04 三菱电机株式会社 Motor, compressor, and air conditioner
US11962192B2 (en) 2019-07-30 2024-04-16 Mitsubishi Electric Corporation Electric motor, compressor, and air conditioner

Also Published As

Publication number Publication date
JP5096756B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP5096756B2 (en) Rotating electric machine
JP5682600B2 (en) Rotating electrical machine rotor
JP5709907B2 (en) Permanent magnet embedded rotary electric machine for vehicles
JP5861660B2 (en) Rotating electric machine
JP2008167520A (en) Rotary electric machine
JP4719183B2 (en) Rotating electric machine
JP5313752B2 (en) Brushless motor
JP2007089270A (en) Axial motor and its rotor
US20110163618A1 (en) Rotating Electrical Machine
JP2009136046A (en) Toroidally-wound dynamo-electric machine
US9515524B2 (en) Electric motor
JP2016072995A (en) Embedded magnet type rotor and electric motor including the same
JP4640373B2 (en) Rotating electric machine
JP2018011466A (en) Permanent-magnet embedded synchronous machine
JP5439904B2 (en) Rotating electric machine
JP2005328679A (en) Permanent magnet reluctance type rotating electric machine
JP6083640B2 (en) Permanent magnet embedded motor
JP5294021B2 (en) Claw pole type IPM motor
JP2007116850A (en) Permanent-magnet rotating electric machine and cylindrical linear motor
JP2006340507A (en) Stator of rotary electric machine
JP5299797B2 (en) Permanent magnet type rotating electric machine for high speed rotation
JP2005210828A (en) Rotating electric machine and rotor therefor
JP2017143663A (en) Embedded magnet type rotary machine
JP2015231253A (en) Magnet and dynamo-electric machine including the same
JP2005130692A (en) Axial-type permanent-magnet motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees