WO2014167807A1 - Induction synchronous motor - Google Patents

Induction synchronous motor Download PDF

Info

Publication number
WO2014167807A1
WO2014167807A1 PCT/JP2014/001933 JP2014001933W WO2014167807A1 WO 2014167807 A1 WO2014167807 A1 WO 2014167807A1 JP 2014001933 W JP2014001933 W JP 2014001933W WO 2014167807 A1 WO2014167807 A1 WO 2014167807A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
rotor
rotor core
synchronous motor
induction synchronous
Prior art date
Application number
PCT/JP2014/001933
Other languages
French (fr)
Japanese (ja)
Inventor
尾崎 行雄
周平 玉村
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014167807A1 publication Critical patent/WO2014167807A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/26Asynchronous induction motors having rotors or stators designed to permit synchronous operation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/223Rotor cores with windings and permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to an induction synchronous motor using a permanent magnet, and more particularly to a rotor thereof.
  • the induction synchronous motor is mounted on, for example, an electric compressor used for a refrigeration air conditioner.
  • the length of the rotor core is longer than the length of the permanent magnet in the axial direction of the rotating shaft to which the rotor core is fixed.
  • the length of a rotor core means the thickness of a rotor core.
  • Patent Document 1 As an example of this. This will be described using the drawings.
  • FIG. 6 is a sectional view of a rotor of a conventional induction synchronous motor.
  • the rotor iron plate 2a includes a buried hole 3 into which the permanent magnet 4 is inserted.
  • the rotor iron plate 2b laminated together with the rotor iron plate 2a includes a short-circuit prevention hole 7 that prevents the magnetic flux from being short-circuited.
  • the rotor core 2 is formed by laminating a plurality of rotor iron plates 2a. The rotor core 2 is laminated until the rotor iron plate 2a is longer than the length of the permanent magnet 4.
  • the permanent magnet 4 is inserted into the embedded hole 3 of the rotor core 2 stacked over the length of the permanent magnet 4.
  • the position of the inserted permanent magnet 4 is determined by contacting the end face 9 of the permanent magnet 4 positioned in the axial direction with the outer edge portion 8 of the short-circuit prevention hole 7. Therefore, in the axial direction, an electric motor in which the center of the length in the axial direction of the rotor core 2 and the center of the length in the axial direction of the permanent magnet 4 coincide is provided.
  • the axis 10 is indicated by a broken line.
  • the induction synchronous motor of the present invention includes a stator, a rotor, and a bearing portion.
  • the stator has a stator core and a winding wound around the stator core.
  • the rotor is positioned to face the inner peripheral surface of the stator core.
  • the rotor has a rotor core including an embedding hole in which a permanent magnet is embedded, and a rotating shaft that passes through the axis of the rotor core.
  • a bearing part contains the cylinder part in which a rotating shaft penetrates the inside, and supports a rotor rotatably.
  • the rotor core includes a recess on the upper surface of the rotor core positioned in the axial direction.
  • the concave portion includes an inner surface facing the surface of the rotation shaft over a depth D from the upper surface. The concave portion faces the cylindrical portion via a gap when the bearing portion is attached to the rotating shaft.
  • the length L1 of the permanent magnet is shorter than the length L2 of the rotor core in the axial direction. Further, in the permanent magnet, the end face of the permanent magnet located on the upper surface side is located in a place where the depth from the upper surface is deeper than D / 2.
  • FIG. 1 is a cross-sectional view of a compressor using an induction synchronous motor according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view showing a main part of the induction synchronous motor according to Embodiment 1 of the present invention.
  • FIG. 3A is a cross-sectional view showing the main part of the rotor of the induction synchronous motor.
  • 3B is a cross-sectional view taken along the line 3B-3B shown in FIG. 3A.
  • 3C is a cross-sectional view taken along 3C-3C shown in FIG. 3A.
  • FIG. 4 is a cross-sectional view showing the main parts of the rotor of the induction synchronous motor according to Embodiment 2 of the present invention.
  • FIG. 4 is a cross-sectional view showing the main parts of the rotor of the induction synchronous motor according to Embodiment 2 of the present invention.
  • FIG. 5 is a cross-sectional view showing the main parts of the rotor of the induction synchronous motor according to Embodiment 3 of the present invention.
  • FIG. 6 is a cross-sectional view of a rotor of a conventional induction synchronous motor.
  • the induction synchronous motor according to the embodiment of the present invention has the following effects due to the configuration described later. That is, in the axial direction of the rotor core, the bearing portion that supports the rotary shaft is inserted deeply toward the inside of the rotor core. A recess is formed in the rotor core so that the bearing portion and the rotor core do not come into contact with each other. Even if the recess is formed in the rotor core, the magnetic flux is not saturated. Therefore, according to the present invention, it is possible to provide an induction synchronous motor whose efficiency does not decrease.
  • the conventional induction synchronous motor had the following points to be improved. That is, in an induction synchronous motor, in order to reduce wear generated between the rotating shaft and the bearing portion, the bearing portion may be inserted deeply toward the inner side of the rotor core. In particular, when an induction synchronous motor is used for a compressor, this configuration becomes remarkable.
  • a concave portion is formed in the rotor core so that the bearing does not come into contact with the rotating rotor, particularly the rotor core.
  • the recess is formed on the inner surface of the rotor core that is in contact with the rotating shaft.
  • the recessed portion has a shape that is greatly recessed so as to have a gap between the inserted bearing portion.
  • a permanent magnet is inserted into the embedded hole included in the rotor core.
  • the magnetic circuit yoke portion formed by the recess and the embedding hole becomes narrow. Therefore, the magnetic flux is saturated in the magnetic circuit yoke portion. Since the magnetic flux is saturated, the torque constant decreases. As a result, there has been a problem that the efficiency of the induction synchronous motor is reduced.
  • the induction torque generated by the starting squirrel-cage conductor increases in the axial direction of the rotor core as the rotor stack thickness on the stator increases.
  • the lamination thickness of the rotor with respect to the stator is also referred to as the lamination length of the rotor.
  • the synchronous torque increases as the length of the permanent magnet increases in the axial direction of the rotor core.
  • the induction torque acts as a positive torque.
  • the induction synchronous motor it is not a synchronous operation. Therefore, when the induction synchronous motor is started, the synchronous torque generated by the permanent magnet acts as a negative torque.
  • the starting torque is a total torque obtained by adding the positive induction torque and the negative synchronous torque. That is, the shorter the length of the permanent magnet in the axial direction of the rotor, the better the startability.
  • the induction synchronous motor is operated synchronously. Therefore, the steady operation torque is greatly affected by the synchronous torque generated by the permanent magnet. Therefore, in order to increase the steady operation torque, it is necessary to increase the length of the permanent magnet in the axial direction of the rotor.
  • the induction synchronous motor has a permanent magnet length in the axial direction of the rotor. It may be shorter than the length.
  • FIG. 1 is a longitudinal sectional view of a compressor using an induction synchronous motor according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view showing a main part of the induction synchronous motor according to Embodiment 1 of the present invention.
  • FIG. 3A is a cross-sectional view showing the main part of the rotor of the induction synchronous motor.
  • FIG. 3A shows a 3A-3A cross-sectional view shown in FIG. 3B.
  • 3B is a cross-sectional view taken along the line 3B-3B shown in FIG. 3A.
  • 3C is a cross-sectional view taken along 3C-3C shown in FIG. 3A.
  • the compressor 50 includes an electric element 60 and a compression element 70 driven by the electric element 60 inside the sealed container 52.
  • the sealed container 52 compresses the refrigerant gas sucked from the suction pipe 54 by the compression element 70.
  • the compressed refrigerant gas is discharged from the discharge pipe 56 to the refrigeration cycle.
  • Oil 58 used for lubrication is present at the bottom of the sealed container 52.
  • the compression element 70 includes a crankshaft 72, a block 74, a piston 76, a connecting portion 77, and the like.
  • the crankshaft 72 has an eccentric shaft 78 and a rotating shaft 16.
  • An oil supply groove 80 is included on the surface of the rotating shaft 16.
  • the oil supply groove 80 supplies oil 58 present at the bottom of the sealed container 52 to the piston 76 and the like.
  • a cylinder 84 that forms a compression chamber 82 is formed integrally with the block 74.
  • the block 74 includes a bearing portion 11 that rotatably supports the rotating shaft 16.
  • the rotational motion generated on the rotary shaft 16 is transmitted as a reciprocating motion from the eccentric shaft 78 to the piston 76 via the connecting portion 77.
  • the compression element 70 compresses the refrigerant gas sent into the compression chamber 82 by the reciprocating motion of the piston 76.
  • the electric element 60 has a stator 30 below the block 74 and the rotor 1 inside the stator 30.
  • the stator 30 and the rotor 1 are located on the same axis.
  • a rotating shaft 16 is fixed to the rotor 1.
  • a voltage is applied to the windings of the stator 30 to generate a magnetic field.
  • the rotor 1 is rotated by this magnetic field.
  • the rotating shaft 16 fixed to the rotor 1 rotates.
  • the eccentric shaft 78 rotates via the crankshaft 72.
  • the rotation generated in the rotating shaft 16 is transmitted to the piston 76 via the eccentric shaft 78 and the connecting portion 77.
  • the rotation generated in the rotating shaft 16 through the crankshaft 72 is transmitted as a movement reciprocating the piston 76.
  • the piston 76 reciprocates in the cylinder 84.
  • the induction synchronous motor according to Embodiment 1 of the present invention includes a stator 30, a rotor 1, and a bearing portion 11.
  • the stator 30 has a stator core 32 and a winding 34 wound around the stator core 32.
  • the rotor 1 is positioned to face the inner peripheral surface of the stator core 32.
  • the rotor 1 has a rotor core 2 including an embedded hole 3 in which a permanent magnet 4 is embedded, and a rotating shaft 16 that passes through an axis 10 of the rotor core 2.
  • the bearing portion 11 includes a cylindrical portion 11a through which the rotary shaft 16 passes. The bearing part 11 supports the rotor 1 so that rotation is possible.
  • the rotor core 2 includes an inner surface 24 facing the surface 22 of the rotating shaft 16 over the depth D from the upper surface 20 on the upper surface 20 of the rotor core 2 positioned in the direction of the axis 10. Further, the rotor core 2 includes a concave portion 17 that faces the cylinder portion 11 a via a gap 18 when the bearing portion 11 is attached to the rotary shaft 16.
  • the length L 1 of the permanent magnet 4 is shorter than the length L 2 of the rotor core 2 in the direction of the axis 10. Further, in the permanent magnet 4, the end surface 4 a of the permanent magnet 4 positioned on the upper surface 20 side is positioned where the depth from the upper surface 20 is deeper than D / 2.
  • the rotor 1 has a rotor core 2 and a squirrel-cage conductor 15 for starting.
  • a plurality of embedded holes 3 are formed in the rotor core 2.
  • a permanent magnet 4 is inserted into each embedded hole 3.
  • the starting cage conductor 15 is located on the outer diameter side of the permanent magnet 4.
  • the rotor core 2 includes a recess 17 and a shrink-fitted portion 12 on the inner diameter side facing the rotation shaft 16.
  • the concave portion 17 is located on the inner diameter side of the rotor core 2 and on the side where the bearing portion 11 is attached.
  • the concave portion 17 has a shape that is recessed toward the inside of the rotor core 2 so that the bearing portion 11 enters deeply inside the rotor core 2.
  • the recess 17 includes an inner surface 24 that faces the surface 22 of the rotating shaft 16 over a depth D from the upper surface 20.
  • a gap 18 exists between the bearing portion 11 and the concave portion 17. Since the gap 18 exists, the bearing portion 11 does not contact the rotor 1.
  • the rotor core 2 and the rotating shaft 16 are fixed by a shrink-fitting portion 12.
  • the length L 1 of the permanent magnet 4 is shorter than the length L 2 of the rotor core 2 in the direction of the axis 10.
  • the end surface 4 a of the permanent magnet 4 positioned on the upper surface 20 side is positioned where the depth from the upper surface 20 is deeper than D / 2. That is, the end face 4 a of the permanent magnet 4 located near the recess 17 is positioned in the direction of the bottom surface 26 from the center position of the recess 17 in the direction of the axis 10.
  • a recess-side yoke portion 13 that is a magnetic circuit yoke portion is formed between the recess 17 and the permanent magnet 4.
  • a shrink-fit portion side yoke portion 14 that is a magnetic circuit yoke portion is formed between the shrink-fit portion 12 and the permanent magnet 4.
  • the range that can be used as the shrink-fit portion side yoke portion 14 is larger than the range that can be used as the recessed portion side yoke portion 13.
  • the magnetic circuit yoke part on the inner diameter side of the permanent magnet 4 may be widened. If the magnetic circuit yoke portion is widened, the saturation of the magnetic flux can be prevented and the torque constant can be increased.
  • a concave portion 17 is formed to recess the rotor core 2 inward.
  • the concave portion side yoke portion 13 formed by the concave portion 17 and the embedded hole 3 becomes narrow. Therefore, the magnetic flux is saturated in the concave-side yoke portion 13. Since the magnetic flux is saturated, the torque constant decreases. As a result, the efficiency of the induction synchronous motor is reduced.
  • the permanent magnet 4 has a permanent magnet end surface 4 a located on the upper surface 20 side where the depth from the upper surface 20 is deeper than D / 2. Located in. In other words, in a place where the depth from the upper surface 20 is shallower than D / 2, there is a portion where the permanent magnet 4 does not exist on the outer diameter side of the concave portion 17. This part has a low magnetic flux density.
  • the magnetic flux density generated on the outer diameter side of the concave portion 17 is increased in the portion where the permanent magnet 4 exists in a place where the depth from the upper surface 20 is deeper than D / 2.
  • the magnetic flux is directed from the portion where the magnetic flux density is high to the portion where the magnetic flux density is low. Therefore, since the magnetic flux density is relaxed, the magnetic flux can be prevented from being saturated. Since the saturation of the magnetic flux can be prevented, the torque constant does not decrease. As a result, the efficiency of the induction synchronous motor does not decrease even if the recess 17 is provided in the rotor core 2.
  • the bearing portion is inserted deeply toward the inner side of the rotor core.
  • the rotor core is formed with a recess facing the bearing portion via a gap so that the bearing portion and the rotor do not contact each other. Even with this configuration, it is possible to provide an induction synchronous motor whose efficiency does not decrease.
  • FIG. 4 is a cross-sectional view showing the main part of the rotor of the induction synchronous motor according to Embodiment 2 of the present invention.
  • the rotor core 2 includes a bottom surface 26 on the opposite side of the top surface 20 in the direction of the axis 10.
  • the end surface 4 b of the permanent magnet 4 positioned on the bottom surface 26 side is positioned on a surface including the bottom surface 26.
  • the permanent magnet 4 is brought closer to the bottom surface 26 side of the rotor core 2. In other words, the permanent magnet 4 is brought closer to the opposite side of the rotor core 2 in the direction of the axis 10.
  • FIG. 5 is a cross-sectional view showing the main part of the rotor of the induction synchronous motor according to Embodiment 3 of the present invention.
  • the length of the permanent magnet 4 is shorter in the direction of the axis 10 than the configuration described in the first and second embodiments.
  • the permanent magnet 4 does not exist on the outer diameter side of the recess 17. Therefore, the magnetic flux generated from the permanent magnet 4 is not affected by the formation of the recess 17. Therefore, the efficiency of the induction synchronous motor does not decrease.
  • the permanent magnet 4 used in each embodiment of the present invention is composed of at least one of a rare earth sintered magnet, a rare earth bonded magnet, or a ferrite magnet.
  • the induction synchronous motor has high efficiency because the amount of magnetic flux is high.
  • the induction synchronous motor can be reduced in size.
  • the rare earth bonded magnet can have a degree of freedom in the shape of the magnet. Therefore, the induction synchronous motor has an optimal magnetic circuit configuration.
  • the induction synchronous motor is provided with reduced cost.
  • the amount of magnetic flux, shape, price, and the like can be optimized as appropriate by changing the material of the magnet. Accordingly, it is possible to meet a wide variety of requirements and characteristics for the induction synchronous motor.
  • recesses may be formed on both sides of the rotor core in the axial direction.
  • the end face of the permanent magnet located on the upper surface side of the stator core may be located in a place where the depth from the upper surface is deeper than D / 2.
  • the end face of the permanent magnet positioned on the bottom surface side of the stator core may be positioned where the depth from the bottom surface is deeper than D / 2.
  • the induction synchronous motor according to the present invention even if a recess is provided so that the bearing portion is inserted deeply toward the rotor core, the efficiency does not decrease. Therefore, it is most suitable for the electric motor used for the compressor.

Abstract

An induction synchronous motor according to the present invention includes a stator (30), a rotor (1), and a bearing (11). A rotor core (2) of the rotor (1) includes a recess (17) in an upper surface located in the direction of a shaft center (10). The recess (17) includes an inner surface facing the surface of a rotary shaft (16) for a depth (D) from the upper surface. When the bearing (11) is attached to the rotary shaft (16), the recess (17) faces a cylindrical part (11a) via a gap (18). A permanent magnet (4) buried in the rotor core (2) is configured such that the length (L1) of the permanent magnet (4) is shorter than the length (L2) of the rotor core (2) in the direction of the shaft center (10). The permanent magnet (4) is positioned with the upper end surface thereof located deeper than D / 2 from the upper surface.

Description

誘導同期電動機Induction synchronous motor
 本発明は、永久磁石が用いられる誘導同期電動機に関し、特にその回転子に関する。誘導同期電動機は、特に、冷凍空調機器に用いられる電動圧縮機等に搭載される。 The present invention relates to an induction synchronous motor using a permanent magnet, and more particularly to a rotor thereof. The induction synchronous motor is mounted on, for example, an electric compressor used for a refrigeration air conditioner.
 従来、永久磁石が用いられる誘導同期電動機において、永久磁石が回転子鉄心の内部に埋め込まれる構造が、知られている。この種の電動機は、電動機の特性やその他の条件により、つぎの構成が採用される。すなわち、回転子鉄心が固定された回転軸の軸心方向において、回転子鉄心の長さは、永久磁石の長さよりも長い。なお、回転軸の軸心方向において、回転子鉄心の長さとは、回転子鉄心の厚みをいう。 Conventionally, in an induction synchronous motor using a permanent magnet, a structure in which the permanent magnet is embedded in the rotor core is known. This type of electric motor has the following configuration depending on the characteristics of the electric motor and other conditions. That is, the length of the rotor core is longer than the length of the permanent magnet in the axial direction of the rotating shaft to which the rotor core is fixed. In addition, in the axial center direction of a rotating shaft, the length of a rotor core means the thickness of a rotor core.
 この一例として、特許文献1がある。図面を用いて、説明する。 There is Patent Document 1 as an example of this. This will be described using the drawings.
 図6は、従来の誘導同期電動機の回転子の断面図である。図6に示すように、回転子鉄板2aは、永久磁石4が挿入される埋め込み穴3を含む。回転子鉄板2aとともに積層される回転子鉄板2bは、磁束が短絡することを防止する短絡防止穴7を含む。回転子鉄心2は、複数の回転子鉄板2aが積層されることで、形成される。回転子鉄心2は、回転子鉄板2aが永久磁石4の長さ以上になるまで、積層される。 FIG. 6 is a sectional view of a rotor of a conventional induction synchronous motor. As shown in FIG. 6, the rotor iron plate 2a includes a buried hole 3 into which the permanent magnet 4 is inserted. The rotor iron plate 2b laminated together with the rotor iron plate 2a includes a short-circuit prevention hole 7 that prevents the magnetic flux from being short-circuited. The rotor core 2 is formed by laminating a plurality of rotor iron plates 2a. The rotor core 2 is laminated until the rotor iron plate 2a is longer than the length of the permanent magnet 4.
 永久磁石4の長さ以上に積層された回転子鉄心2は、埋め込み穴3に永久磁石4が挿入される。挿入された永久磁石4は、軸心方向に位置する永久磁石4の端面9と短絡防止穴7の外縁部8とが接することで、位置が決められる。よって、軸心方向において、回転子鉄心2の軸心方向における長さの中心と、永久磁石4の軸心方向における長さの中心とが、一致した電動機が提供される。図6中、破線で、軸心10が示される。 The permanent magnet 4 is inserted into the embedded hole 3 of the rotor core 2 stacked over the length of the permanent magnet 4. The position of the inserted permanent magnet 4 is determined by contacting the end face 9 of the permanent magnet 4 positioned in the axial direction with the outer edge portion 8 of the short-circuit prevention hole 7. Therefore, in the axial direction, an electric motor in which the center of the length in the axial direction of the rotor core 2 and the center of the length in the axial direction of the permanent magnet 4 coincide is provided. In FIG. 6, the axis 10 is indicated by a broken line.
 特許文献1に記載された回転子1の構造により、固定子と回転子1との間で生じる磁気吸引力は、軸心方向の中心が一致する。よって、回転子1に生じる、軸心方向の振れを抑制できる。 Due to the structure of the rotor 1 described in Patent Document 1, the magnetic attraction force generated between the stator and the rotor 1 has the same center in the axial direction. Therefore, the shake in the axial direction that occurs in the rotor 1 can be suppressed.
特開2001-37119号公報JP 2001-37119 A
 本発明の誘導同期電動機は、固定子と、回転子と、軸受部と、を備える。 The induction synchronous motor of the present invention includes a stator, a rotor, and a bearing portion.
 固定子は、固定子鉄心と、固定子鉄心に巻装する巻線と、を有する。回転子は、固定子鉄心の内周面に対向して位置する。回転子は、永久磁石が埋め込まれる埋め込み穴を含む回転子鉄心と、回転子鉄心の軸心を貫通する回転軸と、を有する。軸受部は、回転軸が内部を貫通する筒部を含み、回転子を回動自在に支持する。 The stator has a stator core and a winding wound around the stator core. The rotor is positioned to face the inner peripheral surface of the stator core. The rotor has a rotor core including an embedding hole in which a permanent magnet is embedded, and a rotating shaft that passes through the axis of the rotor core. A bearing part contains the cylinder part in which a rotating shaft penetrates the inside, and supports a rotor rotatably.
 回転子鉄心は、軸心方向に位置する回転子鉄心の上面において、凹部を含む。凹部は、上面からの深さDに亘って、回転軸の表面と対向する内表面を含む。凹部は、軸受部を回転軸に取り付けたときに、筒部と隙間を介して向かい合う。 The rotor core includes a recess on the upper surface of the rotor core positioned in the axial direction. The concave portion includes an inner surface facing the surface of the rotation shaft over a depth D from the upper surface. The concave portion faces the cylindrical portion via a gap when the bearing portion is attached to the rotating shaft.
 永久磁石は、軸心方向において、永久磁石の長さL1が回転子鉄心の長さL2よりも短い。また、永久磁石は、上面側に位置する永久磁石の端面が、上面からの深さがD/2よりも深い場所に位置する。 In the permanent magnet, the length L1 of the permanent magnet is shorter than the length L2 of the rotor core in the axial direction. Further, in the permanent magnet, the end face of the permanent magnet located on the upper surface side is located in a place where the depth from the upper surface is deeper than D / 2.
図1は、本発明の実施の形態1における誘導同期電動機を用いた圧縮機の断面図である。FIG. 1 is a cross-sectional view of a compressor using an induction synchronous motor according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1における誘導同期電動機の要部を示す断面図である。FIG. 2 is a cross-sectional view showing a main part of the induction synchronous motor according to Embodiment 1 of the present invention. 図3Aは、同誘導同期電動機の回転子の要部を示す断面図である。FIG. 3A is a cross-sectional view showing the main part of the rotor of the induction synchronous motor. 図3Bは、図3A中に示す3B-3B断面図である。3B is a cross-sectional view taken along the line 3B-3B shown in FIG. 3A. 図3Cは、図3A中に示す3C-3C断面図である。3C is a cross-sectional view taken along 3C-3C shown in FIG. 3A. 図4は、本発明の実施の形態2における誘導同期電動機の回転子の要部を示す断面図である。FIG. 4 is a cross-sectional view showing the main parts of the rotor of the induction synchronous motor according to Embodiment 2 of the present invention. 図5は、本発明の実施の形態3における誘導同期電動機の回転子の要部を示す断面図である。FIG. 5 is a cross-sectional view showing the main parts of the rotor of the induction synchronous motor according to Embodiment 3 of the present invention. 図6は、従来の誘導同期電動機の回転子の断面図である。FIG. 6 is a cross-sectional view of a rotor of a conventional induction synchronous motor.
 本発明の実施の形態である誘導同期電動機は、後述する構成により、つぎの効果を奏する。すなわち、回転子鉄心の軸心方向において、回転軸を支持する軸受部が、回転子鉄心の内側に向けて、深くまで差し込まれる。回転子鉄心には、軸受部と回転子鉄心とが接することのないよう、凹部が形成される。回転子鉄心に凹部を形成しても、磁束が飽和することがない。よって、本発明によれば、効率が低下しない誘導同期電動機を提供できる。 The induction synchronous motor according to the embodiment of the present invention has the following effects due to the configuration described later. That is, in the axial direction of the rotor core, the bearing portion that supports the rotary shaft is inserted deeply toward the inside of the rotor core. A recess is formed in the rotor core so that the bearing portion and the rotor core do not come into contact with each other. Even if the recess is formed in the rotor core, the magnetic flux is not saturated. Therefore, according to the present invention, it is possible to provide an induction synchronous motor whose efficiency does not decrease.
 つまり、従来の誘導同期電動機には、つぎの改善すべき点があった。すなわち、誘導同期電動機において、回転軸と軸受部との間で生じる摩耗を低減するため、軸受部が、回転子鉄心の内側に向けて、深くまで差し込まれることがある。特に、誘導同期電動機が、圧縮機に用いられる場合、この構成が顕著となる。 In other words, the conventional induction synchronous motor had the following points to be improved. That is, in an induction synchronous motor, in order to reduce wear generated between the rotating shaft and the bearing portion, the bearing portion may be inserted deeply toward the inner side of the rotor core. In particular, when an induction synchronous motor is used for a compressor, this configuration becomes remarkable.
 この構成では、軸受が、回転する回転子、特に、回転子鉄心と接することがないように、回転子鉄心には、凹部が形成される。凹部は、回転軸と接する回転子鉄心の内側表面に形成される。凹部は、差し込まれた軸受部との間に、隙間を有するよう、大きく窪んだ形状になる。 In this configuration, a concave portion is formed in the rotor core so that the bearing does not come into contact with the rotating rotor, particularly the rotor core. The recess is formed on the inner surface of the rotor core that is in contact with the rotating shaft. The recessed portion has a shape that is greatly recessed so as to have a gap between the inserted bearing portion.
 また、回転子鉄心は、回転子鉄心が含む埋め込み穴の内部に、永久磁石が挿入される。上述した凹部が形成されると、凹部と埋め込み穴とで成す磁気回路ヨーク部が狭くなる。よって、磁気回路ヨーク部では、磁束が飽和する。磁束が飽和するため、トルク定数が低下する。この結果、誘導同期電動機の効率が低下するという、課題があった。 Also, in the rotor core, a permanent magnet is inserted into the embedded hole included in the rotor core. When the above-described recess is formed, the magnetic circuit yoke portion formed by the recess and the embedding hole becomes narrow. Therefore, the magnetic flux is saturated in the magnetic circuit yoke portion. Since the magnetic flux is saturated, the torque constant decreases. As a result, there has been a problem that the efficiency of the induction synchronous motor is reduced.
 一般的に、誘導同期電動機では、始動用かご形導体により生じる誘導トルクは、回転子鉄心の軸心方向において、固定子に対する回転子の積層厚みが厚いほど、大きくなる。なお、回転子鉄心の軸心方向において、固定子に対する回転子の積層厚みを、回転子の積層長さともいう。また、誘導同期電動機では、同期トルクは、回転子鉄心の軸心方向において、永久磁石の長さが長いほど、大きくなる。 Generally, in an induction synchronous motor, the induction torque generated by the starting squirrel-cage conductor increases in the axial direction of the rotor core as the rotor stack thickness on the stator increases. In addition, in the axial center direction of the rotor core, the lamination thickness of the rotor with respect to the stator is also referred to as the lamination length of the rotor. In addition, in the induction synchronous motor, the synchronous torque increases as the length of the permanent magnet increases in the axial direction of the rotor core.
 ところで、誘導同期電動機の始動トルクは、誘導トルクが正のトルクとして作用する。しかし、誘導同期電動機の始動時は、同期運転ではない。よって、誘導同期電動機の始動時において、永久磁石により生じる同期トルクは、負のトルクとして作用する。この結果、始動トルクは、正の誘導トルクと負の同期トルクとを足し合わせた、合計トルクとなる。つまり、回転子の軸心方向において、永久磁石の長さが短いほど、始動性が良くなる。 By the way, as for the starting torque of the induction synchronous motor, the induction torque acts as a positive torque. However, when the induction synchronous motor is started, it is not a synchronous operation. Therefore, when the induction synchronous motor is started, the synchronous torque generated by the permanent magnet acts as a negative torque. As a result, the starting torque is a total torque obtained by adding the positive induction torque and the negative synchronous torque. That is, the shorter the length of the permanent magnet in the axial direction of the rotor, the better the startability.
 一方、始動後において、誘導同期電動機は、同期運転となる。よって、定常運転トルクは、永久磁石により生じる同期トルクの影響が大きくなる。そこで、定常運転トルクを大きくするためには、回転子の軸心方向において、永久磁石の長さを長くする必要がある。 On the other hand, after the start, the induction synchronous motor is operated synchronously. Therefore, the steady operation torque is greatly affected by the synchronous torque generated by the permanent magnet. Therefore, in order to increase the steady operation torque, it is necessary to increase the length of the permanent magnet in the axial direction of the rotor.
 以上の理由により、必要とされる始動トルクと、必要とされる定常運転トルクと、を調整した結果、誘導同期電動機は、回転子の軸心方向において、永久磁石の長さが、回転子鉄心の長さよりも短くされることがある。 As a result of adjusting the required starting torque and the required steady operation torque for the above reasons, the induction synchronous motor has a permanent magnet length in the axial direction of the rotor. It may be shorter than the length.
 以下、本発明の実施の形態について、図面及び表を用いて説明する。なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術範囲を限定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings and tables. The following embodiments are examples embodying the present invention, and do not limit the technical scope of the present invention.
 (実施の形態1)
 本発明の実施の形態における誘導同期電動機が、特に顕著な効果を奏する圧縮機に用いられる場合を例示して説明する。
(Embodiment 1)
The case where the induction synchronous motor according to the embodiment of the present invention is used in a compressor having particularly remarkable effects will be described as an example.
 図1は、本発明の実施の形態1における誘導同期電動機を用いた圧縮機の縦断面図である。図2は、本発明の実施の形態1における誘導同期電動機の要部を示す断面図である。図3Aは、同誘導同期電動機の回転子の要部を示す断面図である。図3Aには、図3B中に示す3A-3A断面図が示される。図3Bは、図3A中に示す3B-3B断面図である。図3Cは、図3A中に示す3C-3C断面図である。 FIG. 1 is a longitudinal sectional view of a compressor using an induction synchronous motor according to Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view showing a main part of the induction synchronous motor according to Embodiment 1 of the present invention. FIG. 3A is a cross-sectional view showing the main part of the rotor of the induction synchronous motor. FIG. 3A shows a 3A-3A cross-sectional view shown in FIG. 3B. 3B is a cross-sectional view taken along the line 3B-3B shown in FIG. 3A. 3C is a cross-sectional view taken along 3C-3C shown in FIG. 3A.
 図1を用いて、本発明の実施の形態1における誘導同期電動機が用いられる圧縮機について、概要を説明する。 An outline of a compressor in which the induction synchronous motor according to Embodiment 1 of the present invention is used will be described with reference to FIG.
 圧縮機50は、密閉容器52の内部に、電動要素60と、電動要素60によって駆動される圧縮要素70とを備える。 The compressor 50 includes an electric element 60 and a compression element 70 driven by the electric element 60 inside the sealed container 52.
 密閉容器52は、吸入管54から吸入した冷媒ガスを圧縮要素70で圧縮する。圧縮された冷媒ガスは、吐出管56から冷凍サイクルへ吐出される。密閉容器52の底部には、潤滑に用いられるオイル58が存在する。 The sealed container 52 compresses the refrigerant gas sucked from the suction pipe 54 by the compression element 70. The compressed refrigerant gas is discharged from the discharge pipe 56 to the refrigeration cycle. Oil 58 used for lubrication is present at the bottom of the sealed container 52.
 圧縮要素70は、クランクシャフト72、ブロック74、ピストン76、連結部77などで構成される。クランクシャフト72は、偏心軸78と回転軸16とを有する。回転軸16の表面には給油溝80が含まれる。給油溝80は、密閉容器52の底部に存在するオイル58をピストン76などへ供給する。ブロック74には、圧縮室82を形成するシリンダ84が一体に形成される。ブロック74は、回転軸16を回転自在に支持する軸受部11を含む。回転軸16で生じた回転運動は、偏心軸78から連結部77を介して、ピストン76に往復運動として伝達される。圧縮要素70は、ピストン76の往復運動により、圧縮室82内に送り込まれた冷媒ガスを圧縮する。 The compression element 70 includes a crankshaft 72, a block 74, a piston 76, a connecting portion 77, and the like. The crankshaft 72 has an eccentric shaft 78 and a rotating shaft 16. An oil supply groove 80 is included on the surface of the rotating shaft 16. The oil supply groove 80 supplies oil 58 present at the bottom of the sealed container 52 to the piston 76 and the like. A cylinder 84 that forms a compression chamber 82 is formed integrally with the block 74. The block 74 includes a bearing portion 11 that rotatably supports the rotating shaft 16. The rotational motion generated on the rotary shaft 16 is transmitted as a reciprocating motion from the eccentric shaft 78 to the piston 76 via the connecting portion 77. The compression element 70 compresses the refrigerant gas sent into the compression chamber 82 by the reciprocating motion of the piston 76.
 電動要素60は、ブロック74の下方に、固定子30と、固定子30の内側に回転子1と、を有する。固定子30と回転子1とは、同軸上に位置する。回転子1には、回転軸16が固定される。 The electric element 60 has a stator 30 below the block 74 and the rotor 1 inside the stator 30. The stator 30 and the rotor 1 are located on the same axis. A rotating shaft 16 is fixed to the rotor 1.
 以上のように構成された圧縮機50について、作用を説明する。 The operation of the compressor 50 configured as described above will be described.
 まず、固定子30の巻線に電圧が印加されて、磁界が発生する。この磁界により、回転子1が回転する。回転子1が回転すると、回転子1に固定された回転軸16が回転する。回転軸16が回転すると、クランクシャフト72を介して偏心軸78が回転する。回転軸16に生じた回転は、偏心軸78と連結部77とを介して、ピストン76に伝達される。クランクシャフト72を介することで、回転軸16に生じた回転は、ピストン76を往復する運動として伝達される。ピストン76は、シリンダ84内を往復運転する。 First, a voltage is applied to the windings of the stator 30 to generate a magnetic field. The rotor 1 is rotated by this magnetic field. When the rotor 1 rotates, the rotating shaft 16 fixed to the rotor 1 rotates. When the rotating shaft 16 rotates, the eccentric shaft 78 rotates via the crankshaft 72. The rotation generated in the rotating shaft 16 is transmitted to the piston 76 via the eccentric shaft 78 and the connecting portion 77. The rotation generated in the rotating shaft 16 through the crankshaft 72 is transmitted as a movement reciprocating the piston 76. The piston 76 reciprocates in the cylinder 84.
 図2から図3Cを用いて、本発明の実施の形態1における誘導同期電動機について、説明する。 The induction synchronous motor according to Embodiment 1 of the present invention will be described with reference to FIGS. 2 to 3C.
 図2、図3Aに示すように、本発明の実施の形態1における誘導同期電動機は、固定子30と、回転子1と、軸受部11と、を備える。 2 and 3A, the induction synchronous motor according to Embodiment 1 of the present invention includes a stator 30, a rotor 1, and a bearing portion 11.
 固定子30は、固定子鉄心32と、固定子鉄心32に巻装する巻線34と、を有する。回転子1は、固定子鉄心32の内周面に対向して位置する。回転子1は、永久磁石4が埋め込まれる埋め込み穴3を含む回転子鉄心2と、回転子鉄心2の軸心10を貫通する回転軸16と、を有する。軸受部11は、回転軸16が内部を貫通する筒部11aを含む。軸受部11は、回転子1を回動自在に支持する。 The stator 30 has a stator core 32 and a winding 34 wound around the stator core 32. The rotor 1 is positioned to face the inner peripheral surface of the stator core 32. The rotor 1 has a rotor core 2 including an embedded hole 3 in which a permanent magnet 4 is embedded, and a rotating shaft 16 that passes through an axis 10 of the rotor core 2. The bearing portion 11 includes a cylindrical portion 11a through which the rotary shaft 16 passes. The bearing part 11 supports the rotor 1 so that rotation is possible.
 特に、回転子鉄心2は、軸心10方向に位置する回転子鉄心2の上面20において、上面20からの深さDに亘って、回転軸16の表面22と対向する内表面24を含む。また、回転子鉄心2は、軸受部11を回転軸16に取り付けたときに、筒部11aと隙間18を介して向かい合う凹部17を含む。 Particularly, the rotor core 2 includes an inner surface 24 facing the surface 22 of the rotating shaft 16 over the depth D from the upper surface 20 on the upper surface 20 of the rotor core 2 positioned in the direction of the axis 10. Further, the rotor core 2 includes a concave portion 17 that faces the cylinder portion 11 a via a gap 18 when the bearing portion 11 is attached to the rotary shaft 16.
 永久磁石4は、軸心10方向において、永久磁石4の長さL1が回転子鉄心2の長さL2よりも短い。また、永久磁石4は、上面20側に位置する永久磁石4の端面4aが、上面20からの深さがD/2よりも深い場所に位置する。 In the permanent magnet 4, the length L 1 of the permanent magnet 4 is shorter than the length L 2 of the rotor core 2 in the direction of the axis 10. Further, in the permanent magnet 4, the end surface 4 a of the permanent magnet 4 positioned on the upper surface 20 side is positioned where the depth from the upper surface 20 is deeper than D / 2.
 図面を用いて、更に詳細に説明する。 The details will be described with reference to the drawings.
 図2、図3Aに示すように、回転子1は、回転子鉄心2と、始動用のかご形導体15を有する。回転子鉄心2には、複数の埋め込み穴3が形成される。各埋め込み穴3には、永久磁石4が挿入される。始動用のかご形導体15は、永久磁石4の外径側に位置する。回転子鉄心2は、回転軸16と向かい合う内径側に、凹部17と焼嵌め部12とを含む。 2 and 3A, the rotor 1 has a rotor core 2 and a squirrel-cage conductor 15 for starting. A plurality of embedded holes 3 are formed in the rotor core 2. A permanent magnet 4 is inserted into each embedded hole 3. The starting cage conductor 15 is located on the outer diameter side of the permanent magnet 4. The rotor core 2 includes a recess 17 and a shrink-fitted portion 12 on the inner diameter side facing the rotation shaft 16.
 凹部17は、回転子鉄心2の内径側であって、軸受部11が取り付けられる側に位置する。凹部17は、軸受部11が回転子鉄心2の内側に深く入り込むよう、回転子鉄心2の内側へ窪む形状である。凹部17は、上面20からの深さDに亘って、回転軸16の表面22と対向する内表面24を含む。軸受部11と凹部17との間には、隙間18が存在する。隙間18が存在するため、軸受部11が回転子1と接することはない。 The concave portion 17 is located on the inner diameter side of the rotor core 2 and on the side where the bearing portion 11 is attached. The concave portion 17 has a shape that is recessed toward the inside of the rotor core 2 so that the bearing portion 11 enters deeply inside the rotor core 2. The recess 17 includes an inner surface 24 that faces the surface 22 of the rotating shaft 16 over a depth D from the upper surface 20. A gap 18 exists between the bearing portion 11 and the concave portion 17. Since the gap 18 exists, the bearing portion 11 does not contact the rotor 1.
 回転子鉄心2と回転軸16とは、焼嵌め部12で固定される。 The rotor core 2 and the rotating shaft 16 are fixed by a shrink-fitting portion 12.
 永久磁石4は、軸心10方向において、永久磁石4の長さL1が回転子鉄心2の長さL2よりも短い。また、永久磁石4は、上面20側に位置する永久磁石4の端面4aが、上面20からの深さがD/2よりも深い場所に位置する。つまり、凹部17の近くに位置する永久磁石4の端面4aは、軸心10方向において、凹部17の中心位置より底面26方向に位置する。 In the permanent magnet 4, the length L 1 of the permanent magnet 4 is shorter than the length L 2 of the rotor core 2 in the direction of the axis 10. Further, in the permanent magnet 4, the end surface 4 a of the permanent magnet 4 positioned on the upper surface 20 side is positioned where the depth from the upper surface 20 is deeper than D / 2. That is, the end face 4 a of the permanent magnet 4 located near the recess 17 is positioned in the direction of the bottom surface 26 from the center position of the recess 17 in the direction of the axis 10.
 図3Bに示すように、凹部17と永久磁石4との間には、磁気回路ヨーク部である凹部側ヨーク部13が形成される。図3Cに示すように、焼嵌め部12と永久磁石4との間には、磁気回路ヨーク部である焼嵌め部側ヨーク部14が形成される。 As shown in FIG. 3B, a recess-side yoke portion 13 that is a magnetic circuit yoke portion is formed between the recess 17 and the permanent magnet 4. As shown in FIG. 3C, a shrink-fit portion side yoke portion 14 that is a magnetic circuit yoke portion is formed between the shrink-fit portion 12 and the permanent magnet 4.
 回転軸16の表面22と向かい合う面において、凹部17の円周は、焼嵌め部12の円周よりも大きい。よって、焼嵌め部側ヨーク部14として使用できる範囲は、凹部側ヨーク部13として使用できる範囲と比べて、大きい。 In the surface facing the surface 22 of the rotating shaft 16, the circumference of the recess 17 is larger than the circumference of the shrink-fit part 12. Therefore, the range that can be used as the shrink-fit portion side yoke portion 14 is larger than the range that can be used as the recessed portion side yoke portion 13.
 以上のように構成された誘導同期電動機について、作用を説明する。 The operation of the induction synchronous motor configured as described above will be described.
 定常運転時において、誘導同期電動機の効率を向上させる手段として、永久磁石4の内径側の磁気回路ヨーク部を広くすることがある。磁気回路ヨーク部を広くすれば、磁束の飽和を防ぐことができ、トルク定数を高くすることができる。 During the steady operation, as a means for improving the efficiency of the induction synchronous motor, the magnetic circuit yoke part on the inner diameter side of the permanent magnet 4 may be widened. If the magnetic circuit yoke portion is widened, the saturation of the magnetic flux can be prevented and the torque constant can be increased.
 ところが、図2に示すように、軸受部11が、回転子鉄心2の内側に向けて、深くまで差し込まれる構成の場合、回転子鉄心2を内側に窪ませる凹部17が形成される。凹部17が形成されると、凹部17と埋め込み穴3とで成す凹部側ヨーク部13が狭くなる。よって、凹部側ヨーク部13では、磁束が飽和する。磁束が飽和するため、トルク定数が低下する。この結果、誘導同期電動機の効率が低下する。 However, as shown in FIG. 2, in the case where the bearing portion 11 is configured to be inserted deeply into the inner side of the rotor core 2, a concave portion 17 is formed to recess the rotor core 2 inward. When the concave portion 17 is formed, the concave portion side yoke portion 13 formed by the concave portion 17 and the embedded hole 3 becomes narrow. Therefore, the magnetic flux is saturated in the concave-side yoke portion 13. Since the magnetic flux is saturated, the torque constant decreases. As a result, the efficiency of the induction synchronous motor is reduced.
 そこで、本発明の実施の形態1では、図3Aに示すように、永久磁石4は、上面20側に位置する永久磁石の端面4aが、上面20からの深さがD/2よりも深い場所に位置する。換言すれば、上面20からの深さがD/2より浅い場所において、凹部17の外径側には、永久磁石4が存在しない部分が存在する。この部分は、磁束密度が低い。 Therefore, in the first embodiment of the present invention, as shown in FIG. 3A, the permanent magnet 4 has a permanent magnet end surface 4 a located on the upper surface 20 side where the depth from the upper surface 20 is deeper than D / 2. Located in. In other words, in a place where the depth from the upper surface 20 is shallower than D / 2, there is a portion where the permanent magnet 4 does not exist on the outer diameter side of the concave portion 17. This part has a low magnetic flux density.
 さらに、上面20からの深さがD/2より深い場所において、永久磁石4が存在する部分では、凹部17の外径側に生じる磁束密度が高くなる。磁束密度が高くなる部分から、磁束密度が低い部分へ磁束が向かう。よって、磁束密度が緩和されるため、磁束が飽和することを防止できる。磁束の飽和を防止できるため、トルク定数は低下しない。この結果、回転子鉄心2に凹部17を設けても、誘導同期電動機の効率は低下しない。 Furthermore, the magnetic flux density generated on the outer diameter side of the concave portion 17 is increased in the portion where the permanent magnet 4 exists in a place where the depth from the upper surface 20 is deeper than D / 2. The magnetic flux is directed from the portion where the magnetic flux density is high to the portion where the magnetic flux density is low. Therefore, since the magnetic flux density is relaxed, the magnetic flux can be prevented from being saturated. Since the saturation of the magnetic flux can be prevented, the torque constant does not decrease. As a result, the efficiency of the induction synchronous motor does not decrease even if the recess 17 is provided in the rotor core 2.
 すなわち、本発明の実施の形態1における誘導同期電動機によれば、軸受部が、回転子鉄心の内側に向けて、深くまで差し込まれる。軸受部と回転子とが接しないよう、回転子鉄心には、軸受部から隙間を介して向かい合う凹部が形成される。本構成としても、効率が低下しない誘導同期電動機が提供できる。 That is, according to the induction synchronous motor in the first embodiment of the present invention, the bearing portion is inserted deeply toward the inner side of the rotor core. The rotor core is formed with a recess facing the bearing portion via a gap so that the bearing portion and the rotor do not contact each other. Even with this configuration, it is possible to provide an induction synchronous motor whose efficiency does not decrease.
 (実施形態2)
 他の実施の形態について、図4を用いて説明する。
(Embodiment 2)
Another embodiment will be described with reference to FIG.
 なお、実施の形態1における誘導同期電動機と同様の構成については、同じ符号を付して、説明を援用する。 In addition, about the structure similar to the induction synchronous motor in Embodiment 1, the same code | symbol is attached | subjected and description is used.
 図4は、本発明の実施の形態2における誘導同期電動機の回転子の要部を示す断面図である。 FIG. 4 is a cross-sectional view showing the main part of the rotor of the induction synchronous motor according to Embodiment 2 of the present invention.
 回転子鉄心2は、軸心10方向において、上面20の反対側に底面26を含む。永久磁石4は、底面26側に位置する永久磁石4の端面4bが、底面26を含む面に位置する。 The rotor core 2 includes a bottom surface 26 on the opposite side of the top surface 20 in the direction of the axis 10. In the permanent magnet 4, the end surface 4 b of the permanent magnet 4 positioned on the bottom surface 26 side is positioned on a surface including the bottom surface 26.
 すなわち、軸心10方向において、永久磁石4は、回転子鉄心2の底面26側に寄せられる。換言すれば、軸心10方向において、永久磁石4は、回転子鉄心2の反凹部17側に寄せられる。 That is, in the direction of the axis 10, the permanent magnet 4 is brought closer to the bottom surface 26 side of the rotor core 2. In other words, the permanent magnet 4 is brought closer to the opposite side of the rotor core 2 in the direction of the axis 10.
 本構成とすれば、永久磁石4の多くの部分は、焼嵌め部側ヨーク部14に位置する。つまり、永久磁石4の多くの部分は、より多く磁気回路ヨーク部を活用できる。よって、磁気回路ヨーク部の磁束が飽和しないため、トルク定数は低下しない。この結果、誘導同期電動機の効率は低下しない。 In this configuration, many portions of the permanent magnet 4 are located in the shrink-fitting portion side yoke portion 14. That is, many portions of the permanent magnet 4 can utilize more magnetic circuit yoke portions. Therefore, since the magnetic flux of the magnetic circuit yoke portion is not saturated, the torque constant does not decrease. As a result, the efficiency of the induction synchronous motor does not decrease.
 (実施形態3)
 さらに、他の実施の形態について、図5を用いて説明する。
(Embodiment 3)
Furthermore, another embodiment will be described with reference to FIG.
 なお、実施の形態1、2における誘導同期電動機と同様の構成については、同じ符号を付して、説明を援用する。 In addition, about the structure similar to the induction synchronous motor in Embodiment 1, 2, the same code | symbol is attached | subjected and description is used.
 図5は、本発明の実施の形態3における誘導同期電動機の回転子の要部を示す断面図である。 FIG. 5 is a cross-sectional view showing the main part of the rotor of the induction synchronous motor according to Embodiment 3 of the present invention.
 図5に示すように、実施の形態1および2で説明した構成より、軸心10方向において、永久磁石4の長さが短い。 As shown in FIG. 5, the length of the permanent magnet 4 is shorter in the direction of the axis 10 than the configuration described in the first and second embodiments.
 本構成とすれば、凹部17の外径側には、永久磁石4が存在しない。よって、永久磁石4から生じる磁束は、凹部17を形成したことによる影響を受けない。よって、誘導同期電動機の効率は低下しない。 In this configuration, the permanent magnet 4 does not exist on the outer diameter side of the recess 17. Therefore, the magnetic flux generated from the permanent magnet 4 is not affected by the formation of the recess 17. Therefore, the efficiency of the induction synchronous motor does not decrease.
 また、本発明の各実施の形態に用いられる永久磁石4は、希土類焼結磁石、希土類ボンド磁石またはフェライト磁石のうち、少なくとも1つで構成される。 The permanent magnet 4 used in each embodiment of the present invention is composed of at least one of a rare earth sintered magnet, a rare earth bonded magnet, or a ferrite magnet.
 希土類焼結磁石で構成される場合、希土類焼結磁石は磁束量が高いため、誘導同期電動機は、効率が高くなる。あるいは、誘導同期電動機は、小型にすることができる。 When the rare earth sintered magnet is composed of rare earth sintered magnets, the induction synchronous motor has high efficiency because the amount of magnetic flux is high. Alternatively, the induction synchronous motor can be reduced in size.
 希土類ボンド磁石で構成される場合、希土類ボンド磁石は磁石の形状に自由度を持たせることができる。よって、誘導同期電動機は、磁気回路の構成が最適なものとなる。 In the case of a rare earth bonded magnet, the rare earth bonded magnet can have a degree of freedom in the shape of the magnet. Therefore, the induction synchronous motor has an optimal magnetic circuit configuration.
 フェライト磁石で構成される場合、フェライト磁石は安価である。よって、誘導同期電動機は、コストを抑制して提供される。 When it is composed of ferrite magnets, ferrite magnets are inexpensive. Therefore, the induction synchronous motor is provided with reduced cost.
 以上のように、磁石の材料を変更することで、磁束量や形状、価格などを適宜、最適にすることができる。よって、誘導同期電動機に対する、多種多様な、要求や特性に応えることができる。 As described above, the amount of magnetic flux, shape, price, and the like can be optimized as appropriate by changing the material of the magnet. Accordingly, it is possible to meet a wide variety of requirements and characteristics for the induction synchronous motor.
 ところで、軸心方向において、回転子鉄心の両側に凹部を形成してもよい。この場合、固定子鉄心の上面側に位置する永久磁石の端面は、上面からの深さがD/2よりも深い場所に位置すればよい。また、固定子鉄心の底面側に位置する永久磁石の端面は、底面からの深さがD/2よりも深い場所に位置すればよい。 Incidentally, recesses may be formed on both sides of the rotor core in the axial direction. In this case, the end face of the permanent magnet located on the upper surface side of the stator core may be located in a place where the depth from the upper surface is deeper than D / 2. Further, the end face of the permanent magnet positioned on the bottom surface side of the stator core may be positioned where the depth from the bottom surface is deeper than D / 2.
 換言すれば、回転子鉄心に凹部を設けた場合、回転子鉄心の上面または回転子鉄心の底面からの深さがD/2までの部分において、凹部から外径側にかけて、永久磁石が存在しないように構成すればよい。本構成により、誘導同期電動機は、磁気回路ヨーク部の磁束が飽和しないため、トルク定数は低下しない。この結果、誘導同期電動機の効率は低下しない。 In other words, when a recess is provided in the rotor core, there is no permanent magnet from the recess to the outer diameter side in the portion up to D / 2 from the top surface of the rotor core or the bottom surface of the rotor core. What is necessary is just to comprise. With this configuration, in the induction synchronous motor, since the magnetic flux of the magnetic circuit yoke portion is not saturated, the torque constant does not decrease. As a result, the efficiency of the induction synchronous motor does not decrease.
 本発明における誘導同期電動機は、軸受部を回転子鉄心に向けて深く差し込むよう、凹部を設けても、効率が低下しない。よって、圧縮機に用いられる電動機に最適である。 In the induction synchronous motor according to the present invention, even if a recess is provided so that the bearing portion is inserted deeply toward the rotor core, the efficiency does not decrease. Therefore, it is most suitable for the electric motor used for the compressor.
 1  回転子
 2  回転子鉄心
 2a,2b  回転子鉄板
 3  埋め込み穴
 4  永久磁石
 4a,4b,9  端面
 7  短絡防止穴
 8  外縁部
 10  軸心
 11  軸受部
 11a  筒部
 12  焼嵌め部
 13  凹部側ヨーク部
 14  焼嵌め部側ヨーク部
 15  かご形導体
 16  回転軸
 17  凹部
 18  隙間
 20  上面
 22  表面
 24  内表面
 26  底面
 30  固定子
 32  固定子鉄心
 34  巻線
 50  圧縮機
 52  密閉容器
 54  吸入管
 56  吐出管
 58  オイル
 60  電動要素
 70  圧縮要素
 72  クランクシャフト
 74  ブロック
 76  ピストン
 77  連結部
 78  偏心軸
 80  給油溝
 82  圧縮室
 84  シリンダ
DESCRIPTION OF SYMBOLS 1 Rotor 2 Rotor iron core 2a, 2b Rotor iron plate 3 Embedded hole 4 Permanent magnet 4a, 4b, 9 End surface 7 Short-circuit prevention hole 8 Outer edge part 10 Axis core 11 Bearing part 11a Tube part 12 Shrink fit part 13 Recessed side yoke part 14 Shrink-fitting portion side yoke portion 15 Cage-shaped conductor 16 Rotating shaft 17 Recessed portion 18 Clearance 20 Upper surface 22 Surface 24 Inner surface 26 Bottom surface 30 Stator 32 Stator core 34 Winding 50 Compressor 52 Sealed container 54 Suction pipe 56 Discharge pipe 58 Oil 60 Electric element 70 Compression element 72 Crankshaft 74 Block 76 Piston 77 Connecting part 78 Eccentric shaft 80 Oil supply groove 82 Compression chamber 84 Cylinder

Claims (3)

  1. 固定子鉄心と、前記固定子鉄心に巻装する巻線と、を有する固定子と、
    前記固定子鉄心の内周面に対向して位置し、永久磁石が埋め込まれる埋め込み穴を含む回転子鉄心と、前記回転子鉄心の軸心を貫通する回転軸と、を有する回転子と、
    前記回転軸が内部を貫通する筒部を含み、前記回転子を回動自在に支持する軸受部と、
    を備え、
    前記回転子鉄心は、前記軸心方向に位置する前記回転子鉄心の上面において、前記上面からの深さDに亘って、前記回転軸の表面と対向する内表面を含むとともに、前記軸受部を前記回転軸に取り付けたときに、前記筒部と隙間を介して向かい合う凹部を含み、
    前記永久磁石は、前記軸心方向において、前記永久磁石の長さL1が前記回転子鉄心の長さL2よりも短く、かつ、前記上面側に位置する前記永久磁石の端面は、前記上面からの深さがD/2よりも深い場所に位置する誘導同期電動機。
    A stator having a stator core and a winding wound around the stator core;
    A rotor having a rotor core that is located opposite to the inner peripheral surface of the stator core and includes a buried hole in which a permanent magnet is embedded; and a rotary shaft that passes through the axis of the rotor core;
    The rotating shaft includes a cylindrical portion penetrating the inside, and a bearing portion that rotatably supports the rotor;
    With
    The rotor core includes an inner surface facing the surface of the rotating shaft over a depth D from the upper surface on the upper surface of the rotor core positioned in the axial direction, and the bearing portion includes When attached to the rotary shaft, including a recess facing the cylinder portion through a gap,
    In the axial direction, the permanent magnet has a length L1 of the permanent magnet shorter than a length L2 of the rotor core, and an end surface of the permanent magnet located on the upper surface side extends from the upper surface. An induction synchronous motor located in a place where the depth is deeper than D / 2.
  2. 前記回転子鉄心は、前記軸心方向において、前記上面の反対側に底面を含み、
    前記永久磁石は、前記底面側に位置する前記永久磁石の端面が、前記底面を含む面に位置する請求項1に記載の誘導同期電動機。
    The rotor core includes a bottom surface on the opposite side of the top surface in the axial direction,
    2. The induction synchronous motor according to claim 1, wherein the permanent magnet has an end surface of the permanent magnet located on the bottom surface side located on a surface including the bottom surface.
  3. 前記永久磁石は、希土類焼結磁石、希土類ボンド磁石またはフェライト磁石のうち、少なくとも1つで構成される請求項1または2のいずれか一項に記載の誘導同期電動機。 3. The induction synchronous motor according to claim 1, wherein the permanent magnet is composed of at least one of a rare earth sintered magnet, a rare earth bonded magnet, or a ferrite magnet.
PCT/JP2014/001933 2013-04-11 2014-04-03 Induction synchronous motor WO2014167807A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013082741A JP2016119727A (en) 2013-04-11 2013-04-11 Permanent magnet type synchronous induction motor
JP2013-082741 2013-04-11

Publications (1)

Publication Number Publication Date
WO2014167807A1 true WO2014167807A1 (en) 2014-10-16

Family

ID=51689229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001933 WO2014167807A1 (en) 2013-04-11 2014-04-03 Induction synchronous motor

Country Status (2)

Country Link
JP (1) JP2016119727A (en)
WO (1) WO2014167807A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107112831A (en) * 2014-12-19 2017-08-29 马渊马达株式会社 Motor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000134882A (en) * 1998-10-21 2000-05-12 Matsushita Electric Ind Co Ltd Rotor of permanent magnet motor and compressor mounting it
JP2001037126A (en) * 1999-07-16 2001-02-09 Matsushita Electric Ind Co Ltd Self-starting type permanent magnet synchronous motor
JP2008199833A (en) * 2007-02-15 2008-08-28 Toyota Central R&D Labs Inc Rotating electrical machine
JP2009027842A (en) * 2007-07-19 2009-02-05 Toshiba Corp Permanent-magnet synchronous motor
JP2009195055A (en) * 2008-02-15 2009-08-27 Toshiba Industrial Products Manufacturing Corp Rotating electric machine
JP2012082783A (en) * 2010-10-14 2012-04-26 Panasonic Corp Hermetic electric compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000134882A (en) * 1998-10-21 2000-05-12 Matsushita Electric Ind Co Ltd Rotor of permanent magnet motor and compressor mounting it
JP2001037126A (en) * 1999-07-16 2001-02-09 Matsushita Electric Ind Co Ltd Self-starting type permanent magnet synchronous motor
JP2008199833A (en) * 2007-02-15 2008-08-28 Toyota Central R&D Labs Inc Rotating electrical machine
JP2009027842A (en) * 2007-07-19 2009-02-05 Toshiba Corp Permanent-magnet synchronous motor
JP2009195055A (en) * 2008-02-15 2009-08-27 Toshiba Industrial Products Manufacturing Corp Rotating electric machine
JP2012082783A (en) * 2010-10-14 2012-04-26 Panasonic Corp Hermetic electric compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107112831A (en) * 2014-12-19 2017-08-29 马渊马达株式会社 Motor
CN107112831B (en) * 2014-12-19 2019-05-21 马渊马达株式会社 Motor

Also Published As

Publication number Publication date
JP2016119727A (en) 2016-06-30

Similar Documents

Publication Publication Date Title
KR101193045B1 (en) Motor, hermetic compressor comprising the same and refrigerator comprising the same
JP6422566B2 (en) Motor rotor, compressor motor using the same, and compressor
JP6680779B2 (en) Compressor and refrigeration cycle device
JP6328257B2 (en) Permanent magnet embedded electric motor, compressor, and refrigeration air conditioner
JP6328342B2 (en) Rotor, electric motor, compressor and refrigeration air conditioner
JP5061576B2 (en) Axial gap type motor and compressor using the same
EP1690006B1 (en) Hermetic compressor
WO2014167807A1 (en) Induction synchronous motor
JP6297220B2 (en) Electric motor for compressor, compressor, and refrigeration cycle apparatus
JP7038827B2 (en) Stator, motor, compressor and air conditioner
KR100428512B1 (en) Rotator of synchronous motor
JP4655786B2 (en) Hermetic compressor
KR101918065B1 (en) Electric motor with permanent magnet and compressor having the same
JP2005168097A (en) Motor and rotary compressor
KR101811608B1 (en) Electric motor and compressor having the same, refrigerator with compressor
JP6556342B2 (en) Stator, motor, compressor and refrigeration cycle equipment
JP6395948B2 (en) Stator core, compressor and refrigeration cycle device
WO2019123531A1 (en) Stator and electric motor provided with stator
KR101873420B1 (en) Electric motor with permanent magnet and compressor having the same
KR101409873B1 (en) Hermetic compressor
KR20210029570A (en) Electric motor and compressor having the same
JP2010246229A (en) Compressor with synchronous motor mounted, and method of manufacturing synchronous motor
JP2013207810A (en) Rotor
JP2004339941A (en) Hermetic compressor
JP2005180312A (en) Electric compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14782464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP