JP2008199736A - 車両用制御装置及び車両制御方法 - Google Patents

車両用制御装置及び車両制御方法 Download PDF

Info

Publication number
JP2008199736A
JP2008199736A JP2007030619A JP2007030619A JP2008199736A JP 2008199736 A JP2008199736 A JP 2008199736A JP 2007030619 A JP2007030619 A JP 2007030619A JP 2007030619 A JP2007030619 A JP 2007030619A JP 2008199736 A JP2008199736 A JP 2008199736A
Authority
JP
Japan
Prior art keywords
temperature
inverter
motor
current
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007030619A
Other languages
English (en)
Other versions
JP4984942B2 (ja
Inventor
Yoshinori Sugita
喜徳 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007030619A priority Critical patent/JP4984942B2/ja
Publication of JP2008199736A publication Critical patent/JP2008199736A/ja
Application granted granted Critical
Publication of JP4984942B2 publication Critical patent/JP4984942B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

【課題】新たな部品を追加することなく、過電圧保護回路がオン故障した場合にインバータ等に与えられる損傷をより小さくすることが可能な車両用制御装置を提供する。
【解決手段】エンジン2、エンジン2の回転に伴って駆動して発電する発電機7、発電された電力を変換するインバータ9、変換された電力の供給を受けて回転するモータ4を備えるモータ駆動車両を制御する車両用制御装置において、抵抗素子22を含む過電圧保護回路20、抵抗素子22、抵抗素子22への電流供給を遮断することができなくなったことを検出する過電圧検知回路21、オン故障が検出された場合、抵抗素子22に流れる電流の少なくとも一部を、インバータ9を介してモータ4に供給するECU8を設ける。
【選択図】 図2

Description

本発明は、車両用制御装置及び車両制御方法にかかり、特にインバータが過電圧の保護回路を備えたモータ駆動車両を制御する車両用制御装置、車両制御方法に関する。
現在、エンジンによって発電した電力をモータに供給し、このモータによって後輪を回転させ、必要に応じて四輪駆動走行するモータ駆動車両が実用化されている。モータ駆動車両には、モータに交流モータを採用し、発電した直流電流をインバータによって交流変換してからモータに供給するものがある。
一般的に知られているように、インバータは比較的耐圧が低く、かつ高価な素子を多く備えている。このため、過剰な電圧がかかることを防ぐための過電圧保護回路を備えるインバータも多い。過電圧保護回路の多くは、電力を熱変換するための抵抗素子と、抵抗素子に電流を流すか否かを決めるスイッチング素子とを備えている。インバータ用の過電圧保護回路の従来例としては、例えば、特許文献1に記載された発明が挙げられる。
ただし、過電圧保護回路では、スイッチング素子がオフできなくなる、いわゆるオン故障が起こり得る。オン故障が起こった場合、発電機が発電した電流は、抵抗素子に流れ続ける。発電機は停止後もエンジンが回転を止めない限り回転し、磁界の形成に磁石を使う発電機は、この回転によって数A〜数十Aの電流を発生し得る。
このような状態で車両を走行させ続けると、抵抗素子大量の熱を発生し、熱が周囲の素子等に伝搬して素子の温度を上昇させることになる。特に、発電機とインバータとをリレー等を介さずに直結する構成では、発電した電力が抵抗素子へ供給されることを防ぐことができず、本来保護すべきインバータに過電圧保護回路が損傷を与える可能性がある。
このような課題を解決する一般的な方法としては、発電機とインバータとの間にリレーを設け、オン故障が発生した場合には直ちにリレーを切り離すことが考えられる。また、過電圧保護回路を並列に複数設け、1つの過電圧保護回路がオン故障した場合には他の過電圧保護回路に電流を流すよう切替え、この過電圧保護回路をオフすることも考えられる。
特開2001−352664号公報
しかしながら、リレーや過電圧保護回路といった部品を新たに車両に追加することは、車両の生産コストを高めると共に、車両内部における部品の設置スペースの点から制限される。特に、過電圧保護回路は、高価な部品である。さらに、過電圧保護回路がインバータのフェールに備えた構成であることを考えた場合、フェールセーフ機能の故障に備えるため新たな部品を追加することになって望ましくない。
本発明は、このような点に鑑みてなされたものであり、新たな部品を追加することなく、過電圧保護回路がオン故障した場合にインバータ等に与えられる損傷をより小さくすることが可能な車両用制御装置及び車両用制御装置によって実行される車両制御方法を提供することを目的とする。
以上の課題を解決するため、本発明の車両用制御装置は、内燃機関と、当該内燃機関と直接接続され、内燃機関の回転に伴って駆動し発電する発電機と、当該発電機が発電した電力を変換するインバータと、当該インバータによって変換された電力の供給を受けて回転するモータと、を備えるモータ駆動車両を制御する車両用制御装置であって、前記インバータに供給される電流を熱に変換する抵抗素子を含む過電圧保護手段と、前記過電圧保護手段の前記抵抗素子への電流供給を遮断することができなくなったことを検出するオン故障検出手段と、前記オン故障検出手段によってオン故障が検出された場合、前記過電圧保護手段に含まれる前記抵抗素子に流れる電流の少なくとも一部を前記インバータを介して前記モータに供給する、分流制御を実行する電流制御手段と、を備えることを特徴とする。
このように構成すれば、インバータに供給される電流を熱に変換する抵抗素子への電流供給を遮断することができなくなった場合、抵抗素子に流れる電流の少なくとも一部をインバータを介してモータに供給する分流制御を実行することができる。このため、抵抗素子の温度における発熱量を抑え、抵抗素子が発生する熱によってインバータに含まれる素子が損傷する可能性を低減することができる。
上記した発明は、過電圧保護回路がオン故障した場合、車両が故障を修理できる場所に向かうまで走行する間に抵抗素子が発生する熱量を抑えることができる。このため、修理までの間に熱がさらに発生し、インバータ等の部品の損傷の程度が大きくなることを抑えることができる。また、このような効果を、新たな部品の追加等、構成を変更することなく得ることができる。
以下、図を参照して本発明に係る車両用制御装置、車両制御方法の実施形態を説明する。
図1は、本実施形態の車両用制御装置が搭載される車両を模式的に示した図である。図示した車両は、モータ四輪駆動車両であって、左右前輪1L、1Rが、内燃機関であるエンジン2によって駆動される主駆動輪であり、左右後輪3L、3Rが、ACモータ4によって駆動可能な従駆動輪である。
エンジン2の吸気管路には、図示しないメインスロットルバルブとサブスロットルバルブとが介装されている。メインスロットルバルブは、アクセルペダルの踏込み量等に応じてスロットル開度を調整制御するバルブである。サブスロットルバルブは、ステップモータ等をアクチュエータとし、アクチュエータのステップ数に応じた回転角によって開度が調整制御されるバルブである。
サブスロットルバルブのスロットル開度をメインスロットルバルブの開度以下等に調整することにより、エンジンの出力トルクを運転者のアクセルペダルの操作とは独立して減少させることができる。つまり、サブスロットルバルブの開度を調整することによってエンジン2による前輪1L、1Rの加速スリップを抑制する駆動力を制御することができる。
エンジン2の出力トルクTeは、トランスミッション及びデファレンスギヤ5を通じて左右前輪1L、1Rに伝達される。また、エンジン2の出力トルクTeの一部は、無端ベルト13を介して発電機7に伝達される。
本実施形態の発電機7は、エンジン2と無端ベルト13によって直接接続されていて、エンジン2の回転数Neにプーリ比を乗じた回転数Ngで回転する。発電機7は、ECU(電子制御ユニット:Electronic Control Unit)8によって調整される界磁電流Ifgに応じてエンジン2に対し負荷となり、その負荷トルクに応じた発電をする。
発電機7の発電電力の大きさは、回転数Ngと界磁電流Ifgとの大きさにより決定される。なお、発電機7の回転数Ngは、エンジン2の回転数Neからプーリ比に基づき演算することができる。発電機7が発電した電力は、オルタネータ12によって変換されてバッテリ10に蓄電される。
また、本実施形態では、発電機7が発電した電力がインバータ9を介してACモータ4に供給可能となっている。ACモータ4の駆動軸は、減速機を含むデフクラッチであるクラッチ11を介して後輪3L、3Rに接続されている。発電機7から図示しない整流器を介して供給された直流の電力は、インバータ9内で三相交流に変換されてACモータ4を駆動する。
減速機を備えたクラッチ11は、例えば湿式多板クラッチであって、ECU8からの指令に応じて締結及び開放を行う。なお、クラッチ11は、湿式多板クラッチ、パウダークラッチ、ポンプ式クラッチでのいずれであってもよい。
また、各車輪1L、1R、3L、3Rには、車輪速センサ27FL、27FR、27RL、27RRが設けられている。各車輪速センサ27FL、27FR、27RL、27RRは、対応する車輪1L、1R、3L、3Rの回転速度に応じたパルス信号を車輪速検出値としてECU8に出力する。
ECU8は、ACモータ4、インバータ9、発電機7といった各構成を統括的に制御する構成である。ECU8は、本実施形態の電流制御手段等として機能する構成であるから、後に詳述するものとする。
図2は、図1に示したインバータ9をより詳細に示した図である。本実施形態のインバータ9は、インバータ9にかかる過電圧からインバータ9に備えられるパワーモジュール25を備えている、
パワーモジュール25は、複数のパワー素子24を備えたモジュールであって、パワー素子は比較的高コストであり、また、比較的熱に弱いことが知られている。本実施形態の構成は、このようなパワーモジュール25を保護する過電圧保護回路20を備えている。過電圧保護回路20は、抵抗素子22と駆動回路23とを備えている。駆動回路23は、過電圧によって発電機7から過剰な電流がインバータ9に供給された場合にオンして抵抗素子22に電流を流し、電流を熱エネルギーとして消費させ、パワー素子24が発熱して破損することを防いでいる。
また、過電圧保護回路20は、ECU8によって制御されている。本実施形態のECU8は、車両全般を電子的に制御する構成である。本実施形態は、インバータ9にかかる電圧を検出する過電圧検知回路21を備え、過電圧検出回路によって検出された電圧値が所定の値以上に達した場合にECU8が駆動回路23をオンし、抵抗素子22に電流を流している。
ところで、過電圧保護回路20では、駆動回路23がオンになって抵抗素子22に供給される電流を遮断できなくなる、いわゆるオン故障が発生し得る。駆動回路23がオフできなくなると、抵抗素子22に電流が流れ続けて設計時に予想されていたよりも大量の熱が発生する。発生した熱によってパワー素子24が加熱され続けることにより、パワー素子24が故障することが予想される。この故障の程度は、パワー素子24に加わる温度及び熱が加わる時間の長さに応じて大きくなる。
本実施形態は、抵抗素子22の発熱温度及び発熱の時間を抑止し、車両を停止させられるまでの間に過電圧保護回路20やパワー素子24の損傷を抑えることを目的にしている。この目的のため、本実施形態は、オン故障検が検出された場合、過電圧保護回路20に含まれる抵抗素子22に流れる電流の少なくとも一部を、インバータ9を介してACモータ4のステータコイル29に供給している。
インバータ9を介した電流のACモータ4のステータコイル29への供給は、ECU8がインバータ9を構成するパワー素子24のオン、オフを制御してステータコイルに電流を供給することによって実現できる。電流の少なくとも一部の流路をインバータ9へ変更する制御を、本実施形態では、以降分流制御とも記す。
なお、以上の制御において、オン故障の検出は、ECU8において実行されている。オン故障の検出は、例えば、ECU8が過電圧保護回路20にかかる電圧をECU8が常時監視し、電圧が予め設定されている値より低いことを検出したときされるものであってもよい。
また、ACモータ4のステータコイル29への電流の分流制御は、ECU8が、素子26をオンすることによって行われる。素子26は、ECU8がモータ4を制御するために設けられている。
ここで、ECU8の本実施形態にかかる機能ブロック図を示す。図3は、ECU8の機能ブロック図である。図示したように、ECU8は、目標モータトルク演算部8A、発電機制御部8B、モータ制御部8C、TCS制御部8D、クラッチ制御部8E、エンジントルク制御コントローラ(ECM)85を備えている。また、以上の構成の他、本実施形態にかかるインバータ保護制御部8Fを備えている。
インバータ保護制御部8Fは、複数の温度検出部によって構成されている。具体的には、抵抗素子22の温度を検出するための抵抗温度検出部81、ACモータ4のステータコイル29の温度を検出するモータ温検出部82、パワーモジュール25の温度を検出するパワーモジュール温度検出部83を備えている。なお、以上の温度検出部は、温度を直接検出するものばかりでなく、間接的に検出するものであってもよい。
間接的に温度を検出するものとしては、例えば、抵抗素子22等の各構成を流れる電流や、かかる電圧を検出して温度を推定するものが考えられる。抵抗素子22の温度の推定は、例えば、過電圧保護回路20の抵抗値が所定の時間以上しきい値よりも低下しない、過電圧保護回路20を流れる電流値が所定の値以上であるといったことによっても可能になる。
さらに、各温度検出部は、温度と共に温度が検出されている時間をも検出し、発生する熱量を推定するものであってもよい。時間を検出する場合、抵抗素子22等が所定の温度に達したことばかりでなく、所定の温度以上の温度が検出された時間が所定の時間に達したことによって分流制御等を実行するものであってもよい。このため、インバータ保護制御部8Fは、各温度検出部によって所定の温度以上の温度が検出された時間を計測するタイマ84を備えている。ECU8は、各温度検出部によって検出された温度と共に、タイマ84によって計測された計測時間に基づいて分流制御等をする。
所定の温度以上の温度が検出された時間が所定の時間に達したか否かの判断は、所定の温度以上の検出時間の累積値であってもよいし、連続して検出された時間であってもよい。
なお、一般的な車両は、ECU8における制御のため、抵抗素子22、モータ4、パワー素子24の温度を検出するための構成を備えている。このため、以上述べた抵抗温度検出部81、モータ温度検出部82、パワーモジュール検出部83として、このような既存の構成を用いることも可能である。
目標モータトルク演算部8Aは、4輪の車輪速度信号に基づいて算出される前後輪の車輪速度差とアクセルペダル開度信号とから、モータトルク指令値Ttを算出する構成である。より具体的には、目標モータトルク演算部8Aは、4輪の車輪速度信号Vfr〜Vrrに基づいて次式をもとに前後回転差ΔVを算出する。
ΔV=(Vfr+Vfl)/2−(Vrr−Vrl)/2 ………(1)
そして、前後回転差ΔVに基づいて、予め格納されたマップを参照し、第1モータ駆動力TΔVを算出して後述するセレクトハイ部に出力する。第1モータ駆動力TΔVは、前後回転差ΔVが大きくなると共に比例的に大きく算出されるように設定されている。さらに、4輪の車輪速度信号と車両が発生する総駆動力Fとをセレクトローして車速信号Vを算出する。ここで、総駆動力Fは、トルクコンバータ滑り比から推定される前輪駆動力とモータトルク指令値Ttから推定される後輪駆動力との和によって求められる。
また、目標モータトルク演算部8Aは、第2モータ駆動力Tvを算出する。具体的には、第2モータ駆動力Tvは、車速Vとアクセル開度Accとに基づいて算出される。この第2モータ駆動力Tvは、アクセル開度Accが大きくなるほど大きく、また車速Vが大きくなるほど小さく算出されるように設定されている。
そして、目標モータトルク演算部8Aは、第1モータ駆動力TΔVと第2モータ駆動力Tvとをセレクトハイした値を、目標トルクTttとする。そして、後輪速Vrl,Vrr、車速Vに基づいて、公知の方法により後輪トラクションコントロール制御を行って、最終的なACモータ4のトルク指令値Ttを出力する。
発電機制御部8Bは、発電機7の界磁電流Ifgを制御する構成である。より具体的には、発電機制御部8Bでは、目標モータトルク演算部8Aで算出されたトルク指令値Ttとモータ回転速度Vmとに基づいて、次式をもとにモータ4に必要な電力Pmが算出される。
Pm=Tt×Vm ………(2)
そして、算出されたモータ必要電力Pmに基づいて、次式をもとに発電機7が出力すべき発電機必要電力Pgを算出する。
Pg=Pm/Иm ………(3)
ここで、Иmはモータ効率である。つまり、発電機必要電力Pgはモータ必要電力Pmよりモータ効率分多く出力しなければならないことになる。
発電機の目標出力電力PGは、算出された発電機必要電力Pgと、発電電力の制限値PL1及びPL2とをセレクトローして算出される。なお、電力制限PL1は、発電電力が発電機7を駆動するベルトの伝達可能トルクに応じて決まる電力を上回らないようにするための上限値である。電力制限値PL2は、発電電力が、エンジンの負荷過大によるエンストや運転性劣化を起こす可能性のある電力を上回らないようにするための上限値である。
モータ制御部8Cは、トルク指令値Ttとモータ回転速度Vmとから公知のベクトル制御を行う。そして、インバータ9に3相のパワー素子24のスイッチング制御信号を出力し、インバータ9を制御する。インバータ9では、スイッチング制御信号によって3相交流電流が制御される。
TCS制御部8Dは、ECM85からのエンジン発生駆動トルクデマンド信号Tet、前輪回転速度Vfr,Vfl、車速Vに基づいて、公知の方法によりエンジン制御部に対してエンジン発生駆動トルクデマンド信号Teを送り返すことにより前輪トラクションコントロール制御を行う。ECM85は、前輪トラクションコントロール制御によってエンジン2を制御する。
クラッチ制御部8Eは、上記クラッチ11の状態を制御し、4輪駆動状態と判定している間はクラッチ11を接続状態に制御する。
以上の構成において、インバータ保護制御部8Fは、オン故障が検出された場合、モータ制御部8Cに制御信号を送ってパワー素子24をスイッチング制御させ、分流制御を実行している。このようなインバータ保護制御部8Fは、モータ制御部8Cと共に本実施形態の電流制御手段として機能する。また、過電圧保護回路20はインバータ9に供給される電流を熱に変換する抵抗素子22を含む過電圧保護手段に相当する。また、ECU8及び過電圧検知回路21が、抵抗素子22への電流供給を遮断することができなくなったことを検出するオン故障検出手段として機能する。
また、本実施形態は、モータ温度検出部82、インバータ9のパワーモジュール温度検出部83といったモータ4、インバータ9の構成部品の温度を間接的にまたは直接的に検出する温度検出手段備えている。このため、インバータ保護制御部8Fは、モータ温度検出部82、パワーモジュール温度検出部83によって検出された温度が所定の温度に達した場合、分流制御によるモータ4への電流供給を停止することができる。
この際、モータ4への電流供給を停止は、インバータ9を停止することによって実行する。このようにすれば、インバータ9の温度が上昇することを防いでインバータ9の損傷を抑えることができる。なお、インバータ9の停止は、インバータ保護制御部8Fがインバータ9に対し、停止を指示する制御信号を出力することによっても可能である。
また、インバータ保護制御部8Fは、上記した動作を、検出されたモータ4やインバータ9の部品の温度に基づいて、繰り返して実行することも可能である。このように構成すれば、モータ4やインバータ9の部品が所定の温度以上に達することを抑えながら車両を走行させられる時間を延ばすことができる。
また、本実施形態では、抵抗素子22の温度を間接的にまたは直接的に検出する抵抗温度検出部81を備えている。このため、インバータ保護制御部8Fは、モータ4やインバータ9の部品の温度ばかりでなく、抵抗素子22の温度に基づいてモータ4への電流供給、停止を繰り返して実行することができる。このように構成すれば、モータ4やインバータ9を保護するために抵抗素子22において所定の温度以上の熱が発生することを防ぐことができる。
また、本実施形態は、前記したようにタイマ84を備えている。このため、インバータ保護制御部8Fは、抵抗温度検出部81、モータ温度検出部82、パワーモジュール温度検出部83によって所定の温度以上の温度が検出された時間を判定することができる。そして、インバータ保護制御部8Fは、抵抗温度検出部81、モータ温度検出部82、パワーモジュール温度検出部83によって検出された温度とタイマ84によって判定された検出時間とに基づいて分流制御をすることが可能になる。なお、このような構成において、タイマ84は、本実施形態の検出時間判定手段として機能する。
このように構成すれば、抵抗素子22やインバータ9等の温度ばかりでなく、発生した熱量やインバータ9が加熱される時間をも考慮してインバータ9やモータ4等のダメージを判定することができる。
また、当然のことながら、分流制御によってモータ4に電流を供給した場合であってもモータ4は回転してトルクを発生する。トルクの発生は車両の挙動に影響するため、本実施形態の分流制御の実行が運転者に違和感を与えるおそれが生じる。
この点を解消するためには、オン故障が検出された場合、インバータ保護制御部8Fは、クラッチ制御部8Eを制御することによってクラッチ11を制御し、モータ4と後輪3L、3Rとを分離することも可能である。このように構成した場合、インバータ保護制御部8Fは、クラッチオフ手段としても機能する。
また、本実施形態は、クラッチ11がオフできない場合を想定し、モータ4に対してトルクが発生しないよう電流を供給することも可能である。このような電流供給は、モータ4に対してモータトルクを発生させるための電流成分以外の電流成分を供給することによって可能になる。
具体的には、インバータ保護制御部8Fがモータ制御部8Cに指示し、インバータ9にd軸電流をモータ4に供給してq軸電流を供給しないようベクトル制御をさせる。d軸電流は磁界を発生するために消費される電流であって、q軸電流がトルクの発生に消費される電流である。
したがって、q軸電流だけをモータ4に供給すれば、モータ4においてトルクが発生することがなく、分流制御が車両の走行に影響することをなくすことができる。なお、q軸電流だけを供給する制御は、dq制御という周知の技術であるからこれ以上の説明を省くものとする。
さらに、本実施形態は、インバータ保護制御部8Fが、分流制御の後、エンジン2の回転数を低減して発電機7の発電量を抑えるようにしてもよい。このような制御は、走行中に分流制御によって温度上昇が抑えられなくなった場合、インバータ保護制御部8FがTCS制御部8Dにエンジン2の回転数を低下させるよう指示する信号を出力することによって実現できる。このような構成において、インバータ保護制御部8Fは、内燃機関制御手段としても機能する。
なお、エンジン2の回転を低下させる制御を分流制御の後に実行する理由は、運転者の意思とは無関係にエンジン2の回転数を低下させることの運転性に対する影響が、分流制御に比べて大きいことによる。
すなわち、本実施形態では、以上述べた複数のインバータ9を保護する手段を、車両の走行に対する影響が少ない順に実行するものとする。したがって、本実施形態では、先ず分流制御が実行され、分流制御だけでは温度の上昇が抑えられない場合にエンジン2の回転数を低下させる。
次に、図3に示した構成動作について説明する。
図4は、駆動回路23のオン故障によって抵抗素子22が加熱されることを説明するための図である。駆動回路23がオン故障すると、過電圧検知回路21が、過電圧保護回路20にかかる電圧が予め設定されている値より低いことを検出する。ECU8は、この検出によって駆動回路23のオン故障を検出する。
ECU8は、オン故障検出によって発電機7の制御を停止する。しかし、エンジン2が発電機7を直接回転させる構成にあっては、エンジン2を停止させない限り発電機7が回転し続ける。このため、車両を修理工場等に運ぶまでの間、発電機7が回転し続けることになる。また、発電機7は、制御停止によって界磁電流を消失させた場合にも磁界を形成するための磁石を備えているので、数A〜数十Aの電流を発生し得る。
発生した電流は、オン故障した過電圧保護回路20の抵抗素子22に流れ込み、これを遮断することができなくなる。抵抗素子22は、流れ込む電流の値の二乗と抵抗値とに比例した熱を発生し、この熱がインバータ9のパワーモジュール25に伝搬するおそれが生じる。
本実施形態では、このような場合、インバータ保護制御部8Fがモータ制御部8Cを制御してインバータ9のパワー素子24をオンあるいはオフさせてモータ4に電流を供給する、分流制御を実行する。図5は、オン故障の発生時、抵抗素子22に流れ込む電流を、パワーモジュール25を介してモータ4に分流することを示した図である。
図6ないし図9は、以上述べた本実施形態の車両制御方法を説明するためのフローチャートである。全てのフローチャートは、インバータ保護制御部8Fにおいて実行される処理である。
図6に示したフローチャートは、パワーモジュール温度検出部83によってインバータ9の温度を検出して分流制御を繰り返す処理を説明するためのフローチャートである。図6に示したように、本実施形態の車両制御方法では、オン故障の発生が検出されると(S61:Yes)、車両を走行させるためのインバータ9に対する制御を停止する(S62)。そして、分流制御が後輪3L、3Rの回転に影響しないようにクラッチ11をオフする(S63)。
次に、インバータ保護制御部8Fは、分流制御のためのインバータ制御を開始する。具体的には、パワーモジュール25のパワー素子24をオンあるいはオフさせ、抵抗素子22に流れ込む電流の一部をモータ4に供給するインバータ9の制御を開始する(S64)。そして、パワーモジュール温度検出部83によって検出されたインバータ温度が100℃以上になったか否か判断する(S65)。なお、ここでいうインバータ9の温度とは、パワーモジュール温度検出部83によって検出された、パワーモジュール25あるいはパワー素子24の温度をいうものとする。
ステップS65において、インバータ保護制御部8Fは、インバータの温度が100℃に達するまでは(S65:No)、ステップS64のインバータ制御を継続する。また、インバータの温度が100℃に達した場合(S65:Yes)、ステップS64のインバータ制御を停止する(S66)。
また、本実施形態では、パワーモジュール温度検出部83が常時インバータ温度を検出しておき、インバータ温度が50℃以下になったか否か判断している(S67)。インバータ9の温度が50℃以下になった場合(S67:Yes)、再び分流制御を実行する(S64)。
一方、ステップS67において、インバータ9の温度が50℃以下にならないと判断された場合(S67:No)、50℃以上の状態が所定の時間以上継続したか否か判断する(S68)。そして、インバータ9の温度が50℃以上の状態が所定の時間以上継続すると(S68:Yes)、依然オン故障の状態であるか否かを判断するため、ステップS61の処理に戻る。
また、インバータ9の温度が50℃以上の状態が所定の時間に達しない場合(S68:No)、時間に達するまで待機し、所定の時間に達した場合にステップS61の処理に戻る。なお、ステップS61において、オン故障が検出されない場合(S61:No)、繰り返しオン故障を検出する。
次に、本実施形態の車両制御方法について、図7のフローチャートを用いて説明する。図7は、図6のフローチャートに示した処理に加え、さらにモータ4の温度を考慮して分流制御する処理のフローチャートである。なお、モータ4の温度とは、モータ温度検出部82がステータス回路29の温度を測定して得るものとする。
図7に示したフローチャートは、図6のフローチャートと同様に、オン故障の発生が検出されると開始される。そして、オン故障の発生により(S71:Yes)、車両を走行させるためのインバータ9に対する制御を停止して(S72)、クラッチ11をオフする(S73)。そして、インバータ保護制御部8Fは、分流制御を開始する(S74)。
図7のフローチャートでは、インバータ保護制御部8Fが、パワーモジュール温度検出部83によって検出された温度が100℃以上であるか判断すると共に、モータ温度測定部82によって測定された温度が150℃以上であるか否かを判断する(S75)。
ステップS75の判断の結果、インバータ保護制御部8Fは、インバータ9の温度が100℃、またはモータ4の温度が150℃に達するまでは(S75:No)、ステップS64のインバータ制御を継続する。また、インバータの温度が100℃、またはモータ4の温度が150℃に達した場合(S75:Yes)、ステップS74のインバータ制御を停止する(S76)。
なお、インバータ制御を停止した場合には、エンジン回転数の低減等、他の方法によってインバータ9の温度上昇を防いでいる。エンジン回転数の低減は、車両の走行に大きく影響するため、インバータ制御によって温度上昇が抑えられなくなってから行われる。
さらに、本実施形態では、インバータ9の温度が50℃以下になった、またはモータ4の温度が100℃以下になったか否か判断している(S77)。インバータ9の温度が50℃以下になった、またはモータ4の温度が100℃以下になった場合(S77:Yes)、再び分流制御を実行する(S74)。
一方、ステップS77において、インバータ9の温度が50℃以下、またはモータ4の温度が100℃以下にならないと判断された場合(S77:No)、インバータ9の温度が50℃以上、またはモータ4の温度が100℃以上の状態が所定の時間以上継続したか否か判断する(S78)。そして、インバータ9の温度が50℃以上、またはモータ4の温度が100℃以上の状態が所定の時間以上継続すると(S78:Yes)、依然オン故障の状態であるか否かを判断するため、ステップS71の処理に戻る。
また、インバータ9の温度が50℃以上、またはモータ4の温度が100℃以上の状態が所定の時間に達しない場合(S78:No)、時間に達するまで待機し、所定の時間に達した場合にステップS71の処理に戻る。なお、ステップS71において、オン故障が検出されない場合(S71:No)、繰り返しオン故障を検出する。
次に、本実施形態の車両制御方法について、図8のフローチャートを用いて説明する。図8は、図7のフローチャートに示した処理に加え、さらに抵抗素子22の温度を考慮して分流制御する処理のフローチャートである。抵抗素子22の温度とは、抵抗温度検出部81が、抵抗素子22または過電圧保護回路20の温度を測定して得るものとする。
図8に示したフローチャートに示された処理では、図7を用いて説明したフローチャートと同様に、インバータ9の温度が50℃以上、またはモータ4の温度が100℃以上の状態が所定の時間以上継続したか否か判断する(S89)。その後、抵抗温度検出部81を用い、抵抗素子22の温度が150℃以上であるか否か判断する。
ステップS89において、抵抗素子22が150℃以上に達したと判断された場合(S89:Yes)、再度、インバータ9の温度が100℃以上、またはモータ4の温度が150℃以上であるか否かが判断される(S85)。ステップS85において、インバータ9の温度が100℃以上、またはモータ4の温度が150℃以上に達していると判断された場合(S85:Yes)、インバータ制御を停止する(S86)。なお、インバータ9の温度が100℃以上、またはモータ4の温度が150℃以上に達していない場合(S85:No)、インバータ保護制御部8Fは、分流制御を継続する。
一方、ステップS89において、抵抗素子22が150℃以上に達していないと判断された場合(S89:No)、インバータ9の温度が50℃以下、またはモータ4の温度が100℃以下であるか判断する。
また、上記したフローチャートのステップS89では、抵抗素子22の温度を直接測定するものとしているが、本実施形態は、このような構成に限定されるものではない。例えば、以下の式(1)、(2)によって推定するものであってもよい。
式(1)は、抵抗素子22に流れる電流の値と、抵抗素子22が連続して通電される時間とを乗じて抵抗素子22の温度の指標値とする。式(1)では、この指標値に実験や設計値等から求められる定数αを乗じて通電による抵抗素子22の温度上昇分が算出される。さらに、上昇分と抵抗素子22の初期の温度とを加算し、抵抗素子22の現在の温度が求められる。なお、初期の温度とは、インバータ制御の前に予め測定された温度であってもよいし、設計時に予めインバータ保護制御部8F等に保存されている値であってもよい。
式(2)は、通電電流と連続通電時間の関数fを予め設定しておき、関数fに測定された通電電流と連続通電時間を代入して抵抗素子22の温度の上昇分を算出する式である。関数fは、予め実験等によって求められた実験式でよく、インバータ保護制御部8F等に保存しておくものであってもよい。
初期温度+α(通電時間×連続通電時間) 式(1)
初期温度+f(通電時間×連続通電時間) 式(2)
図9は、さらに、クラッチ11をオフしたくない、あるいは故障等によってクラッチ11をオフできなくなった場合を考慮した処理を説明するためのフローチャートである。図9に示したフローチャートでは、インバータ9の制御を停止した後、クラッチ11のオフが可能であるか否かを判断する(S93)。
ステップS93において、クラッチ11のオフが可能であれば(S93:Yes)、クラッチ11をオフする(S94)。そして、先に述べた処理と同様のインバータ制御によって分流制御を実行する(S95)。
一方、ステップS93において、クラッチのオフができないと判断した場合(S93:No)、クラッチ11をオフすることなくインバータ制御を実行する(S101)。ステップS101のインバータ制御は、dq制御で実行される。このように制御することによって、モータ4に電流を供給しながらモータトルクが発生することをなくし、クラッチ11をオフできない場合であっても後輪3L、3Rに影響を及ぼすことなく分流制御を実行することができる。
また、図9に示した分流制御は、故障によってクラッチ11がオフできなくなった場合にのみ適用されるものではない。本実施形態は、例えば、運転者がクラッチ11をオフすることを望まない場合にもdq制御を使った分流制御を選択できるようにしてもよい。このようにすれば、クラッチ11をオフしてモータ4を回転させる、いわゆる空回りによってモータ4の回転音が発生することを防ぐことができる。
このような回転音は、通常の運転において発生しないことから、運転者が車両に異常が生じたという印象を与える可能性がある。したがって、回転音の発生を防ぐ図9のフローチャートに示した処理は、運転者に不安感や違和感を与えないという効果を奏することになる。
なお、以上述べた処理において、分流制御の繰り返しの基準となるモータ4、インバータ9、抵抗素子22やの温度は、フローチャート中に示した100℃等の具体的な数値に限定されるものではない。温度は、抵抗素子22の抵抗値やパワーモジュール25の耐熱温度、モータ4のステータコイル29の規模等によって設計時に決められる。
本発明の一実施形態の車両用制御装置が搭載される車両を模式的に示した図である。 図1に示したインバータをより詳細に示した図である。 図1に示したECU8機能ブロック図である。 車両に備えられた駆動回路のオン故障によって抵抗素子が加熱されることを説明するための図である。 本発明の一実施形態のオン故障の発生時に抵抗素子に流れ込む電流をパワーモジュールに分流することを示した図である。 本発明の一実施形態の分流制御を繰り返す処理を説明するためのフローチャートである。 図6のフローチャートに示した処理に加え、さらにモータの温度を考慮して分流制御する処理のフローチャートである。 図7のフローチャートに示した処理に加え、さらに抵抗素子の温度を考慮して分流制御する処理のフローチャートである。 図8に示した処理に加え、さらにクラッチをオフしない場合を考慮した処理を説明するためのフローチャートである。
符号の説明
前輪 1L、1R、2 エンジン、3L、3R 後輪、4 モータ
5 デファレンスギヤ、7 発電機、 8 ECU
9 インバータ、10 バッテリ、11 クラッチ、 12 オルタネータ
13 無端ベルト、20 過電圧保護回路、21 過電圧検知回路
22 抵抗素子、23 駆動回路、24 パワー素子
25 パワーモジュール、26 素子、27FL、27FR 車輪速センサ
29 ステータコイル、81 抵抗温度検出部、82 モータ温検出部
83 パワーモジュール温度検出部、84 タイマ

Claims (10)

  1. 内燃機関と、当該内燃機関と直接接続され、内燃機関の回転に伴って駆動し発電する発電機と、当該発電機が発電した電力を変換するインバータと、当該インバータによって変換された電力の供給を受けて回転するモータと、を備えるモータ駆動車両を制御する車両用制御装置であって、
    前記インバータに供給される電流を熱に変換する抵抗素子を含む過電圧保護手段と、
    前記過電圧保護手段の前記抵抗素子への電流供給を遮断することができなくなったことを検出するオン故障検出手段と、
    前記オン故障検出手段によってオン故障が検出された場合、前記過電圧保護手段に含まれる前記抵抗素子に流れる電流の少なくとも一部を前記インバータを介して前記モータに供給する、分流制御を実行する電流制御手段と、
    を備えることを特徴とする車両用制御装置。
  2. 前記モータ、前記インバータの少なくとも1つの構成部品の温度を間接的にまたは直接的に検出する温度検出手段をさらに備え、
    前記電流制御手段は、前記温度検出手段によって検出された前記部品の温度が所定の温度に達した場合には前記インバータを停止して前記モータへの電流供給を停止すると共に、前記温度検出手段によって検出された前記部品の温度が所定の温度以下になった場合には分流制御をすることを特徴とする請求項1に記載の車両用制御装置。
  3. 前記電流制御手段は、前記温度検出手段によって検出された前記部品の温度に基づいて、前記モータへの電流供給、停止を繰り返して実行することを特徴とする請求項2に記載の車両用制御装置。
  4. 前記温度検出手段が前記抵抗素子の温度を間接的にまたは直接的に検出し、
    前記電流制御手段は、前記抵抗素子の温度に基づいて前記モータへの電流供給、停止を繰り返して実行することを特徴とする請求項2または3に記載の車両用制御装置。
  5. 前記温度検出手段によって所定の温度以上の温度が検出された時間を判定する検出時間判定手段をさらに備え、
    前記電流制御手段は、前記温度検出手段によって検出された温度と前記検出時間判定手段によって判定された検出時間とに基づいて前記分流制御をすることを特徴とする請求項1から4のいずれか1項に記載の車両用制御装置。
  6. 前記電流制御手段は、前記モータに対してモータトルクを発生させるための電流成分以外の電流成分を供給することを特徴とする請求項1から5のいずれか1項に記載の車両用制御装置。
  7. 前記モータと前記従駆動輪とを離接するデフクラッチを備え、
    前記抵抗素子への電力供給を遮断することができなくなったことが前記オン故障検出手段によって検出された場合、前記デフクラッチを制御して前記モータと前記従駆動輪とを分離するクラッチオフ手段をさらに備えることを特徴とする請求項6に記載の車両用制御装置。
  8. 前記電流制御手段による分流制御の後、前記内燃機関の回転数を低減して前記発電機の発電量を抑える内燃機関制御手段をさらに備えることを特徴とする請求項1から7のいずれか1項に記載の車両用制御装置。
  9. 前記電流制御手段による分流制御の後、車両速度を低下させて前記発電機の発電量を抑える車速制御手段をさらに備えることを特徴とする請求項1から8のいずれか1項に記載の車両用制御装置。
  10. 内燃機関と、当該内燃機関と直接接続され、内燃機関の回転に伴って駆動し発電する発電機と、当該発電機が発電した電力を変換するインバータと、当該インバータによって変換された電力の供給を受けて回転するモータと、を備えるモータ駆動車両を制御する車両用制御装置に適用される車両制御方法であって、
    前記インバータに供給される電流を熱に変換する抵抗素子を含む過電圧保護手段の前記抵抗素子への電流供給を遮断することができなくなる、オン故障が検出された場合、前記過電圧保護手段に含まれる前記抵抗素子に流れる電流の少なくとも一部を、前記インバータを介して前記モータに供給する分流制御ステップを含むことを特徴とする車両制御方法。
JP2007030619A 2007-02-09 2007-02-09 車両用制御装置及び車両制御方法 Expired - Fee Related JP4984942B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007030619A JP4984942B2 (ja) 2007-02-09 2007-02-09 車両用制御装置及び車両制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007030619A JP4984942B2 (ja) 2007-02-09 2007-02-09 車両用制御装置及び車両制御方法

Publications (2)

Publication Number Publication Date
JP2008199736A true JP2008199736A (ja) 2008-08-28
JP4984942B2 JP4984942B2 (ja) 2012-07-25

Family

ID=39758192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007030619A Expired - Fee Related JP4984942B2 (ja) 2007-02-09 2007-02-09 車両用制御装置及び車両制御方法

Country Status (1)

Country Link
JP (1) JP4984942B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010161903A (ja) * 2009-01-09 2010-07-22 Toyota Motor Corp 共振型昇降圧コンバータ制御装置
KR20150108137A (ko) * 2014-03-17 2015-09-25 엘에스산전 주식회사 전기 자동차의 구동 모터 과열 방지 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05336758A (ja) * 1992-05-29 1993-12-17 Toshiba Corp インバータ回生抵抗保護装置
JP2004222395A (ja) * 2003-01-14 2004-08-05 Toyota Motor Corp 車両の回生エネルギ制御装置
JP2006280193A (ja) * 2005-03-03 2006-10-12 Toyota Motor Corp 駆動回路の異常判定装置およびこれを備える駆動装置並びに駆動回路の異常判定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05336758A (ja) * 1992-05-29 1993-12-17 Toshiba Corp インバータ回生抵抗保護装置
JP2004222395A (ja) * 2003-01-14 2004-08-05 Toyota Motor Corp 車両の回生エネルギ制御装置
JP2006280193A (ja) * 2005-03-03 2006-10-12 Toyota Motor Corp 駆動回路の異常判定装置およびこれを備える駆動装置並びに駆動回路の異常判定方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010161903A (ja) * 2009-01-09 2010-07-22 Toyota Motor Corp 共振型昇降圧コンバータ制御装置
KR20150108137A (ko) * 2014-03-17 2015-09-25 엘에스산전 주식회사 전기 자동차의 구동 모터 과열 방지 방법
EP2921337A3 (en) * 2014-03-17 2015-09-30 LSIS Co., Ltd. Apparatus for controlling motor in electric vehicle and method for preventing overheating of traction motor
JP2015177741A (ja) * 2014-03-17 2015-10-05 エルエス産電株式会社Lsis Co., Ltd. 電気自動車のモータ制御装置及び駆動モータの過熱防止方法
US9559626B2 (en) 2014-03-17 2017-01-31 Lsis Co., Ltd. Apparatus for controlling motor in electric vehicle and method for preventing overheating of traction motor
KR101946502B1 (ko) 2014-03-17 2019-02-11 엘에스산전 주식회사 전기 자동차의 구동 모터 과열 방지 방법

Also Published As

Publication number Publication date
JP4984942B2 (ja) 2012-07-25

Similar Documents

Publication Publication Date Title
US8405335B2 (en) Rotary electric machine control system
JP4634321B2 (ja) 電動4輪駆動車用制御装置
JP5447346B2 (ja) ハイブリッド電気自動車の制御装置
JP2007245966A (ja) 車両用駆動制御装置
JP2005137099A (ja) 四輪駆動車両
US8862302B1 (en) Vehicle and method for controlling an electric machine
WO2016076142A1 (ja) 各輪独立駆動式車両の駆動制御装置
JP2008126863A (ja) モータ駆動車両用制御装置及びモータ駆動車両
JP4984942B2 (ja) 車両用制御装置及び車両制御方法
JP2007245765A (ja) 車両用駆動制御装置
JP2009219189A (ja) 四輪駆動車両
JP5462121B2 (ja) モータ制御装置
JP5668869B2 (ja) 車両用駆動制御装置、車両用駆動制御方法
JP5803892B2 (ja) ハイブリッド車両の制御装置
JP2008167586A (ja) 車両用駆動制御装置
JP2007126017A (ja) 車両用駆動制御装置
JP2009214740A (ja) 車両の駆動力制御装置
JP2009220711A (ja) 車両用制御装置及び車両用制御方法
JP2011172324A (ja) インバータ制御装置
JP4092502B2 (ja) モータ四輪駆動車のモータ出力制御装置
JP4277821B2 (ja) 電動式4輪駆動制御装置
JP2008126864A (ja) モータ駆動車両用制御装置、モータ駆動車両
JP2006311645A (ja) 車両用駆動制御装置
JP2006306144A (ja) 車両用駆動制御装置
JP2007245764A (ja) 車両用駆動制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees