JP2008197512A - 駆動信号の設定方法及び液滴吐出ヘッドの駆動方法 - Google Patents

駆動信号の設定方法及び液滴吐出ヘッドの駆動方法 Download PDF

Info

Publication number
JP2008197512A
JP2008197512A JP2007034388A JP2007034388A JP2008197512A JP 2008197512 A JP2008197512 A JP 2008197512A JP 2007034388 A JP2007034388 A JP 2007034388A JP 2007034388 A JP2007034388 A JP 2007034388A JP 2008197512 A JP2008197512 A JP 2008197512A
Authority
JP
Japan
Prior art keywords
data
drive
nozzles
signal
drive waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007034388A
Other languages
English (en)
Inventor
Yoichi Miyasaka
洋一 宮阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2007034388A priority Critical patent/JP2008197512A/ja
Publication of JP2008197512A publication Critical patent/JP2008197512A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Optical Filters (AREA)

Abstract

【課題】従来よりも短時間に各ノズルの吐出特性に応じた複数の駆動信号を用意することが可能な駆動信号の設定方法を提供する。
【解決手段】複数のノズル毎に設けられた駆動素子にそれぞれ駆動信号を供給して前記ノズルから液滴を吐出する液滴吐出ヘッドの駆動信号の設定方法であって、前記複数のノズルのそれぞれについて、仮条件の前記駆動信号を供給した際の吐出速度を測定するA工程と、前記A工程で測定した吐出速度に基づいて、前記複数のノズルを、吐出速度分布のレンジに関するn個のグループに分類するB工程と、前記n個のグループについて、それぞれ略適正速度の吐出速度で吐出するための適正条件の前記駆動信号を設定するC工程とを有する。
【選択図】図7

Description

本発明は、駆動信号の設定方法及び液滴吐出ヘッドの駆動方法に関する。
近年、例えば表示装置用のカラーフィルタ基板に、R(赤)、G(緑)、B(青)のカラーフィルタ層を形成する装置として液滴吐出装置(インクジェット装置)が注目されている。この液滴吐出装置は、ピエゾ素子等の圧電素子を駆動することで液滴を吐出可能なノズルが複数形成された液滴吐出ヘッドを備え、この液滴吐出ヘッドを走査させつつ、上記ノズルからカラーフィルタ材料の液滴をカラーフィルタ基板上の画素領域に吐出することによりカラーフィルタ層を形成するものである。
上述した液滴吐出ヘッドにおける各ノズルの吐出特性にはバラツキがあるため、同一の駆動信号を全ノズルの圧電素子に印加した場合、駆動信号が吐出特性に適合せずに吐出状態が不良となるノズルが発生してしまう。その結果、各ノズルの液滴吐出量にバラツキが発生し、均一な膜厚のカラーフィルタ層を形成することができず、すじムラなどの表示不良の原因となる。例えば下記特許文献1には、液滴吐出ヘッドの吐出特性のバラツキに応じた複数の駆動波形を用意し、当該複数の駆動波形を規則的または任意に各ノズルの圧電素子に印加することにより、バラツキの無い正常な液滴吐出を行う技術が開示されている。
特開2006−88484号公報
ところで、各ノズルの吐出特性に応じた複数の駆動信号を用意するためには、各ノズルから吐出される液滴重量のバラツキを測定する必要がある。このような液滴重量の測定方法の1つとして、撥水性の基板上に吐出した液滴の形状を3次元計測することにより液滴の容積を求め、当該容積を液滴重量に換算する方法がある。しかしながら、この方法によると、1ノズル当たりの液滴重量の測定時間が長く、1つの液滴吐出ヘッドに設けられているノズル数が多い程、さらには、1台の液滴吐出装置に設けられている液滴吐出ヘッドの数が多い程、液滴重量のバラツキを測定するために膨大な時間が必要となる。すなわち、各ノズルの吐出特性に応じた複数の駆動信号を用意するために膨大な時間がかかることになる。
本発明は、このような事情に鑑みてなされたものであり、従来よりも短時間に各ノズルの吐出特性に応じた複数の駆動信号を用意することが可能な駆動信号の設定方法と、当該駆動信号の設定方法によって設定した駆動信号を使用して液滴を吐出する液滴吐出ヘッドの駆動方法を提供することを目的とする。
上記目的を達成するために、本発明に係る駆動信号の設定方法は、複数のノズル毎に設けられた駆動素子にそれぞれ駆動信号を供給して前記ノズルから液滴を吐出する液滴吐出ヘッドの駆動信号の設定方法であって、前記複数のノズルのそれぞれについて、仮条件の前記駆動信号を供給した際の吐出速度を測定するA工程と、前記A工程で測定した吐出速度に基づいて、前記複数のノズルを、吐出速度分布のレンジに関するn個のグループに分類するB工程と、前記n個のグループについて、それぞれ略適正速度の吐出速度で吐出するための適正条件の前記駆動信号を設定するC工程とを有することを特徴とする。
一般的に、液滴重量が大きいと液滴の吐出速度は速くなり、液滴重量が小さいと液滴の吐出速度は遅くなる。つまり、液滴重量と液滴の吐出速度とは相関がある。
液滴の吐出速度の測定方法としては、液滴の飛行状態を高速度カメラで撮像し、液滴の単位時間当たりの移動距離を画像処理によって測定することにより吐出速度を算出する方法や、特開2000−272134号公報に開示されているように、落下方向に所定の距離を隔てて2つの光センサを配置し、液滴がこの2つの光センサを通過する時間を測定することにより吐出速度を算出する方法などを採用することができる。従って、吐出速度を測定するのに必要な時間は、上述した液滴重量の3次元計測に比べて短時間で済む。
すなわち、上記のような特徴を有する駆動信号の設定方法によると、液滴重量と相関のある液滴の吐出速度を測定し、当該測定した吐出速度に基づいて、略適正速度の吐出速度で吐出するため(つまり適正な液滴重量で吐出するため)の適正条件の駆動信号を設定するので、従来よりも短時間に各ノズルの吐出特性に応じた複数の駆動信号を用意することが可能である。
また、上述した駆動信号の設定方法において、前記適正条件の駆動信号は、前記仮条件の駆動信号について電圧成分を補正したものであることが好ましい。
液滴の吐出速度(つまり液滴重量)は、駆動信号の電圧成分を変えることで調整することができる。従って、上記のように、前記適正条件の駆動信号を、前記仮条件の駆動信号について電圧成分を補正したものとすることにより、より簡単に駆動信号の設定を行うことができる。
また、上述した駆動信号の設定方法において、前記適正条件は、対応する前記グループに属する前記ノズルの吐出速度分布のレンジの中央値が、前記適正速度となるための条件であることが好ましい。
または、前記適正条件は、対応する前記グループに属する前記ノズルの平均の吐出速度が、前記適正速度となるための条件であることが好ましい。
これにより、1つのグループに属するノズルに割り当てられる駆動信号の適正条件が、そのグループ内の各ノズルの吐出特性に対して大きくずれることを防止することができる。
また、上述した駆動信号の設定方法において、前記B工程において、前記n個のグループのそれぞれに属する前記ノズルの数が許容最大ノズル数を超えないように、分類を行うことが好ましい。
この許容最大ノズル数は、1つのグループに属するノズルに供給する駆動信号の電流容量に基づいて設定される。つまり、1つのグループに属するノズルの数が許容最大ノズル数を超えないようにすることにより、駆動信号の電流容量オーバーに起因する駆動波形の歪を防止することができる。
また、上述した駆動信号の設定方法において、前記B工程において、前記n個のグループのそれぞれに係る吐出速度分布のレンジが等しくなるように、分類を行うことが好ましい。
このような分類を行うことにより、より簡易的に駆動信号の設定を行うことができ、駆動信号の設定にかかる時間の短縮に寄与することができる。
また、上述した駆動信号の設定方法において、液滴吐出ヘッドにおける未使用ノズルと使用ノズルとの比率であるノズルデューティに応じて、前記B工程および前記C工程を行うことが好ましい。
同一の液滴吐出ヘッドであっても、ノズルデューティの変化によって液滴の吐出速度(つまり液滴重量)のノズル間バラツキは変化する。よって、駆動信号をノズルデューティに応じて設定することによって、ノズルデューティの変化に起因するノズル間バラツキに対応することができる。
また、上述した駆動信号の設定方法において、前記nは4であることが好ましい。
駆動信号の種類を増やすとより精度良く吐出速度のバラツキを抑制することができる
が、部品点数の増加に伴い、装置コストの上昇や装置サイズの大型化などの問題が生じる。そこで、少なくとも4種類の駆動信号を使用することにより、各ノズルの吐出特性に起因する吐出速度(液滴重量)のバラツキを目標レベルまで低減することができるので、必要最小限の部品点数及び装置コストに抑えることができる。
さらに、本発明に係る液滴吐出ヘッドの駆動方法は、複数のノズル毎に設けられた駆動素子にそれぞれ駆動信号を供給して前記ノズルから液滴を吐出する液滴吐出ヘッドの駆動方法であって、上記の駆動信号の設定方法を用いて、前記n個のグループのそれぞれに係る前記駆動信号を設定するD工程と、前記D工程で設定された条件の前記駆動信号を、対応する前記グループに属する前記ノズルに供給して、前記液滴を吐出するE工程とを有することを特徴とする。
このような特徴を有する液滴吐出ヘッドの駆動方法によれば、上記のような駆動信号の設定方法によって設定した駆動信号を使用して液滴を吐出するので、各ノズルから吐出される液滴の液滴速度(液滴重量)のバラツキを抑制することができ、その結果、均一な膜層を形成することができる。
以下、図面を参照して本発明に係る駆動信号の設定方法の一実施形態について説明する。
図1は、本実施形態における液滴吐出装置IJの構成概略図である。本液滴吐出装置IJは、例えばインクジェット方式によりカラーフィルタ基板(液滴吐出対象物)上にカラーフィルタ材料の液滴を吐出してカラーフィルタ層を形成する装置である。図1に示すように、本液滴吐出装置IJは、装置架台1、ワークステージ2、ステージ移動装置3、キャリッジ4、液滴吐出ヘッド5、キャリッジ移動装置6、チューブ7、第1タンク8、第2タンク9、第3タンク10及び制御装置11から構成されている。
なお、以下の説明においては、図1中に示されたXYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材について説明する。XYZ直交座標系は、X軸及びY軸がワークステージ2に対して平行となるよう設定され、Z軸がワークステージ2に対して直交する方向に設定されている。図1中のXYZ座標系は、実際にはXY平面が水平面に平行な面に設定され、Z軸が鉛直上方向に設定される。
装置架台1は、ワークステージ2及びステージ移動装置3の支持台である。ワークステージ2は、装置架台1上においてステージ移動装置3によってX軸方向に移動可能に設置されており、上流側の搬送装置(図示せず)から搬送されるカラーフィルタ基板Pを、真空吸着機構によりXY平面上に保持する。ステージ移動装置3は、ボールネジまたはリニアガイド等の軸受け機構を備え、制御装置11から入力される、ワークステージ2のX座標を示すステージ位置制御信号に基づいて、ワークステージ2をX軸方向に移動させる。
キャリッジ4は、液滴吐出ヘッド5を保持するものであり、キャリッジ移動装置6によってY軸方向及びZ軸方向に移動可能に設けられている。液滴吐出ヘッド5は、図2(a)に示すように、Y軸方向に対して平行に複数(例えば180個)のノズルN〜N180を備えており、制御装置11から入力される描画データや駆動制御信号に基づいて、カラーフィルタ材料の液滴を吐出する。この液滴吐出ヘッド5は、カラーフィルタ材料のR(赤)、G(緑)、B(青)に対応して設けられており、それぞれの液滴吐出ヘッド5はキャリッジ4を介してチューブ7と連結されている。そして、R(赤)に対応する液滴吐出ヘッド5はチューブ7を介して第1タンク8からR(赤)用のカラーフィルタ材料の供給を受け、G(緑)に対応する液滴吐出ヘッド5はチューブ7を介して第2タンク9からG(緑)用のカラーフィルタ材料の供給を受け、また、B(青)に対応する液滴吐出ヘッド5はチューブ7を介して第3タンク10からB(青)用のカラーフィルタ材料の供給を受ける。
図2(b)に、液滴吐出ヘッド5の詳細構成図を示す。この図2(b)に示すように、液滴吐出ヘッド5は、チューブ7と連結される材料供給孔20aが設けられた振動板20と、ノズルN〜N180が設けられたノズルプレート21と、これら振動板20とノズルプレート21との間に設けられた液溜まり22、複数の隔壁23、及び複数のキャビティ24から構成されている。また、振動板20上には、各ノズルN〜N180に対応して圧電素子PZ〜PZ180が配置されている。これら圧電素子PZ〜PZ180は、例えばピエゾ素子である。
液溜まり22には、材料供給孔20aを介して供給される液状のカラーフィルタ材料が充填される。キャビティ24は、振動板20と、ノズルプレート21と、1対の隔壁23とによって囲まれるようにして形成されおり、各ノズルN〜N180に1対1に対応して設けられている。また、各キャビティ24には、一対の隔壁23の間に設けられた供給口24aを介して、液溜まり22からカラーフィルタ材料が導入される。
図2(c)は、液滴吐出ヘッド5の1ノズル分(ノズルN)の正面断面図である。図
2(c)に示すように、圧電素子PZは、圧電材料25を一対の電極26で挟持したも
のであり、一対の電極26に駆動信号を印加すると圧電材料25が収縮するよう構成され
たものである。そして、このような圧電素子PZが配置されている振動板20は、圧電
素子PZと一体になって同時に外側(キャビティ24の反対側)へ撓曲するようになっ
ており、これによってキャビティ24の容積が増大するようになっている。従って、キャ
ビティ24内に増大した容積分に相当するカラーフィルタ材料が、液溜まり22から供給
口24aを介して流入する。また、このような状態から圧電素子PZへの駆動信号の印
加を停止すると、圧電素子PZと振動板20はともに元の形状に戻り、キャビティ24
も元の容積に戻ることから、キャビティ24内のカラーフィルタ材料の圧力が上昇し、ノ
ズルNからカラーフィルタ基板Pに向けてカラーフィルタ材料の液滴Lが吐出される。
なお、液滴吐出ヘッド5に設けるノズル数は任意に変更可能であり、ノズルをY軸方向
に対して平行に一列だけでなく複数列設けても良い。また、キャリッジ4内に配置する液
滴吐出ヘッド5の数も任意に変更可能である。さらに、キャリッジ4をサブキャリッジ単位で複数設けるような構成としても良い。
また、図1及び図2では図示を省略したが、上述した圧電素子PZ〜PZ180に駆動信号を供給するための駆動回路基板30(図3参照)が液滴吐出ヘッド5に対応して設けられている。この駆動回路基板30は、制御装置11とPCIバスによって接続されており、制御装置11から入力される描画データや駆動制御信号に基づいて、各圧電素子PZ〜PZ180に印加する駆動信号の選択、駆動信号の生成、吐出タイミングの制御などを行う。この駆動回路基板30の詳細については後述する。
図1に戻って説明すると、キャリッジ移動装置6は、装置架台1を跨ぐ橋梁構造をしており、Y軸方向及びZ軸方向に対してボールネジまたはリニアガイド等の軸受け機構を備え、制御装置11から入力される、キャリッジ4のY座標及びZ座標を示すキャリッジ位置制御信号に基づいて、キャリッジ4をY軸方向及びZ軸方向に移動させる。チューブ7は、第1タンク8、第2タンク9及び第3タンク10とキャリッジ4(液滴吐出ヘッド5)とを連結するカラーフィルタ材料の供給用チューブである。第1タンク8は、R(赤)用のカラーフィルタ材料を貯蔵すると共に、チューブ7を介してR(赤)に対応する液滴吐出ヘッド5にカラーフィルタ材料を供給する。第2タンク9は、G(緑)用のカラーフィルタ材料を貯蔵すると共に、チューブ7を介してG(緑)に対応する液滴吐出ヘッド5にカラーフィルタ材料を供給する。第3タンク10は、B(青)用のカラーフィルタ材料を貯蔵すると共に、チューブ7を介してB(青)に対応する液滴吐出ヘッド5にカラーフィルタ材料を供給する。
制御装置11は、ステージ移動装置3にステージ位置制御信号を出力し、キャリッジ移動装置6にキャリッジ位置制御信号を出力すると共に、液滴吐出ヘッド5の駆動回路基板30に描画データ及び駆動制御信号を出力して、液滴吐出ヘッド5による液滴吐出動作、ワークステージ2の移動によるカラーフィルタ基板Pの位置決め動作、キャリッジ4の移動による液滴吐出ヘッド5の位置決め動作の同期制御を行うことにより、カラーフィルタ基板P上の所定の位置にカラーフィルタ材料の液滴を吐出する。
次に、駆動回路基板30、液滴吐出ヘッド5の回路構成について詳細に説明する。なお、1つの液滴吐出ヘッド5に対して1つの駆動回路基板30が設けられているが、R(赤)、G(緑)、B(青)のそれぞれに対応する液滴吐出ヘッド5及び駆動回路基板30は全て同一構成であるため、以下では便宜上、1つの液滴吐出ヘッド5及び駆動回路基板30を用いて説明する。
図3に示すように、駆動回路基板30は、インターフェース31、描画データメモリ32、アドレス変換回路33、第1の駆動波形メモリ34、第2の駆動波形メモリ35、第1のD/Aコンバータ36、第2のD/Aコンバータ37、第3のD/Aコンバータ38及び第4のD/Aコンバータ39を備えている。また、液滴吐出ヘッド5は、COM選択回路40、スイッチング回路50及び圧電素子PZ〜PZ180からなる圧電素子群60を備えている。なお、圧電素子PZ〜PZ180は、図3に示すようにコンデンサとして標記することができる。
制御装置11と駆動回路基板30のインターフェース31とは図示しないPCIバスで接続されており、制御装置11からPCIバスを介して、描画データSIと、駆動制御信号としてクロック信号CLK、ラッチ信号LT、DACクロック信号CLK1及びCLK2、描画データアドレス信号AD1、描画データライトイネーブル信号WE1、駆動波形データ信号WD、波形データアドレス信号AD2、波形データライトイネーブル信号WE2、チップセレクタ信号CS1及びCS2、アウトプットイネーブル信号OE1及びOE2がインターフェース31に出力される。
インターフェース31は、描画データSI、描画データライトイネーブル信号WE1、描画データアドレス信号AD1、チップセレクタ信号CS1及びアウトプットイネーブル信号OE1を描画データメモリ32に出力する。また、インターフェース31は、クロック信号CLK及びラッチ信号LTを液滴吐出ヘッド5のCOM選択回路40及びスイッチング回路50に出力する。また、インターフェース31は、DACクロック信号CLK1を第1のD/Aコンバータ36及び第3のD/Aコンバータ38に出力し、DACクロック信号CLK2を第2のD/Aコンバータ37及び第4のD/Aコンバータ39に出力する。また、インターフェース31は、波形データライトイネーブル信号WE2、波形データアドレス信号AD2、駆動波形データ信号WD、チップセレクタ信号CS2及びアウトプットイネーブル信号OE2を第1の駆動波形メモリ34及び第2の駆動波形メモリ35に出力する。
描画データメモリ32は、例えば32ビットのSRAMであり、描画データライトイネーブル信号WE1、チップセレクタ信号CS1及びアウトプットイネーブル信号OE1によってデータ書き込みが要求されている場合、描画データアドレス信号AD1が指定するアドレスに描画データSIを記憶する。ここで、描画データSIは、吐出データSIA及びCOM選択データSIB(駆動信号選択データ)から構成される。吐出データSIAとは、カラーフィルタ基板P上に形成された画素パターンをマトリクス状に区分し、このマトリクスを構成する各ドット毎に、液滴を吐出するか否かを規定する2値データをマッピングしたビットマップデータである。このマトリクスのY軸方向のドットピッチは、液滴吐出ヘッド5のノズルピッチと対応しており、つまり上記の吐出データSIAは、液滴吐出ヘッド5を所定の位置に移動させた場合に、各ノズルN〜N180に対応する圧電素子PZ〜PZ180に駆動信号を供給するか否かを規定するデータである。
本実施形態では、圧電素子PZ〜PZ180に駆動信号を供給するか否かを規定するために2ビットのデータを使用する。この2ビットのデータの内、上位ビットをSIH、下位ビットをSILと呼び、(SIH、SIL)=(0、0)の場合は、駆動信号の非供給(非吐出)を規定するものとし、(SIH、SIL)=(0、1)、(1、0)、(1、1)の場合は、駆動信号の供給(吐出)を規定するものとする。つまり、圧電素子PZ〜PZ180の各々に対応するSIHデータ(SIH〜SIH180)と、SILデータ(SIL〜SIL180)とが吐出データSIAに含まれている。このような吐出データSIAは、カラーフィルタ基板Pの画素パターンに応じて異なるため、画素パターンの数に対応して制御装置11から送られ、描画データメモリ32に記憶される。なお、本実施形態では、圧電素子PZ〜PZ180に駆動信号を供給するか否かを規定するために2ビットのデータを使用したが、これに限らず、1ビットのデータを用いても勿論良い。
一方、COM選択データSIBとは、各圧電素子PZ〜PZ180に供給する駆動信号の種類を規定するデータである。本実施形態では、各圧電素子PZ〜PZ180毎に4種類の駆動信号の中から1つの駆動信号を選択して供給する。また、本実施形態では、4種類の駆動信号をそれぞれCOM1、COM2、COM3、COM4と呼ぶ。つまり、COM選択データSIBは、各圧電素子PZ〜PZ180に印加する駆動信号としてCOM1、COM2、COM3、COM4のいずれかを規定するデータである。さらに、このCOM選択データSIBには、各駆動信号COM1、COM2、COM3、COM4の波形(駆動波形)を規定するための駆動波形番号データWNが含まれている。
本実施形態では、駆動信号を4種類の中から選択するため、駆動信号を規定するには2ビットのデータが必要である。本実施形態では、駆動信号を規定する2ビットのデータの内、上位ビットをWSH、下位ビットをWSLと呼び、(WSH、WSL)=(0、0)の場合はCOM1を規定するものとし、(WSH、WSL)=(0、1)の場合はCOM2を規定するものとし、(WSH、WSL)=(1、0)の場合はCOM3を規定するものとし、(WSH、WSL)=(1、1)の場合はCOM4を規定するものとする。つまり、圧電素子PZ〜PZ180の各々に対応するWSHデータ(WSH〜WSH180)と、WSLデータ(WSL〜WSL180)とがCOM選択データSIBに含まれている。また、本実施形態では、駆動信号COM1〜COM4の駆動波形の組み合わせを64種類の中から1つ選択できるものとする。つまり、駆動波形を規定するための駆動波形番号データWNは6ビットのデータである。
上記のCOM選択データSIBは、液滴吐出ヘッド5の各ノズルN〜N180の吐出特性、つまり液滴重量のバラツキ特性に応じて設定される。図4に、液滴重量のバラツキ分布の一例を示す。図4において、横軸はノズル番号、縦軸は液滴重量である。なお、液滴吐出ヘッド5の特性上、両端のノズル(ノズルN〜N及びノズルN171〜N180)では液滴重量のバラツキが非常に大きいため、これらのノズルのバラツキ分布を省略している。実際に液滴吐出ヘッド5を使用する場合でも、180個のノズルの内、ノズルN10〜N170の160個が使用される。
図4に示すような液滴重量のバラツキを補正するためには、各ノズルN10〜N170の液滴重量が適正値に近づくように、各圧電素子PZ10〜圧電素子PZ170に供給する駆動信号を変えれば良い。例えば、図4に示すように、バラツキ分布1において適正値から大きくずれているノズルの液滴重量を適正値に補正するには、このノズルに対応する圧電素子に供給する駆動信号の電圧値を大きくすれば良い。
実際には、事前に(例えば本液滴吐出装置IJの出荷検査時などに)、図4に示すような液滴重量のバラツキ分布を測定し、各ノズルN10〜N170の液滴重量が適正値に近づくような各圧電素子PZ10〜PZ170の駆動信号を求める。原理的には、各圧電素子PZ10〜PZ170毎に求めた駆動信号を用意して供給すれば良いが、その場合、駆動信号を最大で160種類も用意しなければならず、部品点数の増加、装置コストの増大、駆動回路基板30の大型化及び消費電力の増大などの問題が生じるため、現実的には実現困難である。そこで、本実施形態では、4種類の駆動信号を使用して各ノズルN10〜N170の液滴重量が適正値に近づくように設定する。これは、少なくとも4種類の駆動電信号を使用することにより、液滴重量のバラツキをすじムラとして人に視認されないレベル(バラツキ1.2%以内)まで抑えることができるためである。このように求めた4種類の駆動信号をCOM1〜COM4としてCOM選択データSIBに設定する。以下、COM選択データSIB及び駆動波形データの設定方法(駆動信号の設定方法)の具体例について説明する。
(COM選択データSIB及び駆動波形データの設定方法の具体例1)
一般的に、液滴重量が大きいと液滴の吐出速度は速くなり、液滴重量が小さいと液滴の吐出速度は遅くなる。つまり、液滴重量と液滴の吐出速度とは相関がある。そこで、実際に所望の液滴吐出ヘッドに対して駆動信号を設定する前に、予め他の液滴吐出ヘッドを用いて液滴重量と液滴の吐出速度との相関を求めておく。
具体的には、少なくとも2つ以上の値の異なる駆動電圧を、相関測定用の液滴吐出ヘッドの各圧電素子PZ10〜PZ170に印加し、それぞれの駆動電圧を印加した場合に各ノズルN10〜N170から吐出される液滴の液滴重量及び吐出速度を測定する。本実施形態では、吐出速度の測定方法として、液滴の飛行状態を高速度カメラで撮像し、液滴の単位時間当たりの移動距離を画像処理によって測定することにより吐出速度を算出する方法を採用する。
所定の時間間隔で高速度カメラで撮像した画像を複数枚組み合わせると、図5に示すように、液滴の飛行状態は所定の長さを有する直線として観測できる。図5では、一例としてノズルN10〜N12から吐出される液滴の飛行状態F10〜F12を示している。これら飛行状態F10〜F12の長さを液滴の移動距離とすれば、直線の両端の撮像時刻から単位時間当たりの吐出速度を算出することができる。つまり、この直線の長さが長いほど吐出速度は速く、また、吐出速度が速いほど液滴重量は大きいことになる。なお、吐出速度の測定方法としては、例えば特開2000−272134号公報に開示されているように、落下方向に所定の距離を隔てて2つの光センサを配置し、液滴がこの2つの光センサを通過する時間を測定することにより吐出速度を算出する方法などを採用しても良い。また、液滴重量の測定方法は、従来と同様に、撥水性の基板上に吐出した液滴の形状を3次元計測することにより液滴の容積を求め、当該容積を液滴重量に換算する方法を採用する。
続いて、上記のように測定した液滴重量の平均値と吐出速度の平均値とを駆動電圧毎に算出し、駆動電圧と液滴重量の平均値と吐出速度の平均値との相関を求める。図6(a)は、このようにして求めた駆動電圧と吐出速度の平均値との相関を示す特性図であり、図6(b)は、液滴重量の平均値と吐出速度の平均値との相関を示す特性図である。これらの図に示すように、駆動電圧と吐出速度の平均値とは比例関係にあり、液滴重量の平均値と吐出速度の平均値とは比例関係にある。
以上のように、予め図6に示すような液滴重量と液滴の吐出速度との相関を求めておく。
次に、実際に所望の液滴吐出ヘッド5に対するCOM選択データSIB及び駆動波形データを設定する方法について、図7のフローチャートを参照して説明する。
まず、各圧電素子PZ10〜PZ170に所定の基準駆動電圧V0(仮条件の駆動信号)を印加して、各ノズルN10〜N170から吐出される液滴の吐出速度を測定し、図8に示すようなノズルN10〜N170の吐出速度のバラツキ分布を測定する(本発明のA工程としてのステップS1)。
そして、吐出速度のバラツキ分布における最小値から最大値までのレンジを均等に4分割してレンジ1、レンジ2、レンジ3、レンジ4を設定し、レンジ1〜4にそれぞれ含まれるノズルをグループ化する(本発明のB工程としてのステップS2)。次に、下記(1)式に基づいて、各レンジ1〜4に係るグループ毎にCOM設定電圧を算出し、レンジ1のグループについて算出したCOM設定電圧をCOM1、レンジ2のグループについて算出したCOM設定電圧をCOM2、レンジ3のグループについて算出したCOM設定電圧をCOM3、レンジ4のグループについて算出したCOM設定電圧をCOM4と設定する(本発明のC工程としてのステップS3)。なお、下記(1)式において、Kは吐出速度を電圧値に変換するための定数であり、図6に示す相関特性図に基づいて予め設定されているものである。また、下記(1)式において、「レンジの中心値(対応するグループに属するノズルの吐出速度分布のレンジの中央値)」を「各レンジ内における全ノズルの吐出速度の平均値(対応するグループに属するノズルの平均の吐出速度)」に替えても良い。
COM設定電圧=V0−K・(レンジの中心値−適正速度) ・・・・(1)
そして、レンジ1に含まれるノズルにCOM1を割り当て(ステップS4)、レンジ2に含まれるノズルにCOM2を割り当て(ステップS5)、レンジ3に含まれるノズルにCOM3を割り当て(ステップS6)、レンジ4に含まれるノズルにCOM4を割り当てる(ステップS7)。以上のように求めたノズルとCOM1〜COM4との対応関係に基づきCOM選択データSIBを設定する(ステップS8)。図9は、上記のようにして求めた電圧値を有するCOM1〜COM4の駆動波形の一例である。これらCOM1〜COM4の駆動波形のデジタルデータ(駆動波形データ)を設定し、これらCOM1〜COM4の駆動波形データの組み合わせを示す駆動波形番号データWNを設定する。
(COM選択データSIB及び駆動波形データの設定方法の具体例2)
次に、COM選択データSIBの設定方法の具体例2について図10及び図11のフローチャートを用いて説明する。なお、上述した具体例1と同様に、図6に示す相関特性は既に測定済みである。
まず、各圧電素子PZ10〜PZ170に所定の基準駆動電圧V0を印加し、具体例1と同様にノズルN10〜N170から吐出される液滴の吐出速度のバラツキ分布を測定する(本発明のA工程としてのステップS100)。そして、吐出速度のバラツキ分布の最小値を許容バラツキレンジの最小値に合わせ、この許容バラツキレンジ内に含まれるノズルの内、吐出速度の小さい方から順にピックアップ(グループ化)し、ピックアップしたノズル数をカウントする(本発明のB工程を構成するステップS101)。ここで、許容バラツキレンジとは、品質管理上許容することができるノズル間の吐出速度バラツキ(つまり液滴重量バラツキ)の許容レンジを指すものであって予めユーザが設定することができる値である。
続いて、ステップS11でピックアップしたノズル数が、COM1に割り当て可能な最大許容ノズル数より大きいか否かを判定する(ステップS102)。ここで、この最大許容ノズル数は、第1のD/Aコンバータ36の電流容量に応じて設定されており、本実施形態では80個とする。ステップS102において、ピックアップしたノズル数が最大許容ノズル数(つまり80個)より大きい場合(「YES」)、80個目までのノズルにCOM1を割り当てる(ステップS103)。一方、ステップS102において、ピックアップしたノズル数が80個以下の場合(「NO」)、ピックアップした全ノズルにCOM1を割り当てる(本発明のC工程を構成するステップS104)。
そして、COM1を割り当てたグループにおけるノズルの吐出速度の最大値と最小値との中心値を算出し、下記(2)式に基づいて、COM1の電圧値(COM設定電圧)を決定する(ステップS105)。なお、下記(2)式において、Kは吐出速度を電圧値に変換するための定数であり、図6に示す相関特性図に基づいて予め設定されているものである。また、下記(2)式において、「中心値」を「COM1を割り当てた全ノズルの平均値(吐出速度の平均値)」に替えても良い。
COM設定電圧=V0−K・(中心値−適正速度) ・・・・(2)
次に、残ったノズルの吐出速度の最小値を許容バラツキレンジの最小値に合わせ、この許容バラツキレンジ内に含まれるノズルの内、吐出速度の小さい方から順にピックアップ(グループ化)し、ピックアップしたノズル数をカウントする(本発明のB工程を構成するステップS106)。続いて、ステップS106でピックアップしたノズル数が、COM2に割り当て可能な最大許容ノズル数より大きいか否かを判定する(ステップS107)。ここで、この最大許容ノズル数は、第2のD/Aコンバータ37の電流容量に応じて設定されており、本実施形態では80個とする。ステップS107において、ピックアップしたノズル数が最大許容ノズル数(つまり80個)より大きい場合(「YES」)、80個目までのノズルにCOM2を割り当てる(ステップS108)。一方、ステップS107において、ピックアップしたノズル数が80個以下の場合(「NO」)、ピックアップした全ノズルに対応する圧電素子にCOM2を割り当てる(ステップS109)。そして、COM2を割り当てたグループにおけるノズルの吐出速度の最大値と最小値との中心値を算出し、上記(2)式に基づいて、COM2の電圧値(COM設定電圧)を決定する(本発明のC工程を構成するステップS110)。
次に、図11のステップS111に移行し、残ったノズルの吐出速度の最小値を許容バラツキレンジの最小値に合わせ、この許容バラツキレンジ内に含まれるノズルの内、吐出速度の小さい方から順にピックアップ(グループ化)し、ピックアップしたノズル数をカウントする(本発明のB工程を構成するステップS111)。続いて、ステップS11でピックアップしたノズル数が、COM3に割り当て可能な最大許容ノズル数より大きいか否かを判定する(ステップS112)。ここで、この最大許容ノズル数は、第3のD/Aコンバータ38の電流容量に応じて設定されており、本実施形態では80個とする。ステップS112において、ピックアップしたノズル数が最大許容ノズル数(つまり80個)より大きい場合(「YES」)、80個目までのノズルにCOM3を割り当てる(ステップS113)。一方、ステップS112において、ピックアップしたノズル数が80個以下の場合(「NO」)、ピックアップした全ノズルに対応する圧電素子にCOM3を割り当てる(ステップS114)。そして、COM3を割り当てたグループにおけるノズルの吐出速度の最大値と最小値との中心値を算出し、上記(2)式に基づいて、COM3の電圧値(COM設定電圧)を決定する(本発明のC工程を構成するステップS115)。
次に、残ったノズルの吐出速度の最小値を許容バラツキレンジの最小値に合わせ、この許容バラツキレンジ内に含まれるノズルの内、吐出速度の小さい方から順にピックアップ(グループ化)し、ピックアップしたノズル数をカウントする(本発明のB工程を構成するステップS116)。続いて、ステップS116でピックアップしたノズル数が、COM4に割り当て可能な最大許容ノズル数より大きいか否かを判定する(ステップS117)。ここで、この最大許容ノズル数は、第4のD/Aコンバータ39の電流容量に応じて設定されており、本実施形態では80個とする。ステップS117において、ピックアップしたノズル数が最大許容ノズル数(つまり80個)より大きい場合(「YES」)、80個目までのノズルにCOM4を割り当てる(ステップS118)。一方、ステップS117において、ピックアップしたノズル数が80個以下の場合(「NO」)、ピックアップした全ノズルに対応する圧電素子にCOM4を割り当てる(ステップS119)。そして、COM4を割り当てたグループにおけるノズルの吐出速度の最大値と最小値との中心値を算出し、上記(2)式に基づいて、COM4の電圧値(COM設定電圧)を決定する(本発明のC工程を構成するステップS120)。
そして、ノズルとCOM1〜COM4との対応関係に基づきCOM選択データSIBを設定する(ステップS121)。そして、具体例1と同様に、上記のように決定した電圧値を有するCOM1〜COM4の駆動波形のデジタルデータ(駆動波形データ)を設定し、これらCOM1〜COM4の駆動波形データの組み合わせを示す駆動波形番号データWNを設定する。なお、ステップS120が終了した時点で、残りノズルがあった場合、警報を発生し、この液滴吐出ヘッド5を不良品とするか、または再組み立てを行うかを判断する。
上述したように、本実施形態における駆動信号の設定方法によると、液滴重量と相関のある液滴の吐出速度を測定し、当該測定した吐出速度に基づいて、略適正速度の吐出速度で吐出するため(つまり適正な液滴重量で吐出するため)の適正条件の駆動信号COM1〜COM4を設定するので、従来よりも短時間に各ノズルの吐出特性に応じた複数の駆動信号を用意することが可能である。
また、上述したCOM選択データSIBの設定方法の具体例1は、具体例2と比較して簡単且つ短時間にノズルに対するCOM1〜COM4の割り当てを行うことができるが、COM毎に、つまりD/Aコンバータ毎に最大許容ノズル数が設定されている場合、4分割したレンジ1〜4に含まれるノズル数が最大許容ノズル数を越えてしまうと、D/Aコンバータの駆動能力が低下し、駆動信号の電圧値が低下したり波形に歪が生じたりするなどの問題が発生するという欠点がある。よって、各レンジ1〜4に含まれるノズル数が最大許容ノズル数を越えた場合は、警報を発生し、液滴吐出ヘッド5を不良品とするか、または再組み立てを行うかを判断する必要がある。具体例2の方法では、D/Aコンバータ毎に最大許容ノズル数が設定されている場合であっても、問題なく各ノズルに対するCOM1〜COM4の割り当てを行うことができる。
なお、上記のCOM選択データSIBの設定方法の具体例1及び具体例2では、液滴の吐出速度が適正速度になるような駆動信号の条件として電圧値(電圧成分)を決定したが、これに限らず、この条件として例えば駆動信号の充放電成分の時間成分値を決定しても良い。つまり、駆動信号の時間成分を変えて吐出速度の補正をすることも可能である。
また、液滴吐出ヘッド5のノズルデューティが変化すると液滴重量、つまり吐出速度のバラツキ特性は変化する。よって、事前に、ノズルデューティ毎に吐出速度のバラツキ分布を測定し、各ノズルN10〜N170から吐出される液滴の吐出速度が適正速度となるような各圧電素子PZ10〜PZ170の駆動信号COM1〜COM4を求め、ノズルデューティに対応するCOM選択データSIBを設定する。つまり、描画データメモリ32には、COM選択データSIBがノズルデューティの数に対応して記憶される。なお、0〜100%までの全てのノズルデューティについてCOM選択データSIBを設定する必要はなく、実際によく使用されるノズルデューティ(例えば25%、50%、75%、100%)についてCOM選択データSIBを設定すれば良い。
図3に戻って説明すると、描画データメモリ32は、描画データライトイネーブル信号WE1、チップセレクタ信号CS1及びアウトプットイネーブル信号OE1によってデータ読み出しが要求されている場合、描画データアドレス信号AD1が指定するアドレスに記憶されている吐出データSIAをシリアルデータとして液滴吐出ヘッド5のスイッチング回路50に出力し、また、COM選択データSIBをシリアルデータとして液滴吐出ヘッド5のCOM選択回路40に出力する。なお、駆動波形番号データWNは、アドレス変換回路33に出力される。
アドレス変換回路33は、駆動波形番号データWNが指定する駆動波形番号に該当する駆動波形データの記憶先アドレスを示すアドレス信号AD3を第1の駆動波形メモリ34及び第2の駆動波形メモリ35に出力する。第1の駆動波形メモリ34は、32Kワード×16ビットのSRAMであり、COM1及びCOM2に対応する駆動波形のデジタルデータ(駆動波形データ)を記憶するメモリである。第2の駆動波形メモリ35も同様に、32Kワード×16ビットのSRAMであり、COM3及びCOM4に対応する駆動波形データを記憶するメモリである。
これら第1の駆動波形メモリ34及び第2の駆動波形メモリ35は、波形データライトイネーブル信号WE2、チップセレクタ信号CS2及びアウトプットイネーブル信号OE2によってデータ書き込みが要求されている場合、波形データアドレス信号AD2で指定されるアドレスに、駆動波形データ信号WDを記憶する。なお、この駆動波形データ信号WDは、上位2バイトがCOM3及びCOM4に対応する駆動波形データに割り当てられ、下位2バイトがCOM1及びCOM2に対応する駆動波形データに割り当てられた4バイトのデータ信号であり、上位2バイト分の駆動波形データ信号WDは第1の駆動波形メモリ34に入力され、上位2バイト分の駆動波形データ信号WDは第2の駆動波形メモリ35に入力される。
本実施形態では、1つの駆動波形の最大長さを25μsとし、後述する第1のD/Aコンバータ36、第2のD/Aコンバータ37、第3のD/Aコンバータ38及び第4のD/Aコンバータ39の時間軸分解能を20MHzと想定する。この場合、1つの駆動波形データは500バイトになるが、メモリ上はアドレス操作を容易に行うために200h(512バイト)バウンダリとする。図12は、第1の駆動波形メモリ34及び第2の駆動波形メモリ35における駆動波形データの記憶先アドレスを示すものである。図12に示すように、第1の駆動波形メモリ34のアドレス「00000h」〜「07FFFh」には、200h毎に各駆動波形番号「0」〜「63」のCOM1に対応する駆動波形データが記憶され、アドレス「08000h」〜「0FFFFh」にはCOM2に対応する駆動波形データが記憶される。また、同様に第2の駆動波形メモリ35のアドレス「00000h」〜「07FFFh」には、200h毎に各駆動波形番号「0」〜「63」のCOM3に対応する駆動波形データが記憶され、アドレス「08000h」〜「0FFFFh」にはCOM4に対応する駆動波形データが記憶される。
なお、上述したように、第1の駆動波形メモリ34及び第2の駆動波形メモリ35によって64種類の駆動波形データを記憶することができるが、これらの駆動波形データはCOM選択データSIBの数(つまりノズルデューティの数)に対応して記憶すれば良い。
また、第1の駆動波形メモリ34は、波形データライトイネーブル信号WE2、チップセレクタ信号CS2及びアウトプットイネーブル信号OE2によってデータ読み出しが要求されている場合、アドレス信号AD3で指定されるアドレスに記憶されている駆動波形データを第1のD/Aコンバータ36及び第2のD/Aコンバータ37に出力する。第2の駆動波形メモリ35は、波形データライトイネーブル信号WE2、チップセレクタ信号CS2及びアウトプットイネーブル信号OE2によってデータ読み出しが要求されている場合、アドレス信号AD3で指定されるアドレスに記憶されている駆動波形データを第3のD/Aコンバータ38及び第4のD/Aコンバータ39に出力する。
第1のD/Aコンバータ36は、DACクロック信号CLK1の立ち上がりに同期して、第1の駆動波形メモリ34から入力される駆動波形データをラッチし、当該ラッチした駆動波形データをアナログ変換して駆動信号COM1を生成し、液滴吐出ヘッド5のCOM選択回路40に出力する。第2のD/Aコンバータ37は、DACクロック信号CLK2の立ち上がりに同期して、第1の駆動波形メモリ34から入力される駆動波形データをラッチし、当該ラッチした駆動波形データをアナログ変換して駆動信号COM2を生成し、液滴吐出ヘッド5のCOM選択回路40に出力する。第3のD/Aコンバータ38は、DACクロック信号CLK1の立ち上がりに同期して、第2の駆動波形メモリ35から入力される駆動波形データをラッチし、当該ラッチした駆動波形データをアナログ変換して駆動信号COM3を生成し、液滴吐出ヘッド5のCOM選択回路40に出力する。第4のD/Aコンバータ39は、DACクロック信号CLK2の立ち上がりに同期して、第2の駆動波形メモリ35から入力される駆動波形データをラッチし、当該ラッチした駆動波形データをアナログ変換して駆動信号COM4を生成し、液滴吐出ヘッド5のCOM選択回路40に出力する。
図13に示すように、液滴吐出ヘッド5のCOM選択回路40は、シフトレジスタ回路41、ラッチ回路42、COM選択スイッチ回路CSW〜CSW180から構成されている。シフトレジスタ回路41は、クロック信号CLK及びCOM選択データSIBを入力とし、クロック信号CLKに同期してシリアルデータであるCOM選択データSIBをパラレル変換してラッチ回路42に順次出力する。具体的には、シフトレジスタ回路41は、圧電素子PZ〜PZ180に対応するWSHデータ(WSH〜WSH180)及びWSLデータ(WSL〜WSL180)をパラレルに順次出力する。
ラッチ回路42は、上記のWSHデータ(WSH〜WSH180)及びWSLデータ(WSL〜WSL180)を、ラッチ信号LTに同期してラッチし、各WSHデータ(WSH〜WSH180)及びWSLデータ(WSL〜WSL180)を一括してCOM選択スイッチ回路CSW〜CSW180に出力する。具体的には、ラッチ回路42は、WSH及びWSLをCOM選択スイッチ回路CSWに出力し、WSH及びWSLをCOM選択スイッチ回路CSWに出力し、以下同様に、WSH180及びWSL180をCOM選択スイッチ回路CSW180に出力する。
各COM選択スイッチ回路CSW〜CSW180は、駆動信号COM1〜COM4を入力とし、ラッチ回路42から入力されるWSH及びWSLデータに応じて駆動信号COM1〜COM4のいずれかを選択し、選択した駆動信号をV〜V180として後述するスイッチング回路50のスイッチング素子SW〜SW180に出力する。具体的には、COM選択スイッチ回路CSWは、(WSH、WSL)=(0、0)の場合、駆動信号COM1を選択し、(WSH、WSL)=(0、1)の場合、駆動信号COM2を選択し、(WSH、WSL)=(1、0)の場合、駆動信号COM3を選択し、(WSH、WSL)=(1、1)の場合、駆動信号COM4を選択し、選択した駆動信号をVとしてスイッチング回路50のスイッチング素子SWに出力する。以下同様に、COM選択スイッチ回路CSW180は、(WSH180、WSL180)=(0、0)の場合、駆動信号COM1を選択し、(WSH180、WSL180)=(0、1)の場合、駆動信号COM2を選択し、(WSH180、WSL180)=(1、0)の場合、駆動信号COM3を選択し、(WSH180、WSL180)=(1、1)の場合、駆動信号COM4を選択し、選択した駆動信号をV180としてスイッチング回路50のスイッチング素子SW180に出力する。
続いて、図14に示すように、スイッチング回路50は、シフトレジスタ回路51、ラッチ回路52、論理和回路OR〜OR180、レベルシフタ回路53、スイッチング素子SW〜SW180から構成されている。シフトレジスタ回路51は、クロック信号CLK及び吐出データSIAを入力とし、クロック信号CLKに同期してシリアルデータである吐出データSIAをパラレル変換してラッチ回路52に順次出力する。具体的には、シフトレジスタ回路51は、圧電素子PZ〜PZ180に対応するSIHデータ(SIH〜SIH180)及びSILデータ(SIL〜SIL180)をパラレルに順次出力する。
ラッチ回路52は、上記のSIHデータ(SIH〜SIH180)及びSILデータ(SIL〜SIL180)を、ラッチ信号LTに同期してラッチし、各SIHデータ(SIH〜SIH180)及びSILデータ(SIL〜SIL180)を一括して論理和回路OR〜OR180に出力する。具体的には、ラッチ回路52は、SIH及びSILを論理和回路ORに出力し、SIH及びSILを論理和回路ORに出力し,以下同様に、SIH180及びSIL180を論理和回路OR180に出力する。
論理和回路ORは、SIHとSILとの論理和であるスイッチング信号Sをレベルシフタ回路53に出力する。つまり、SIHとSILとの少なくとも一方が「1」であれば駆動信号の供給(吐出)を規定しているので、「1」を示すスイッチング信号Sが出力される。論理和回路ORは、SIHとSILとの論理和であるスイッチング信号Sをレベルシフタ回路53に出力する。以下同様に、論理和回路OR180は、SIH180とSIL180との論理和であるスイッチング信号S180をレベルシフタ回路53に出力する。
レベルシフタ回路53は、スイッチング信号S〜S180を各スイッチング素子SW〜SW180を駆動可能なレベルまで電圧増幅する。具体的には、レベルシフタ回路53は、スイッチング信号Sを電圧増幅してスイッチング素子SWに出力し、スイッチング信号Sを電圧増幅してスイッチング素子SWに出力し、以下同様に、スイッチング信号S180を電圧増幅してスイッチング素子SW180に出力する。
スイッチング素子SWは、駆動信号V及びスイッチング信号Sを入力とし、「1」を示すスイッチング信号Sが入力された場合にON状態となり、駆動信号Vを図3に示す圧電素子PZの一方の電極に出力する。スイッチング素子SWは、駆動信号V及びスイッチング信号Sを入力とし、「1」を示すスイッチング信号Sが入力された場合にON状態となり、駆動信号Vを図3に示す圧電素子PZの一方の電極に出力する。以下同様に、スイッチング素子SW180は、駆動信号V180及びスイッチング信号S180を入力とし、「1」を示すスイッチング信号S180が入力された場合にON状態となり、駆動信号V180を図3に示す圧電素子PZ180の一方の電極に出力する。
図3に戻って説明すると、各圧電素子PZ〜PZ180の他方の電極は、液滴吐出ヘッド5内で互いに接続され、且つ駆動回路基板30側のグランドと共通接地されている。つまり、圧電素子PZは、駆動信号Vとグランド間の電位差によって伸縮し、これにより駆動信号Vに応じた重量のカラーフィルタ材料の液滴がノズルNから吐出される。また、圧電素子PZは、駆動信号Vとグランド間の電位差によって伸縮し、これにより駆動信号Vに応じた重量のカラーフィルタ材料の液滴がノズルNから吐出される。以下同様に、圧電素子PZ180は、駆動信号V180とグランド間の電位差によって伸縮し、これにより駆動信号V180に応じた重量(吐出速度)のカラーフィルタ材料の液滴がノズルN180から吐出される。
次に、このように構成された本液滴吐出装置IJの動作について説明する。
まず、カラーフィルタ基板Pの画素パターンに応じて事前に設定した吐出データSIAと、ノズルデューティ毎に設定したCOM選択データSIBとを駆動回路基板30の描画データメモリ32に記憶し、また、COM選択データSIBに対応するCOM1〜COM4の駆動波形データを第1の駆動波形メモリ34及び第2の駆動波形メモリ35に予め記憶する。
具体的には、制御装置11は、インターフェース31を介して、描画データSI(吐出データSIA及びCOM選択データSIB)と、これら吐出データSIA及びCOM選択データSIBの記憶先アドレスを示す描画データアドレス信号AD1と、データ書き込み要求を示す描画データライトイネーブル信号WE1、チップセレクタ信号CS1及びアウトプットイネーブル信号OE1とを描画データメモリ32に出力する。これにより、描画データメモリ32には、描画データアドレス信号AD1が指定する記憶先アドレスに、吐出データSIA及びCOM選択データSIBが順次記憶される。
また、制御装置11は、インターフェース31を介して、駆動波形データWDと、波形データアドレス信号AD2と、データ書き込み要求を示す波形データライトイネーブル信号WE2、チップセレクタ信号CS2及びアウトプットイネーブル信号OE2とを第1の駆動波形メモリ34及び第2の駆動波形メモリ35に出力する。図12を参照して詳細に説明すると、例えば駆動波形番号「0」の駆動波形データを記憶する場合、アドレス「+00000h」を指定する波形データアドレス信号AD2を第1の駆動波形メモリ34及び第2の駆動波形メモリ35に入力し、COM1の駆動波形データに割り当てられた下位2バイト分の駆動波形データWDを第1の駆動波形メモリ34に入力し、COM3の駆動波形データに割り当てられた上位2バイト分の駆動波形データWDを第2の駆動波形メモリ35に入力する。これにより、第1の駆動波形メモリ34のアドレス「+00000h」には、2バイト分のCOM1の駆動波形データが記憶され、第2の駆動波形メモリ35のアドレス「+00000h」には、2バイト分のCOM3の駆動波形データが記憶される。同様な処理をアドレス「+001FFh」まで繰り返すことにより、駆動波形番号「0」に該当するCOM1の1波形分(512バイト)の駆動波形データが第1の駆動波形メモリ34に記憶され、COM3の1波形分の駆動波形データが第2の駆動波形メモリ35に記憶される。そして、駆動波形番号「1」〜「63」についても同様な処理を行い、それぞれの駆動波形番号に該当するCOM1の1波形分の駆動波形データを第1の駆動波形メモリ34に記憶し、COM3の1波形分の駆動波形データを第2の駆動波形メモリ35に記憶する。
次に、アドレス「+08000h」を指定する波形データアドレス信号AD2を第1の駆動波形メモリ34及び第2の駆動波形メモリ35に入力し、駆動波形番号「0」に該当するCOM2の駆動波形データに割り当てられた下位2バイト分の駆動波形データWDを第1の駆動波形メモリ34に入力し、COM4の駆動波形データに割り当てられた上位2バイト分の駆動波形データWDを第2の駆動波形メモリ35に入力する。これにより、第1の駆動波形メモリ34のアドレス「+08000h」には、2バイト分のCOM2の駆動波形データが記憶され、第2の駆動波形メモリ35のアドレス「+08000h」には、2バイト分のCOM4の駆動波形データが記憶される。同様な処理をアドレス「+081FFh」まで繰り返すことにより、駆動波形番号「0」に該当するCOM2の1波形分の駆動波形データが第1の駆動波形メモリ34に記憶され、COM4の1波形分の駆動波形データが第2の駆動波形メモリ35に記憶される。そして、駆動波形番号「1」〜「63」についても同様な処理を行い、それぞれの駆動波形番号に該当するCOM2の1波形分の駆動波形データを第1の駆動波形メモリ34に記憶し、COM4の1波形分の駆動波形データを第2の駆動波形メモリ35に記憶する。
以上のような処理により、カラーフィルタ基板Pの画素パターンに応じて事前に設定した吐出データSIAと、ノズルデューティ毎に設定したCOM選択データSIBとが描画データメモリ32に記憶され、また、COM選択データSIBに対応するCOM1〜COM4の駆動波形データが第1の駆動波形メモリ34及び第2の駆動波形メモリ35に記憶される。
次に、実際にカラーフィルタ基板Pにカラーフィルタ材料を吐出する動作について図15のタイミングチャートを用いて説明する。
制御装置11は、ワークステージ2にカラーフィルタ基板Pが搬送され、上位の制御装置からカラーフィルタ基板Pに関する情報(画素パターンや基板サイズなどの情報)を取得すると、搬送されたカラーフィルタ基板Pに対応する吐出データSIAを決定する。
また、制御装置11は、カラーフィルタ基板Pに関する情報に基づいてノズルデューティを求め、そのノズルデューティに対応するCOM選択データSIBを決定する。そして、制御装置11は、ステージ移動装置3及びキャリッジ移動装置6を制御して、液滴吐出ヘッド5をカラーフィルタ基板P上の所定のXYZ座標に移動させる。
続いて、制御装置11は、上記のように決定した吐出データSIA及びCOM選択データSIBの記憶先アドレスを示す描画データアドレス信号AD1と、データ読み出し要求を示す描画データライトイネーブル信号WE1、チップセレクタ信号CS1及びアウトプットイネーブル信号OE1とを駆動回路基板30の描画データメモリ32に出力する。これにより、搬送されたカラーフィルタ基板Pに対応する吐出データSIAが液滴吐出ヘッド5のスイッチング回路50(具体的にはシフトレジスタ回路51)に出力され、カラーフィルタ基板Pのノズルデューティに対応するCOM選択データSIBが液滴吐出ヘッド5のCOM選択回路40(具体的にはシフトレジスタ回路41)に出力される。また、COM選択データSIBに含まれる駆動波形番号データWNは、アドレス変換回路33に出力される。
図15に示すように、時刻T1に、吐出データSIAがスイッチング回路50のシフトレジスタ回路51に出力され、COM選択データSIBがCOM選択回路40のシフトレジスタ回路41に出力されたと想定する。シフトレジスタ回路51は、時刻T1からT2までの期間、クロック信号CLKに同期してシリアルデータである吐出データSIAをパラレル変換してラッチ回路52に順次出力する。つまり、圧電素子PZ〜PZ180に対応するSIHデータ(SIH〜SIH180)及びSILデータ(SIL〜SIL180)がパラレルに順次出力される。一方、シフトレジスタ回路41は、クロック時刻T1からT2までの期間、クロック信号CLKに同期してシリアルデータであるCOM選択データSIBをパラレル変換してラッチ回路42に順次出力する。つまり、圧電素子PZ〜PZ180に対応するWSHデータ(WSH〜WSH180)及びWSLデータ(WSL〜WSL180)がパラレルに順次出力される。
ここで、この時刻T1からT2までの期間におけるアドレス変換回路33、第1の駆動波形メモリ34及び第2の駆動波形メモリ35、第1のD/Aコンバータ36、第2のD/Aコンバータ37、第3のD/Aコンバータ38及び第4のD/Aコンバータ39の動作について図16のタイミングチャートを用いて説明する。
図16に示すように、時刻T1’においてアドレス変換回路33は、クロック信号CLKの立ち上がりに同期して、駆動波形番号データWNが指定する駆動波形番号に該当する駆動波形データの記憶先アドレスを示すアドレス信号AD3を第1の駆動波形メモリ34及び第2の駆動波形メモリ35に出力する。例えば駆動波形番号「0」が指定されている場合を想定すると、アドレス信号AD3はアドレス「+00000h」を示す。時刻T2’において、第1の駆動波形メモリ34は、アドレス「+00000h」に記憶されているCOM1の2バイト分の駆動波形データを第1のD/Aコンバータ36及び第2のD/Aコンバータ37に出力し、第2の駆動波形メモリ35は、アドレス「+00000h」に記憶されているCOM3の2バイト分の駆動波形データを第3のD/Aコンバータ38及び第4のD/Aコンバータ39に出力する。
そして、時刻T3’において、DACクロック信号CLK1の立ち上がりが発生すると、第1のD/Aコンバータ36は、DACクロック信号CLK1の立ち上がりに同期してCOM1の2バイト分の駆動波形データをラッチして取り込み、同様に第3のD/Aコンバータ38も、DACクロック信号CLK1の立ち上がりに同期してCOM3の2バイト分の駆動波形データをラッチして取り込む。
また、この時刻T3’において、アドレス変換回路33は、クロック信号CLKの立ち上りに同期して、アドレス「+08000h」を示すアドレス信号AD3を第1の駆動波形メモリ34及び第2の駆動波形メモリ35に出力する。そして、時刻T4’において、第1の駆動波形メモリ34は、アドレス「+08000h」に記憶されているCOM2の2バイト分の駆動波形データを第1のD/Aコンバータ36及び第2のD/Aコンバータ37に出力し、第2の駆動波形メモリ35は、アドレス「+08000h」に記憶されているCOM4の2バイト分の駆動波形データを第3のD/Aコンバータ38及び第4のD/Aコンバータ39に出力する。
そして、時刻T5’において、DACクロック信号CLK2の立ち上がりが発生すると、第2のD/Aコンバータ37は、DACクロック信号CLK2の立ち上がりに同期してCOM2の2バイト分の駆動波形データをラッチして取り込み、同様に第4のD/Aコンバータ39も、DACクロック信号CLK2の立ち上がりに同期してCOM4の2バイト分の駆動波形データをラッチして取り込む。
このように、第1のD/Aコンバータ36はCOM1の駆動波形データだけ取り込み、第2のD/Aコンバータ37はCOM2の駆動波形データだけ取り込み、第3のD/Aコンバータ38はCOM3の駆動波形データだけ取り込み、第4のD/Aコンバータ39はCOM4の駆動波形データだけ取り込むことになる。以降、アドレス変換回路33は、クロック信号CLKの立ち上りに同期してアドレスをインクリメントしていき、第1の駆動波形メモリ34及び第2の駆動波形メモリ35から駆動波形番号「0」に該当する512バイト分(1波形分)のCOM1〜COM4の駆動波形データが出力される。
そして、第1のD/Aコンバータ36は、1波形分のCOM1の駆動波形データを取り込み、アナログ変換して駆動信号COM1を生成し、液滴吐出ヘッド5のCOM選択回路40に出力する。また、第2のD/Aコンバータ37は、1波形分のCOM2の駆動波形データを取り込み、アナログ変換して駆動信号COM2を生成し、液滴吐出ヘッド5のCOM選択回路40に出力する。また、第3のD/Aコンバータ38は、1波形分のCOM3の駆動波形データを取り込み、アナログ変換して駆動信号COM3を生成し、液滴吐出ヘッド5のCOM選択回路40に出力する。また、第4のD/Aコンバータ39は、1波形分のCOM4の駆動波形データを取り込み、アナログ変換して駆動信号COM4を生成し、液滴吐出ヘッド5のCOM選択回路40に出力する。
このように、図15の時刻T1〜T2の期間において、図16に示す動作が行われ、液滴吐出ヘッド5のCOM選択回路40には、駆動信号COM1〜COM4が入力される。なお、図16に示す動作中において、第1の駆動波形メモリ34及び第2の駆動波形メモリ35にはデータ読み出し要求を示す波形データライトイネーブル信号WE2、チップセレクタ信号CS2及びアウトプットイネーブル信号OE2が入力される。
図15に戻って説明すると、時刻T3においてラッチ信号LTの立ち上がりが発生した場合、COM選択回路40のラッチ回路42は、ラッチ信号LTの立ち上がりに同期して、WSHデータ(WSH〜WSH180)及びWSLデータ(WSL〜WSL180)をラッチし、ラッチ信号LTの立ち下がりが発生する時刻T4に各WSHデータ(WSH〜WSH180)及びWSLデータ(WSL〜WSL180)を一括してCOM選択スイッチ回路CSW〜CSW180に出力する。ここでは、図15に示すように、(WSH、WSL)=(0、1)のデータがCOM選択スイッチ回路CSWに入力され、(WSH、WSL)=(0、1)のデータがCOM選択スイッチ回路CSWに入力され、以下同様に、(WSH180、WSL180)=(0、1)のデータがCOM選択スイッチ回路CSW180に入力されたものとする。つまり、COM選択スイッチ回路CSW〜CSW180は、駆動信号COM2を選択し、駆動信号V〜V180をスイッチング回路40に出力する。なお、駆動波形番号「0」に該当する駆動波形データから生成されたCOM1〜COM4は、図15に示すようにグランドレベルより少し高い電圧値を有するフラットな波形であるものとする。このような駆動波形番号「0」に該当する駆動波形データから生成されたCOM1〜COM4は、本液滴吐出装置IJの電源投入時などにおいて、各圧電素子PZ〜PZ180を待機状態に遷移させるためのものであり、液滴が吐出されないレベルの電圧値に設定されている。
一方、時刻T3において、スイッチング回路50のラッチ回路52は、ラッチ信号LTの立ち上がりに同期して、SIHデータ(SIH〜SIH180)及びSILデータ(SIL〜SIL180)をラッチし、ラッチ信号LTの立ち下がりが発生する時刻T4に、各SIHデータ(SIH〜SIH180)及びSILデータ(SIL〜SIL180)を一括して論理和回路OR〜OR180に出力する。ここでは、図15に示すように、(SIH、SIL)=(0、1)のデータが論理和回路ORに入力され、(SIH、SIL)=(0、1)のデータが論理和回路ORに入力され、以下同様に、(SIH180、SIL180)=(0、1)のデータが論理和回路OR180に入力されたものとする。つまり、各論理和回路OR〜OR180は、ハイレベルのスイッチング信号S〜S180をレベルシフタ回路53に出力し、レベルシフタ回路53は各スイッチング信号S〜S180を増幅して各スイッチング素子SW〜SW180に出力する。
上述したように、時刻T4において、各スイッチング素子SW〜SW180にハイレベルのスイッチング信号S〜S180が入力されることにより、各スイッチング素子SW〜SW180はオン状態となり、COM選択回路40から供給される駆動信号V〜V180を、それぞれに対応する圧電素子PZ〜PZ180に出力する。これにより、各圧電素子PZ〜PZ180には待機状態に遷移し、液滴吐出の準備が完了する。
一方、時刻T5において、制御装置11は、次の吐出データSIA及びCOM選択データSIBの記憶先アドレスを示す描画データアドレス信号AD1と、データ読み出し要求を示す描画データライトイネーブル信号WE1、チップセレクタ信号CS1及びアウトプットイネーブル信号OE1とを駆動回路基板30の描画データメモリ32に出力する。ここで、次の吐出データSIA及びCOM選択データSIBとは、液滴吐出ヘッド5の現在位置で液滴を吐出するためのデータである。これにより、液滴吐出ヘッド5の現在位置に対応する吐出データSIAが液滴吐出ヘッド5のスイッチング回路50(具体的にはシフトレジスタ回路51)に出力され、COM選択データSIBは液滴吐出ヘッド5のCOM選択回路40(具体的にはシフトレジスタ回路41)に出力される。また、この時のCOM選択データSIBに含まれる駆動波形番号データWNは、アドレス変換回路33に出力される。ここでは、駆動波形番号「1」が指定されたものとする。
そして、時刻T5において、吐出データSIAがスイッチング回路50のシフトレジスタ回路51に出力され、COM選択データSIBがCOM選択回路40のシフトレジスタ回路41に出力される。シフトレジスタ回路51は、時刻T5からT6までの期間、クロック信号CLKに同期してシリアルデータである吐出データSIAをパラレル変換してラッチ回路52に順次出力する。ここで、時刻T5からT6までの期間において、図16で説明したような動作により、第1のD/Aコンバータ36から、駆動波形番号「1」に対応する1波形分の駆動信号COM1が液滴吐出ヘッド5のCOM選択回路40に出力され、第2のD/Aコンバータ37から、駆動波形番号「1」に対応する1波形分の駆動信号COM2が液滴吐出ヘッド5のCOM選択回路40に出力され、第3のD/Aコンバータ38から、駆動波形番号「1」に対応する1波形分の駆動信号COM3が液滴吐出ヘッド5のCOM選択回路40に出力され、第4のD/Aコンバータ39から、駆動波形番号「1」に対応する1波形分の駆動信号COM4が液滴吐出ヘッド5のCOM選択回路40に出力される。
そして、時刻T7においてラッチ信号LTの立ち上がりが発生すると、COM選択回路40のラッチ回路42は、ラッチ信号LTの立ち上がりに同期して、WSHデータ(WSH〜WSH180)及びWSLデータ(WSL〜WSL180)をラッチし、ラッチ信号LTの立ち下がりが発生する時刻T8に各WSHデータ(WSH〜WSH180)及びWSLデータ(WSL〜WSL180)を一括してCOM選択スイッチ回路CSW〜CSW180に出力する。ここでは、図15に示すように、(WSH、WSL)=(1、0)のデータがCOM選択スイッチ回路CSWに入力され、(WSH、WSL)=(1、0)のデータがCOM選択スイッチ回路CSWに入力され、(WSH180、WSL180)=(0、0)のデータがCOM選択スイッチ回路CSW180に入力されたものとする。つまり、COM選択スイッチ回路CSW及びCSWは駆動信号COM3を選択し、COM選択スイッチ回路CSW180は駆動信号COM1を選択して、それぞれ駆動信号V〜V180をスイッチング回路40に出力する。
一方、時刻T7において、スイッチング回路50のラッチ回路52は、ラッチ信号LTの立ち上がりに同期して、SIHデータ(SIH〜SIH180)及びSILデータ(SIL〜SIL180)をラッチし、ラッチ信号LTの立ち下がりが発生する時刻T8に、各SIHデータ(SIH〜SIH180)及びSILデータ(SIL〜SIL180)を一括して論理和回路OR〜OR180に出力する。ここでは、図15に示すように、(SIH、SIL)=(1、0)のデータが論理和回路ORに入力され、(SIH、SIL)=(1、0)のデータが論理和回路ORに入力され、以下同様に、(SIH180、SIL180)=(1、0)のデータが論理和回路OR180に入力されたものとする。つまり、各論理和回路OR〜OR180は、ハイレベルのスイッチング信号S〜S180をレベルシフタ回路53に出力し、レベルシフタ回路53は各スイッチング信号S〜S180を増幅して各スイッチング素子SW〜SW180に出力する。
上述したように、時刻T8において、各スイッチング素子SW〜SW180にハイレベルのスイッチング信号S〜S180が入力されることにより、各スイッチング素子SW〜SW180はオン状態となり、COM選択回路40から供給される駆動信号V〜V180を、それぞれに対応する圧電素子PZ〜PZ180に出力する。これにより、圧電素子PZ及びPZにはCOM3の駆動信号が供給され、圧電素子PZ180にはCOM1の駆動信号が供給され、それぞれの駆動信号に応じた重量(吐出速度)の液滴がカラーフィルタ基板P上に吐出される。以上のような動作をカラーフィルタ基板P上の全ての位置に対して繰り返すことにより、カラーフィルタ基板P上の全画素にカラーフィルタ層が形成される。
なお、時刻T9では、(SIH、SIL)=(0、0)のデータが論理和回路ORに入力され、(SIH、SIL)=(0、0)のデータが論理和回路ORに入力され、以下同様に、(SIH180、SIL180)=(0、0)のデータが論理和回路OR180に入力されるため、スイッチング信号S〜S180は全てローレベルとなり、各スイッチング素子SW〜SW180はオフ状態となる。従って、この場合、駆動信号COM1〜COM4は液滴吐出ヘッド5に供給されるが、各圧電素子PZ〜PZ180に対する駆動信号V〜V180は供給されない。
以上説明したように、本液滴吐出装置IJによると、液滴吐出ヘッド5におけるノズルの液滴吐出バラツキ特性に基づいて予め設定されたCOM選択データSIBに基づいて、各圧電素子毎に、駆動信号COM1〜COM4の中から1つを選択して供給するので、液滴重量(吐出速度)のバラツキを抑制し、均一な膜層を形成することが可能である。さらに、カラーフィルタ基板Pのノズルデューティに応じた駆動信号を各圧電素子に供給するので、ノズルデューティの変化による液滴重量のバラツキを抑制することができる。
なお、液晶表示装置などに使用されるカラーフィルタ基板Pでは、各画素がX軸方向及びY軸方向に規則正しく配列しているため、使用する吐出データSIA及びCOM選択データSIBは一種類である場合が多い。従って、この場合、液滴吐出ヘッド5への吐出データSIA及びCOM選択データSIBの転送は初回の1度だけにし、液滴吐出ヘッド5を移動させる毎に同じ吐出データSIA及びCOM選択データSIBを再送しないようにすることが好ましい。例えば回路部品にCOMS−ICを使用すると転送周波数に依存して発熱量が大きくなるので、上記のように不必要な場合には吐出データSIA及びCOM選択データSIBを再送しないことにより、発熱量を抑制することができる。
また、上記実施形態では、1つの液滴吐出ヘッド5とそれに対応する1つの駆動回路基板30を例示して説明したが、これら液滴吐出ヘッド5及び駆動回路基板30が複数であっても同様な構成、動作を採用することができる。また、駆動素子として圧電素子を例示して説明したが、これに限らず、駆動信号に応じてキャビティ24の容積を変化させて液滴を吐出することが可能な素子ならば他の駆動素子を使用しても良い。また、上記実施形態では、4種類の駆動信号COM1〜COM4を使用する場合を例示して説明したが、装置コストや駆動回路基板30のサイズなどの設計条件に応じて、さらに複数種類の駆動信号を使用しても良い。
本発明の一実施形態における液滴吐出装置IJの構成概略図である。 本発明の一実施形態における液滴吐出ヘッド5の詳細説明図である。 本発明の一実施形態における液滴吐出ヘッド5及び駆動回路基板30の回路構成図である。 本発明の一実施形態における液滴吐出ヘッド5の液滴重量のバラツキ分布図である。 本発明の一実施形態におけるCOM選択データSIBの設定方法の具体例1を示すフローチャートである。 本発明の一実施形態におけるCOM選択データSIBの設定方法の具体例1に関する第1説明図である。 本発明の一実施形態におけるCOM選択データSIBの設定方法の具体例1に関する第2説明図である。 本発明の一実施形態におけるCOM選択データSIBの設定方法の具体例1に関する第3説明図である。 本発明の一実施形態におけるCOM選択データSIBの設定方法の具体例1に関する第4説明図である。 本発明の一実施形態におけるCOM選択データSIBの設定方法の具体例2を示す第1のフローチャートである。 本発明の一実施形態におけるCOM選択データSIBの設定方法の具体例2を示す第2のフローチャートである。 本発明の一実施形態における駆動信号COM1〜COM4の駆動波形データの記憶例を示す説明図である。 本発明の一実施形態における液滴吐出ヘッド5のCOM選択回路40の詳細説明図である。 本発明の一実施形態における液滴吐出ヘッド5のスイッチング回路50の詳細説明図である。 本発明の一実施形態における液滴吐出装置IJの動作を示す第1のタイミングチャートである。 本発明の一実施形態における液滴吐出装置IJの動作を示す第2のタイミングチャートである。
符号の説明
IJ…液滴吐出装置、1…装置架台、2…ワークステージ、3…ステージ移動装置、4…キャリッジ、5…液滴吐出ヘッド、6…キャリッジ移動装置、7…チューブ、8…第1タンク、9…第2タンク、10…第3タンク、11…制御装置、30…駆動回路基板、31…インターフェース、32…描画データメモリ、33…アドレス変換回路、34…第1の駆動波形メモリ、35…第2の駆動波形メモリ、36…第1のD/Aコンバータ、37…第2のD/Aコンバータ、38…第3のD/Aコンバータ、39…第4のD/Aコンバータ、N〜N180…ノズル、PZ〜PZ180…圧電素子、40…COM選択回路、50…スイッチング回路

Claims (9)

  1. 複数のノズル毎に設けられた駆動素子にそれぞれ駆動信号を供給して前記ノズルから液滴を吐出する液滴吐出ヘッドの駆動信号の設定方法であって、
    前記複数のノズルのそれぞれについて、仮条件の前記駆動信号を供給した際の吐出速度を測定するA工程と、
    前記A工程で測定した吐出速度に基づいて、前記複数のノズルを、吐出速度分布のレンジに関するn個のグループに分類するB工程と、
    前記n個のグループについて、それぞれ略適正速度の吐出速度で吐出するための適正条件の前記駆動信号を設定するC工程と、
    を有することを特徴とする駆動信号の設定方法。
  2. 前記適正条件の駆動信号は、前記仮条件の駆動信号について電圧成分を補正したものであることを特徴とする請求項1に記載の駆動信号の設定方法。
  3. 前記適正条件は、対応する前記グループに属する前記ノズルの吐出速度分布のレンジの中央値が、前記適正速度となるための条件であることを特徴とする請求項1または2に記載の駆動信号の設定方法。
  4. 前記適正条件は、対応する前記グループに属する前記ノズルの平均の吐出速度が、前記適正速度となるための条件であることを特徴とする請求項1または2に記載の駆動信号の設定方法。
  5. 前記B工程において、前記n個のグループのそれぞれに属する前記ノズルの数が許容最大ノズル数を超えないように、分類を行うことを特徴とする請求項1ないし4のいずれか一項に記載の駆動信号の設定方法。
  6. 前記B工程において、前記n個のグループのそれぞれに係る吐出速度分布のレンジが等しくなるように、分類を行うことを特徴とする請求項1ないし4のいずれか一項に記載の駆動信号の設定方法。
  7. 液滴吐出ヘッドにおける未使用ノズルと使用ノズルとの比率であるノズルデューティに応じて、前記B工程および前記C工程を行うことを特徴とする請求項1ないし6のいずれか一項に記載の駆動信号の設定方法。
  8. 前記nは4であることを特徴とする請求項1ないし7のいずれか一項に記載の駆動信号の設定方法。
  9. 複数のノズル毎に設けられた駆動素子にそれぞれ駆動信号を供給して前記ノズルから液滴を吐出する液滴吐出ヘッドの駆動方法であって、
    請求項1ないし8のいずれか一項に記載の駆動信号の設定方法を用いて、前記n個のグループのそれぞれに係る前記駆動信号を設定するD工程と、
    前記D工程で設定された条件の前記駆動信号を、対応する前記グループに属する前記ノズルに供給して、前記液滴を吐出するE工程と、
    を有することを特徴とする液滴吐出ヘッドの駆動方法。



JP2007034388A 2007-02-15 2007-02-15 駆動信号の設定方法及び液滴吐出ヘッドの駆動方法 Withdrawn JP2008197512A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007034388A JP2008197512A (ja) 2007-02-15 2007-02-15 駆動信号の設定方法及び液滴吐出ヘッドの駆動方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007034388A JP2008197512A (ja) 2007-02-15 2007-02-15 駆動信号の設定方法及び液滴吐出ヘッドの駆動方法

Publications (1)

Publication Number Publication Date
JP2008197512A true JP2008197512A (ja) 2008-08-28

Family

ID=39756494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007034388A Withdrawn JP2008197512A (ja) 2007-02-15 2007-02-15 駆動信号の設定方法及び液滴吐出ヘッドの駆動方法

Country Status (1)

Country Link
JP (1) JP2008197512A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010191284A (ja) * 2009-02-19 2010-09-02 Seiko Epson Corp カラーフィルターの製造方法、カラーフィルター、画像表示装置および電子機器
JP2010208216A (ja) * 2009-03-11 2010-09-24 Seiko Epson Corp 液体吐出装置の製造方法、及び、吐出パルス設定方法
JP2016508458A (ja) * 2013-01-28 2016-03-22 フジフィルム ディマティックス, インコーポレイテッド インクジェット射出
JP2017043072A (ja) * 2015-08-28 2017-03-02 株式会社ミマキエンジニアリング 液体吐出装置及び液体吐出装置の調整方法
WO2017038608A1 (ja) * 2015-08-28 2017-03-09 株式会社ミマキエンジニアリング 液体吐出装置及び液体吐出装置の調整方法
JP2017064920A (ja) * 2015-09-28 2017-04-06 株式会社ミマキエンジニアリング 液体吐出装置及び液体吐出装置の調整方法
JP2017512688A (ja) * 2014-04-30 2017-05-25 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 圧電プリントヘッドアセンブリ

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010191284A (ja) * 2009-02-19 2010-09-02 Seiko Epson Corp カラーフィルターの製造方法、カラーフィルター、画像表示装置および電子機器
JP2010208216A (ja) * 2009-03-11 2010-09-24 Seiko Epson Corp 液体吐出装置の製造方法、及び、吐出パルス設定方法
JP2016508458A (ja) * 2013-01-28 2016-03-22 フジフィルム ディマティックス, インコーポレイテッド インクジェット射出
JP2017512688A (ja) * 2014-04-30 2017-05-25 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 圧電プリントヘッドアセンブリ
US9855746B2 (en) 2014-04-30 2018-01-02 Hewlett-Packard Development Company, L.P. Piezoelectric printhead assembly
US10112390B2 (en) 2014-04-30 2018-10-30 Hewlett-Packard Development Company, L.P. Piezoelectric fluid ejection assembly
JP2017043072A (ja) * 2015-08-28 2017-03-02 株式会社ミマキエンジニアリング 液体吐出装置及び液体吐出装置の調整方法
WO2017038608A1 (ja) * 2015-08-28 2017-03-09 株式会社ミマキエンジニアリング 液体吐出装置及び液体吐出装置の調整方法
JP2017064920A (ja) * 2015-09-28 2017-04-06 株式会社ミマキエンジニアリング 液体吐出装置及び液体吐出装置の調整方法

Similar Documents

Publication Publication Date Title
JP2008197512A (ja) 駆動信号の設定方法及び液滴吐出ヘッドの駆動方法
JP2010227762A (ja) 液滴吐出装置、薄膜形成方法
JP4888346B2 (ja) 液状体の塗布方法、有機el素子の製造方法
JP2008173910A (ja) 液滴吐出装置及びその駆動方法
JP4905380B2 (ja) 駆動信号設定方法
JP2008183529A (ja) 液滴吐出装置
JP4479239B2 (ja) インクジェット塗布装置
JP2009189954A (ja) 駆動信号設定方法
JP5125132B2 (ja) 液滴吐出装置及びその駆動方法
JP5125131B2 (ja) 液滴吐出装置及びその駆動方法
JP4910718B2 (ja) 駆動信号の設定方法及び液滴吐出装置の駆動方法
JP5098354B2 (ja) 液滴吐出装置、駆動回路基板及び液滴吐出装置の駆動方法
JP2010119991A (ja) 液滴吐出装置の吐出量評価方法
JP2008178990A (ja) 液滴吐出装置の駆動方法
JP2009183859A (ja) 液滴吐出装置及び薄膜形成方法
JP2008173909A (ja) 液滴吐出装置及びその駆動方法
JP2008185871A (ja) 液滴吐出装置の駆動方法
JP2010217827A (ja) 液滴吐出装置、薄膜形成方法
JP2008191204A (ja) 液滴吐出装置及びその駆動方法
JP2009183857A (ja) 液滴吐出装置及び薄膜形成方法
JP2021115731A (ja) 液体吐出方法、駆動パルス決定プログラム、および、液体吐出装置
JP2010036388A (ja) 液滴量測定方法およびこれを搭載した液滴吐出システム
JP2021115729A (ja) 液体吐出方法、駆動パルス決定プログラム、および、液体吐出装置
JP2008276086A (ja) 駆動信号設定方法
JP2010247077A (ja) 吐出量測定方法、液滴吐出方法、カラーフィルターの製造方法、および液滴吐出装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100511